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Abstract. The quantification of information leakage provides a quan-
titative evaluation of the security of a system. We propose the usage
of Markovian processes to model and analyze the information leakage
of deterministic and probabilistic systems. We show that this method
generalizes the lattice of information approach and is a natural framework
for modeling refined attackers capable to observe the internal behavior
of the system. We also use our method to obtain an algorithm for the
computation of channel capacity from our Markovian models. Finally, we
show how to use the method to analyze timed and non-timed attacks on
the Onion Routing protocol.

1 Introduction

Quantification of information leakage is a recent technique in security analysis that
evaluates the amount of information about a secret (for instance about a password)
that can be inferred by observing a system. It has sound theoretical bases in
Information Theory [1,2]. It has also been successfully applied to pratical problems
like proving that patches to the Linux kernel effectively correct the security errors
they address [3]. It has been used for analysis of anonymity protocols [4,5] and
analysis of timing channels [6,7]. Intuitively, leakage of confidential information
of a program is defined as the difference between the attacker’s uncertainty about
the secret before and after available observations about the program [1].

The underlying algebraic structure used in leakage quantification for deter-
ministic programs is the lattice of information (LoI) [1]. In the LoI approach
an attacker is modelled in terms of possible observations of the system she can
make. LoI uses an equivalence relation to model how precisely the attacker can
distinguish the observations of the system. An execution of a program is modeled
as a relation between inputs and observables. In this paper we follow the LoI
approach but take a process view of the system. A process view of the system is a
more concise representation of behaviour than an observation relation. Moreover
a process view does not require that the system is deterministic, which allows us
? The research presented in this paper has been partially supported by MT-LAB, a
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to handle randomized protocols—for the first time using a generic, systematic
and implementable LoI-based methodology.

We use Markov Decision Processes to represent the probabilistic partial-
information semantics of programs, using the nondeterminism of the model for
the choices that depend on the unknown secret. We define the leakage directly
on such model. With our method we can distinguish the inherent randomness of
a randomized algorithm from the unpredictability due to the lack of knowledge
about the secret. We exploit this distinction to quantify leakage only for the secret,
as the information leakage about the random numbers generated is considered
uninteresting (even though it is an information in information theoretical sense).
We thus work with both deterministic and randomized programs, unlike the
previous LoI approach.

We give a precise encoding of an attacker by specifying her prior knowledge
and observational capabilities. We need to specify which of the logical states
of the system can be observed by the attacker and which ones he is able to
distinguish from each other. Given a program and an attacker we can calculate
the leakage of the program to the attacker.

We also show how to turn the leakage computation into leakage optimization:
we compute the maximum leakage over all possible prior information of attackers
ceteris paribus, or in other words, the leakage for the worst possible attacker
without specifying the attacker explicitly. This maximum leakage is known as
the channel capacity of the system [8]. Since we are able to model a very large
class of attackers the obtained channel capacity is robust. Computing channel
capacity using this method requires solving difficult optimization problems (as
the objective is nonlinear), but we show how the problem can be reduced to
standard reward optimization techniques for Markovian models for a class of
interesting examples.

Our method can be applied to finite state systems specified using a simple
imperative language with a randomization construct. It can also be used for
systems modeled directly as Markov Decision Processes. We demonstrate the
technique using an MDP model of the known Onion Routing protocol [9], showing
that we can obtain the channel capacity for a given topology from an appropriate
Markov Decision Process describing the probabilistic partial information behavior
of the system. Also, our behavioral view of the system allows us to encode an
attacker with time-tracking capabilities and prove that such an attacker can leak
more information than the canonical attacker that only observes the traffic on
the compromised nodes. Timing-based attacks to the Onion Routing protocol
have been implemented before [10,11], but to our best knowledge the leakage of
timing-attacks has not been quantified before.

Our contributions include:

– A method for modeling attack scenarios consisting of process models of
systems and observation models of attackers, including a simple partial-
observability semantics for imperative programs, so that these models can
also be obtained from code.
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– A definition of leakage that generalizes the LoI approach to programs with
randomized choices (strictly including the class of deterministic programs),
and dually the first application of the LoI approach to process specifications
of systems.

– A method for computing leakage for scenarios modeled as described above.
The method is fully implementable.

– A method to parameterize the leakage analysis on the attacker’s prior in-
formation about the secret, to allow the computation of channel capacity
by maximizing an equation characterizing leakage as a function of prior
information.

– The worst-case analysis of the Onion Routing protocol when observed by
non time-aware and time-aware attackers able to observe the traffic passing
through some compromised nodes.

2 Background

2.1 Markovian Models

Definition 1. A tuple C = (S, s0, P ) is a Markov Chain (MC), if S is a finite
set of states, s0∈S is the initial state and P is an |S| × |S| probability transition
matrix, so ∀s, t∈S. Ps,t≥0 and ∀s∈S.

∑
t∈S Ps,t = 1.

The probability of transitioning from any state s to a state t in k steps can
be found as the entry of index (s, t) in P k [12]. We call π(k) the probability
distribution vector over S at time k and π(k)

s the probability of visiting the state
s at time k; note that π(k) = π0P

k, where π(0)
s is 1 if s = s0 and 0 otherwise.

A state s ∈ S is absorbing if Ps,s = 1. In the figures we will not draw the
looping transition of the absorbing states, to reduce clutter.

Let ξ(s, t) denote the expected residence time in a state t in an execution
starting from state s given by ξ(s, t) =

∑∞
n=0 P

n
s,t. We will write ξs for ξ(s0, s).

Given a Markov chain C = (S, s0, P ) let a discrimination relation R be an
equivalence relation over S. Given C and R define the quotient of C by R as a
new Markov chain C/R = (S/R, s′0, P ′) where

– S/R is the set of the equivalence classes of S induced by R
– s′0 is the equivalence class of s0
– P ′ : S/R× S/R → [0, 1] is a probability transition function between equiva-

lence classes of S/R such that

∀c, d ∈ S/R. P ′c,d = 1
|c|
∑
s∈c
t∈d

Ps,t

Given k Markov chains C1 = (S1, s1
0, P

1),...,Ck = (Sk, sk
0 , P

k) their syn-
chronous parallel composition is a MC C = (S, s0, P ) where S is S1 × ...× Sk, s0
is s1

0 × ...× sk
0 and Ps1×...×sk,t1×...×tk =

∏k
i=1 Psi,ti .
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Definition 2. A Markov Decision Process (MDP) is a tuple P = (S, s0, P, Λ)
where S is a finite set of states containing the initial state s0, Λs is the finite set
of available actions in a state s ∈ S and Λ =

⋃
s∈S Λs, and P : S×Λ×S → [0, 1]

is a transition probability function such that ∀s, t ∈ S.∀a ∈ Λs. P (s, a, t) ≥ 0 and
∀s ∈ S.∀a ∈ Λs.

∑
t∈S P (s, a, t) = 1.

We we will write s a−→ [P1 7→ t1, ..., Pn 7→ tn] to denote that in state s ∈ S the
system can take an action a ∈ Λs and transition to the states t1, ..., tn with
probabilities P1, ..., Pn.

We will enrich our Markovian models with a finite set V of integer-valued
variables, and an assignment function A : S → Z|V| assigning to each state the
values of the variables in that state. We will use the expression vs to denote the
value of the variable v ∈ V in the state s ∈ S. Later we will use the values of the
variables to define the discrimination relations, as explained in Section 6.

2.2 Reward and Entropy of a Markov Chain

A real-valued reward functions on the transitions of a MC C = (S, s0, P ) is a
function R : S × S → R. Given a reward function on transitions, the expected
reward R(s) for a state s ∈ S can be computed as R(s) =

∑
t∈S Ps,tR(s, t), and

the expected total reward R(C) of C as R(C) =
∑

s∈S R(s)ξs.
The entropy of a probability distribution is a measure of the unpredictabil-

ity of the events considered in the distribution [13]. Entropy of a discrete
distribution over the events x ∈ X is computed as

∑
x∈X P(x) log2

1
P(x)=-∑

x∈X P(x) log2 P(x). We will sometimes write H(P(x1),P(x2), ..,P(xn)) for
the entropy of the probability distribution over x1, ..., xn.

Since every state s in a MC C has a discrete probability distribution over the
successor states we can calculate the entropy of this distribution. We will call it
local entropy, L(s), of s: L(s) = −

∑
t∈S Ps,t log2 Ps,t. Note that L(s) ≤ log2(|S|).

As a MC C can be seen as a discrete probability distribution over all of its
possible traces, we can assign a single entropy value H(C) to it. The global
entropy H(C) of C can be computed by considering the local entropy L(s) as the
expected reward of a state s and then computing the expected total reward of
the chain [14]:

H(C) =
∑
s∈S

L(s)ξs

2.3 Lattice of Information

Let Σ be a finite set of observables over a deterministic program P . Consider all
possible equivalence relations over Σ; each of them represents the discriminating
power of an attacker. Given two equivalence relations ≈,∼ over Σ define a
refinement ordering as

≈ v ∼ iff ∀σ1, σ2 ∈ Σ (σ1 ∼ σ2 ⇒ σ1 ≈ σ2) (1)
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The ordering forms a complete lattice over the set of all possible equivalence
relations over Σ [15]: the Lattice of Information (abbreviated as LoI).

If ≈v∼ then classes in ∼ refine (split) classes in ≈, thus ∼ represents an
attacker that can distinguish more while ≈ represents an attacker that can
distinguish less observables.

By equipping the set Σ with a probability distribution we can see an equiva-
lence relation as a random variable (technically it is the set theoretical kernel of
a random variable but for information theoretical purposes can be considered a
random variable [1]). Hence the LoI can be seen as a lattice of random variables.

The connection between LoI and leakage can be illustrated by this simple
example: consider a password checking program checking whether the user input
is equal to the secret h. Then an attacker observing the outcome of the password
check will know whether the secret is h or not, hence we can model the leakage
of such a program with the equivalence relation {{h}, {x|x 6= h}}.

More generally, observations over a deterministic program P form an equiva-
lence relation over the possible states of P . A particular equivalence class will be
called an observable. Hence an observable is a set of states indistinguishable by
an attacker making that observation. If we consider an attacker able to observe
the outputs of a program then the random variable associated to a program P
is given by the equivalence relation on any two states σ, σ′ from the universe of
program states Σ defined by

σ ' σ′ ⇐⇒ [[P]](σ) = [[P]](σ′) (2)

where [[P]] represents the denotational semantics of P [16]. Hence the equivalence
relation amounts to “having the same observable output”. This equivalence
relation is nothing else than the set-theoretical kernel of the denotational semantic
of P [17].

Given a random variable associated to an attacker’s observations of a deter-
ministic program P the leakage of P is then defined as the Shannon entropy of
that random variable. It is easy to show that for deterministic programs such
entropy is equal to the difference between the attacker’s a priori and a posteriori
uncertainty about the secret and that it is zero if and only if the program is
secure (i.e. non interferent) [1].

More intentional attackers in the LoI setting are studied in [18,7], however
this is the first work where LoI is used to define leakage in a probabilistic setting.

3 Information Leakage of Markov Chains

We begin with an overview of the proposed technique for leakage quantification.
It proceeds in five steps, that are all fully automatable for finite state programs.
Let a scenario be a pair (P,A), where P is the system we want to analyze and A
is an attacker. We will call P the program, even if it can be any system suitably
modeled as an MDP as explained in Sect. 4.

5



a) b)

Fig. 1. Simple loop example a) MDP semantics b) MC model

Step 1: Define a MDP representing P (Sections 4, 8). We first give a probabilistic
semantics to the program in the form of an MDP, in which probabilistic choices
are represented by successor state distributions and branching is represented by
decision states. This is more or less standard definition of operational semantics
for randomized imperative programs.
Example [17]. A program has two variables l and h. Variable h is 2-bit long and
private, while variable l is public. The attacker can read l but not h:

l = 0; while (l != h) do l = l + 1;

The MDP representing the probabilistic partial information semantics of the
program is depicted in Fig. 1a. The states in which the system stops and produces
an output are encoded with the absorbing states of the MDP, i.e. the states with
a probability of transitioning to themselves equal to 1. In the MDP in Fig. 1a
states S1, S3, S5 and S6 are absorbing states.

Step 2: Define the attacker A. An attacker is an external agent observing the
system to infer information about its private data. We assume that the attacker
knows the implementation of the system (white-box), but is not necessarily able
to observe and discriminate all the logical states of the system at runtime. We
specify the prior information about the system that the attacker might have, and
which system states she can observe and discriminate at runtime.

Definition 3. An attacker is a triple A = (I,RA, TA) where I is a probability
distribution over the possible values of the secret encoding the attacker’s prior
information about it, RA is a discrimination relation over the states of the system
in which two states are in the same class iff the attacker cannot discriminate
them, and TA ⊆ S is the set of states hidden to the attacker.

Example. In our example we will use the following attacker: I = (1/4, 1/4, 1/4, 1/4)
(no prior information), TA = (S2, S4) (cannot observe internal states) and RA =
{(S1, S5), (S3, S6)} (cannot distinguish states S1 from S5 and S3 from S6).
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c) d) e)

Fig. 2. Simple loop example c) Observable reduction d) Relabeling e) Quotient

Step 3: Resolve the nondeterminism in the MDP. To transform the MDP in a
MC, an thus compute leakage, we need to exploit the prior information I of the
attacker. We use it to compute a probability distribution over possible values of
private variables in each states of the MDP. To do this for a given state s we
just need to normalize I on the allowed values of the private variables for the
state. The probability of the each action a ∈ Λs is computed as the probability
of the event labelling a given the probability distribution over the values of the
secret in s. We will denote the obtained MC by C.
Example. In state S0 the probability distribution over h is I = (1/4, 1/4, 1/4, 1/4)
and l=0. The program transitions to state S1 if h=l and to state S2 if h6=l. We
have that PS0,S1 is P(h = l|S0) = 1/4 and the probability distribution on h in S1
is (1, 0, 0, 0). Complementarily, PS0,S2 is 3/4 and the probability distribution on
h in S2 is (0, 1/3, 1/3, 1/3). Figure 1b shows the outcome after repeating this step
in all states of the MDP of Fig. 1a.

Step 4: Hide non-observable states (Sect. 5). In the above example the attacker
cannot observe the internal states of the system. We expressed this by taking
TA = (S2, S4). Since these states are not observable, we remove them from
the MC and redistribute the probability of visiting them to their successors.
If a hidden state has no or only hidden successors, it will never produce any
observable—we call this event divergence. In general we assume that the observer
can understand if the program diverges, so divergence is one of the possible
outputs of the system. We write C for the MC resulting from hiding in C the
states of TA. We call C the observable reduction of the scenario.
Example. Figure 2c presents the observable reduction for the running example.

Step 5: Compute the leakage (Sect. 6). From the observable reduction C and
the attacker’s discrimination relation RA we can compute the leakage for the
scenario (P,A). The definition of leakage for this model is based on the quotient
operator for Markov chains. A quotiented MC C/R captures the view of the
chain when observed by an agent able to distinguish equivalence classes of R.
Let Rh be a discrimination relation that relates states with the same possible
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values of the secret that is finer than probabilistic bisimulation. Then leakage is
the mutual information between the attacker and the system as seen by an agent
able to discriminate only states with different values of the secret:

Definition 4. Let (P,A) be a scenario, A = (I,RA, TA) an attacker, C the
observable reduction of the scenario and Rh = {(s, t) ∈ S|hs = ht}. Then the
information leakage of P to A is

I(C/Rh;C/RA) = H(C/Rh) +H(C/RA)−H(C/RA ∩Rh).

Corollary 1. If P is a deterministic program, then the leakage is H(C/RA).

Example. Recall that in the running example the attacker is only able to
read the parity of l. We have that RA = {(S1, S5), (S3, S6)}. We name the
equivalence classes even and odd and relabel the state with the classes (see
Fig. 2d). The quotient C/RA is depicted in Fig. 2e. The program is deterministic,
so by Corollary 1 the leakage of the scenario is equivalent to the entropy of such
quotient, or 1 bit [14].

4 Handling Randomized Imperative Programs

We give a simple probabilistic partial-observation semantics for an imperative
language with randomization. This semantics, akin to abstract interpretation,
derives Markovian models of finite state programs automatically. Let all variables
be integers of predetermined size and class (public, private) declared before
execution. Private variables are read-only, and cannot be observed externally.
Denote by l (resp.h) names of public (resp. private) variables; by p reals from
[0; 1]; by label all program points; by f (g) pure arithmetic (Boolean) expressions.
Assume a standard set of expressions and the following statements:

stmt ::= l := f(l...) | l := rand p | skip | goto label |
return | if g(l...,h...) then stmt-list else stmt-list

The first statement assigns to a public variable the value of expression f depending
on other public variables. The second assigns zero with probability p, and one
with probability 1−p, to a public variable. The return statement outputs values
of all public variables and terminates. A conditional branch first evaluates an
expression g dependent on private and public variables; the first list of statements
is executed if the condition holds, and the second otherwise. For simplicity, all
statement lists must end with an explicit jump, as in: if g(l,h) then ...; goto
done; else ...; goto done; done: ... . Each program can be easily transformed
to this form. Loops can be added in a standard way as a syntactic sugar.

The probabilistic partial-information semantics assumes an external view of
the program, so private variables are not visible. A state in this view is a triple
(pc, L,H), where pc is the current program counter, L maps public variables to
integer values of the appropriate size, and H maps private variables to sets of
their possible values. If the observer knows nothing about a private variable h,
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pc: skip

(pc, L, H) >−→ [1 7→ (pc + 1, L, H)]

pc: v := f(l)

(pc, L, H) >−→ [1 7→ (pc + 1, L[f(l)/v], H)]

pc: v := rand p

(pc, L, H) >−→ [p 7→ (pc + 1, L[0/v], H), (1− p) 7→ (pc + 1, L[1/v], H)]

pc: goto label

(pc, L, H) >−→ [1 7→ (label, L, H)]

pc: return

(pc, L, H) >−→ [1 7→ (pc, L, H)]

pc: if g(l,h) then la: A else lb: B

(pc, L, H) g(l,h)−−−−→ [1 7→ (la, L, H|g(l,h))]

pc: if g(l,h) then la: A else lb: B

(pc, L, H) ¬g(l,h)−−−−−→ [1 7→ (lb, L, H|¬g(l,h))]

Fig. 3. Execution rules in probabilistic partial information semantics.

the set H(h) holds all the values of h’s type. If the observer holds some prior
information, or learns through interaction with the system, this set is smaller.

The semantics (Fig. 3) is a small-step operational semantics with transitions
from states to distributions over states, labeled by expressions dependent on
h (only used for the conditional statement). It generates an MDP over the
reachable state space. In Fig. 3, v, l are public variables and h is a private
variable. Expressions in rule consequences stand for values obtain in a standard
way. L[X/l] denotes substition of X as the new value for l in mapping L. Finally,
H|g denotes a restriction of each set of possible values in a mapping H, to
contain only values that are consistent with Boolean expression g. Observe that
the return rule produces an absorbing state—this is how we model termination
in an MDP. The rand rules produces a proper distribution, unlike the other Dirac
distributions. The if rule produces a nondeterministic decision state.

In the obtained MDP states are labelled by values of public variables and
sets of values of private variables. Actions from each state represent the secret-
dependent events for the state. Our leakage quantification technique works for
any MDP of this shape, even the ones not necessarily obtained from code. In
Sect. 8 we will create such a model directly from a topology of the Onion Routing
protocol.

5 Hiding Non-observable States

In the simple loop example of Sect. 3 the attacker is unable to observe states S2
and S4; we call these non-observable states hidden. His view of the system is thus
adequately represented by the MC in Fig. 2c. In this figure the probability of
transferring from the state S0 to state S5 is the probability of reaching S5 from
S0 in the MC of Fig. 1b eventually, so after visiting zero or more hidden states.
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1. Take C \ T = (S, s0,P) and P = P
2. Add to the MC the divergence state ↑ with P↑,↑ = 1
3. Choose a hidden state t ∈ T , or terminate if T is empty
4. Let Pred(t) = {s ∈ S \{t} | Ps,t > 0} be the set of predecessors of t
5. Let Succ(t) = {u ∈ S \{t} | Pt,u > 0} be the set of successors of t
6. If Pt,t = 1:

(a) For each state s ∈ Pred(t) set Ps,↑ = Ps,t

(b) Remove t from S and T and go back to step 3
7. Else

(a) For each u ∈ Succ(t) set Pt,u := Pt,u

1−Pt,t

(b) Set Pt,t = 0
(c) For each s ∈ Pred(t) and u ∈ Succ(t) set Ps,u := Ps,u + Ps,tPt,u

(d) Remove t from S and T and go back to step 3

Fig. 4. Computing C\T = (S \T, s0,P) for a MC C = (S, s0, P ) and hidden states T ⊂S

Note that the initial state cannot be hidden, as we assume the attacker knows
that the system is running. This assumption does not restrict the power of the
approach, since one can always model a system, whose running state is unknown,
by prefixing its initial state by a pre-start state, making it initial, and hiding the
original initial state.

We present the hiding algorithm in Fig. 4. We will overload the symbol \ to
use for the hiding operation: we write C \ T for the observable MC obtained from
C by hiding the states in set T . If a system stays in a hidden state forever, we say
it diverges. Divergence will be symbolized by a dedicated absorbing state named ↑.
Otherwise, we compute the new successor probabilities for t; we accomplish this
by setting the probability of transitioning from t to itself to 0 and normalizing
the other probabilities accordingly. Then we compute the probability that each
of its predecessors s would transition to each of its successors u via t and add it
to the transition probability from s to u, and finally we remove t from the MC.

The difference between states that cannot be discriminated and hidden states
is of primary importance. The former assumes that the attacker is aware of the
existence of such states, and thus knows when the system is in one of them, but is
not able to discriminate them because they share the same observable properties.
For instance, if the attacker can only read the system’s output he will not be
able to discriminate between different states that produce the same output. In
contrast the attacker has no way to observe the behavior of the system when
it is in an hidden state, not even by indirect methods like keeping track of the
discrete passage of time. For instance, if the attacker can only read the system’s
output, the states of the system that produce no output will be hidden to him.

6 Collapsing Non-discriminable States

Discrimination relations are equivalence relations that we use to encode the
fact that some states cannot be observed separately by the attacker, since they

10



share some observable properties. Different attackers are able to observe different
properties of the states, and thus discriminate them differently.

The discrimination relationRA represents the attacker’s inability to determine
when the system is in a particolar state due to the fact that different states have
the same observable properties. We define equivalence classes based on RA, and
the attacker knows that the system is in one of these classes but not in which
state. This is encoded by relabelling the states of the MC with their equivalence
classes in RA and then quotienting it by RA.

We need to impose a restriction to RA, since not all discrimination relations
are suitable for encoding attackers: the attacker is always able to discriminate
states if they behave differently in the relabelled model. Let CRA be the MC
C in which the states are labeled with their equivalence class in S/RA. Then
RA encodes the discrimination relation of an attacker only if the states with the
same label in CRA are probabilistically bisimilar.

As a result of this condition, all traces in C/RA are relabelled projections of
traces in C. This is fundamental to prevent the attacker from expecting traces
that do not appear in the actual computation. It also allows us to generalize
the discrimination relation ordering used in the LoI approach [1]. Let A1 =
(I1, TA1 ,RA1) and A2 = (I2, TA2 ,RA2) be two attackers, and define

A1 v A2 iff I1 = I2 ∧ TA1 = TA2 ∧RA1 ⊆ RA2

Theorem 1. Let A1 and A2 be two attackers such that A1 v A2. Then for any
program P, the leakage of the scenario (P,A1) is greater or equal then the leakage
of the scenario (P,A2).
Effectively, the attacker that is able to discriminate more states (a language-like
qualitative property) is able to leak more information (an information-theoretical
quantitative property). The attacker with the highest leakage can discriminate all
states, thus its discrimination relation is the identity; the attacker with the lowest
leakage cannot discriminate any state from any other, and thus has leakage 0.

The common definition of leakage of the LoI approach [2] assumes that the
attacker can observe the different output of a deterministic system. It can be
easily encoded in our method. Consider a deterministic program P with a low-
level variable o encoding the output of the program. Let the an attacker AI/O

have RAI/O
= {(s, t) ∈ S × S | os = ot} and TAI/O

being the set of all internal
states of the MDP semantics of P. The following proposition states that such
attacker is the one considered in [2]:

Theorem 2. Let (P,AI/O) be a scenario, AI/O being the attacker defined above.
Then H(C/RAI/O ) = Leakage(P).

7 Computing Channel Capacity

The method we presented computes the leakage for a scenario, but it is common in
security to ask what is the leakage of a given program in the worst-case scenario,
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i.e. for the scenario with the highest leakage. We consider the maximum leakage
over all the attackers with the same discrimination relation RA and hidden states
TA but different prior information I. We define a class of attackers this way
because maximizing over all discrimination relations would just conclude that
the attacker able to discriminate all states leaks all the information in the system.
The maximum leakage for a class of attackers is known as channel capacity, and
it is the upper bound to the leakage of the system to any attacker [8]:

Definition 5. Let P be a program and A the class of all attackers with discrim-
ination relation RA and hidden states TA. Let Â ∈ A be the attacker maximizing
the leakage of the scenario (P,A) for all A ∈ A. Then the channel capacity of P
is the leakage of the scenario (P, Â).

a)

b)

Fig. 5. Reduction from MDP
to parameterized MC

To compute it we procede as follows. We
first transform the MDP semantics of P in a
parameterized MC with constraints. Then we
define a MC and a reward function from it
such that the expected total reward of the
MC is equivalent to the leakage of the sys-
tem. Then we extract an equation with con-
straints characterizing this reward as a func-
tion of the prior information I of the at-
tacker. Finally, we maximize the equation and
obtain the maximum leakage, i.e. the chan-
nel capacity. In the next Section we will ap-
ply this method to compute the channel ca-
pacity of attacks to the Onion Routing proto-
col.

Step 1: Find the parameterized MC. We abuse
the notation of Markov chain allowing the use of
variables in the transition probabilities. This allows us to transform the MDP
semantics of a program P in a MC with the transition probabilities parameterized
by the probability of choosing the actions in each state.

Consider the MDP in Fig 5a; in state S0 either h = 0 or h 6= 0 and the system
moves to the next state with the appropriate transition probability. Let P(0) and
P(¬0) be P(h = 0|S0) and P(h 6= 0|S0) respectively; then we can transform the
MDP in the MC in Fig 5b, with the constraint P(0) + P(¬0) = 1.

We hide the states in TA in the MC obtaining the observational reduction C,
as described in Sect. 5.

Step 2: Define a reward function for leakage. We want to define a reward function
on the parameterized MC such that the expected total reward of the chain is
equivalent to the leakage of the system. This step can be skipped if the leakage
equation can be obtained directly from the model, like in the examples in the
next Section. In the example in Fig. 5 the system is deterministic, so its leakage
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is equal to its entropy by Corollary 1, and we just need to define the entropy
reward function on transitions R(s, t) = − log2 Ps,t, as explained in [14].

For a probabilistic system we need to build another MC by composing C/Rh,
C/RA and C/RA∩Rh, and we define the leakage reward function on the composed
chain:

Theorem 3. Let C be the parallel composition of C/Rh, C/RA and C/RA ∩Rh.
Let R be a reward function on the transitions of C such that

R(s1 × s2 × s3, t1 × t2 × t3) = log2
Ps1,t1Ps2,t2

Ps3,t3

.

Then the expected total infinite time reward of C with the reward function R is
equivalent to H(C/Rh) +H(C/RA)−H(C/RA ∩Rh) and thus to the leakage.

Step 3: Extract the leakage as an equation. Now that we have a reward function
R on the transitions of a MC characterizing the leakage of the system, we need to
maximize it. One possible strategy is to extract the explicit equation of the reward
of the chain as a function of the transition probabilities, which themselves are a
function of the prior information I. For a reward function R(s, t) on transitions
the reward for the MC is

R(C) =
∑
s∈S

R(s)ξs =
∑
s∈S

(∑
t∈S

Ps,tR(s, t) ·
∞∑

k=0
Ps0,s

)

Since for the leakage reward function R(s, t) is a function of Ps,t, the transition
probabilities are the only variables in the equation.

In the example in Fig. 5 the leakage is equal to the entropy, so the reward
function is R(s, t) = − log2 Ps,t and the leakage equation is

R(C) = − (P(0)/4 + P(¬0)/2) log ((P(0)/4 + P(¬0)/2))−
− (3P(0)/4 + P(¬0)/2) log ((3P(0)/4 + P(¬0)/2)) (3)

under the constraint above.

Step 4: Maximize the leakage equation Maximizing the extracted constrained
leakage equation computes the channel capacity of the system. This can be done
with any maximization method. Note that in general the strategy maximizing
this reward function will be probabilistic, and thus will have to be approximated
numerically. In the cases in which the maximum leakage strategy is deterministic,
an analytical solution can be defined via Bellman equations. This case is more
complex that standard reward maximization for MDPs, since the strategy in
every state must depend on the same prior information I, and this is a global
constraint that cannot be defined in a MDP. A theoretical framework to automate
this operation is being studied, but most cases are simple enough to not need it,
like the examples in the next Section.
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8 Onion Routing

8.1 Case: Channel Capacity of Onion Routing

Onion Routing [9] is an anonymity protocol designed to protect the identity of
the sender of a message in a public network. Each node of the network is a router
and is connected to some of the others, in a directed network connection topology;
the topology we consider is the depicted in Fig. 6. When one of the nodes in the
topology wants to send a message to the receiver node R, it initializes a path
through the network to route the message instead of sending it directly to the
destination. The node chooses randomly one of the possible paths from itself to
R, respecting the following conditions:

1. No node can appear in the path twice.
2. The sender node cannot send the message directly to the receiver.
3. All paths have the same probability of being chosen.

If some nodes are under the control of an attacker, he may try to gain information
about the identity of the sender. In this example node 3 is a compromised node;
the attacker can observe the packets transitioning through it, meaning that when
a message passes through node 3 the attacker learns the previous and next node
in the path. The goal of the attacker is to learn the identity of the sender of the
message; since there are 4 possible senders, this is a 2-bit secret.

Fig. 6. Network topology for Onion
Routing

h Path o P(O|h)
1(h1) 1→ 2→ R NN 1

2
1→ 2→ 3→ R 2R 1

2
2(h2) 2→ 3→ R 2R 1
3(h3) 3→ 2→ R N2 1
4(h4) 4→ 3→ R 4R 1

2
4→ 3→ 2→ R 42 1

2

Fig. 7. Onion Routing paths, ob-
servations and probabilities

Figure 7 summarizes the possible secrets of the protocol, the corresponding
paths, the observation for each path assuming node 3 is compromised and the
probability that a given sender will choose the path.

We give directly the MDP semantics of the system in Fig. 8; its WHILE code
is not shown for simplicity. The prior information I of the attacker consists
of the prior probabilities he assigns to the identity of the sender; we use hi to
denote P(h =i), for i = 1...4. Clearly h1 + h2 + h3 + h4 = 1. The full system is
represented in Fig. 8, parameterized on the hi parameters. Each state is labelled
with the low-level variables l and o and the confidential variable h. Variable l
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Fig. 8. Markov Decision Process for Onion Routing

represents the name of the node being visited in the Onion Routing topology,
o represents the observables in that node (the nodes before and after it in the
path), and h the name of the sender of the message.

Since the attacker can observe only node 3, all states with l6= 3 except the
initial state are unobservable τ -states. We reduce the chain accordingly; the
resulting observational reduction is shown in Fig. 9a. We call it C. Note that one
of the paths does not pass through node 3, so if that path is chosen the attacker
will never observe anything; in that case the system diverges. We assume that
the attacker can recognize this case, using a timeout or similar means.

To compute the leakage we need also to define Rh and RA. This is straight-
forward; Rh is ((s, t) ∈ (S×S)|hs = ht) and RA is ((s, t) ∈ (S×S)|os = ot). The
resulting MCs C/Rh and C/RA are shown in Fig. 9bc. Note that C/Rh∩RA = C.

Since the system is very simple, we can extract the leakage equation directly
from Def. 4. The leakage parameterized on I is

H(C/Rh) +H(C/RA)−H(C/RA ∩Rh) =

= H(h1, h2, h3, h4) +H(h1

2 ,
h1

2 + h2, h3,
h4

2 ,
h4

2 )−

H(h1

2 ,
h1

2 , h2, h3,
h4

2 ,
h4

2 )

(4)
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b) c)a)

Fig. 9. Markov chains for Onion Routing: a) Observable reduction C b) C/Rh c) C/RA

Under constraints 0 ≤ hi ≤ 1 and h1 + h2 + h3 + h4 = 1 it has its maximum of
1.819 bits at h1 = 0.2488, h2 = 0.1244, h3 = 0.2834, h4 = 0.2834, thus these are
the channel capacity and the attacker with highest leakage.

8.2 Case: Channel Capacity of Discrete Time Onion Routing

Due to our intensional view of the system, we can naturally extend our analysis
to integrate timing leaks. Time-based attacks on the Tor implementation of
the Onion Routing network have been proven to be effective, particularly in
low-latency networks [10,11]. We show how to quantify leaks for an attacker
capable to make some timing observations about the network traffic.

Fig. 10. Network topology for
Timed Onion Routing

h Path o P(O|h)
1(h1) 1→ A→ 3→ 4→ B → R 13, 4R 1

2
1→ A→ 3→ 2→ 4→ B → R 13, 4R 1

2
2(h2) 2→ 4→ B → R NN, 4R 1

2
2→ 1→ A→ 3→ 4→ B → R 13, 4R 1

2
3(h3) 3→ 4→ B → R NN, 4R 1

2
3→ 2→ 4→ B → R NN, 4R 1

2
4(h4) 4→ B → R NN, 4R 1

Fig. 11. Timed Onion Routing paths, observations
and probabilities
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b)a)

Fig. 12. Markov chains for Timed Onion Routing: a) Observable reduction C b) C/Rh

In this example there are two compromised nodes, A and B, and the attacker
is able to count how many time units pass between the message being forwarded
by A and the message arriving in B. The topology of the network is shown in
Fig. 10 and the relative paths, observations and probabilities in Fig. 11. We will
ignore messages departing from the compromised nodes A and B for simplicity.

We add to the system a low-level variable t that represents the passage of the
time between the message passing by A and passing by B. Variable t is initialized
to 0 when the message passes by A and increased by 1 at each subsequent step.
We will analyze the difference of leakage between the attacker AT that can
discriminate states with different values of t and the attacker AN that does not
have this power.

Both attackers are able to observe nodes A and B, so they have the same
hidden states. Their observable reduction C of the system is the same, depicted
in Fig. 12a. The secret’s discrimination relation is also the same: Rh is ((s, t) ∈
(S × S)|hs = ht), and the resulting quotient C/Rh is depicted in Fig. 12b.

The two attackers have two different discrimination relations. For the attacker
AN , who is not able to keep count of the discrete passage of time, the relation
is RAN = ((s, t) ∈ (S × S)|os = ot), while for the time-aware attacker AT it
is RAT = ((s, t) ∈ (S × S)|os = ot ∧ ts = tt). The resulting MCs C/RAN and
C/RAT are shown in Fig. 13.
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b)a)

Fig. 13. Markov chains for Timed Onion Routing: a) C/RAN b) C/RAT

Note that since the time-aware attacker has strictly more discriminating
power, since RAT ⊆ RAN , we expect that he will leak more information. We
show now how to validate this intuition by computing the difference of the leakage
between AT and AN . The difference of the leakage between the two attackers is

I(C/Rh;C/RAT )− I(C/Rh;C/RAN ) =
H(C/Rh) +H(C/RAT )−H(C/RAT ∩Rh)−H(C/Rh)−

−H(C/RAN ) +H(C/RAN ∩Rh) =
H(C/RAT )−H(C/RAN ) =

H

(
h1 + h2

2 ,
h2

2 + h3 + h4

)
+
(
h1 + h2

2

)
H

(
1
3 ,

2
3

)
−

−H
(
h1 + h2

2 ,
h2

2 + h3 + h4

)
=(

h1 + h2

2

)
H

(
1
3 ,

2
3

)
≈

0.91829
(
h1 + h2

2

)

(5)

showing that the time-aware attacker AT leaks ≈ 0.91829
(
h1 + h2

2
)
bits of

information more than the time-unaware attacker AN .

9 Related work

Alvim, Andrés and Palamidessi [19] study leakage and channel capacity of interac-
tive systems where secrets and observables can alternate during the computation.

Chen and Malacaria study leakage and channel capacity of traces and sub-
traces of programs [18], and, in [20], consider transition systems with particular
attention to multi-threaded programs. They use Bellman equations to determine
the minimal and maximal leakage. None of these works however deal explicitly
with Markov Chains and randomized systems.

Intensional aspects of systems like timing leaks have been investigated by
Köpf et al. in [7,6] and more recent work by Köpf, Mauborgne and Ochoa has
investigated caching leaks [21].
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Channel capacity for the Onion Routing protocol has been first characterized
by Chen and Malacaria using Lagrange multipliers [5].

Recently Alvim et al. [22] have proposed a generalization of min-leakage by en-
capsulating it in problem-dependent gain functions. They suggest a generalization
of LOI which would be interesting to compare with our work. On the other hand
the use of alternative measure of leakage like g-leakage is a relatively orthogonal
idea and could be applied to our approach as well, substituting min-leakage with
Shannon leakage.

The Lattice of Information approach to security seems to be related to the
Abstract Interpretation approach to code obfuscation investigated by Giacobazzi
et al. [23]; it would be interesting to further understand the connection between
these approaches.

10 Conclusion

We presented a method to quantify the information leakage of a probabilistic
system to an attacker. The method considers the probabilistic partial information
semantics of the system and allows to encode attackers that can partially observe
the internal behavior of the system. The method presented can be fully automated,
and an implementation is being developed. The paper extends the consolidated
LoI approach for leakage computation to programs with randomized behavior.

We extended the method to compute the channel capacity of a program,
thus giving a security guarantee that does not depend on a given attacker,
but considers the worst case scenario. We show how this can be obtained by
maximizing an equation parameterized on the prior information of the attacker.
The automatization of this computation raises interesting theoretical problems,
as it requires to encode the property that all probability distributions on state
must be derived from the same prior information, and thus involves a global
constraint. We intend to work further on identifying suitable optimizations for
constraints arising in this problem.

Finally, we analyzed the channel capacity of the Onion Routing protocol,
encoding the classical attacker able to observe the traffic in a node and also a new
attacker with time-tracking capacilities, and we proved that the time-tracking
attacker is able to infer more information about the secret of the system.
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Appendix

Corollary 2. Let P be a program and oi its outputs. For each oi, the total
probability of reaching absorbing states labelled with oi in the MDP semantics of
P is equal to P([[P]] = oi) where [[P]] is the r.v. derived from the denotational
semantics of the program (i.e. LoI(P)).

Proof (of Theorem 2). Since all internal states are hidden, the MC will look like
a 1-step probability distribution from the starting state to the output states. By
Corollary 2 the probability of observing the observations oi is consistent with
the probability of observing the same observations in P, thus H(C/RAI/O ) =
H([[P]]) = H(LoI(P)) = Leakage(P).

The proof of Theorem 3 follows immediately from the following Lemma:

Lemma 1. Let C1 = (S1, s
1
0, P1), C2 = (S2, s

2
0, P2) be Markov chains. Let

C(S, s0, P ) be their synchronous parallel composition, i.e. S = S1×S2, s0 = s1
0×s2

0
and

Ps1×s2,t1×t2 = Ps1,t1Ps2,t2 .

Let R+ and R− be reward functions on the transitions of C such that

R+(s1 × s2, t1 × t2) = log2 (Ps1,t1Ps2,t2) .

R−(s1 × s2, t1 × t2) = log2

(
Ps1,t1

Ps2,t2

)
.

Then the expected total infinite time reward of C with the reward function R+ is
equivalent to H(C1) +H(C2) and the expected total infinite time reward of C with
the reward function R− is equivalent to H(C1)−H(C2).

Proof. We will prove the result for R−; the proof for R+ is symmetrical. Consider
a state s = s1 × s2 of C. The expected reward of s is

R−(s) =
∑
t∈S

Ps,tR
−(s, t)

=
∑

t1∈S1

∑
t2∈S2

Ps1,t1Ps2,t2 log2
Ps1,t1

Ps2,t2

=
∑

t1∈S1

∑
t2∈S2

Ps1,t1Ps2,t2(log2 Ps1,t1 − log2Ps2,t2)

=
∑

t1∈S1

∑
t2∈S2

Ps1,t1Ps2,t2 log2 Ps1,t1 −
∑

t1∈S1

∑
t2∈S2

Ps1,t1Ps2,t2 log2 Ps2,t2

=
∑

t2∈S2

Ps2,t2

∑
t1∈S1

Ps1,t1 log2 Ps1,t1 −
∑

t1∈S1

Ps1,t1

∑
t2∈S2

Ps2,t2 log2 Ps2,t2

= 1 ·
∑

t1∈S1

Ps1,t1 log2 Ps1,t1 − 1 ·
∑

t2∈S2

Ps2,t2 log2 Ps2,t2

= L(s1)− L(s2)
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thus the expected total reward of C is

R−(C ) =
∑
s∈S

R−(s)ξs

=
∑
s∈S

R−(s)
∞∑

n=0
Pn

s0,s

=
∑

s1∈S1

∑
s2∈S2

(L(s1)− L(s2))
∞∑

n=0
Pn

s1
0,s1

Pn
s2

0,s2

=
∑

s1∈S1

L(s1)
( ∞∑

n=0
Pn

s1
0,s1

∑
s2∈S2

Pn
s2

0,s2

)
−
∑

s2∈S2

L(s2)
( ∞∑

n=0
(Pn

s2
0,s2

∑
s1∈S1

Pn
s1

0,s1

)

=
∑

s1∈S1

L(s1)
∞∑

n=0

(
Pn

s1
0,s1
· 1
)
−
∑

s2∈S2

L(s2)
∞∑

n=0

(
Pn

s2
0,s2
· 1
)

=
∑

s1∈S1

L(s1)ξs1 −
∑

s2∈S2

L(s2)ξs2

= H(C1)−H(C2).
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