Automated Reasoning over Deontic Action Logics with Finite

Vocabularies
Pablo F. Castro T.S.E.Maibaum
CONICET Department of Computing & Software
Argentina McMaster University

Departamento de Computacién Hamilton (ON), Canada.
Universidad Nacional de Rio Cuarto tom@maibaum.org
Rio Cuarto, Argentina.

pcastro@dc.exa.unrc.edu.ar

In this paper we investigate further the tableaux system for a deontic action logic we presented in
previous work. This tableaux system uses atoms (of a given boolean algebra of action terms) as
labels of formulae, this allows us to embrace parallel execution of actions and action complement,
two action operators that may present difficulties in their treatment. One of the restrictions of this
logic is that it uses vocabularies with a finite number of actions. In this article we prove that this
restriction does not affect the coherence of the deduction system; in other words, we prove that the
system is complete with respect to language extension. We also study the computational complexity
of this extended deductive framework and we prove that the complexity of this system is in PSPACE,
which is an improvement with respect to related systems.

1 Introduction

Tableau systems [23, [14, [10] are practical proof systems that are representative of an important stream
of research in automated theorem proving [9]. The basic idea behinds these kinds of proof systems is
proving by refutation, i.e., to prove a formula ¢, we start with —¢ and then we try to derive a contra-
diction using the rules provided by the logical system. Usually, if a formula is not provable, we get a
counterexample (a model which satisfies the negation of the formula). Several tableau systems have been
proposed for logics used in computer science, some examples are: dynamic logics |21} [13]], modal logics
[10, 18] and temporal logics [14,[]]].

In [4] we introduced a tableaux method for the deontic action logic presented in [5]; this logic is a
modal action logic [16]] which uses boolean operators on actions (parallel execution and complement of
actions) as well as the standard deontic predicates over actions, i.e., permission, obligation and prohibi-
tion. We have proposed this logic for reasoning about fault-tolerant programs [3]; the deontic predicates
seem suitable to formalize concepts such as fault, violation, and fault-recovery, some intuitions and ex-
amples of the use of this logic in specification and verification of fault-tolerant systems are shown in
[3]. We believe that tableau methods can help us to provide automated theorem provers for this logic,
enabling automation of the analysis of software specifications.

In this paper we extend the system presented in [4]] and present further results. In particular, we
redefine the rules of the system in such a way that the method for checking formula validity is in PSPACE,
and we prove that the restriction to finite action vocabularies does not affect the completeness of the
method, this was not proven in the paper cited above. In technical words, we consider a finite number of
actions in vocabularies; this implies that extending the vocabularies may affect the validity of formulae,
for instance, we may add some extra actions in a vocabulary that may introduce new scenarios in a model

© Pablo F. Castro & T.S.E. Maibaum
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
F

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

that could falsify a formula that has been proven valid for the original vocabulary. We provide a formal
machinery to tackle this problem; corollary [2] of section [states that there is a bound on the number of
actions to be considered when proving the validity of formulae. More precisely, given a formula, we can
calculate the number of actions that we must consider in the vocabulary to prove its “global” validity
(i.e., its validity in every vocabulary). Having a finite number of action has some theoretical benefits,
for instance, this implies that the underlying algebra of action is atomic, and these atoms can be used as
labels of formulae to build canonical models, this also implies that the logic is compact in contrast with
similar logics, we discuss this in section [2.1] Furthermore, in section [5| we study the complexity of this
tableaux system and we show that the system is in PSPACE, that is, it is aligned with the complexity
of most modal logics. Interestingly, most of the dynamic logics with boolean operators proposed in the
literature are EXPTIME-Complete.

The paper is organized as follows. In the next section we give a brief description of the deontic action
logic. In section [3] we introduce the tableaux system for this logic together with the basic properties of
this system. In section 4] we prove some theorems about how formula validity is preserved when the
vocabulary is extended. Finally, in section [5 we investigate the complexity of the methods proposed
below, and then we discuss some conclusions.

2 Background

Deontic action logics [[19} 2 [16] (also called dynamic deontic logics) are modal action logics [16, [15]]
with deontic predicates over actions. These logics can be classified as “ought-to-do” deontic logics, since
the deontic operators are applied to actions, in contrast to “ought-to-be” logics where deontic operators
are applied to predicates; for example, the standard deontic system KD [6]] is an “ought-to-be” deontic
logic. In this section we describe, briefly, the deontic logic (called DPL) presented in [3]; for further
details, the reader is referred to that paper.

The language of the logic is given by a vocabulary V = (Ag, ®), where Ay is a finite set of primitive
actions (denoted by a,b,c,d,...), and a set ¢ of primitive propositions (denoted by p,q,s,...). Using
these two sets one can build complex formulae by employing the modal connectives, the deontic predi-
cates and the boolean operators over actions. The set A of action terms and the set ® of formulae over V
are described by the following grammars:

oax=a|lala|ala|a|0|U
¢u=pi|-@[o—¢|P(a)|Pw(a)|[a]e]|on =4 0

where a; € Ag. o Ll o is the non-deterministic choice between actions ¢ and o, ¢ 10 is the parallel
execution of actions ¢ and a,, & denotes the execution of an alternative action to ¢, @ is an impossible
action and U denotes the execution of any action. In addition to the standard boolean connectives,
we have the following formulae: [a]¢ asserts that after any execution of @, ¢ is true; and a; =4 0
states that actions ¢ and o are equal. We consider two permission predicates: P, (¢t) is called weak
permission; it is true when ¢« is allowed to be executed in some scenarios. On the other hand, P() is
called strong permission; this formula is true when « is permitted to be executed in any scenario. The
two versions of permission can be found in the deontic literature. Using permissions, we introduce other
deontic operators such as obligation, prohibition, etc. Note that in this logic the interpretation of deontic
predicates is independent of the modal operators (they have a different interpretation in the semantic
structures), whereas in related work (e.g., [19,2]) the deontic operators are reduced to modal formulae.

Pablo F. Castro & T.S.E. Maibaum 3

Let us briefly introduce the semantics of the logic with some remarks:

Definition 1 (structures) Given avocabularyV = (D, Ay), a V-Structure is atuple M = (W %, &, .9, P)
where:

o W is a set of worlds;

X is an &-labeled relation between worlds, s.t., if (w,w,e) € Z and (w,w" e) € Z, thenw =w";

e & is a non-empty set of (names of) events.

o X C W x & is arelation which indicates which event is permitted in which world;

e Y isa function s.t. for every p € ®y: I (p) C W and for every a € Ay : I () C &.
A has to satisfy the following properties:
L1 Forevery a; € Ag: |7 (o) —U{5 (aj) | &j € (Ag—{0i})} < 1.

L2 Foreveryec &: ifec I (o) NI (), where 0 # o € Ao, then:
I (o) | € AoNee I(og)} ={e}.

1.3 g = UaiEA() j(al)
We can extend the function .# to well-formed formulae and action terms as follows:

-fkwfd%/uﬂw>

o> v)E s(-p)us(y),
def

I
o S(aup)E s(a)yus(p),
. ()def
o J(anp)E s(a)ns(B),
o S@EE—I(a),
o 7(0)% 0.

Note that here we do not follow the traditional approach of interpreting each action as a relation (e.g.,
see [12]]); instead we interpret each action as a set of “events”, the events in which it “participates in”
during its execution. Then, the action combinators are interpreted as the classical boolean set operators.
Note that the restrictions on models (I.1 and 1.2) imply that we have one point sets in the family of the
event sets, i.e., intuitively every “event” is produced by a combination of actions in our systems (system
actions and environmental actions). (So, events can be seen as collections of actions to be executed in
parallel.) Then, if we take a maximal set of actions, the execution of this set only produces an event in
our system; in other words, this set of actions is complete in the sense that they describe unambiguously
one event in the system execution. We have presented a sound and complete axiomatic system for this
logic in [5]]. Given a structure M = (¥, %,&,.7 , &), we define the relation F between worlds, models,
and formulae, is as follows:

e wMEDp & e s (p).

s wMEQ@— 1//<:>notw,M|=(porw,Ml= V.

° w,M|=—|q)(g>noth)=(p.

o wMEa=4 <L 7 (a)=7(P).

o w,MiZ[Oc](p<d:6f>f0rallw’€7/ande€ﬂ(oc) if w5 w then w',M F .
o wMEP(a) L foralle € .7 (a), 2(w,e) holds.

e wMEP,(x) £ there exists some e € # (o) such that & (w, e)

For the other standard formulae the definition is as usual.

2.1 Related Logics

We make a brief digression to compare the logic presented above with related formalisms. Boolean
Modal Logic [12} [1]] combines modal operators with boolean operators over actions. In this logic a rela-
tional semantics is provided: each action is interpreted as a relationship in the semantic structures. In this
setting, the universal action is interpreted as the universal relationship between states or worlds. In the
logic presented above, the universal action is relative to the actual state, that is, this action characterizes
all the reachable states from a given state, and therefore the complement is also relative to the actual state.
As itis argued in [2]], relative complements are more useful when reasoning about computer systems. To
the authors’ knowledge, no tableau systems have been proposed for boolean modal logic with relative
complement.

It is worth remarking that in our logic the existence of boolean atoms in the boolean algebra of actions
allows us to express exactly which actions are involved in a given transition: each atomic action denotes
exactly one event. This allows us to prove the strong completeness of the logic and therefore we get also
the compactness of the axiomatic system presented in [S]. BML is not compact; this can be easily proven
using the fact that the vocabularies in BML contain an infinite number of actions [2].

On the other hand, Segerberg [22] presents a deontic action logic with boolean operators where
permissions are characterized as ideals of the boolean algebra of actions. As shown in [24], the absence of
atoms in Segerberg’s logic implies that the so-called closure principle (any event is allowed or forbidden)
cannot be captured by Segerberg’s logic. In section [5| we compare the time complexity of the tableaux
method proposed below with the complexity of the logics referenced in this section.

3 A Tableaux System for DPL

In this section we describe the tableaux system introduced in [4]], we introduce some minor changes to
the original system to be able to improve its complexity (see below); note that formulae are enriched
with labels; intuitively, each label indicates a state in the semantics where the formula is true. Labeled
systems are usual for many logics and tableaux systems, an introduction to these systems can be found in
[1OL [11]]. We adapt these techniques to our modal action logic, showing that deontic operators fit neatly
into the system; the duality between the strong and weak permissions resembles the duality between
modal necessity and modal possibility. As shown in [4] this system is sound and complete.

A labeled, or prefixed, formula has the following structure: o : ¢, where o is a label made up of
a sequence of boolean (action) terms built from a given vocabulary. We use the following notation for
sequences: () (the empty sequence), x.xs (the sequence made of an element x followed by a sequence
xs); we also use the same notation to denote the concatenation of two sequences.

From here on we consider a fixed vocabulary: V = (®y,Ag). We denote by Pp4 some complete
and decidable axiomatization of boolean algebras [20]; If Ag = {ay,...,a,}, we add the equation a; L
---Ua, = U to the set ®g4. We denote by Ay /T the boolean terms over Ay modulo a set of axioms I';
usually, I' is an extension of the theory of boolean algebras, i.e., @4 C I'. We write I Fpy t] =4 1o, if

Pablo F. Castro & T.S.E. Maibaum 5

the equation t; =, ; is provable from the boolean theory I" using equational calculus. This implies that
our method depends on some suitable method to decide boolean algebras. Using this notation, we denote
by At(Ao/T’) the set of atoms in the boolean algebra of terms modulo I'U ®p4 (note that the boolean
algebra is atomic because the set of primitive action symbols is finite). In the same way, we denote by
Atz (Ao /T) the set of atoms y € At(Ao/T") such that I"t-p4 ¥ C «, where C is the order relation of the
algebra, and A7 (Ag/I") denotes the strict version of this set.

A tableau is an (n-ary) rooted tree where nodes are labeled with prefixed formulae, and a branch is
a path from the root to some leaf. Intuitively, a branch is a tentative model for the initial formula (which
we are trying to prove valid). Given a branch %, we denote by EQ(%) the equations appearing in A.

In figure [I| we introduce a classification of formulae which is useful for presenting the rules of the
tableaux calculus (see figure [2). Standard propositional formulae are classified following Smullyan’s
unifying notation [23]]. We also introduce the less standard classification for modal logics. (We follow
the standard notation for modal logics [[10].) For each prefixed formula of type P or N, we define formulae
P(y) and N(7y), respectively. Here 7y is some action term which is needed to define these formulae (see
the rules below). Note that for any formula P, P(y) denotes two formulae. Finally, we introduce a new
classification for deontic formulae (formulae Pp and Np). Although the deontic operators are, in some
sense, similar to the modal operators, we need to distinguish them; the deontic predicates state properties
about transitions, whereas the modal operators state properties about states related to the actual state.
Using the above classification of formulae, we can introduce the rules of the tableaux method. In the

A A1 |Ag

ocreNY |o:ip |0 ||P P(7) N N(v)
o:(pVY)lo:—plo: o (a)e |oay:p, 07 Fact D o:lale oy
o:iop oy o —lafplo .y =, 0y Faet O] [0 A(@)plo .y e
B B1 |By Pp Pp(7) Np Np(v)
ooV lo:ip o9 ||lo:=P(a)|lo:=P(®), 07 #ax 0] |0 :P(a) |o:P(%)
o:=(eAY)|o:—plo: o Py(a)|o: Pu(v), 07 #act O] |0 : 7Py (a)|o : =Py ()

Figure 1: Classification for deontic formulae.

definition of these rules we use front action of a P, N, Pp or Np formula to refer to the action nearest the
root in the syntax tree corresponding to this formula.

The rules of this calculus can be found in figure [2| The rules for standard boolean operators are as
usual. Rule N is standard for K modal logics [[10]; it does not introduce new labels in the branch, but it
adds new formulae to labels already in the branch; intuitively, for all (the states denoted by) the labels
reachable from the current state, the N formula must be true. The rule for deontic necessity is similar,
but it adds the corresponding deontic formulae to labels already in the branch and for which there is a Pp
formula with the same action in the branch.

Notice the rules P and Pp for modal and deontic possibility, respectively; given a P formula, rule
P creates one branch for each possible execution of the front action in the formula; although the rule
for deontic possibility is very similar, note that deontic possibility does not create new labels, because
permissions only predicate over transitions. Note that, in these rules, an inequation saying that the action
must not be impossible is added in each branch, allowing us to avoid adding labels that cannot exist in
the semantics. Finally, rule Per states that, if an action which is atomic (in the sense that it cannot have
different executions, i.e., not participate in different events) is weakly allowed, then it is also strongly

P P
P: PDi D A
P(y) |- | P(m) Pp(y) | - | Pp(ym) A

with {717 s 77”} - AtEa(AO/F)v a is || with {717 cee >7n} = AtEa(AO/F)a ais L A2
the front action of P and I is the set of || the front action of Pp and I is the set| —

equations in the branch. of equations in the branch. B B
ND — " Bi| Bs
ND . W N . N —
D"Vl : N pep . O Pw(7)
' , L)
ND Tn ‘
) N(w)

for all v1,...,vn € Atra(Ag/T), for
« the front action of Np, I' the set
of equations appearing in the branch
and such that for each ~; there is
already a Pp(y;) formula with the
same label to Np in the branch.

for all v1,...,v, € Atra(Ap/T), for
« the front action of N, I" the set of]
equations appearing in the branch
and where the labels of N(v;) are
already in the branch.

Figure 2: Tableau Rules

allowed.

We do not state any rule for equality; this is because equality reasoning is implicit in our calculus
(see below the definition of boolean closed). For simplicity of the presentation of the concepts, we rule
out those formulae of the form: [ot](ot =4 B). This does not affect the completeness of the method since
formulae of this kind are equivalent to formulae where equations do not appear after modalities [5]. Let
us introduce the notions of closed, boolean closed, deontic closed and open branch. Keep in mind that a
branch is a set of prefixed formulae.

Given a branch & and a boolean theory I, we say that & is deontic closed with respect to I if it
satisfies at least one of the following conditions: (i) 0 : P(&) € # and ¢ : =P(a) € 4, for some label
o; (ii)) 0 : Py(a) € B and 0 : -Py (&) € A, for some label o; (iii) 0 : =P(at) € Zand 6 : Py () € B,
for some label ©.

Note that we have not included o : P(a) and o : =P, () as being mutually contradictory; this is
because they are not contradictory when I' kg4 @ =, 0. This fact yields the definition of extended
boolean theory:

EQ*(2) = {(aMNP =4 0) | 5 : P(a),0 : =Py (B) € B} UEQ(Z)

It is useful for us to introduce the notion of boolean closed branch; intuitively these branches are inconsis-
tent boolean theories. A branch 2 is boolean closed iff EQ*(#) Fpa 0 =4t U, or EQ* () bpa a =4t B
and o #4e B € B

Finally, we say that a branch is closed if either it contains a labeled propositional variable o : p and a
labeled negation of it ¢ : —p, or it is deontic closed or boolean closed. Note that rule Np only takes into
account labels that contain a Pp formula, in [4] this rule creates a labelled deontic formula for each atom
of the corresponding action, implying that in that system the space needed in a branch is exponential
w.r.t. formula length.

Pablo F. Castro & T.S.E. Maibaum 7

4 Completeness with respect to language extension

Recall that vocabularies contain a finite number of primitive actions. This is different from what hap-
pens in dynamic logics, where vocabularies have an infinite number of actions. This assumption allows
us to obtain atoms in the corresponding boolean algebra of action terms. These atoms are useful for
proving completeness and compactness. However, doing this we also constrain our deductive machinery
to only take into account a restricted number of actions. Sometimes, we will be interested in proving
properties that are valid in every vocabulary, and not only in a particular one. This extension idea then
represents situations where we have embedded our component in a larger one with a set of primitive
actions extending those of the component.

Consider the formula: (&)@ — [a]@, this formula is not valid, but if we build the tableau for it
considering a vocabulary with a as the unique action, the final tree has no open branches. This only
shows that this formula is valid for a vocabulary with one primitive action. Intuitively, if we think of a
theory as a specification of a computing system, we take the view that the vocabulary describes all the
actions that can be executed during a running of the system being specified. Adding more actions to the
vocabulary can be understood as incorporating new behavior to the system, or taking into account more
actions from the environment (e.g., some additional interaction with the users). Sometimes, we will be
interested in proving that some properties are valid in any vocabulary, this has the obvious interpretation
that these are properties that are valid for a system and any extension of it.

Summarizing, our specification only gives us a partial picture of a system. Because of this, system
properties are hard to verify (using tableaux or other formal systems). After all, perhaps we may not
be taking into account some actions important for the property to be proven. The following theorems
give us some machinery to address this difficulty. Corollary 2] says that we can verify a property (using
tableaux) restricting our attention to a finite number of actions; if for this number of actions, this formula
is valid, then it will be valid for any language extension (containing, potentially, any number of actions).
Some auxiliary notions are needed and we introduce the concepts of normal form, disjunctive normal
form, and existential degree, and then we present the theorems.

The degree of a formula ¢ (denoted by d(¢)) is the length of the longest string of nested modalities
(taking permission as being of degree 0). For any formula ¢ we denote by Pr(¢) the set of primitive
actions appearing in ¢. Given a vocabulary (Ao, ®), we adapt the definition of normal form of degree
n given in [8] to our logic. We denote by F; the set of formulae of normal form of degree i, defined as
follows:

e Fj is the set of formulae of the form *¢; A ... A x@,, where for each i: ¢; € P or ¢@; is a deontic
predicate, and * is — or blank.

e F,.; is the set of formulae of the form: 6 Ax(ct)@; A A x{) @k, where 0 € Fy, ¢; € F, for
all 1 <i<k, *is — or blank. (6 may not appear in the formula, in which case we only consider
everything but not 6.)

The set of normal form formulae is F = |JiZ F;. If a formula is in normal form, we say that it is a NF
formula. Any formula of degree < n is equivalent to _L or a disjunction of normal forms of degree n:

Theorem 1 Given a vocabulary V and formula ¢ of degree < n, then either there exist NF formulae ¢
of degree n, such that w,M £ @ <+ \/ @; for any V'-structure M (with V.- C V'), or there is no V'-structure
M s.t. wME @
Proof See the proof given in [I8] and use the property = (&) (@ V y) <> ()@ V (@) y, which is valid in
any vocabulary.

Note that, in general, a NF formula can be expressed using the following schema:

O NANNLZ (o) @ AN —(Bj)w

where 0 is a conjunction of propositional variables or negations of them, and A is a conjunction of deontic
predicates or negations of them.

If a formula is a disjunction of normal forms, we say that this formula is in disjunctive normal form
(or DNF for short). We call Py (), =P(@) and (@)@ existential formulae, i.e., existential formulae
are those whose semantics is given in terms of an existential quantifier. Given a NF formula ¢, with
d(¢) = n, we can define a set of formulae SF(¢,k), for every k < n, called the subformulae at level k.
For k = 0 we define:

o If @ = AL xp;, i.e., it is a conjunction of propositions or negations of them, then for this case the
definition is: SF(AL | xp;,0) = UL {*pi}

o If ¢ = N1y xP(a)) A Ni—1 *Pw(Bx), i.e., the formula is a conjunction of deontic formulae or
negations of them, then we define:

SF(ATZ1 #P (@) A Newr #Puw(Be),0) = Uy {P ()} U Uz {+Pus (Bie) }

e In the case of a conjunction of propositional formulae and deontic formulae we can use the two
definitions above, that is: SF(6 AA,0) = SF(6,0) USF(A,0)

e In the general case, we define:
n m n

SF(OAAN (A (i) oi) AN\ =(By)w)),0) = SF(8) USF(A) U {(ei)ei} U (U{~(B)) w;}

i=1 i=q i=1 j=1
For the case of k > 0, we define:

SF(O AAN(NZi(06) @) A (Nfg ~(Bj)Wi),k+ 1) = Uiy SF(@i, k) UUTL, —SF (v, k)

where given a set S of formulae, we denote by —S, the set containing the negations of the formulae in
S. (We also suppose that several negations over a formula are simplified, i.e., instead of having ——p
we have p.) In some sense, the set SF indicates which set of subformulae must be true at a given level.
We use #35 to denote the number of existential formulae in the set S. Using this definition, we can
define the existential degree of a NF formula ¢, denoted by D3, which is defined as follows: D3(¢) =
maxo<i<n{#3SF(9,i)}. We can extend this definition to DNF formulae, as follows: D3(¢; V...V @) =
max{DEl ((pl)7 D3 ((pk>}

Note that function D3 can be extended to cope with any formula: to obtain D3(¢@) (where ¢ may not
be a DNF formula) calculate the maximum number of existential subformulae in the same level of the
syntax tree of such a formula. Note that this number coincides with the existential degree of an equivalent
DNF formulae (obtained by using theorem|I)).

The idea is to use the sets SF to define smaller models of ¢. First, we need to define the notion of
n-reachable. Given a model M and a state w, we say that a state v is n-reachable (or reachable in n-steps)
from w, if there exists a path w “Lwy A .5 vin M. Note that our logic has the unraveling property
[1], i.e., if a formula @ is satisfiable in a model M and state w, we can build a model M’ unraveling M
such that w and M’ satisfies ¢ and this new model is a tree, i.e., it does not have cycles. For the following
results we restrict our attention to tree models; the unraveling property guarantees that these theorems
extend to any other model.

Pablo F. Castro & T.S.E. Maibaum 9

If d(¢@) = n, then we can define a mapping L,, from the states reachable in M from w in n or less
steps, to the subformulae of @, as follows:

L,(v) ={y € SF(¢,k) | vis k-reachable from w and v,M E y with k < n}.

Using the definition of L,,(v) we prove that, given a formula ¢ and a model of this formula, we can define
a new model that has an out-degree (the number of transitions coming out of any state) less than or equal
to D3 ((p)
Theorem 2 Given a NF formula ¢ and a model M = (W ,Z,&,.9 , P over a vocabulary V = (Ay, ®y),
if w,M = @, then there exists a model MY such that v, MY E L,,(v), for everyv € # and MY has an out-
degree less than or equal to D3(@).
Proof: First let us define the new model, consider a model M = (W ,%,8,.7,2) over a vocabulary
V = (Ag, Do) and a NF formula ¢ (of degree n) such that w,M & @. The labeling L helps us to define a
new model M = (%"’,%ﬂj, el 7L, (@v% as follows:

o &Y =¢.

o We define Z\ in n steps:

— At step 0, choose for each (q;)@; € L(w) an event e; such that e; € .7 (0;) and there exists a
state v; with w =5 v;, and vi,M ©;, and define %° = U{w 4 Vi}.
e

— At step k+1, let vy, ..., vy, be the states k-reachable from w. For each of these states proceed
as was done for state w, and define a relation R’v‘i, and then Z#*' = U Réi
i<m
Finally, R}, = Ug<, R*.
o PV =
o W ={ve W |ve Dom(%%)URan(%)}.
o If(a;) = S (a), for every ei.) (pi) = 7 (pi), for every p; € .

Note that this model has an out-degree (the number of transitions coming out of any state) less than
or equal to D3(@), since in each state of the new model, we only have one transition per existential
subformula at the corresponding level.

Suppose that d(@) = n; we prove the result by induction. If v is reachable in n steps from w, then, by
definition, L(v) only contains propositional variables and deontic predicates, and therefore, by definition
of MY\, we have that v,M,} E L(v).

If v is reachable in k steps (with k < n) from w, then for each ()@; in L(v) we have an e; € % ()
such that v =5 V'; by induction we know that v',M{ & @;, and therefore v, M £ (@) @;.

Now, suppose that ~(B;)y; € L(v); we know that y; is a NF formula, and therefore y; = yi A\...\y;,
and by definition of SF, we have that =, ...,~y, € SF(@,k+1). Then, if for some | and state V', we

have v',M = =y, (where v Ly in % and ej € I(B;)), i.e., we have that -y, € L(V'), then by induction
we have v, M, = —y|, which implies that v, MY E —(Bj)v;. This concludes the proof.

Note that A L,,(w) = ¢, and therefore we obtain the following corollary.
Corollary 1 Ifw,M E @, then w,M, E ¢.

Summarizing, given a model of a NF formula ¢, we can build a new model with branching being at most
Ds(¢). We are close to our original goal; using the model My}, we define another model over a restricted
vocabulary that preserves property .

10

Theorem 3 Given a vocabulary V = (Ao, Do), a NF formula @ such that Ay > Pr(@)+ D3(¢@), with
d(@) = n and a model M, if w,M E @, then there is a model M* over a vocabulary V* = (Pr(¢)U
{b1,....bp,(p) }, Do) with the bis being fresh action terms, such that w,M* F ¢.

Proof: First, given a model M over a vocabulary V = (Ay, ®y), we denote by EQ(M) the set of equations
true in M, and if we have a subset S C Ay, we denote by EQS(M) the set of equations built from primitive
actions in S which are true in M, i.e.,

EQM)={at=4u B| A =4e BEEQM)Nex,B € Tpa(S)}

where Tpa(S) denotes the set of boolean terms built from variables in S.

Suppose that D3(@) = c. If #Ao > Pr(@) +c, then we define a model M* = (W * . %*,&*, 9", P*)
over the vocabulary V* = (A = Pr(@)U{b1,...,b.},Po), b1, ...,bc being fresh primitive actions.

o & = At(Ay/EQT) (M)).

o W =W/,

o Foreachv e W, let {e},...,e } C &Y be the set of events such that each e; satisfies either:

— there exists a state v; and v =5 v; € By, or
— there is a Py (;) € L(v) such that ¢! € %, (o) and 2 (v,e!), or
— there is a ~P(a;) € L(v) with e! € 57 (0y) and (v,e!) ¢ P

We know that k < D3(@), and then define for each such a e}, a corresponding event in & as

follows:
= [] a@n([] aynC [b)ns
acPr(Q)Aele.7 (a) a'€Pr(Q)Nel¢I (a') bjeAGNb jF#b;

(Where we use some enumeration of the fresh b’s to determine each b;); note that for these e}*’s, we

have: e! € 70 (a) < el* € 7*(a), for each o € Tga(Pr(@)). Now we use these e!*’s to define:

- %’V:{vgv,ﬁvﬁ)vie%’fg}.
- P ={(ve") | 2l (vel)})
Using these sets defined for each state v, we define: #* = \J,cy~ %" and:

2" =(|J 2")U{(ve) |[ve#* AP(a) € L(v) Ae € 5 ()},
vew'*

e Define I *(a;) = {[Y] |FBa Y C ai}, for every a; € A},
e Define 7*(p;) = %! (pi), for every atomic proposition p;.

Let us prove that this new model preserves properties of L.

By the theorem above, we have that w,My, £ @. As explained above, if we prove that v,M* E L(v)
for every v, we have that w,M* = @. For the states reachable in n steps, we have that L(v) contains
only propositional variables or deontic predicaties, for the propositional predicates. the result is trivial.
Now, suppose that P(at) € L(v), then v,M{) £ P(a), and then v,M* = P(t), by the definition of M*. If
Py (@) € L(v), then v, M = P,,(ct), and therefore there exists an e; € .7,{ (@) such that 2\ (v,e;), but for
this e; we have a corresponding e! such that (v,e) € * and e! € 7* (), and therefore v,M* E P, ().
If ~P(a) € L(v), then we have an e; € I} such that = (v,e;); for this e;, we have an ¢! € Z* and by
definition of P* we have = P*(v,e?), since =% (v,e;) and P(a) ¢ L(v), otherwise L(v) is inconsistent.
Therefore, v, M* = =P(a). If =Py () € L(v), then we have have =~ (e;,v) for every e; € 7 *(); if we

Pablo F. Castro & T.S.E. Maibaum 11

have P(a) € L(v), then & =4 0, an equation which is also true in M* and therefore v,M* E =Py (). If
O Faet 0, then P(o) ¢ L(v), and there is no way to introduce a tuple (v,e}) in Z*, so v,M* = =Py ().
Now, suppose that v is reachable in k < n steps from w; for the deontic predicates and propositional
variables the proof proceeds as before. If (04)@; € L(v), then v, My, = (04)@;, and so there is an e; €
%;P(Oc) such that v 5 v; and vi,Mff E ¢;. Using induction we get vi, M* E @;, and we have, by definition

of M, that v 5 v;; this implies that v, M* = ()@, If ~(B)w; € L(v), then v,M{ & w;, which means
that for all e; such that e; € .7 (B;) and v v, we have vi,M{ £ —y. Since y; is a NF formula, it is
a conjunction of formulae, i.e., Y; = I[/il A--- ANy, and, for some of these y;’s, we have v, M£ E _‘Wij ,
and by definition of L we have —|l,l/l-j € L(V') and therefore, by induction, Vv ,M* ﬂl//ij , which implies
w,M* & = (B;) y;. The theorem follows.

Thus, D3(¢) gives us a bound for the number of new primitive symbols that we need to verify a given
formula. From this theorem we get the following corollary:

Corollary 2 For any DNF formula ¢ with D3(@) = n, if we have a vocabulary V = (A, ®g) and a model
M of V such that w,M £ @, then there exists a model M' of a vocabulary V' = (Pr(¢@)U{by,...,b; }, Do)
such that w' ,M' & @ and k < n.

Proof. Suppose that w,M = @ for some M over a vocabulary V. Since ¢ is in DNF, we know that ¢ =
@1V ...V @y (each @; being a NF formulae), and therefore w,M & @; for some i. By theorem[3|we know
that there exists a model M’ of a vocabulary V' = (Pr(¢@)U{by,...,b;},®o) with k = D3(¢;) < D3(9)
such that w',M' = @; and then w',M' E @. (Note that we can ensure that each Pr(¢) = Pr(@;), by adding
the formulae [a; U...Ua,]T to each @; with Pr(¢) ={ai,...,a;}, these formulae do not modify the truth
value of the former one.)

Roughly speaking, this theorem says that, if we cannot get a model with n (with D3(¢) = n) new primitive
actions, we will not get a model by adding further primitive actions to the language. Because each
formula is equivalent to a DNF formula, the above result gives us a bound for checking every formula
(where the bound depends on the formula under consideration).

The method is as follows: given a formula ¢, take its negation and then develop a tableau taking into
account at most D3(—¢) = n (which can be calculated for any formula, as explained above) primitive
actions; if the tableau is closed, then the formula ¢ is valid for any extension of its vocabulary. It is
worth noting that we have two kinds of validities: we have formulae which are valid with respect to
one vocabulary (i.e., these formulae are true with respect to all the models of this vocabulary). We can
call this notion of validity local validity. And we have formulae which are valid with respect to every
vocabulary, i.e., a global validity. For example the formula [a L b]¢@ <+ [U]¢ is valid in the vocabulary
({a,b},{p,q,s,...}) butitis not valid in the vocabulary ({a,b,c},{p,q,s,...}).

S Time Complexity

We present some results about the time complexity of the method presented above. Our first theorem
says that checking local satisfiability is polynomial w.r.t. space.

Theorem 4 Checking local satisfiability with the tableaux for DPL is PSPACE.

Proof. Let us note that, given a vocabulary, the number of its actions is fixed, and then, the number of
atomic action terms is constant with respect to formula length. Since the branching is bounded by the
number of atoms, it is bounded by a constant, and the length of any branch is linearly bounded by the
length of the formula. That is, it is straightforward, given a formula @, to write a procedure that inspects

12

each branch in time O(al®), where || is the length of @ and a is the number of atomic action terms of
the given vocabulary. Furthermore, since we only need to inspect a branch at a time, we can develop
an algorithm that behaves in a backtracking way, it only needs to keep a record of the current branch,
each atom can be described by a binary number of constant length w.r.t. the formula length, and (in each
branch) we only use an atom for each existential subformula; i.e., since this branch is linearly bounded
by the length of the formula (the number of subformulae of a formula is linear w.r.t. the length of the
formula), we only need polynomial space to develop the algorithm.

However, when we want to check if a formula is valid in any possible extension of the vocabulary, we
need to use the the results shown in section[d] Interestingly, in this case we also obtain that the method
is polynomial w.r.t space.

Theorem 5 Checking global satisfiability with the tableaux for DPL is PSPACE.

Proof. Let us analyze the complexity of the global satisfiability, i.e., when we want to check the satisfia-
bility of a formula in any vocabulary extension. In this case, we add a number of actions to a vocabulary,
this number is bounded by the length of the formula. Note that this does not affect the length of branches
since we still use one action atom for each existential subformula appearing in the original formula.
Moreover, each atom appearing in the branch can be represented using a binary number of a length
linearly bounded by the length of the formula (we have a part of the binary number which is constant
since it represents the occurrence of the original action, plus a binary number that represents the new
actions which are bounded by the length of the formula). And therefore using the same procedure as
before, but taking into account the new actions we obtain a PSPACE algorithm.

Let us compare the complexity of the tableaux method developed here with the complexity of related
logics. Boolean modal logic is NExpTime-Complete [[17]] since the global modality allows us to encode
complex problems. Restricting BML to signatures with only a finite number of relation symbols is
ExpTime-Complete [[17]. That is, the complexity of our tableaux is therefore relatively acceptable w.r.t.
the complexity of well-known logics. Taking into account that the modal logic K is PSPACE-Complete,
we can expect that the complexity of the tableaux is aligned to the complexity of deciding validity in
DPL.

Now we give some examples. In figure [3| we build the tableau for the formula: ([a]¢ A (a)y) —
(a)(@ A y). This formula is one of the axioms given for dynamic logic in [15]]. The crosses at the end
of each branch mean that those branches are closed. Note that here we are using a new action symbol.

We have added numbers in the formulae to better explain the example. Formula (1) is the negation of
the formula to be proven. Formulae (2) and (3) are obtained by applying the rule A to the negation of the
implication, formulae (4) and (5) are obtained from formula (2) using the A rule. Formulae (6) and (7)
follow from formula (3) by application of the N rule. In a similar way, we obtained formulae (8) and (9)
from formula 4. After that, we have branching using the P rule. Finally, we apply the B rule to formulae
(6) and (7) and we obtain the leaves closing the tableau.

Now, consider the following formula (which is not valid): (&)@ — [o]¢@. The tableau for it is shown
in figure] Note that, in this case, we use a new action symbol (following corollary 2). First, we reduce
the implication, after that we use the rule P on the second formula, and then we use rule P again in the
third formula. We can observe that this tableau has some open branches and using them we can build a
“counterexample” (shown in figure [5)). Note that we can use the labels in the formulae to put the labels
on the transitions, indicating in this way which actions were executed and which were not.

Pablo F. Castro & T.S.E. Maibaum

®anp:e
arp:e

(10)arnp: v (13)anp:w

/\ /\

(IDanf:=¢ Aanp:~y (A4anp:—¢ A5anp: -y
X X X X

Figure 3: Tableau for ([a]p A {@)y) — (a) (@ A y)

arif:=¢ anf:-@ anf:-¢ onp:-y
X X

Figure 4: Tableau for (o) — [ct]@

oW E @

arp

ow’ E -

Figure 5: Counterexample for (o) @ —]

13

14

6 Further Remarks

In this paper we have investigated further the properties of the tableaux system presented in [4]. One
of the main features of the system is that it uses the underlying algebra of actions to produce tableaux,
enabling it to manage successfully the intersection and complement operators on actions. Moreover, the
algebra of actions allows us to extend the propositional tableaux system to manage temporal predicates.

A relevant point demonstrated in the paper is that, though we have a finite number of actions, it is
possible to prove properties which are valid in any extension of the actual vocabulary, which seems to
be very useful in practice to verify computing components which could be part of bigger systems. This
kind of completeness with respect to language extension is also preserved for the temporal version of the
logic. In addition, we have investigated the time complexity of the tableaux system and we prove that it
is in PSPACE in comparison with related logics, which are in EXPTIME.

This deontic logic was presented in [5], where several of its properties, and some examples of ap-
plication, were shown. In those papers we proposed this logic to specify and verify properties related to
fault-tolerance. It seems very useful to apply the tableaux system described here to such examples. We
leave this as further work.

References

[1] P. Blackburn, M.de Rijke & Y.de Venema (2001): Modal Logic. Cambridge Tracts in Theoretical Computer
Science 53.

[2] J. Broersen (2003): Modal Action Logics for Reasoning about Reactive Systems. Ph.D. thesis, Vrije Univer-
sity.

[3] Pablo F. Castro (2009): Deontic Action Logics for the Specification and Analysis of Fault-Tolerance. Ph.D.
thesis, McMaster University, Department of Computing and Software.

[4] Pablo F. Castro & T.S.E. Maibaum (2008): A Tableaux System for Deontic Action Logic. In: Proceedings
of 9th International Conference on Deontic Logic in Computer Science , Luxembourg., Springer-Verlag,
doi:10.1007/978-3-540-70525-3 4.

[5] Pablo F. Castro & T.S.E. Maibaum (2009): Deontic Action Logic, Atomic Boolean Algebra and Fault-
Tolerance. Journal of Applied Logic 7(4), pp. 441-466, doi:10.1016/}.jal.2009.02.001.

[6] Brian F. Chellas (1999): Modal Logic: An Introduction. Cambridge University Press.

[7] E.A. Emerson (1995): Temporal and Modal Logic. In: Handbook of Theorical Computer Science, Elsevier,
pp- 995-1072.

[8] Kit Fine (1975): Normal Forms in Modal Logics. In: Notre Dame Journal of Formal Logic, XVI, pp. 229-
237, doi;10.1305/ndjfl/1093891703.

[9] M. Fitting (1990): First-Order Logic and Automated Theorem Proving. Springer-Verlag, doi;10.1007/978-1-
4684-0357-2l

[10] M. Fitting (April 1972): Tableau Methods of Proof for Modal Logics. In: Notre Dame Journal of Formal
Logic, XIII, doi{10.1305/ndjfl/1093894722,

[11] Dov M. Gabbay (1996): Labelled Deductive Systems, Volume 1. Oxford University Press.

[12] G. Gargov & S. Passy (1990): A Note on Boolean Logic. In P.P.Petkov, editor: Proceedings of the Heyting
Summerschool, Plenum Press, doi:10.1007/978-1-4613-0609-2_21.

[13] G. Giacomo & F. Massacci (1996): Tableaux and Algorithms for Propositional Dynamic Logic with Con-
verse. In: Conference on Automated Deduction, doi;10.1006/1nco0.1999.2852.

[14] Rajeev Goré (1995): Tableau Methods for Modal and Temporal Logics. Technical Report TR-ARP-15-95,
Australian National University.

http://dx.doi.org/10.1007/978-3-540-70525-3_4
http://dx.doi.org/10.1016/j.jal.2009.02.001
http://dx.doi.org/10.1305/ndjfl/1093891703
http://dx.doi.org/10.1007/978-1-4684-0357-2
http://dx.doi.org/10.1007/978-1-4684-0357-2
http://dx.doi.org/10.1305/ndjfl/1093894722
http://dx.doi.org/10.1007/978-1-4613-0609-2_21
http://dx.doi.org/10.1006/inco.1999.2852

Pablo F. Castro & T.S.E. Maibaum 15

[15]

[16]

[17]

[18]

[19]

[20]
(21]

[22]

(23]
[24]

D. Harel, D. Kozen & J. Tiuryn (2000): Dynamic Logic. MIT Press.

S. Khosla & T.S.E. Maibaum (1985): The Prescription and Description of State-Based Systems.
In H.Barringer B.Banieqnal & A.Pnueli, editors: Temporal Logic in Computation, Springer-Verlag,
doi:10.1007/3-540-51803-7_30.

Carsten Lutz & Ulrike Sattler (2000): The Complexity of Reasoning with Boolean Modal Logics. In: Ad-
vances in Modal Logic 3, World Scientific, pp. 329-348.

Fabio Massacci (2000): Single Step Tableaux for Modal Logics. J. Autom. Reasoning 24(3), pp. 319-364,
doii10.1023/A:1006155811656.

J.J. Meyer (1988): A Different Approach to Deontic Logic: Deontic Logic Viewed as Variant of Dynamic
Logic. In: Notre Dame Journal of Formal Logic, 29, doii10.1305/ndjfl/1093637776.

J.D. Monk (1976): Mathematical Logic. Graduate Texts in Mathematics, Springer-Verlag.

V.R. Pratt (1978): A Practical Decision Method for Propositional Dynamic Logic. ACM Symposium on
Theory of Computing, doi{10.1145/800133.804362,

Krister Segerberg (1982): A Deontic Logic of Action. Studia Logica 41, pp. 269-282,
doi{10.1007/BF00370348.
R.M. Smullyan (1968): First-Order Logic. Springer-Verlag New York, doij10.1007/978-3-642-86718-7.

Robert Trypuz & Piotr Kulicki (2010): Towards Metalogical Systematisation of Deontic Action Logics Based
on Boolean Algebra. In: Deontic Logic in Computer Science, 10th International Conference, Lecture Notes
in Computer Science 6181 Springer, doii10.1007/978-3-642-14183-6_11.

http://dx.doi.org/10.1007/3-540-51803-7_30
http://dx.doi.org/10.1023/A:1006155811656
http://dx.doi.org/10.1305/ndjfl/1093637776
http://dx.doi.org/10.1145/800133.804362
http://dx.doi.org/10.1007/BF00370348
http://dx.doi.org/10.1007/978-3-642-86718-7
http://dx.doi.org/10.1007/978-3-642-14183-6_11

	Introduction
	Background
	Related Logics

	A Tableaux System for DPL
	Completeness with respect to language extension
	Time Complexity
	Further Remarks

