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Abstract

The interplay of random phenomena with discrete-continuous dynamics deserves in-
creased attention in many systems of growing importance. Their verification needs to
consider both stochastic behaviour and hybrid dynamics. In the verification of classical
hybrid systems, one is often interested in deciding whether unsafe system states can be
reached. In the stochastic setting, we ask instead whether the probability of reaching
particular states is bounded by a given threshold. In this thesis, we consider stochastic
hybrid systems and develop a general abstraction framework for deciding such problems.
This gives rise to the first mechanisable technique that can, in practice, formally verify
safety properties of systems which feature all the relevant aspects of nondeterminism,
general continuous-time dynamics, and probabilistic behaviour. Being based on tools for
classical hybrid systems, future improvements in the effectiveness of such tools directly
carry over to improvements in the effectiveness of our technique.

We extend the method in several directions. Firstly, we discuss how we can handle
continuous probability distributions. We then consider systems which we are in partial
control of. Next, we consider systems in which probabilities are parametric, to analyse
entire system families at once. Afterwards, we consider systems equipped with rewards,
modelling costs or bonuses. Finally, we consider all orthogonal combinations of the
extensions to the core model.



Zusammenfassung

In vielen Systemen wachsender Bedeutung tritt zufallsabhängiges Verhalten gleichzeitig
mit diskret-kontinuierlicher Dynamik auf. Um solche Systeme zu verifizieren, müssen
sowohl ihr stochastisches Verhalten als auch ihre hybride Dynamik betrachtet werden. In
der Analyse klassischer hybrider Systeme ist eine wichtige Frage, ob unsichere Zustände
erreicht werden können. Im stochastischen Fall fragen wir stattdessen nach garantierten
Wahrscheinlichkeitsschranken. In dieser Arbeit betrachten wir stochastische hybride Sys-
teme und entwickeln eine allgemeine Abstraktionsmethode um Probleme dieser Art zu
entscheiden. Dies ermöglicht die erste automatische und praktisch anwendbare Methode,
die Sicherheitseigenschaften von Systeme beweisen kann, in denen Nichtdeterminismus,
komplexe Dynamik und probabilistisches Verhalten gleichzeitig auftreten. Da die Me-
thode auf Analysetechniken für nichtstochastische hybride Systeme beruht, profitieren
wir sofort von zukünftigen Verbesserungen dieser Verfahren.

Wir erweitern diese Grundmethode in mehrere Richtungen: Zunächst ergänzen wir
das Modell um kontinuierliche Wahrscheinlichkeitsverteilungen. Dann betrachten wir
partiell kontrollierbare Systeme. Als nächstes untersuchen wir parametrische Systeme,
um eine Klasse ähnlicher Modelle gleichzeitig behandeln. Anschließend betrachten wir
Eigenschaften, die auf der Abwägung von Kosten und Nutzen beruhen. Schließlich zeigen
wir, wie diese Erweiterungen orthogonal kombiniert werden können.
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1
Introduction

Hybrid systems constitute a general and widely applicable class of dynamical systems
with both discrete and continuous components. Classical hybrid system formalisms
[Alu+95; Pre+98; Cla+03; RS07] capture many characteristics of real systems. However,
in many modern application areas, also stochastic dynamics occurs. This is especially
true for wireless sensing and control applications, where message loss probabilities and
other random effects (node placement, node failure, battery drain) turn the overall
control problem into a problem that can only be managed with a certain, hopefully
sufficiently high, probability. Due to the influence of these random effects, the success
(for example keeping the hybrid system in a safe region) can only be guaranteed with
a probability less than one. Since these phenomena are important aspects when aiming
at faithful models for networked and embedded applications, the interest in answering
such questions and determining the probabilities is growing [FHT08; TF09].

The need to integrate probabilities into hybrid system formalisms has led to a number of
different notions of stochastic hybrid automata, each from a distinct perspective [AG97;
Spr00; Spr01; Buj04; BLB05; Aba+08]. The most important distinction lies in the point
where to introduce randomness. One option is to replace deterministic jumps, specified
by guarded commands, by probability distributions over deterministic jumps. Here, one
can distinguish between different kinds of probability distributions: distributions with
finite support only feature a random choice between a finite number of possible succes-
sor states. Continuous distributions instead choose over an uncountably large set of
possible successors. Being able to use this kind of distributions increases the expres-
siveness of models. For instance, the normal distribution is of interest, in particular
because it allows to model measurement processes: here, the mean of the distribution
is used to model the actual value of a quantity to be measured. The values which are
indeed measured appear as samples from the distribution and are therefore more or less
skewed, depending on the variance of the distribution. Another option is to generalise
the differential equation components inside a mode by a stochastic differential equations
component. More general models can be obtained by blending the above two choices,
and by combining them with memoryless timed stochastic jumps [Dav84; BL06a]. Addi-
tionally, nondeterminism, can be integrated, to model phenomena to which one is unable
to assign a probability to.
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CHAPTER 1. INTRODUCTION

An important problem in hybrid systems theory is that of reachability analysis. In
general terms, solving a reachability analysis problem means evaluating whether a given
system may reach certain unsafe states, starting from some given initial states. This
problem is associated with the safety verification problem where one intends to prove
that the system can never reach any unsafe state. On the other hand, one might desire to
prove that certain desirable states will always be reached. In the stochastic setting, the
corresponding problems are to check whether the probability that the system trajectories
reach a certain set of states from the initial state can be bounded from above or from
below by a given threshold p.

It is often the case that some aspects of a hybrid system’s nondeterminism are control-
lable, while other parts depend on its environment and cannot be assumed to follow
known random behaviour [LGS95; Beh+07]. In addition, there might be aspects of a
system of which stochastic aspects are known. Because of this, such a hybrid system
can be seen as combining stochastic behaviour with two kinds of nondeterminism. It can
thus be regarded as a game in which the controller tries to enforce certain guarantees
on the system’s behaviour, regardless of the behaviour of the environment.

In many cases, an entire class of models is of interest. Such a class can be represented
by a model in which certain parameters are left open [And+09; DISS11; FK11]. These
parameters might describe, for instance, the dynamics of the system or the stochastic
behaviour. One is then interested in reasoning about parameter instantiations, repre-
senting specific models of the given class, which guarantee a certain behaviour, or finding
optimal parameter values subject to a given optimality function.

Reachability is an important property of stochastic hybrid systems, but other aspects
of a system might be of interest as well. For instance, in addition to proving safety
or termination guarantees, one might want to analyse properties which are related to
resource consumption (energy, memory, bandwidth, etc.) or lie more on the economical
side (monetary gain, the expected time or cost until termination, etc.) which cannot be
expressed as reachability problems. Those properties can be described using rewards. A
reward structure attaches numeric values to discrete-time transitions of a system, or to
the passage of time. Depending on the context, rewards can then be interpreted as costs
or bonuses. The values of interest can be formalised, for instance, as the expected total
reward or the expected long-run average reward [Put94; Alf97; EJ11].

1.1 Contribution

Stochastic hybrid systems have found various applications in diverse areas [Aba+08,
Section 3][PH09] [MW12] and tool support for several subclasses of such systems exists
[Kwi+02][Aba+08, Section 5][TF09, Section 4]. Thus far, it was however not possi-
ble to faithfully handle models which feature both probabilistic behaviour and general
continuous-time dynamics as well as nondeterminism. In this thesis, we develop the first
generic framework which does not require manual intervention to decide properties of
system models which indeed contain all these features. As we build our solution methods

12



1.1. CONTRIBUTION

on top of the rapidly developing solutions methods for classical, nonstochastic hybrid
automata, improvements in this field immediately carry over to our setting.

In the following we give an overview of our achievements.

Probabilistic Reachability

One of the most important problems in hybrid systems and safety critical applications
in general is that of reachability, that is the problem of deciding whether an unsafe
system state can be reached from the initial state. Another, similarly relevant, problem
is to decide whether certain desirable states will inevitably be reached. In the setting
of stochastic hybrid systems, the presence of probabilistic decisions in addition to the
nondeterministic ones turns this problem from a qualitative into a quantitative one:
in most systems involving stochastic behaviour, it will neither be the case that such
states will always be reached, nor that they will never be reached. Instead of asking
whether unsafe or desirable states might be reached, we can only ask for probabilities
with which this might happen. Still, there is not a single probability answering these
queries, because the stochastic behaviour depends on the different possible resolutions of
the nondeterminism of the stochastic hybrid system. It is thus natural to be interested
in proving that the probability to reach a set of unsafe states can never exceed a given
probability threshold pupper, and that the probability to reach desirable states is never
below plower.

To solve this principle problem, we aim at computing probability bounds on reachability
properties of a relevant class of stochastic hybrid systems. If the bound computed turns
out to be below (or above respectively) the threshold pupper (plower), this proves the safety
of the stochastic hybrid system. The class of models we consider, probabilistic hybrid
automata, is an extension of classical hybrid automata, in which the guarded commands
may choose their successors according to a probability distribution with finite support
[Spr00; Spr01]. This model thus maintains the expressive power of the dynamics of gen-
eral classical hybrid automata, while adding probabilistic choices in a well-defined way.
To compute probability bounds, we compute finite abstractions of the original models
and then solve reachability problems there. This gives rise to an effective mechanisable
method to decide a large class of properties of this generic class of probabilistic hybrid
automata.

We build our abstractions on solvers for the reachability problem in classical hybrid
automata, for which strong tool support exists (e.g. [HHWT97b; HHWT97a; RS07;
Fre08; Fre+11]). Basically, we convert a probabilistic hybrid automaton into a classical
hybrid automaton, where distributions are replaced by labels. Then, we use one of the
solvers to obtain an abstraction in form of a labelled transition system [Kel76], which
does not yet involve stochastic behaviour. From this abstraction, we can reconstruct a
probabilistic automaton [SL95], which is a safe overapproximation of the original prob-
abilistic hybrid automaton. The approach we use has the advantage of orthogonality:
future computational advances in the analysis of hybrid automata directly carry over to
improvements of our framework.

13



CHAPTER 1. INTRODUCTION

Extensions

We develop several extensions of the basic analysis method:

• we extend our framework to continuous distributions. For this, we have to use
a different semantical model and solve intricate well-definedness issues. We also
have to extend our analysis framework, thereby faithfully abstracting continuous
distributions to finitely-probabilistic ones.

• We consider systems with partial control. To do so, we discuss a different interpre-
tation of the model semantics. We then show how we can extend our abstraction
framework to apply existing algorithms for the synthesis of controllers, which can
steer a system so as to guarantee certain properties.

• We consider parametric system models. We firstly adapt our hybrid automata
model, its semantics and the abstraction method to the parametric case. We then
develop algorithms which work on abstractions of parametric models to obtain
probability bounds and answer the validity of properties.

• We integrate rewards into our probabilistic hybrid automata. Then, we discuss
how we can handle them in our abstraction framework, in particular how we can
compute abstract reward structures. We then discuss how to apply existing algo-
rithms to decide reward-based properties in the abstraction.

We also discuss the orthogonal combination of all these extensions.

We implement our method in a tool called ProHVer. To demonstrate the practical
applicability of our method, we apply it on a number of case studies, which are diverse in
the nature of their behaviour and thus serve as trustworthy benchmarks of our technique.

1.2 Layout and Origin of the Thesis

We now describe the structure of the thesis and its origins in terms of previous pub-
lications by the author. A sketch of the structure is given in Figure 1.1. The arrows
between the chapters describe dependencies, so that for example Chapter 3 depends on
Chapter 2, and chapters 4, 5, 6 and 7 can be read independently of each other.

In Chapter 1, we have discussed the context and contribution of the thesis.

Chapter 2 describes the basic classical hybrid automata formalism which we build on in
later chapters. We discuss how we can prove that certain states are never reached, or
are guaranteed to be reached eventually.

In Chapter 3, we extend the model of classical hybrid automata to probabilistic hybrid
automata [Spr00] with distributions of finite support. Building on results of classical
hybrid automata, we show how we can prove bounds on reachability probabilities. This
chapter mainly builds on two previous publications [Zha+10; Zha+11]. The main contri-
bution of the author of this thesis to these previous publications are the implementation
of the analysis technique and the selection and preparation of most of the case studies.

Chapter 4 considers stochastic hybrid automata which feature continuous probability

14



1.2. LAYOUT AND ORIGIN OF THE THESIS

Chapter 1
introduction

Chapter 2
classical hybrid automata

Chapter 3
probabilistic hybrid automata

Chapter 4
continuous distributions

Chapter 5
partial control

Chapter 6
parameters

Chapter 7
rewards

Chapter 8
orthogonal combinations

Chapter 9
summary and future work

Figure 1.1: Structure of the thesis.

distributions. We show how to bound values for this extended case of stochastic models,
and how to solve well-definedness problems. The chapter expands results of [Frä+11].

We extend our methods thus to steer stochastic hybrid systems of which we have partial
control in Chapter 5. This chapter is rooted in [Hah+11].

In Chapter 6, we consider probabilistic hybrid automata with parametric probabilities.
This allows us to quickly obtain an overview of the behaviour of a family of stochastic
hybrid systems much faster, than if we had to do a separate analysis for each of them.
It also allows to estimate optimal parameters of such systems. The chapter is based on
methods originating from [HHZ09; Hah+10; HHZ11a; HHZ11b].

Chapter 7 describes how we can extend our analysis to reward-based properties, rather
than just probabilistic reachability. We extend our abstraction framework thus to obtain
upper and lower bounds of these property classes. The chapter also builds on [Hah+11],
but has been extended considerably.

In Chapter 8, we describe orthogonal combinations of the previous chapters.

Finally, in Chapter 9, we summarise the thesis and discuss promising attack points for
future work.
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2
Classical Hybrid Automata

In this chapter, we formalise the basic notions of classical hybrid automata without
stochastic behaviours. This chapter does not contain new results, but reformulates
existing ones from the perspective of this thesis. It is important anyway, because it will
build the foundation of the later extensions to stochastic models: analysis techniques for
our stochastic models will build on classical hybrid automata, thus we need to provide a
formalisation of this model. In addition, many results established for stochastic models
are generalisations of the nonprobabilistic case, and we thus believe that they are easier
to understand when reading this chapter first.

In Section 2.1 we describe the low-level models which will form the semantics of hybrid
automata. We also define behaviour and reachability properties of them, that is, whether
a certain set of states can be reached (safety) or will always be reached (inevitability).
Then, in Section 2.2 we discuss the high-level hybrid automata model. This section also
describes the semantics in terms of the models of Section 2.1, as well as properties of
hybrid automata and their mapping to the low-level semantics. Next, in Section 2.3
we specify the abstractions of hybrid automata. This includes discussing the conditions
under which an abstraction is correct for a given hybrid automaton. Section 2.4 will
discuss how properties can be decided once the abstraction has been computed. In
Section 2.5 we will apply a hybrid solver on a small case study which we will develop
throughout the chapter. Afterwards, Section 2.6 discusses related work. Section 2.7
concludes the chapter.

2.1 Semantical Models

In this section, we will introduce the model which will later form the semantics of our
hybrid automata. For clarity, we state a few conventions which we will use in the
following parts.

2.1.1 Conventions

The set of natural number N = {0, 1, 2, . . .} does include 0. By N+ = {1, 2, . . .} we denote
the set of natural numbers without 0. The set of rational numbers will be denoted by Q

17



CHAPTER 2. CLASSICAL HYBRID AUTOMATA

and we will denote real numbers by R. In case we restrict to nonnegative real numbers,
we write R≥0. We might leave out the domain of a variable if it is clear from the context.
For example, we might write “for 1 ≤ n ≤ 10 we have [...]” rather than “for n with n ∈ N
and 1 ≤ n ≤ 10 we have [...]” if it is clear that n is a natural number.

For a set A, by A∗ def

= {(a0, . . . , an) | n ∈ N ∧ ∀i, 0 ≤ i ≤ n. ai ∈ A} we denote the
set of finite sequences of elements of A. With Aω def

= {(a0, a1, a2, . . .) | ∀i ≥ 0. ai ∈
A} we denote the set of infinite sequences of elements of A. For a finite sequence
a = (a1, . . . , an), we let aω

def

= (a1, . . . , an, a1, . . . , an, a1, . . . , an, . . .) denote the infinite
repetition of a.

We write 〈Ai〉i∈I to denote a family of entities, in which we identify each object Ai by
an element i of the index set I.

We use ⊎ as the union of sets in case we want to emphasise that these sets are assumed
to be disjoint.

The complement of a set A is denoted by AC .

2.1.2 Labelled Transition Systems

The semantic models we will be using, and later on extend to the probabilistic cases,
are labelled transition systems [Kel76].

Definition 2.1. A labelled transitions system (LTS) is a tuple

M = (S, s,Act , T ),

where

• S is a set of states,

• s ∈ S is the initial state,

• Act is a set of actions, and the

• transition matrix T : (S × Act) → 2S assigns subsets of possible successor states
to pairs of states and actions.

We require that for each s ∈ S we have {a ∈ Act | T (s, a) 6= ∅} 6= ∅.

Thus, an LTS contains a (possibly uncountable) set of states, one of which is initial. In
each state s, by the transition matrix, one can nondeterministically choose a successor
action a and state s′ with s′ ∈ T (s, a).

Example 2.2. In Figure 2.1, we depict a finite example LTS M def

= (S, s,Act , T ). Here,

we have S
def

= {s0, s1, s2}, s def

= s0, Act = {a, b}, and

T (s0, a)
def

= {s1}, T (s0, b)
def

= {s2},
T (s1, a)

def

= {s0, s1}, T (s1, b)
def

= ∅,
T (s2, a)

def

= T (s2, b)
def

= {s2}. △
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s0

s1

s2

a a

b

a

a, b

Figure 2.1: Labelled transition system.

ssim,0 ssim,1
b

a

a, b

Figure 2.2: Labelled transition sys-
tem simulating the one of
Figure 2.1.

To specify properties of LTSs, we need to define the possible behaviours of such models.

Definition 2.3. A finite path of an LTS M = (S, s,Act , T ) is a tuple

βfin = s0 a0 . . . sn−1 an−1 sn ∈ (S × Act)∗ × S,

where s0 = s and for all i with 0 ≤ i < n we have si+1 ∈ T (si, ai). An infinite path is a
tuple

βinf = s0 a0 . . . ∈ (S ×Act)ω,

where s0 = s and si+1 ∈ T (si, ai) holds for all i ≥ 0. By Pathfin
M we denote the set of all

finite paths and by Path inf
M we denote the set of all infinite paths of M.

The length of a finite path βfin is denoted by |βfin| def

= n. We let βfin[i]
def

= βinf [i]
def

= si
denote the (i+1)-th state of a finite or infinite path (for the i-s defined). By last(βfin)

def
=

sn we denote the last state of a finite path.

We define the trace of finite paths as trace(βfin) = a0 a1 . . . an−1 and accordingly for

infinite ones. The sets of all finite and infinite traces are defined as Trace∗M
def
= Act∗

and TraceωM
def

= Actω. Given γ = a0 a1 . . . ∈ Trace∗M ⊎ TraceωM, we define γ[i]
def

= ai as
the (i+ 1)-th action on the trace.

Consider a subset Act fair ⊆ Act of the actions of M. We call a path β ∈ Path inf
M Act fair-

fair if there are infinitely many i ≥ 0 with trace(β)[i] ∈ Act fair. By Path
Act fair
M we denote

the set of all Act fair-fair paths of M.

Paths are thus sequences of transitions which are legal according to the transition matrix
and start in the initial state. A path is fair if it contains infinitely many positions in
which fair actions are chosen.

Example 2.4. An example of a finite path in the LTS of Figure 2.1 is

β1
def
= s0 a s1 a s1 a s1,

and an example of an infinite path is

β2
def

= s0 a (s1 a)
ω.

With Act fair
def

= {b}, the path β2 is not Act fair-fair, but for instance

β3
def

= s1 a s1 a s1 a s1 a s0 b (s2 b)
ω
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is. We have

trace(β1) = a a a, trace(β2) = aω, trace(β3) = a a a a bω,

last(β1) = s1,

β1[0] = s0, β1[1] = β1[2] = s1, β2[15] = s1,

trace(β1)[0] = trace(β1)[1] = trace(β1)[2] = trace(β2)[15] = a. △

The basic properties we consider are safety properties, which we are now able to express.

Definition 2.5. Let M = (S, s,Act , T ) be an LTS and let Reach ⊆ S be a set of unsafe
states. We define M as Reach-safe if there is no β ∈ Path inf

M for which there is i ≥ 0
with β[i] ∈ Reach.

Instead of a set of unsafe states, we might also be given a set of desirable states which we
want the automaton to always reach eventually, a property called inevitability [PW06].

Definition 2.6. We define an LTS M = (S, s,Act , T ) as being Act fair-restricted Reach-
inevitable for a set of desirable states Reach ⊆ S and set of actions Act fair ⊆ Act if for
all β ∈ Path

Act fair
M there is i ≥ 0 with β[i] ∈ Reach.

In contrast to Definition 2.5, in Definition 2.6 we restrict to fair subsets of paths in which
we require Reach to be eventually reached. The reason is that later on, in the definition
of hybrid automata, we will have to exclude certain unrealistic behaviours (which is not
necessary for safety properties).

Example 2.7. Again, consider the LTS M of Figure 2.1. Let Act fair
def

= {b} and

Reach
def

= {s2}. The LTS is not Reach-safe, because there are paths which lead from s to
Reach, for instance β3 of Example 2.4. Indeed, M is Act fair-restricted Reach-inevitable,
because all Act fair-fair paths eventually reach Reach. △

We now define a way to describe how two LTSs can be related (similar to the notions of
[Mil71; Mil89; BK08]).

Definition 2.8. Given two LTSs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim),
we say that Msim simulates M, denoted by M � Msim, if and only if there exists a
relation R ⊆ S × Ssim, which we will call simulation relation from now on, where

1. we have (s, ssim) ∈ R,

2. for each (s, ssim) ∈ R, a ∈ Act , and s′ ∈ T (s, a), there is s′sim ∈ Tsim(ssim, a) with
(s′, s′sim) ∈ R.

For two sets of states Reach ⊆ S and Reachsim ⊆ Ssim, we call a simulation relation
Reach-Reachsim-compatible if for all (s, ssim) ∈ R, we have s ∈ Reach if and only if
ssim ∈ Reachsim. If there exists such a relation, we write

(M,Reach) � (Msim,Reachsim).
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If an LTS Msim simulates another LTS M, it can mimic all possible behaviours of M.
Because of this, if Msim is safe, also M is safe.

Lemma 2.9. Consider two LTSs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim)
and sets of states Reach ⊆ S and Reachsim ⊆ Ssim with (M,Reach) � (Msim,Reachsim).
Then, if Msim is Reachsim-safe this implies that M is Reach-safe.

Proof. From (M,Reach) � (Msim,Reachsim) we know that there is a simulation relation
R. Assume Msim is safe, but M is not. If M is unsafe, there is a path leading to an
unsafe state. For each β = s0 a0 s1 a1 . . . ∈ Path inf

M there is βsim = ssim,0 a0 ssim,1 a1 . . . ∈
Path inf

Msim
with (si, ssim,i) ∈ R for all i ≥ 0. This holds by Definition 2.8 and induction on

the length of the paths. Because of this and because R is Reach-Reachsim-compatible, if
β is a path of M which has states contained in Reach, there is also a path of Msim with
states contained in Reachsim. This contradicts the assumption that Msim is safe.

We can also use simulation relations to show inevitability properties.

Lemma 2.10. Consider two LTSs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim),
Act fair ⊆ Act and two sets of states Reach ⊆ S and Reachsim ⊆ Ssim with (M,Reach) �
(Msim,Reachsim). Then if Msim is Act fair-restricted Reachsim-inevitable, this implies that
M is also Act fair-restricted Reach-inevitable.

Proof. The proof is similar to the one of Lemma 2.9: assume that Msim is Act fair-
restricted Reachsim-inevitable but M is not Act fair-restricted Reach-inevitable. Then
there is a path β = s0 a0 s1 a1 . . . ∈ Path inf

M which is fair but does not reach Reach.
Again, we can construct βsim = ssim,0 a0 ssim,1 a1 . . . ∈ Path inf

M2
, which is Act fair-fair but

does not end in Reachsim, which contradicts the assumption.

Example 2.11. Consider the LTSs M and Msim depicted in Figure 2.1 and Figure 2.2.
Further, let Reach

def

= {s2} and Reachsim
def

= {ssim,1}. Then we have that (M,Reach) �
(Msim,Reachsim), as seen from the Reach-Reachsim-compatible simulation relation

R
def

= {(s0, ssim,0), (s1, ssim,0), (s2, ssim,1)}.
It is easy to check that R fulfils all requirements of Definition 2.8. It fulfils Requirement 1
because we have (s0, ssim,0) ∈ R. For Requirement 2, consider for instance (s0, ssim,0) ∈ R
and s1 ∈ T (s0, a). We have ssim,0 ∈ T (ssim,0, a) and (s1, ssim,0) which means that the
requirement holds for this transition.

With Act fair
def

= {b}, we have that Msim is Act fair-restricted Reachsim-inevitable. From
this, we can conclude that M is Act fair-restricted Reach-inevitable, as we have already
discussed in Example 2.7. △

2.2 Hybrid Automata

In the following, we describe the high-level specification model for hybrid systems which
we are going to use. To do so, we need to discuss the component which corresponds
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to the timed part of such models. We require this component to fulfil a number of
requirements. Some of them are naturally fulfilled by usual mechanisms to describe the
timed behaviour of hybrid systems. Others are more restrictive, but all hybrid automata
in which these requirements are not fulfilled can be transformed into equivalent hybrid
automata in which they are.

Definition 2.12. A k-dimensional post operator with k ∈ N+ is a function

Post : (Rk × R≥0) → 2R
k

,

where for each v ∈ Rk we have

1. Post(v , 0) = {v},
2. for all t, t′ ∈ R≥0 with 0 ≤ t

′ ≤ t we have Post(v , t) =
⋃

v ′∈Post(v ,t′) Post(v
′, t− t

′),

3. there exists t ≥ 0 where for all t′ ≥ t we have Post(v , t′) = Post(v , t) and for all
v ′ ∈ Post(v , t′) and all t′′ ∈ R≥0 we have Post(v ′, t′′) = {v ′}.

If v is an evaluation of continuous variables, then Post(v , t) describes the possible values
of these variables after trying to wait for time t. Some v ′ ∈ Post(v , t) might correspond
to letting less time than t pass, because of possible restrictions of the variable values
specified in the model. For example, for a v in which we have a time stop, that is, no
further time passage is allowed, we have Post(v , t) = {v} for all t ≥ 0.

Requirement 1 of Definition 2.12 means that a timed transition has no effect if we let
time 0 pass. Requirement 2 is a form of time additivity; instead of letting t1 + t2 time
units pass, we can wait firstly for time t1 and then for time t2. These requirements
are naturally fulfilled by all common hybrid systems mechanisms. They will become
especially important later on when reasoning about controller synthesis (cf. Chapter 5).

Requirement 3 states that there is a maximal time for which the automaton can wait
in a given state. For all v ′ ∈ Post(v , t) = Post(v , t′) we will have a time stop, that
is Post(v ′, t′′) = {v ′} for all t′′ ≥ 0. This will become relevant later when we have to
discuss fairness conditions in probabilistic hybrid automata. Models which do not fulfil
the condition can easily be transformed to do so.

The post operator allows one to describe various forms of continuous-time dynamics: an
important submodel of the general hybrid automata we are going to define are timed
automata [AD90]. In this model class, all continuous variables are clocks, which means
that the continuous variables are increased by 1 per time unit, and the post operator
can be expressed as

Post((v1, . . . , vk), t) = {(v1 + t
′, . . . , vk + t

′) ∧G},

with a G used to restrict the time flow to a maximal t′ so that a given invariant holds for
all t′′ with 0 ≤ t

′′ ≤ t
′. Hybrid systems are often described by differential (in)equations

(e.g. [Alu+95; ADI06]). When we are using differential equations, the post operator has
the form

Post(v , t)={v ′ | ∃(f : R≥0 → Rk). f(0)=v∧f(t′)=v ′∧∀t′′ ∈ (0, t′). ḟ(t′′)=g(f(t′′), t′′)∧G}.
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t

T

0 0.25 0.5 0.75 1
2

3

4

5 t>1t≤1

Figure 2.3: Post operator.

Here, g(f(x), x) describes the derivative of the possible trajectories of the automaton,
and f(x) is a so-called witness function. In a similar way, post operators described by
differential inclusions (inequations) can be expressed.

In the following, there is no need to restrict to a specific way of how post operators
are defined, except the requirements given in Definition 2.12. As a minor exception, in
Chapter 4 we have to put measurability restrictions on these operators.

Example 2.13. Consider the post operator PostCheck : (R3 × R≥0) → 2R
3

with

PostCheck((t, T, c), t)
def

= {(t+ t
′, T ′, c+ t

′) | T ′ = T exp(−t
′/2)},

where
t
′ def

= max({t′ | t′ + t ≤ 1 ∧ c+ t
′ ≤ T ∧ t

′ ≤ t} ∪ {0}),
and T ∈ R>0 is a time bound discussed later. Here, exp denotes the exponential function.
We remark that T ′ = T exp(−t

′/2) is the solution of the differential equation Ṫ ′ = −T ′/2
with initial value T .

For the initial value (0, 5, 0), the behaviour is depicted in Figure 2.3. The graph denotes
the set of points which can be reached by a timed transition. The axis labelled with t
denotes both the values of the time which has passed as well as the continuous variable
t. The axis T denotes the second dimension. We leave out the last dimension c. Thus,
after time 0.25, T has a value of about 4.41. △

Our hybrid automata definition then is as follows:

Definition 2.14. A hybrid automaton (HA) is a tuple

H = (M, k,m, 〈Postm〉m∈M ,Cmds),

where

• M is a finite set of modes,

• k ∈ N+ is the dimension of the automaton,

• m ∈ M is the initial mode,

• Postm is a k-dimensional post operator for each mode m,

• Cmds is a finite set of guarded commands of the form g → u, where

23



CHAPTER 2. CLASSICAL HYBRID AUTOMATA

Init

Heat

Ṫ=2
∧T≤10
∧t≤3

Cool

Ṫ=− T
∧T≥5

Check

Ṫ= − T/2
∧t≤1

Error

cHCo=(T≥9→T ′=T∧t′=0)

cCoH=(T≤6→T ′=T∧t′=0)

cIH=(true→9≤T ′≤10∧t′=0)

cHCh=(t≥2→T ′=T∧t′=0)

cChH=(t≥0.5→T ′=T∧t′=0)

cChE=(t≥0.5→T ′=T∧t′=0)
cE

Figure 2.4: HA modelling a thermostat.

– g ⊆ M × Rk is a guard,

– u : (M × Rk) → 2M×Rk

is an update function,

– u(s) 6= ∅ for all s ∈ g , and

• for s = (m, v) with Postm(v , t) = {v} for all t ∈ R≥0, there is a command with
guard g and s ∈ g .

Thus, HAs consist of a finite set of modes M along with post operators Postm and
guarded commands Cmds , as well as a number of k continuous variables. The value
of the continuous variables changes over time while being in a given mode m. If the
current assignment to the continuous variables is v , then Postm(v , t) describes the set
of variable evaluations which can be reached by trying to wait for time t. A command
c = (g → u) can be executed in mode m with variable assignments v if (m, v) ∈ g . If
it is executed, there is a nondeterministic choice of successor modes and variable values
(m′, v ′) ∈ u(m, v) (in case u(m, v) is not singleton). Time proceeds only in transitions
resulting from Postm, but the command-driven transitions take zero time. The last
requirement that we have to be able to execute a command in case of a time stop will
be needed when considering fairness.

We remark that it is not strictly necessary to include guards in the definition of com-
mands; given a guarded command c = (g → u), we could transform it into a command
of the form c ′

def

= (u ′) so that u ′(s)
def

= u(s) for all s ∈ g and u ′(s)
def

= ∅ else. This way,
the fact that a guard is valid in a state is expressed by a nonempty update in this state.
However, to make the notations more handy and descriptive, we will use commands with
guards in this thesis.

HAs allow several degrees of freedom, to which there is no associated probabilistic in-
terpretation, and which is resolved nondeterministically: there can be nondeterminism
in the continuous-time part, for instance in case of differential inclusions, so that more
than one possible state can be reached by waiting for a certain time. Another source of
nondeterminism results because a guarded command can usually be executed at different
points of time, so there is a nondeterministic choice over the amount of time to wait.
Further, the execution of a guarded command might lead to several possible outcomes.

Example 2.15. Consider the example HA H = (M, k,m, 〈Postm〉m∈M ,Cmds) shown
in Figure 2.4, which models a thermostat. There are five modes: M = {Init,Heat,Cool,
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Check,Error}. Init is the initial mode. Modes Heat and Cool implement heating and
cooling functions. In the mode Check, the thermostat can fail nondeterministically. In it
does, the Error mode is entered, whereas otherwise the thermostat continues its normal
operations.

There are k = 3 continuous variables, t, T and c. T represents the temperature and t
represents the time since entering a mode. We thus have (ṫ = 1) in each mode (which
is left out in the figure). The variable c is a global timer which initially is 0, we have
ċ = 1 in all modes, (c′ = c) in each of the command updates, and have the additional
constraint (c ≤ T) in each mode, where T is the time the system is supposed to run.

Commands are represented as arrows. The set of all commands is Cmds = {cIH, cHCo,
cHCh, cChH, cChE, cE}. Primed variables denote the values which are assigned by the up-
dates. For instance, there are two commands available in mode Check: cChH = (g →
uChH) and cChE = (g → uChE) where

• g = {Check} × [0.5,∞)× R× R,

• uChH((m, t, T, c)) = {(Heat, 0, T, c)}, and

• uChE((m, t, T, c)) = {(Error, 0, T, c)}.
The post operator of each mode is described using differential equations. The post op-
erator of Check is described in detail in Example 2.13, and the others are formalised in
the same way. As noted, in addition to the restrictions given in the figure, we assume
that everywhere we have (ṫ = 1), (ċ = 1) and (c ≤ T). The command cE is needed by the
last requirements on HAs and post operators, although the exact definition of the timed
behaviour in the error mode is not important. For the same reason, we assume that in
the other modes cE is activated in case (c = T). △

We have given a definition of classical HAs which comprises the usual cases to be analysed
by the solvers for such systems, and are now almost ready to define the semantics of our
HAs. However, some of the usual hybrid systems solvers, which we want to build our
analysis methods on, do not directly represent all timed transitions of the hybrid system
semantics by corresponding timed transitions in the abstractions they compute. Timed
transitions might be left out in case they can be substituted by a sequence of shorter
timed transitions. As a preparation for the later definition of abstractions, we define a
restriction of post operators which takes into account this issue.

Definition 2.16. A time restriction T = 〈tm〉m∈M for a family of k-dimensional post
operators 〈Postm〉m∈M is defined so that for each m ∈ M we have

• tm : Rk → R≥0,

• for each v ∈ Rk, t ≥ 0 and v ′ ∈ Postm(v , t) there is n ≥ 1 for which there are
v1, . . . , vn ∈ Rk and t1, . . . , tn−1 ∈ R≥0 where

– v = v1,

– v ′ = vn,

–
∑n−1

i=1 ti = t, and

– for i with 1 ≤ i < n we have ti ≤ tm(vi) and vi+1 ∈ Postm(vi, ti).
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The definition specifies a maximal amount of time tm(v) which can pass with a single
transition in a given mode m given the values v of the continuous variables. We must
make sure that the relevant properties of the hybrid automaton are not affected by this
restriction. For this, the definition requires that, if it is possible to reach v ′ by letting
time t pass in m with an assignment v to the continuous variables, we can still always
reach v ′ by waiting instead a number of times for durations ti, so that each ti is legal
by the time restriction and their sum equals t. In Chapter 5, the time restrictions will
even turn out to be useful rather than just necessary because of the hybrid solvers, as
they will then allow for more precise results.

We can now define the semantics of HAs in terms of LTSs. As a preparation for the later
abstractions, we also define a variant in which time restrictions are taken into account.

Definition 2.17. The semantics of an HA H = (M, k,m, 〈Postm〉m∈M ,Cmds) is the
LTS

JHK
def

= (S, s,Act , T ),

where

• S
def

= M × Rk,

• s
def

= (m, 0, . . . , 0),

• Act
def

= R≥0 ⊎ Cmds,

• for s = (m, v) ∈ S we have

– for c = (g → u) ∈ Cmds: T (s, c)
def

=

{

u(s) if s ∈ g ,

∅ else,

– for t ∈ R≥0: T (s, t)
def

= {(m, v ′) | v ′ ∈ Postm(v , t)}.
Given a time restriction T = 〈tm〉m∈M , the time-restricted semantics is the LTS JH,TK =
(S, s,Act , T ) where S, s, Act and T (s, c) for each s = (m, v) ∈ S and c ∈ Cmds are
as in the semantics above. We restrict the timed transitions where for t ∈ R≥0 and

tT
def

= min{t, tm(v)} we have T (s, t)
def

= {(m, v ′) | v ′ ∈ Postm(v , tT)}.

Example 2.18. Consider the HA H of Figure 2.4. Then we have

JHK = (S, s,Act , T ),

where with the formalisations of Example 2.15 we have

• S = M × R3,

• s = (Init, 0, 0, 0),

• Act = Cmds ⊎ R≥0,

• T : (S ×Act) → 2S.

We exemplify the behaviour on the states of the mode Check. For s = (Check, t, T, c) ∈
{Check} × R3 we have

T (s, cIH) = T (s, cHCo) = T (s, cHCh) = T (s, cCoH) = T (s, cE) = ∅,
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T (s, cChH) =

{

∅ if t < 0.5,

{(Heat, 0, T, c)} else,

T (s, cChE) =

{

∅ if t < 0.5,

{(Error, 0, T, c)} else,
,

and for t ∈ R≥0 we have

T (s, t) = {(Check, t+ t
′, T ′, c+ t

′) | T ′ = T exp(−t
′/2)},

where
t
′ def

= max({t′ | t′ + t ≤ 1 ∧ c+ t
′ ≤ T ∧ t

′ ≤ t} ∪ {0}).
Consider the time restriction T = 〈tm〉m∈M where for each m ∈ M we have tm(v) = 0.25.
Then for JH,TK we have

t
′ def

= max({t′ | t′ + t ≤ 1 ∧ c+ t
′ ≤ T ∧ t

′ ≤ t ∧ t ≤ 0.25} ∪ {0}).

Thus, T ((Check, 0, 5, 0), 0.25) = T ((Check, 0, 5, 0), 0.3) = T ((Check, 0, 5, 0), 100) ≈
(Check, 0.25, 4.41, 0.25). The fact that we cannot let more than 0.25 units of time pass
is not an actual restriction, as we have for instance T ((Check, 0.25, 4.41, 0.25), 0.25) ≈
(Check, 0.5, 3.89, 0.5), that is we can replace a single time transition which is longer than
the maximal time allowed by the time restriction by a sequence of transitions, each of
which is legal by the time restriction. △

We now state when we consider an HA as safe for a given unsafe mode.

Definition 2.19. Let H = (M, k,m, 〈Postm〉m∈M ,Cmds) be an HA with a mode mReach .
We say that H is mReach -safe for mReach ∈ M if JHK is (mReach × Rk)-safe.

Inevitability properties of HAs are defined as follows:

Definition 2.20. We define an HA H = (M, k,m, 〈Postm〉m∈M ,Cmds) as mReach -
inevitable for mReach ∈ M if JHK is Cmds-restricted (mReach × Rk)-inevitable.

Contrary to the safety property, we restrict to the paths in which infinitely many com-
mands occur. The reason we apply the restriction is that otherwise there would be no
nontrivial mReach -inevitable automata at all: we will always find a path which is time
convergent [BK08, Chapter 9], that is, its trace will end in a sequence

t0 t1 t2 t3 . . . ,

with
∑∞

i=0 ti < ∞. This way, time will effectively stop, and mReach will never be reached
just because of this reason (except in the trivial case where the initial mode equals
mReach). Under the assumption that in reality time progress will never stop, paths
with such traces can be considered as being unrealistic. Now consider a path with a
trace which ends in an infinite sequence of timed actions and which is time divergent,
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that is
∑∞

i=0 ti = ∞. By the definition of the post operators (cf. Definition 2.12,
Requirement 3), at some point the timed actions do not have any further effect, which
is also equivalent to a time stop. In such a case, by Definition 2.14 we must be able to
execute a guarded command, and our fairness assumptions imply that we will. Thus,
all realistic paths involve the execution of infinitely many actions.

If we only require that on a path infinitely many commands are executed, it can still
happen that time stops, in case we are able to execute an infinite number of guarded
commands in finite time. However, this possibility can be excluded by making the
automaton structurally (strongly) nonzeno [AMP94][Asa+00, Definition 6], that is by
defining the guards of the guarded commands in a way that they cannot be executed
without a minimal delay. In addition, this might not even be necessary, in case all paths
in which infinitely many actions are executed already lead to either mReach or to a mode
from which it is clear that mReach can never be reached again.

In principle, we could instead simply have restricted to time-divergent paths. However,
the mechanism we use here is more appropriate when using the abstractions of the
HA semantics we will later on discuss. In addition, it will turn out to be useful when
considering reward-based properties in Chapter 7.

The following lemma shows that, concerning the properties we define on HAs, for our
properties of interest it does not matter whether or not we consider the time restriction.

Lemma 2.21. Let H be an HA with commands Cmds, let T be a suitable time restriction
and let Reach ⊆ S where S is the set of states of JHK. Then JHK is Reach-safe if and only
if JH,TK is Reach-safe. Likewise, we have that JHK Cmds-restricted Reach-inevitable if
and only if JH,TK is Cmds-restricted Reach-inevitable.

Proof. We consider the case that JHK is safe. Assume T = 〈tm〉m∈M . Let βT be an
arbitrary path of JH,TK. Without loss of generality, we can assume that for each state s
of βT only time durations up to the maximum allowed by the time restriction are chosen;
choosing longer durations has no effect other than choosing the maximal time allowed
by the time restriction. This way, for βT = (m0, v0) a0 (m1, v1) a1 . . . for all i ≥ 0 with
ai ∈ R≥0 we have ai ≤ tmi

(vi). By the definition of the time-restricted semantics, for
a path βT = (m0, v0) a0 (m1, v1) a1 . . . for which this does not hold, we can construct a
path with the same sequence of states, namely β ′

T
= (m0, v0) a

′
0 (m1, v1) a

′
1 . . . where we

have a′i = min{tmi
(vi), a0} in case ai ∈ R≥0 and a′i = ai otherwise. All paths of the

required form are also paths of JHK. Thus, also JH,TK is safe, because otherwise there
would be a path of JHK leading to an unsafe state, which would violate the assumption.

Now assume that JH,TK is safe. Consider an arbitrary path β of JHK. We construct
a path βT of JH,TK as follows: because of the requirements on post operators (cf.
Definition 2.12) and time restrictions (cf. Definition 2.16), each part (m, v) t (m, v ′) of
the path with t > tm(v) can be replaced by a sequence (m, v1) t1 . . . tn−1 (m, vn) with
v1 = v , vn = v ′ and for all i with 1 ≤ i < n we have ti ≤ tm(vi) and vi+1 ∈ Postm(vi, ti).
The path βT constructed this way is thus a path of JHK as well as JH,TK. Because
JH,TK is safe, there cannot be any states of βT which are contained in Reach. This also
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holds for β, as the set of states occurring in βT is a superset of those in β. Because β
was chosen arbitrarily, we can conclude the safety of JHK.

The proof concerning Cmds-restricted Reach-inevitable properties follows by the same
construction. It maintains Act fair-fairness of paths, because it only modifies timed tran-
sitions, so that the fact whether or not infinitely many actions of Act fair = Cmds occur
is not affected.

Example 2.22. Consider the HA H of Figure 2.4 with the semantics in Example 2.18,
consider the unsafe mode Error and let Reach

def
= {Error}×R3. Whether H is Error-safe

depends on the time bound T. If T is small enough it is indeed safe, but for T ≥ 3.69,
the path

(Init, 0, 0, 0) cIH (Heat, 0, 9, 0) 0.5 (Heat, 0.5, 10, 0.5) cHCo (Cool, 0, 10, 0.5) 0.69

(Cool, 0.69, 5.016, 1.19) cCoH (Heat, 0, 5.016, 1.19) 2 (Heat, 2, 9.016, 3.19) cHCh

(Check, 0, 9.016, 3.19) 0.5 (Check, 0.5, 7.016, 3.69) cChE (Error, 0, 7.016, 3.69)

(where the numbers are only approximate) leads from the initial state to the unsafe mode.

The automaton is not Error-inevitable: the only possibility to move to Error is in Check,
and there are indeed paths which are Cmds-fair but never enter this mode. Also, in Check
it is never necessary to move to Error, because instead of cChE one can always choose
cChH. However, if we started in the mode Check and removed cChH, we would always
end up in Error with each Cmds-fair path, because then cChE would be the only element
of Cmds left in Check. If we do not restrict to Cmds-fair paths, the automaton would
still not be guaranteed to reach Error, because paths in which we repeatedly choose to let
some time pass would be allowed. △

2.3 Abstractions

In the following, we will be concerned with abstractions of HAs. Firstly, we have to
describe abstract state spaces, which we will use to subsume uncountably many states
of the infinite semantics of the HAs.

Definition 2.23. An abstract state space of dimension k for a set of modes M is a
finite set A = {z1, . . . , zn} where zi = (mi, ζi) ∈ M × 2R

k

and we have
⋃

(m,ζ)∈A ζ = Rk

for all m ∈ M . We identify (m, ζ) with the set {m} × ζ which allows us to apply the
usual set operations on abstract states, and we will for instance write s ∈ (m, ζ).

We do not require A to be a partitioning of M × Rk, that is we do allow overlapping
states. This way, one concrete state may be contained in several abstract states. We
need to allow this, because in several hybrid system solvers from which we obtain these
abstractions, these cases indeed happen. For instance, in the tool HSolver [RS07] we
may have overlapping borders, whereas for PHAVer [Fre05; Fre08] we may also have
common interiors of abstract states.

With these preparations, we can now define the abstraction of an HA.

29



CHAPTER 2. CLASSICAL HYBRID AUTOMATA

Definition 2.24. Consider an HA H = (M, k,m, 〈Postm〉m∈M ,Cmds), an abstract state
space A = {z1, . . . , zn} of compatible dimension and modes as well as a time restriction
T = 〈tm〉m∈M . We say that

M = (A, z,Cmds ⊎ {τ}, T )

is an abstraction of H using A and T if

• (m, 0, . . . , 0) ∈ z,

• for all z ∈ A, s ∈ z, c = (g → u) ∈ Cmds, if s ∈ z∩ g then for all s′ ∈ u(s) there
is z

′ ∈ A with s′ ∈ z
′ and z

′ ∈ T (z, c),

• for all z ∈ A, s = (m, v) ∈ z, t ∈ R≥0 with t ≤ tm(v) and all s′ = (m, v ′)
with v ′ ∈ Postm(v , t), we require that s′ ∈ z or there is z

′ ∈ A with s′ ∈ z
′ and

z
′ ∈ T (z, τ).

By Abs(H,A,T) we denote the set of all such abstractions.

The basic idea of the abstraction definition is that it must at least include all behaviours
of the semantics of the HA it is representing. It is allowed to include more; if we
add additional transitions to an abstraction, it will remain an abstraction, but might
become less precise. Instead of having actions of R≥0, we now have a single action τ
representing the passing of time. This means that we have no information about the
durations of timed transitions in an abstraction. The definition does not construct timed
self loops (z ∈ T (z, τ)) even though we always have timed self loops (s ∈ T (s, t)) in the
semantics by letting time 0 pass (s ∈ T (s, 0)): for reachability properties, self loops are
unnecessary anyway while, when considering the inevitability properties, we indirectly
restrict to paths which are not time convergent.

The following theorem states how we can use abstractions to show the safety of HAs.

Theorem 2.25. Consider an HA H, an abstraction M ∈ Abs(H,A,T) and an unsafe

mode mReach . Let Reach
def
= {(m, ζ) ∈ A | m = mReach}. If M is Reach-safe, then H is

mReach -safe.

Proof. Assume M is Reach-safe. Because of Lemma 2.21, it suffices to show that the
time-restricted semantics JH,TK is safe concerning mReach × Rk.

For M = (A, z,Cmds ⊎ {τ}, T ) we define

Mloop
def

= (A, z,Cmds ⊎ R≥0, Tloop),

where for all z ∈ A we have

• Tloop(z, c)
def

= T (z, c) for c ∈ Cmds, and

• for all t ∈ R≥0 we have Tloop(z, t)
def
= T (z, τ) ∪ {z}.

Then M is safe if and only if Mloop is safe, as the self loops do not influence whether a
certain state is reached or not. Also, we can show that Mloop simulates JH,TK in the
notion of Definition 2.8 by using the simulation relation

R
def

= {(s, z) | z ∈ A ∧ s ∈ z}.
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z0 Init

z4 Cool

t≥0, c≥0,
t≤c, T≤10

z1 Heat

t≥0, c≥0,
t≤c, T≤10

z5 Heat

t≥0, c≥2.5,
t≤c−2.5, T≤10

z2 Check

t≥0, c≥2,
t≤c−2, T≤10

z6 Check

t≥0, c≥4.5,
t≤c−4.5, T≤10

z3 Error

c≤5

z7 Heat

t≥0, c≥0,
t≤c−5, T≤10

z3 Error

c≤5

cIH cHCh

cChH

cChE

cHCh

cChE

cChH

cHCo

cCoH

cE

Figure 2.5: Abstraction of the thermostat HA.

It is easy to check that by definition all the requirements on a ({mReach} × Rk)-Reach-
compatible simulation relation are fulfilled. By Lemma 2.9, the safety of Mloop thus
implies the safety of JH,TK.

In total, the safety of H follows:

(M safe) ⇒ (Mloop safe) ⇒ (JH,TK safe) ⇒ (JHK safe).

We might have an HA which is indeed safe, but an abstraction which is not safe. In this
case, we will have to use a different abstraction of the automaton, possibly by splitting
abstract states.

We have a corresponding result for inevitability properties.

Theorem 2.26. Consider an HA H with the set of guarded commands Cmds, an ab-
straction M ∈ Abs(H,A,T) and a mode mReach . Let Reach

def

= {(m, ζ) ∈ A | m =
mReach}. If M is Cmds-restricted Reach-inevitable, then H is mReach -inevitable.

Proof. The proof follows along the lines of the one of Theorem 2.25. When adding self
loops in Mloop, we make use of the fact that t ∈ R≥0 is not contained in Cmds , ensuring
that fair paths of Mloop cannot end in infinite sequences of timed self loops. For each
path β which only contains a finite number of timed self loops, there is a path βnoloop in
which the timed self loops have been left out and which contains an unsafe state if and
only if β contains an unsafe state. In turn, it suffices to consider the paths which do not
contain such self loops at all, and the set of these paths agrees on M and Mloop.

Example 2.27. In Figure 2.5 we depict a part of an abstraction M of the HA H of
Figure 2.4 for T = 5. For each of the abstract states, we give the corresponding mode and
the restrictions on the contained variable evaluations. Let Reach

def

= {z3}. Obviously,
M is not Reach-safe but also not Cmds-restricted Reach-inevitable. This was to be
expected, as in Example 2.22 we have already seen that H is neither Error-safe nor
Error-inevitable. There is a path which has no direct correspondence in the concrete
model, namely

z0 cIH z1 cHCh z2 cChE z3.
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There is no corresponding path in the concrete semantics, as there it is not possible to
move from the mode Heat to Check and then to Error without visiting other modes in
between. △

2.4 Algorithmic Consideration

Once an abstraction has been computed, it remains to check whether the property
of interest holds in the abstraction. In the case of nonstochastic HAs which we are
considering here, properties can be decided by standard graph-based algorithms: for
reachability, we have to find out whether an unsafe state can be reached from the initial
state of the LTS, which is indeed a special kind of graph. For inevitability, we have
to find out whether all paths starting in the initial state will eventually reach a given
set of states. Many hybrid system solvers, for instance PHAVer [Fre05; Fre08], do not
explore the complete state space at all, but only the subset of states necessary to decide
these properties.

2.5 Case Study

We applied the hybrid systems solver PHAVer [Fre05; Fre08] to our thermostat model
from Example 2.15, as a preparation for the later analyses of probabilistic variants of this
model. The solver is used both to create an abstract state space as well as to compute the
transitions between the abstract states. If PHAVer is applied on linear HAs, in which
all the differential (in)equations are equal to or bounded by constants, it will compute
the exact sets of reachable states in case it succeeds. Having done so, it is trivial to
decide whether a set of unsafe states is reachable. Because the problem of reachability is
already undecidable for this class of HAs [Hen+98, Section 4], PHAVer cannot always
succeed in computing the set of reachable states, however. Abstract states constructed
by PHAVer consist of a mode and a set of convex polyhedra of the dimension k of the
automaton. In order to be able to handle dynamics which are not linear over time (e.g.
Ṫ = −T , as in our thermostat), it overapproximates reachable states by sets of states
which can be described exactly by polyhedra. Starting from the initial state, PHAVer

explores the state space by extending abstract states in such a way that they contain the
states which can be reached by timed transitions. For linear HAs, this operation is exact.
Afterwards, it computes the effects of the guarded commands, and repeats the procedure
until a fixed point is reached. To handle nonlinear dynamics, it overapproximates them
by linear dynamics. In order to improve the precision of the computation of reachable
states, it can constrain the maximal width of polyhedra in a given dimension. This
way, abstract states contain fewer concrete states, and the overapproximation by linear
dynamics becomes usually more precise. This corresponds to the time restrictions we
considered: if PHAVer, using such a constraint, constructs a sequence of abstract states
z1, . . . , zn in which zj corresponds to a later point in time than zi for i ≤ j, we might
not have transitions from zi to zj directly, but only from zi to zi+1. Decreasing the
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T
constraint length 10 constraint length 2

build (s) states build (s) states
2 0 8 0 11
4 0 12 0 43
5 0 13 1 58

20 1 95 13 916
40 18 609 36 2207
80 59 1717 85 4916

120 31 1502 91 4704
160 177 4260 183 10195
180 136 3768 219 10760
600 625 12617 1268 47609

Table 2.1: Thermostat performance figures.

splitting constraint is not an abstraction refinement in the classical sense [Cla+00], as it
does not split abstract states from former runs, but builds an entirely new state space.
Because of this, the splitting is not guaranteed to improve the abstraction, though it
usually does. As an optional feature, PHAVer can also subsume polyhedra by building
their convex hull, thus overapproximating the set of states they contain.

The experiments we performed were run on an Intel(R) Core(TM)2 Duo CPU with
2.67 GHz and 4 GB RAM. In Table 2.1, we give performance statistics (time to build
the abstraction and number of constructed abstract states) for different time bounds
T. For the left (right) part of the table, we set the interval length for the variable c to
10 (respectively 2). We did not use the convex-hull overapproximation here. The time
needed for the analysis as well as the number of states of the abstract transition systems
grows about linearly in the time bound, though with oscillations. Comparing the left
and the right side, we see that for the larger interval we need less resources, as was to
be expected. PHAVer is never able to show that the system is safe, because indeed it
is not. In the corresponding section of the next chapter, we will however use the results
of the analysis to prove probabilistic bounds.

2.6 Related Work

The development of HA models began in the years 1991-1993 [MMP91; NSY91; NSY93;
Nic+92], as an extension of timed automata of which they form a superclass. Among the
most notable authors in the area of HAs are Oded Maler, Joseph Sifakis, and Thomas
Henzinger. HAs have found successful applications in many areas of interest, includ-
ing biological models [GT04; Ye+06], verification of analog electronics [Fre05, Section
4.3],[GKR04] and industrial applications [KSB01; ZBL07].

The most important difference between the different formalisations of HAs is in the de-
scription of the timed behaviour. Most often, it is described by solutions of differential
equations or inclusions [Alu+95; ADI06] like we do. Other mechanisms exist, for in-
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stance using o-minimal theories to describe the timed behaviours [LPS98]. During the
transitions from mode to mode, the continuous variables can be modified according to
the transition.

The continuous variables of timed automata [AD90; AD94; Dil89; Hen+92; Hen+94;
Lew90; ACD93] are restricted to clocks which must be constantly increased by 1 per time
unit, that is, we have ẋ = 1 for all continuous variables x. In addition, all clocks start
with value 0 and might only be left unchanged or be reset to 0 on guarded commands.
There are some other requirements on the specification of these systems. Although these
restrictions seem quite severe, in many cases timed automata are a sufficient mechanism,
for instance for the description of real-time systems. They also have the advantage that
many properties are decidable, as for instance reachability. Other relevant subclasses
of HAs exist, for instance (piecewise) linear HAs (with constant bounds on derivatives
of continuous variables), (initialised) rectangular HAs, o-minimal HAs, for which there
are also a number of (non)decidability results [Pre+98; Hen+98; LPY99; Alu+95]. The
safety of more general HAs can be proven if they are invariant under small disturbances
[Rat10].

The problem of reachability is undecidable for general HAs classes and even seemingly
slight extensions of the aforementioned classes [Hen+98, Section 4]. Nevertheless, there
exist tools which can, often, solve the reachability problem even for such automata.
Most tools concentrate on solving the problem for affine HAs (often also called “linear
systems”, although bounds on derivatives need not be constant, that is, automata in
which the continuous behaviour is given by linear differential (in)equations. There are
however also tools for the general case which even involves differential (in)equations
given in an implicit form [RS07].

Many tools work by exploring an overapproximation of the states reachable from the
initial states and then check whether the unsafe states are reachable [Alu+95; AHH96;
AHH93; HHWT97a; HHWT97b; Fre05; Fre08; Fre+11; GG09]. Alternatively, they can
start with the unsafe states and go back in time, thus to check whether initial states can
be reached backwards this way. Many of these works use convex polyhedra in higher
dimensions (polytopes), but mechanisms using high-dimensional boxes, ellipsoides, zono-
topes, or support functions exist.

Another approach is to overapproximate a given general HA by one of a decidable class
[Pre+98]. The new automaton can then be analysed, and its safety implies the one of the
original automaton. Other solvers start with a coarse abstraction, such as assuming that
the complete state space is reachable, which they then iteratively refine [Cla+03; RS07].
For this, they generate paths in the semantics, which are used as counterexamples to
refine the abstraction at the right place, that is, split an abstract state into two or more
separate abstract states.

The LTSs, which form the semantical model of formal descriptions of all these classes,
have a longer history than HAs themselves. One of the first authors to use LTSs was
Keller [Kel76], then for the formal verification of parallel programs. The model plays a
role in various contexts, and there are a large number of papers and textbooks on LTSs
and their applications [Pet81; BK85; Har87; Hal98; Kro99; BK08].
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2.7 Conclusion

In this chapter, we have formalised the basic notions of classical HAs, as well as the
common properties one usually wants to solve for such models. We also gave an overview
of the literature, formalisms and some special cases of this model. The model class we
have described consists of a finite number of modes, along with a number of continuous
variables and descriptions of the transitions inside a mode and between modes. The
HAs we have described are a continuous-time model, the semantics of which are given
as LTSs. The system occupies one mode at a given point of time. While being in a
mode, the timed behaviours, that is, the continuous changes in the model variables, are
given by the definition of this mode, specified for instance by differential (in)equations.
Under certain conditions, we can move from one mode to another mode, while possibly
changing the model variables. Transitions of this type do not take time.

Nondeterminism occurs, because the specification of the timed behaviour might allow for
different ways of changing the model variables, because there might be different points of
time to change from one mode to another, and because there might be different possible
modes and different changes to the variables to choose from when performing a mode
change. Thus, an HA can allow a very large number of different possible trajectories
through the system.

We are interested in checking whether certain unsafe states might be reached, or whether
certain desirable states are always reached. For this, we have defined abstractions. These
abstractions subsume model states into a finite number of abstract states, thus making
HAs subject to automatic analysis. The correctness of such abstractions can be shown by
simulation relations. We demonstrated the practical application of this idea by applying
one of the leading tools on a case study we have developed throughout the chapter.

This chapter will build the foundation of the following ones, the models of which are
extensions of the classical HAs model.
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3
Probabilistic Hybrid Automata

This chapter targets computing conservative bounds on reachability properties of a
generic class of stochastic hybrid systems. The probabilistic hybrid automata which
we consider here are an extension of classical hybrid system formalisms, in which the
guarded commands may choose their successors according to a probability distribution
with finite support [Spr00; Spr01]. Our model thus allows for both probabilistic choice,
resulting from uncertainties of the behaviour of the model for which at least a proba-
bilistic estimate is known, as well as nondeterminism, that is, a degree of uncertainty to
which we cannot even assign a probability distribution. If we are given a set of unsafe
states, we are interested in proving that the maximal probability to reach them does not
exceed a certain bound. On the other hand, if we are given a set of desirable states, we
are interested in proving that the minimal reachability probability is above the bound.
We achieve this target by building on abstractions for classical hybrid automata (cf.
Chapter 2), thereby developing the first generic framework which does not require man-
ual intervention to decide properties of system models which contain nondeterminism,
complex timed dynamics as well as stochastic behaviour, all of which are relevant for
many real-world systems.

The chapter requires some understanding of basic stochastics, but we will state the
notations we are going to use. The structure of this chapter corresponds to the one
of Chapter 2: in Section 3.1 we extend the labelled transition systems to probabilistic
automata, which will form the semantics of the probabilistic hybrid automata we con-
sider. In Section 3.2 we discuss the high-level model of probabilistic hybrid automata
and their semantics in term of probabilistic automata. Because this model is a conser-
vative extension of nonprobabilistic hybrid automata, we will reuse many formalisms
from Chapter 2. In Section 3.3 we will describe an abstraction technology for the new
model class. Section 3.4 will discuss how properties can be decided once the abstraction
has been computed. In Section 3.5 we will apply our methods using a hybrid systems
solver on a probabilistic version of our running example and several other case studies.
Section 3.6 discusses related work. Section 3.7 concludes the chapter.
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3.1 Stochastic Models

This section will describe probabilistic automata. They constitute the formal semantics
of probabilistic hybrid automata, just as the LTSs have served as the formal semantics
of classical HAs in Section 2.1. We will recapitulate a few basic notions from probability
theory which are needed to interpret probabilistic automata. Then, we will discuss
probabilistic automata and the properties we consider.

3.1.1 Stochastic Recapitulation

We consider an arbitrary set Ω, the sample space. A family Σ of subsets of Ω is a
σ-algebra, provided Ω ∈ Σ, and Σ is closed under complement and σ-union (countable
union). This means that for each family 〈Ai〉i∈I with a countable index set I and Ai ∈ Σ
for all i ∈ I, we have

⋃

i∈I Ai ∈ Σ. A set B ∈ Σ is then called measurable. Given a
family of sets A, by σ(A) we denote the σ-algebra generated by A, that is the smallest
σ-algebra containing all sets of A. The Borel σ-algebra over Ω is generated by the open
subsets of Ω, and it is denoted B(Ω). The pair (Ω,Σ) is called a measurable space.

A function µ : Σ → R≥0 is called σ-additive if µ(
⊎

i∈I Bi) =
∑

i∈I µ(Bi) for countable
index sets I and disjoint Bi. Under this condition, we speak of a measure if µ(∅) = 0,
and if also µ(Ω) = 1 then µ is a probability measure.

Given two measurable spaces (Ω1,Σ1) and (Ω2,Σ2), a function f : Ω1 → Ω2 is Σ1-Σ2-
measurable if every preimage of a measurable set is measurable, i.e. f−1(B) ∈ Σ1 for
all B ∈ Σ2. Given a probability measure µ and a measurable function f , we have the
integral

∫

Ω
f(ω)µ(dω) of f by the probability measure µ, see e.g. [ADD00] for a thorough

definition.

A (discrete-time) stochastic process is a function X : (Ω1 × N) → Ω2 where for each
n ∈ N we have that X(·, n) is Σ1-Σ2-measurable. We will write Xn to denote X(·, n).

3.1.2 Probabilistic Automata

To describe the behaviour of probabilistic automata, we firstly need to define probability
distributions.

Definition 3.1. A finite probability distribution over a set Ω is a function µ : Ω → [0, 1]
where there are only finitely many a ∈ Ω with µ(a) > 0, and we have

∑

a∈Ω µ(a) = 1.
In a Dirac probability distribution µ, there is only a single a ∈ Ω with µ(a) = 1. With
Distr(Ω) we denote the set of all finite probability distributions over Ω. Given n elements
ai ∈ Ω and probabilities pi ≥ 0, 1 ≤ i ≤ n with

∑n

i=1 pi = 1, we let [a1 7→p1, . . . , an 7→pn]
denote the probability distribution that chooses a ∈ Ω with probability

∑

ai=a,

1≤i≤n
pi.

Finite probability distributions can be seen as special cases of probability measures,
which explicitly assign a nonzero probability to a number of singleton sets {ai} ∈ Σ.
The representation [a1 7→p1, . . . , an 7→pn] of a probability distribution is not unique.
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Figure 3.1: Probabilistic automaton.
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Figure 3.2: Probabilistic automaton sim-
ulating the one of Figure 3.1.

Example 3.2. Consider Ω
def

= R. The probability distribution µ : Ω → [0, 1] with

µ(0.3)
def

= 0.12, µ(0.7)
def

= 0.8, µ(π)
def

= 0.08 and µ(·) def

= 0 otherwise can be repre-
sented as [0.3 7→0.12, 0.7 7→0.8, π 7→0.08]. An alternative representation is for instance
[0.7 7→0.3, π 7→0.08, 0.3 7→0.1, 0.7 7→0.5, 0.3 7→0.02]. △

We can now define the model which will later on form the semantics of our probabilistic
hybrid automata.

Definition 3.3. A probabilistic automaton (PA) is a tuple

M = (S, s,Act , T ),

where

• S is a set of states,

• s ∈ S is the initial state,

• Act is a set of actions, and

• the transition matrix T : (S × Act) → 2Distr(S) assigns sets of probability distribu-
tions to pairs of states and actions.

We require that for each s ∈ S we have {a ∈ Act | T (s, a) 6= ∅} 6= ∅.

Like LTSs, PAs contain a (possibly uncountable) set of states, whereof one is initial.
The choice of successors in each state s is now so that one selects an action a and a
distribution over successor states µ with µ ∈ T (s, a). LTSs can be seen as special cases
of PAs, where we only use Dirac distributions: if we are given an LTS transition matrix
Tlts with s′ ∈ Tlts(s, a), this transition can be represented by [s′ 7→1] ∈ Tpa(s, a), where
Tpa is the transition matrix of the PA representation.

Example 3.4. In Figure 3.1, we depict a finite example PA M def

= (S, s,Act , T ). Here,

we have S
def
= {s0, s1, s2, s3}, s def

= s0, Act = {a, b}, and

T (s0, a)
def
= {[s1 7→1]}, T (s0, b)

def
= {[s0 7→0.25, s1 7→0.25, s2 7→0.5]},

T (s1, a)
def

= {[s0 7→1], [s1 7→1]}, T (s1, b)
def

= {[s1 7→0.3, s2 7→0.6, s3 7→0.1]},
T (s2, a)

def

= T (s2, b)
def

= {[s2 7→1]},
T (s3, a)

def

= T (s3, b)
def

= {[s3 7→1]}. △
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As for LTSs, we describe the possible behaviours of PAs by paths.

Definition 3.5. A finite path of a PA M = (S, s,Act , T ) is a tuple

βfin = s0 a0 µ0 . . . sn−1 an−1 µn−1 sn ∈ (S × Act × Distr(S))∗ × S,

where s0 = s and for all i with 0 ≤ i < n we have µi ∈ T (si, ai). An infinite path is a
tuple

βinf = s0 a0 µ0 . . . ∈ (S ×Act ×Distr(S))ω,

where s0 = s and µi ∈ T (si, ai) holds for all i ≥ 0. By Pathfin
M we denote the set of all

finite paths and by Path inf
M we denote the set of all infinite paths of M.

The length of a finite path βfin is denoted by |βfin| def
= n. We let βfin[i]

def
= βinf [i]

def
= si

denote the (i+1)-th state of a finite or infinite path (for the i-s defined). By last(βfin)
def

=
sn we denote the last state of a finite path. For β, β ′ ∈ Pathfin

M ⊎Path inf
M we write β ≤ β ′

in case either β = β ′ or if β is a finite prefix of β ′.

We define the trace of finite paths as trace(βfin) = a0 a1 . . . an−1 and accordingly for
infinite ones. The distribution trace is defined as distrs(βfin) = µ0 µ1 . . . µn−1 and
accordingly for infinite paths. The sets of all finite and infinite traces are defined as
Trace∗M

def

= Act ∗ and TraceωM
def

= Actω. Given γ = a0 a1 . . . ∈ Trace∗M ⊎ TraceωM, we

define γ[i]
def

= ai as the (i + 1)-th action on the trace, and accordingly for distribution
traces.

Consider a subset Act fair ⊆ Act of the actions of M. We consider a path β ∈ Path inf
M as

Act fair-fair if there are infinitely many i ≥ 0 with trace(β)[i] ∈ Act fair. By Path
Act fair
M we

denote the set of all Act fair-fair paths of M.

Example 3.6. An example of a finite path in the PA of Figure 3.1 is

β1
def
= s0 a [s1 7→1] s1 a [s1 7→1] s1 a [s1 7→1] s1,

and an example for an infinite path is

β2
def

= s0 a ([s1 7→1] s1 a)
ω.

With Act fair
def

= {b}, the path β2 is not Act fair-fair, but for instance

β3
def

= s0 a [s1 7→1] s1 a [s1 7→1] s1 a [s0 7→1] s0 b [s0 7→0.25, s1 7→0.25, s2 7→0.5] (s2 b [s2 7→1])ω

is. We have

trace(β1) = a a a, trace(β2) = aω, trace(β3) = a a a bω,

distrs(β1) = [s1 7→1] [s1 7→1] [s1 7→1], distrs(β2) = [s1 7→1]ω,

last(β1) = s1,

β1[0] = s0, β1[1] = β1[2] = s1, β2[15] = s1. △
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Contrary to LTSs, the path sets are not sufficient to describe the properties of PAs which
we consider completely. For LTSs, there was merely a nondeterministic choice along the
paths of a model. For PAs, we have nondeterminism mixed with probabilistic behaviour.
Because of this, we need to define a way to resolve the nondeterminism, thus to obtain
a purely probabilistic behaviour, which is then subject to stochastic analyses.

Definition 3.7. A scheduler for a PA M = (S, s,Act , T ) is a function σ : Pathfin
M →

Distr(Act × Distr(S)). For all β ∈ Pathfin
M we require that if σ(β)((a, µ)) > 0 then

µ ∈ T (last(β), a).

A scheduler σ is called simple if it only maps to Dirac distributions and if for all β, β ′ ∈
Pathfin

M with last(β) = last(β ′) we have σ(β) = σ(β ′). We can interpret it as being of the
form σ : S → (Act ×Distr(S)).

With SchedM we denote the sets of all schedulers of M and with Sched
simple
M we denote

the subset of simple schedulers.

In contrast to extensions presented in the sequel in the context of general continuous dis-
tributions (cf. Definition 4.5), this definition only allows to use finite-support schedulers.
This is done in order to avoid introducing unnecessary measurability issues already at
this point where they can be avoided without losing expressive power.

Using a scheduler, we can define a probability measure on the paths of a PA.

Definition 3.8. We define PrM,σ : Path
fin
M → [0, 1] for a PA M = (S, s,Act , T ) and a

scheduler σ : Pathfin
M → Distr(Act × Distr(S)): for a given finite path β = s0 a0 µ0 s1 a1

µ1 . . . sn ∈ Pathfin
M, we let

PrM,σ(β)
def

= σ(s0)((a0, µ0))µ0(s1)σ(s1)((a1, µ1))µ1(s2) · · ·µn−1(sn).

We define the cylinder

Cyl(β)
def

= {β ′ ∈ Path inf
M | β ≤ β ′}

of β as the set of infinite paths which start with the finite path β. Then, we let

ΣM
def

= σ({Cyl(β) | β ∈ Pathfin
M}),

that is the σ-algebra generated by all cylinders of M. We thus obtain the measurable
space (Path inf

M,ΣM).

There is a unique extension [KSK66] of PrM,σ : Path
fin
M → [0, 1] to PrM,σ : ΣM → [0, 1]

where for all β ∈ Pathfin
M we have

PrM,σ(Cyl(β))
def

= PrM,σ(β).

Using the definition of a fair path and the probability of paths, we can define fair
schedulers.
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Definition 3.9. A scheduler σ ∈ SchedM of a PA M = (S, s,Act , T ) is called Act fair-
fair for Act fair ⊆ Act if

PrM,σ(Path
Act fair
M ) = 1.

By Sched
Act fair
M we denote the set of all Act fair-fair schedulers of M.

We will now define a number of stochastic processes of a PA.

Definition 3.10. Let M = (S, s,Act , T ) be a PA. We define the state process, the
action process and the distribution process as

XM : (Path inf
M × N) → S with XM(β, n)

def
= β[n],

Y M : (Path inf
M × N) → Act with Y M(β, n)

def

= trace(β)[n],

ZM : (Path inf
M × N) → Distr(S) with ZM(β, n)

def

= distrs(β)[n],

for all β ∈ Path inf
M and n ∈ N.

As for LTSs, we want to consider safety properties, that is we want to prove that an
automaton cannot reach certain sets of states. However, in a PA we often find a situation
in which it is neither impossible for unsafe states to be reached, nor can they ever be
reached with certainty. Instead, we have a probability that the set will be reached. Thus,
we are interested in proving that the probability is always bounded by a certain threshold
p. As we might obtain different probabilities from different schedulers, we consider the
probability to reach the set in the worst case, that is the maximal probability. Thus, a
PA can be considered safe if the maximal probability is not higher than p.

Definition 3.11. Consider a PA M = (S, s,Act , T ). Given a set Reach ⊆ S of states
and a scheduler σ ∈ SchedM, we let

valσM,Reach

def

= PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

denote the reachability probability value for Reach under σ. Further, we let

val+M,Reach

def
= sup

σ∈SchedM

PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

denote the maximal reachability probability for Reach.

It is known [BK08, Section 10.6] that valσM,Reach is well-defined, and thus so is val+M,Reach .

We might also have a situation where certain states are desirable and we are given a
probabilistic inevitability problem. In this case, we want to prove that the probability
to reach these states is not below a given threshold p. We use fair schedulers here, for
the same reason as in the nonprobabilistic case (cf. Definition 2.6), namely because of
the possible time convergence in the semantics of (probabilistic) hybrid automata.
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Definition 3.12. Consider a PA M = (S, s,Act , T ), a set Reach ⊆ S of states and a
subset Act fair ⊆ Act of the actions of M. We let

val−,Actfair
M,Reach

def

= inf
σ∈Sched

Actfair
M

PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

denote the minimal Act fair-restricted reachability probability for Reach.

Example 3.13. Consider the PA M of Figure 3.1 and the paths of Example 3.6. We
consider the simple scheduler σ1 : S → (Act ×Distr(S)) where

σ1(s0)
def

= (a, [s1 7→1]), σ1(s1)
def

= (a, [s1 7→1]), σ1(s2)
def

= (a, [s2 7→1]), σ1(s3)
def

= (a, [s2 7→1]),

and let Reach
def

= {s2} and Act fair
def

= {b}. We have (with the interpretation of the
scheduler as a function σ : Pathfin

M → Distr(Act ×Distr(S)))

PrM,σ(β1)

= σ1(s0)((a, [s1 7→1]))[s1 7→1](s1)

σ1(s0 a [s1 7→1] s1)((a, [s1 7→1]))[s1 7→1](s1)

σ1(s0 a [s1 7→1] s1 a [s1 7→1] s1)((a, [s1 7→1]))[s1 7→1](s1)

= 1,

and we have valσ1
M,Reach = 0. We remark that σ1 is not Act fair-fair. Indeed, we have

PrM,σ1(Path
Act fair
M ) = 0. Another simple scheduler σ2 : S → (Act ×Distr(S)) with

σ2(s0)
def

= (b, [s0 7→0.25, s1 7→0.25, s2 7→0.5]), σ2(s1)
def

= (a, [s0 7→1]),

σ2(s2)
def

= (b, [s2 7→1]), σ3(s3)
def

= (b, [s3 7→1])

is fair and we have valσ2
M,Reach = 1. The minimal reachability probability over all Act fair-

fair schedulers is val−,Act fair
M,Reach = 6

7
≈ 0.857. It can be obtained for instance by the simple

scheduler σ3 with

σ3(s0)
def

= (a, [s1 7→1]), σ3(s1)
def

= (b, [s1 7→0.3, s2 7→0.6, s3 7→0.1]),

σ3(s2)
def

= (b, [s2 7→1]), σ3(s3)
def

= (b, [s3 7→1]). △

Now, as for LTSs, we recall the notion of simulation relations [SL95; Seg95], adapted to
reachability properties. A simulation relation requires that every successor distribution
of a state of a simulated PA M is related to a successor distribution of its corresponding
state of a simulating PA Msim using a weight function [JL91, Definition 4.3].

Definition 3.14. Let µ ∈ Distr(S) and µsim ∈ Distr(Ssim) be two distributions. For a
relation R ⊆ S × Ssim, a weight function for (µ, µsim) with respect to R is a function
w : (S × Ssim) → [0, 1] with

1. w(s, ssim) > 0 implies (s, ssim) ∈ R,
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2. µ(s) =
∑

ssim∈Ssim
w(s, ssim) for s ∈ S, and

3. µsim(ssim) =
∑

s∈S w(s, ssim) for ssim ∈ Ssim.

We write µ ⊑R µsim if and only if there exists a weight function for (µ, µsim) with respect
to R.

Definition 3.15. Given two PAs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim),
we say that Msim simulates M, denoted by M � Msim, if and only if there exists a
relation R ⊆ S × Ssim, which we will call simulation relation from now on, where

1. we have (s, ssim) ∈ R,

2. for each (s, ssim) ∈ R, a ∈ Act , and µ ∈ T (s, a), there is a distribution µsim ∈
Distr(Ssim) with µsim ∈ Tsim(ssim, a) and µ ⊑R µsim.

For two sets of states Reach ⊆ S and Reachsim ⊆ Ssim, we call a simulation relation
Reach-Reachsim-compatible if for all (s, ssim) ∈ R, we have s ∈ Reach if and only if
ssim ∈ Reachsim. If there exists such a relation, we write

(M,Reach) � (Msim,Reachsim).

Because one can see LTSs as a special case of PAs, one can also treat the definition of
simulations between LTSs of Definition 2.8 as a special case of the above definition, in
which only trivial weight functions are used.

Corollary 3.16. Let Mlts = (S, s,Act , Tlts) and Mlts,sim = (Ssim, ssim,Act , Tlts,sim) be
two LTSs and let Reach ⊆ S and Reachsim ⊆ Ssim be two sets of states with

(Mlts,Reach) � (Mlts,sim,Reachsim)

with the simulation relation R. Then for the PAs Mpa = (S, s,Act , Tpa) and Mpa,sim =
(Ssim, ssim,Act , Tpa,sim) with

Tpa(s, a)
def

= {[s′ 7→1] | s′ ∈ Tlts(s, a)} and Tpa,sim(s, a)
def

= {[s′ 7→1] | s′ ∈ Tlts,sim(s, a)}
for the corresponding states s and actions a we have

(Mpa,Reach) � (Mpa,sim,Reachsim).

For this, we use the same simulation relation R and weight function w with w(s, ssim)
def
=

1 if (s, ssim) ∈ R and w(·, ·) def

= 0 else.

The corollary follows immediately by checking that the requirements of Definition 3.14
and Definition 3.15 are fulfilled.

As for LTSs, we can use simulation relations to prove the safety of PAs indirectly using
a simulating PA.

Lemma 3.17. Consider two PAs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim)
and sets of states Reach ⊆ S and Reachsim ⊆ Ssim with (M,Reach) � (Msim,Reachsim).
Then for each σ ∈ SchedM there is σsim ∈ SchedMsim

with

valσM,Reach = valσsim
Msim,Reachsim

and thus val+M,Reach ≤ val+Msim,Reachsim
.
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Proof. Consider the PAs

M′ def

= (S, s,Act ⊎ {aReach}, T ′) and M′
sim

def

= (Ssim, ssim,Act ⊎ {aReach}, T ′
sim),

where for all s ∈ S we have

• T ′(s, a)
def
= T (s, a) for a ∈ Act ,

• if s ∈ Reach then T ′(s, aReach) = {[s 7→1]}, and else T ′(s, aReach) = ∅,
and accordingly for T ′

sim.

Thus, these models extend M and Msim by a self-loop action in the Reach states. Given
a scheduler σ for M, we can construct a corresponding scheduler σ′ for M′ with

valσM,Reach = valσ
′

M′,Reach ,
✞

✝

☎

✆3.1

where for β ∈ Pathfin
M′ we let σ′(β)

def

= [(aReach , [last(β) 7→1]) 7→1] if last(β) ∈ Reach and
σ′(β)

def

= σ(β) else, and accordingly for Msim and M′
sim. A similar construction for the

reverse direction is also possible. We have

valσ
′

M′,Reach = PrM′,σ′(∃i ≥ 0. Y M′

= aReach),
✞

✝

☎

✆3.2

and a similar result holds for Msim and M′
sim. We have M′ � M′

sim with the same
relation R as between M and Msim. By [Seg95, Proposition 7.7.1], for all σ′ ∈ SchedM′

there is σ′
sim ∈ SchedM′

sim
for which measures on traces agree. In turn, we have

PrM′,σ′(∃i ≥ 0. Y M′

= aReach) = PrM′
sim,σ′

sim
(∃i ≥ 0. Y M′

sim = aReach).
✞

✝

☎

✆3.3

In total, from Equation 3.1, Equation 3.2 and Equation 3.3 we conclude

valσM,Reach = valσsim
Msim,Reachsim

.

A corresponding result holds for probabilistic inevitability properties.

Lemma 3.18. Consider two PAs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim)
and sets of states Reach ⊆ S and Reachsim ⊆ Ssim with (M,Reach) � (Msim,Reachsim)
and Act fair ⊆ Act . Then for each σ ∈ Sched

Act fair
M there is σsim ∈ Sched

Act fair
Msim

with

valσM,Reach = valσsim
Msim,Reachsim

and thus val−,Actfair
M,Reach ≥ val−,Actfair

Msim,Reachsim
.

Proof. The proof follows along the lines of the one of Lemma 3.17. The only notable
difference is that we are reasoning about fair schedulers. This is no problem however:
for fairness to hold in M′, we must have PrM′,Reach(Path

Act
′
fair

M′ ) = 1 with Act ′fair
def

=
Act fair ⊎ {aReach}. We used a scheduler σ′

sim for which the measures on traces agree

[Seg95, Proposition 7.7.1], which then implies PrM′
sim,Reachsim

(Path
Act

′
fair

M′
sim

) = 1.
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Example 3.19. Consider the PAs M and Msim depicted in Figure 3.1 and Figure 3.2.
Let Reach

def

= {s2} and Reachsim
def

= {ssim,1}. We have (M,Reach) � (Msim,Reachsim),
as seen from the Reach-Reachsim-compatible simulation relation

R
def

= {(s0, ssim,0), (s1, ssim,0), (s2, ssim,1), (s3, ssim,2)}.

With Act fair
def

= {b} we have

val+Msim,Reachsim
= 1 and val−,Act fair

Msim,Reachsim
=

6

7
≈ 0.857.

From this, we can conclude that

val+M,Reach ≤ 1 and val−,Act fair
M,Reach ≥ 6

7
≈ 0.857,

which is consistent with what we observed in Example 3.13. △

3.2 Probabilistic Hybrid Automata

We can now define probabilistic hybrid automata [Spr01].

Definition 3.20. A probabilistic hybrid automaton (PHA) is a tuple

H = (M, k,m, 〈Postm〉m∈M ,Cmds),

where

• M is a finite set of modes,

• k ∈ N+ is the dimension of the automaton,

• m ∈ M is the initial mode,

• Postm is a k-dimensional post operator (cf. Definition 2.12) for each mode m,

• Cmds is a finite set of probabilistic guarded commands of the form

g → p1 : u1 + . . .+ pn : un,

where

– g ⊆ M × Rk is a guard,

– we have pi ≥ 0 for 1 ≤ i ≤ n,

– we have
∑n

i=1 pi = 1,

– ui : (M × Rk) → 2M×Rk

is an update function for 1 ≤ i ≤ n,

– if s ∈ g then ui(s) 6= ∅ for 1 ≤ i ≤ n, and

• for s = (m, v) with Postm(v , t) = {v} for all t ∈ R≥0, there is a command with
guard g with s ∈ g .
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Init

Heat

Ṫ=2
∧T≤10
∧t≤3

Cool

Ṫ=− T
∧T≥5

Check

Ṫ= − T/2
∧t≤1

Error

cHCo=(T≥9→T ′=T∧t′=0)

cCoH=(T≤6→T ′=T∧t′=0)

cIH=(true→9≤T ′≤10∧t′=0)

cHCh=(t≥2→T ′=T∧t′=0)

cCh=(t≥0.5→

0.95:T ′=T∧t′=0,

0.05:T ′=T∧t′=0)
cE

Figure 3.3: PHA modelling a thermostat.

The main difference to the HAs of Definition 2.14 is thus in the definition of the com-
mands: instead of allowing a nondeterministic choice over possible successor states in
case its guard is fulfilled, a probabilistic guarded command allows a nondeterministic
choice over a number of finite probability distributions. Classical HAs can be seen as
special cases of PHAs: we can consider each nonprobabilistic guarded command g → u

as a probabilistic guarded command g → 1 : u.

Example 3.21. In Figure 3.3 we give a PHA which is a probabilistic variant of the HA
of Figure 2.4. The main difference to the former automaton is, that in Check we no
longer have a nondeterministic choice of whether to move to Error resulting from two
commands cChH and cChE. Instead, when the command cCh is executed, we move to Heat
with a probability of 0.95 where the execution is continued, or move to the Error mode
with a probability of 0.05, that is we have

cCh = (g → 0.95 : uChH + 0.05 : uChE),

where g , uChH and uChE are as in Example 2.15. The other commands are as before,
that is they only involve Dirac distributions. △

The semantics of a PHA in terms of the PA model we defined beforehand is as follows.

Definition 3.22. The semantics of a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) is a PA

JHK
def

= (S, s,Act , T ),

where

• S
def

= M × Rk,

• s
def

= (m, 0, . . . , 0),

• Act
def

= R ⊎ Cmds,

• for s = (m, v) ∈ S we have

– for c = (g → p1 : u1 + . . . + pn : un) ∈ Cmds we have T (s, c)
def

= ∅ if s /∈ g

and else:

T (s, c)
def

= {[s′1 7→p1, . . . , s
′
n 7→pn] | s′1 ∈ u1(s), . . . , s

′
n ∈ un(s)},
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– for t ∈ R≥0 we have

T (s, t)
def

= {[(m, v ′) 7→1] | v ′ ∈ Postm(v , t)}.

Given a time restriction T = 〈tm〉m∈M , the time-restricted semantics is the PA JH,TK
def

=
(S, s,Act , T ) where S, s, Act and T (s, c) for each c ∈ Cmds are as in the semantics
above. We restrict for s = (m, v) ∈ S the timed transitions, so that for t ∈ R≥0 and

tT
def

= min{t, tm(v)} we have T (s, t)
def

= {[(m, v ′) 7→1] | v ′ ∈ Postm(v , tT)}.

The semantics is similar to the one of the nonprobabilistic case in Definition 2.17. The
difference is in the probabilistic guarded commands, where we can have distributions
other than Dirac. In the definition of T (s, c), we take advantage of the feature that
[s′1 7→p1, . . . , s

′
n 7→pn] will add up probabilities pi and pj if s′i = s′j ∈ ui(s)∩uj(s) for i 6= j.

Example 3.23. Consider the PHA H of Figure 3.3. Then we have

JHK = (S, s,Act , T ),

where S, s and Act are as in Example 2.18. For T : (S×Act) → 2Distr(S), we exemplify
the behaviour on the states of the mode Check. For s = (Check, t, T, c) ∈ {Check} × R3

we have

T (s, cIH) = T (s, cHCo) = T (s, cHCh) = T (s, cCoH) = T (s, cE) = ∅,

T (s, cCh) =

{

∅ if t < 0.5,

{[(Heat, 0, T, c) 7→0.95, (Error, 0, T, c) 7→0.05]} else,

and with t ∈ R≥0 we have

T (s, t) =

{

[(Check, t+ t
′, T ′, c+ t

′) 7→1] | T ′ = T exp

(−t
′

2

)}

,

where
t
′ def

= max({t′ | t′ + t ≤ 1 ∧ x+ t
′ ≤ T ∧ t

′ ≤ t} ∪ {0}).
For the time-restricted semantics JH,TK with T = 〈tm〉m∈M , the timed transitions are
as before, except that we have

t
′ def
= max({t′ | t′ + t ≤ 1 ∧ c+ t

′ ≤ T ∧ t
′ ≤ t ∧ t

′ ≤ tCheck(t, T, c)} ∪ {0}). △

We can now define minimal and maximal reachability probabilities of PHA.

Definition 3.24. Let H = (M, k,m, 〈Postm〉m∈M ,Cmds) be a PHA with a mode mReach .
We define

val+H,mReach

def

= val+JHK,{mReach}×Rk and val−H,mReach

def

= val−,Cmds

JHK,{mReach }×Rk .
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As for nonprobabilistic HAs, for the properties of interest it does not matter whether
or not we use the time restriction. To prove this, we firstly define time-restricted paths
and schedulers.

Definition 3.25. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with a time re-
striction T = 〈tm〉m∈M . Let β ∈ Pathfin

JHK be a finite path of the semantics without time

restriction. We define the tuple T
fin(β) of time-restricted paths inductively: for a state

s ∈ S we let
T

fin(s)
def

= 〈s〉.
For c ∈ Cmds and µ ∈ Distr(S), we have

T
fin(β c µ s)

def

= 〈last(Tfin(β)) c µ s 〉,

where for a tuple C by last(C) we denote the last element of C. For t ∈ R≥0, we have

T
fin(β t s)

def

= 〈last(Tfin(β)) tµ0 s1,

last(Tfin(β)) tµ0 s1 tµ1 s2,

. . .

last(Tfin(β)) tµ0 s1 tµ1 s2 . . . t′ µ′ s〉,

where

• s0 = (m, v0) = last(β ′) with β ′ = last(Tfin(β)),

• sn = (m, vn) = s,

• t
′ = t−∑n−1

i=0 tm(vi), and

• for all i with 0 ≤ i < n we have si+1 ∈ Postm(vi, tm(vi)) and µi = [si+1 7→1].

For an infinite path β ∈ Path inf
JHK, we define T

inf(β) so that for n ∈ N we have

(Tinf(β))[n]
def

= (last(Tfin(β ′)))[n],

where β ′ ∈ Pathfin
JHK is a finite path with β ′ ≤ β and |last(Tfin(β ′))| ≥ n.

The time-restricted scheduler T(σ) ∈ Sched JH,TK of the scheduler σ ∈ Sched JHK is defined
as follows. For β ′ = last(Tfin(β)) we have

T(σ)(β ′)
def

= σ(β),

whereas for β ′
tµ s ∈ T

fin(β) with β ′
tµ s 6= last(Tfin(β)) we let

T(σ)(β ′)((t, [s 7→1]))
def
= 1.

In the above, we assume we always have

Pr JHK,σ(β
′) = 0,

that is the intermediate paths were originally chosen with probability zero. If this is not
the case, we can change T

fin to choose different (shorter) paths, in order to fulfil this
requirement.
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In the above definition, T
fin(β) divides a general finite path into a sequence of finite

paths which are extensions of each other, implying that each of them only chooses time
durations respecting the time restriction. If β is an infinite path, Tinf(β) is an infinite
path which respects the time restrictions. The time-restricted scheduler T(σ) chooses
the last path of Tfin(β) with the same probability as σ did for β.

Using this construction, we can show that the following holds.

Lemma 3.26. Given a PHA H with a mode mReach , Reach
def

= {mReach} × Rk and
commands Cmds, and a time restriction T = 〈tm〉m∈M we have

val+JHK,Reach = val+JH,TK,Reach and val−,Cmds

JHK,Reach = val−,Cmds

JH,TK,Reach .

Proof. We prove val+JHK,Reach = val+JH,TK,Reach . Firstly, we show val+JHK,Reach ≥ val+JH,TK,Reach .
Consider an arbitrary scheduler σ of JH,TK. As in the proof for Lemma 2.21, we can
assume that for each state the scheduler chooses only time durations up to the time
restriction; for other schedulers, we can construct an equivalent scheduler by choosing
the maximal time duration for each state no larger than the time restriction. Each
such scheduler is also one of JHK, and it induces the same stochastic behaviour in both
models.

We now show val+JHK,Reach ≤ val+JH,TK,Reach . Consider an arbitrary scheduler σ ∈ Sched JHK

of JHK and let σT

def

= T(σ). For all A ∈ ΣJHK we have

Pr JHK,σ(A) = Pr JH,TK,σT
(Tinf(A)),

✞

✝

☎

✆3.4

and for Path inf
JH,TK

def

= T
inf(Path inf

JHK) ⊆ Path inf
JH,TK we have

Pr JH,TK,σT
(Path inf

JH,TK) = 1.
✞

✝

☎

✆3.5

Because of this, we have

valσJHK,Reach

= Pr JHK,σ(∃i ≥ 0. XJHK ∈ Reach)
Eqn. 3.4

= Pr JH,TK,σT
(Tinf(∃i ≥ 0. XJHK ∈ Reach))

Eqn. 3.5

= Pr JH,TK,σT
(∃i ≥ 0. XJH,TK ∈ Reach)

= valσT

JH,TK,Reach .

The proof for val−,Cmds

JHK,Reach = val−,Cmds

JH,TK,Reach is similar, as the transformation used maintains
that the set of fair paths has a probability measure of 1.

Example 3.27. Consider the PHA H of Figure 3.3 with the semantics in Example 3.23,
consider the unsafe mode Error and let Reach

def

= {Error} × R3. The probability with
which H can reach Error depends on the time bound T. If T is small enough it is
completely safe. Consider however T

def

= 5. Then, the path

(Init, 0, 0, 0) cIH [(Heat, 0, 9, 0) 7→1] (Heat, 0, 9, 0) 0.5 [(Heat, 0.5, 10, 0.5) 7→1]
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(Heat, 0.5, 10, 0.5) cHCo [(Cool, 0, 10, 0.5) 7→1] (Cool, 0, 10, 0.5) 0.69

[(Cool, 0.69, 5.016, 1.19) 7→1] (Cool, 0.69, 5.016, 1.19) cCoH [(Heat, 0, 5.016, 1.19) 7→1]

(Heat, 0, 5.016, 1.19) 2 [(Heat, 2, 9.016, 3.19) 7→1] (Heat, 2, 9.016, 3.19) cHCh

[(Check, 0, 9.016, 3.19) 7→1] (Check, 0, 9.016, 3.19) 0.5 [(Check, 0.5, 7.016, 3.69) 7→1]

(Check, 0.5, 7.016, 3.69) cCh [(Heat, 0, 7.016, 3.69) 7→0.95, (Error, 0, 7.016, 3.69) 7→0.05]

(Error, 0, 7.016, 3.69)

(where the numbers are only approximate) leads from the initial state to the unsafe mode.
This shows that the maximal reachability probability must be at least 0.05. Then, in the
case that in the last part of the path the system moves to (Heat, 0, 7.016, 3.69), which
happens with a probability of 0.95, there is not enough time left for a second try to reach
Error. Indeed, the maximal probability to reach Error is 0.05.

Similarly to the nonprobabilistic case, the minimal probability over Cmds-restricted sched-
ulers to reach Error is 0, as we cannot force a move to Check. However, if we started
in the mode Check, we would always end up in Error with nonzero probability with each
Cmds-fair path, because cCh is the only element of Cmds left in Check. But if we had not
restricted to Cmds-fair paths, the automaton would still not be guaranteed to reach Error,
because paths in which we repeatedly choose to let some time pass would be allowed. △

3.3 Abstractions

In this section, we extend the definition of abstractions to the probabilistic hybrid case.
We will also show how we can compute a valid abstraction for a given PHA by using
methods from the nonprobabilistic setting.

We will need to transfer probability distributions over the states of the PHA semantics
to the states of abstractions.

Definition 3.28. Consider an abstract state space A = {z1, . . . , zn} of state space
S = M × Rk and a distribution [s1 7→p1, . . . , sn 7→pn] ∈ Distr(S). The set of lifted
distributions is given as

Lift
A
(µ)

def

= {[z1 7→p1, . . . , zn 7→pn] | z1, . . . , zn ∈ A ∧ s1 ∈ z1, . . . , sn ∈ zn}.

If A is a partitioning of the state space, the set LiftA is a singleton, but if A contains
overlapping states, LiftA(µ) can indeed contain multiple elements.

Example 3.29. Consider a probability distribution µ : ({m} × R) → [0, 1] for which

µ((m, 0.3))
def

= 0.12, µ((m, 0.7))
def

= 0.8 and µ((m, π))
def

= 0.08 and µ(·) def

= 0 else.

Consider the partitioning A
def
= {A,B} with A = (m, (−∞, 0.8]) and B = (m, (0.8,∞)).

Then we have

LiftA(µ) = {[A7→0.12, A7→0.8, B 7→0.08]} = {[A7→0.92, B 7→0.08]}.
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However, with the abstract state space A
′ def
= {A′, B′, C ′} with A′ def

= (m, (−∞, 0.8)),

B′ def

= (m, (0.5, 2]) and C ′ def

= (m, (2,∞)) (which is not a partitioning because A′ and B′

overlap) we have

Lift
A′(µ) = {[A′ 7→0.92, C ′ 7→0.08], [A′ 7→0.8, B′ 7→0.12, C ′ 7→0.08]}. △

An abstraction of a PHA is defined as follows.

Definition 3.30. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds), an abstract state
space A = {z1, . . . , zn} of corresponding dimension and modes as well as a time restric-
tion T = 〈tm〉m∈M . We say that

M = (A, z,Cmds ⊎ {τ}, T )

is an abstraction of H using A and T if

• (m, 0, . . . , 0) ∈ z,

• for all z ∈ A, s ∈ z, c = (g → p1 : u1 + . . . + pn : un) ∈ Cmds, if s ∈ z ∩ g then
for all

µ ∈ {[s′1 7→p1, . . . , s
′
n 7→pn] | s′1 ∈ u1(s), . . . , s

′
n ∈ un(s)}

there is µA ∈ LiftA(µ) with µA ∈ T (z, c),

• for all z ∈ A, s = (m, v) ∈ z, t ∈ R≥0 with t ≤ tm(v) and all s′ = (m, v ′) ∈
Postm(s, t), if s′ /∈ z then we require that there is z

′ ∈ A with s′ ∈ z
′ and [z′ 7→1] ∈

T (z, τ).

By Abs(H,A,T) we denote the set of all such abstractions.

We can then show that abstractions preserve safety properties in a similar way as in the
nonprobabilistic case.

Theorem 3.31. Consider a PHA H, an abstraction M ∈ Abs(H,A,T) and an unsafe

mode mReach . Let Reach
def

= {(m, ζ) ∈ A | m = mReach}. Then

val+H,mReach
≤ val+M,Reach .

Proof. From Lemma 3.26 we know that we only need to prove that the maximal reach-
ability probability in the time-restricted semantics JH,TK is lower than val+M,Reach .

For M = (A, z,Cmds ⊎ {τ}, T ) we define

Mloop
def

= (A, z,Cmds ⊎ R≥0, Tloop),

where for all z ∈ A we have

• Tloop(z, c)
def

= T (z, c) for c ∈ Cmds,

• for all t ∈ R≥0 we have Tloop(z, t)
def

= T (z, τ) ∪ {[z 7→1]}.
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For a maximising scheduler σloop of Mloop, we can assume that for all z ∈ A and all
paths β with last(β) = z we have σloop(β)((t, [z 7→1])) = 0 for all t ∈ R≥0. This is the
case, because the choice of every other transition can at least obtain an equal probability
to reach Reach, as choosing a self loop cannot contribute to eventually reaching this set.
Also, we can assume that for all paths βloop,1 and βloop,2 which differ only in actions
t ∈ R≥0 along their traces, we have σloop(βloop,1) = σloop(βloop,2). This holds, because by
the definition of Mloop the exact choices of t do not influence the reachability probability.
Let β be obtained by replacing all t ∈ R≥0 in βloop,1 by τ . We can define a scheduler
σ ∈ SchedM with σ(β)((c, µ))

def

= σloop(βloop,1)((c, µ)) for c ∈ Cmds and σ(β)((τ, µ))
def

=
∑

t∈R≥0
σloop(ββ,1)((t, µ)) which induces the same reachability probability in M.

Starting with a scheduler σ of M, we can construct a scheduler σloop which induces the
same reachability probability in a similar way: consider β ∈ Pathfin

M and let βloop be
derived from β by replacing actions τ by 0 (or any other t ∈ R≥0). We can then assign
σloop(βloop)

def

= σ(β). The choice of σloop(β
′
loop) for other β ′

loop not constructed from paths
β of M is arbitrary, because in any case we will have PrMloop,σloop

(β ′
loop) = 0.

This shows that
val+M,Reach = val+Mloop,Reach

.
✞

✝

☎

✆3.6

Also, we can show that (JH,TK, {mReach} × Rk) � (Mloop,Reach) in the notion of
Definition 3.15. By Lemma 3.17, this then shows that

val+JH,TK,Reach ≤ val+Mloop,Reach
.

✞

✝

☎

✆3.7

To do so, we define the simulation relation

R
def
= {(s, z) | z ∈ A ∧ s ∈ z}.

We have to prove the requirements on a simulation according to Definition 3.15 and that
we also have ({mReach}×Rk)-Reach-compatible. Requirement 1 is fulfilled trivially, and
the compatibility is easy to see. For Requirement 2, we consider an arbitrary (s, z) ∈ R
and a ∈ Act . For each µ ∈ TJH,TK(s, a), where TJH,TK is the transition matrix of JH,TK,
we have to find µA ∈ Tloop(z, a) with µ ⊑R µA.

In case a = t, we have µ = [s′ 7→1] and µA = [z′ 7→1] for some s′ ∈ S and z
′ ∈ A with

s′ ∈ z
′. Thus, (s′, z′) ∈ R and we can use a trivial weight function between µ and µA.

Consider the case a = c ∈ Cmds . For each µ = [s1 7→p1, . . . , sn 7→pn] ∈ T (s, a) there is
µA = [z1 7→p1, . . . zn 7→pn] with si ∈ zi for all i with 1 ≤ i ≤ n. We define the weight
function w : (S ×A) → [0, 1] where we have w(si, zi)

def

= µ(si) for all i ∈ {1, . . . , n} and
else w(·, ·) def

= 0. We have to show that w is indeed a weight function by proving the three
requirements of Definition 3.14. Requirement 1 is fulfilled trivially by the definition of
R. For Requirement 2, we have

∑

z∈A

w(si, z) = w(si, zi) = µ(si).
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For Requirement 3, we have
∑

S∈S

w(s, zi) =
∑

zj=zi,

sj∈zj

w(sj, zi) =
∑

zj=zi,

sj∈zj

µ(sj) = µA(zi).

Thus, all requirements of a compatible simulation relation are fulfilled.

In total, we have

val+M,Reach

Eqn. 3.6

= val+Mloop,Reach

Eqn. 3.7

≥ val+JH,TK,{mReach}×Rk = val+H,mReach
.

Thus, we can prove that the reachability probability in a given PHA does not exceed p by
proving that the reachability probability does not exceed this bound in the abstraction.
We have a similar result also for probabilistic inevitability.

Theorem 3.32. Let H be a PHA, let mReach be a desirable mode, let M ∈ Abs(H,A,T)

be an abstraction of H and let Reach
def

= {(m, ζ) ∈ A | m = mReach}. Then

val−H,mReach
≥ val−,Cmds

M,Reach .

Proof. The proof is similar to the one of Theorem 3.31. The major difference is that we
can no longer argue that the scheduler σloop will never choose the timed self loops with
which we extended Mloop. Indeed, as σloop is now a minimising scheduler, taking these
loops is advantageous to obtain a low reachability probability. The reason that minimal
reachability probabilities in Mloop and M are still the same is the fairness assumption.
For fairness to hold, we must have PrMloop,σloop

(PathAct fair
Mloop

) = 1. This also implies that

for each subset A ⊆ Path inf
Mloop

\ PathAct fair
Mloop

we have PrMloop,σloop
(A) = 0. In particular,

this holds for

A
def

= {βloop ∈ Path inf
Mloop

|∃z ∈ A. ∃i ≥ 0. ∀j ≥ i. βloop[j] = z ∧ trace(βloop)[j] ∈ R≥0}.

This implies that for all infinite sequences 〈βloop,i〉i∈N of finite paths of Mloop with

• |βloop,i| = i,

• βloop,i ≤ βloop,i+1, and

• PrMloop,σloop
(βloop,i) > 0

we have infinitely many j ∈ N with
∑

t∈R≥0

σloop(β)(t, [last(βloop,j) 7→1]) < 1.
✞

✝

☎

✆3.8

Otherwise, we would have a single nonfair path with a positive probability, which would
then imply that the probability of the above set A is positive.

For β = z0 a0 µ0 . . . zn−1 an−1 µn−1 zn ∈ Pathfin
M we define

loop(β)
def

= z0 (R≥0 [z0 7→1] z0)
∗ a0 µ0 . . . zn−1 (R≥0 [zn−1 7→1] zn−1)

∗ an−1 µn−1 zn,
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which means that loop(β) ⊆ Pathfin
Mloop

is the set of all variants of β with timed self loops
inserted.

We define σ ∈ SchedM where for (a, µ) ∈ Act×Distr(A), if (a, µ) ∈ R≥0×{[last(β) 7→1]}
then σ(β)(a, µ)

def

= 0, and otherwise

σ(β)(a, µ)
def

=
1

PrMloop,σloop
(
⋃

βloop∈loops(β)
Cyl(βloop))

∑

βloop∈loops(β)

PrMloop,σloop
(βloop)(a, µ).

This way, σ takes decisions for β according to those of loop(β) weighted with their
probability. Because of Equation 3.8, we have

∑

a∈Act,
µ∈Distr(A)

σ(β)(a, µ) = 1,

which implies that σ is well-defined. Without the validity of Equation 3.8, the above
sum could be smaller than 1.

For β ∈ Pathfin
M we then have

PrM,σ(Cyl(β)) = PrMloop,σloop





⋃

βloop∈loop(β)

Cyl(βloop)



 ,
✞

✝

☎

✆3.9

we have for β ∈ Pathfin
M that

PrM,σ





⋃

β∈Pathfin
M

⋃

βloop∈loop(β)

Cyl(βloop)



 = 1,
✞

✝

☎

✆3.10

and for β1, β2 ∈ Pathfin
M with β1 6= β2 we have

loop(β1) ∩ loop(β2) = ∅.
✞

✝

☎

✆3.11

From this, we can conclude that

valσM,Reach

= PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

Eqn. 3.9

= PrM,σ











β ′ ∈
⋃

β∈Pathfin
M

Cyl(β) | ∃i ≥ 0. XM
i (β ′) ∈ Reach











Eqn. 3.10

= PrMloop,σloop











β ′ ∈
⋃

β∈Pathfin
M

⋃

βloop∈loop(β)

Cyl(βloop) | ∃i ≥ 0. XM
i (β ′) ∈ Reach











Eqn. 3.11

= PrMloop,σloop
(∃i ≥ 0. X

Mloop

i ∈ Reach)

= val
σloop

Mloop,Reach loop
,

which means that the reachability probabilities under these two schedulers agree.
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z0 Init

z4 Cool

t≥0, c≥0,
t≤c, T≤10

z1 Heat

t≥0, c≥0,
t=x, T≤10

z5 Heat

t≥0, c≥2.5,
t≤c−2.5, T≤10

z2 Check

t≥0, c≥2,
t≤c−2, T≤10

z6 Check

t≥0, c≥4.5,
t≤c−4.5, T≤10

z3 Error

c≤5

z7 Heat

t≥0, c≥0,
t≤c−5, T≤10

z3 Error

c≤5

cIH cHCh

cCh
0.95

0.05

cHCh

cCh

0.05

0.95

cHCo

cCoH

cE

Figure 3.4: Abstraction of the thermostat HA.

Example 3.33. In Figure 3.4 we give the relevant parts of an abstraction M of the PHA
H with T = 5 of Figure 3.3. As before, we let Reach

def
= {z3} where z3 = Error×Rk. A

short calculation shows that

val+M,Reach = 0.05 + 0.95 · 0.05 = 0.0975.

Thus, if we are given a threshold of p
def
= 0.0975 or higher, this shows that H is sufficiently

safe. Indeed, as we have seen in Example 3.27, the actual reachability probability of H
is only 0.05, so the probability in the abstraction is strictly higher. △

3.3.1 Computing Abstractions

We have already defined abstractions of a given PHA, and have already shown that the
safety of such an abstraction induces the safety of the semantics of the PHA. However,
it is thus far not clear how we can obtain a valid abstraction. For the abstractions of
nonprobabilistic HAs, we did not have this problem, because our definition matches the
abstractions returned by usual solvers, like HSolver or PHAVer.

To compute conservative bounds on reachability probabilities in the PHAs we considered,
we aim at reusing such tools to obtain abstractions of PHAs. For this, we firstly define
the induced HA of a given PHA, which is a purely nondeterministic overapproximation
of the PHA.

Definition 3.34. The induced HA of a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) is
defined as

ind(H)
def

= (M, k,m, 〈Postm〉m∈M ,Cmds ind).

Each c = (g → p1 : u1 + . . .+ pn : un) ∈ Cmds induces a set of nonprobabilistic guarded

commands ind(c)
def

= {(g → u1), . . . , (g → un)}. Then, Cmds ind
def

=
⋃

c∈Cmds
ind(c).

The induced HA can be obtained from the description of a PHA by a simple syntactical
transformation. It is an HA as defined in Chapter 2, which can be subjected to analysis
by the usual solvers as demonstrated there. From the abstractions we obtain this way,
we will construct an abstraction of the original PHA:
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Definition 3.35. Let M = (A, z,Cmds ind ⊎ {τ}, T ) ∈ Abs(ind(H),A,T) be an ab-
straction of the induced HA ind(H) of a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) (cf.
Definition 2.24). We define the induced abstraction of H as

abs(H,M) = (A, z,Cmds ⊎ {τ}, T ),

where

• for all

– c = (g → p1 : u1+ . . .+pn : un) ∈ Cmds with ind(c) = {g → u1, . . . , g → un},
– and z ∈ A, z1, . . . , zn ∈ A with z1 ∈ T (z, (g → u1)), . . . , zn ∈ T (z, (g → un))

we have [z1 7→p1, . . . , zn 7→pn] ∈ T (z, c),

• for all z, z′ ∈ A with z
′ ∈ T (z, τ) we have [z′ 7→1] ∈ T (z, τ).

The induced abstraction uses the LTS abstraction M of the induced HA ind(H) to
obtain a PA abstraction ind(H,M) for the original PHA H. It does so by using the
labels of the LTS M to build a superset of the transitions that must be present in
ind(H,M) to be a valid abstraction of H for the given abstract state space A.

Example 3.36. The HA of Figure 2.4 is the induced nonprobabilistic HA ind(H) of the
PHA H of Figure 3.3 and we have

ind(cCh) = {cChH, cChE}.

For all other commands, we can identify the induced command with the command itself,
if we interpret the sets of successor states of updates u(s) of the nonprobabilistic guarded
commands as sets {[s′ 7→1] | s′ ∈ u(s)} of Dirac distributions. △

The construction of abs(H,M) is applicable in practice, because the LTS which is the
abstraction of the induced HA is finite.

Although we called the model obtained using Definition 3.35 an abstraction of a PHA,
we yet have to show that it is indeed an abstraction in the notion of Definition 3.30.

Lemma 3.37. For a PHA H, abstract state space A, time restriction T and abstraction
M ∈ Abs(ind(H),A,T), we have abs(H,M) ∈ Abs(H,A,T).

Proof. Assume M = (A, z,Cmds ind⊎{τ}, Tind) and abs(H,M) = (A, z,Cmds⊎{τ}, T ).
It is immediately clear that the requirements on the initial state are fulfilled: this re-
quirement is the same as in a nonprobabilistic abstraction which we use to obtain our
probabilistic abstraction. Also, the requirements on the timed transitions are easy to
check. In the PHAs abstractions, we basically have the same timed transitions as in
HAs, just that in the probabilistic case they are wrapped in Dirac distributions.

Thus, we only consider the distributions resulting from probabilistic guarded commands.
Let c = (g → p1 : u1 + . . . + pn : un) ∈ Cmds be an arbitrary probabilistic guarded
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command of H, let z ∈ A be an abstract state, and consider s ∈ z∩ g . We thus have to
show that for each

µ ∈ {[s′1 7→p1, . . . , s
′
n 7→pn] | s′1 ∈ u1(s), . . . , s

′
n ∈ un(s)}

there is µA ∈ Lift
A
(µ) with µA ∈ T (z, c). By definition of the induced HA, for

1 ≤ i ≤ n we have zi ∈ Tind(z, (g → ui)) with si ∈ zi (where the (g → ui) are the
induced guarded commands of c). Thus, by construction of Abs(H,A,T) we have
µA

def

= [z1 7→p1, . . . , zn 7→pn] ∈ T (z, c). By the definition of lifted distributions (cf.
Definition 3.28), we also have µA ∈ LiftA(µ).

Thus, we have a practical means to obtain a model which can bound probabilities of
properties in the semantics of our model.

Corollary 3.38. Consider a PHA H, an abstraction Mind of the induced HA ind(H),

M def

= abs(H,Mind) and a mode mReach of H. Let Reach be defined as in Theorem 3.31
and let Cmds be the set of probabilistic guarded commands of H. Then

val+H,mReach
≤ val+M,Reach and val−H,mReach

≥ val−,Cmds

M,Reach .

This corollary follows directly from Lemma 3.37, Theorem 3.31 and Theorem 3.32.

Example 3.39. Let H denote the PHA of Figure 3.3. If we let M denote the LTS of
Figure 2.5, we have M ∈ Abs(H,A,T) with corresponding A and T. If we denote by
M′ the PA of Figure 3.4, then we have M′ = abs(H,M). △

3.4 Algorithmic Consideration

We have discussed how we can obtain an abstraction which safely overapproximates the
behaviour of the semantics of our PHAs. While in the nonprobabilistic case properties
at this point can be decided on the abstract models by simple graph-based methods, the
probabilistic case requires a bit more of discussion.

There are several approaches to compute minimal and maximal reachability values in
finite PAs, for instance linear programming, value iteration, and policy iteration [Put94;
BK08]. In the following, we will describe a policy iteration algorithm in detail, because it
fits well with the extensions of the basic method we discuss in this chapter. For instance,
in Chapter 6 we are going to extend this method to parametric models.

The method discussed here does not take fairness into account. Yet, the values obtained
without this restriction are still lower and upper bounds for the values in the model
semantics. This is the case because fairness restricts the set of all possible schedulers
among which to find the minimising or maximising from. It might happen that the
values obtained this way are too small to be of use. The problem does not occur for
safety properties, as fairness is not needed here, while for inevitability, from the way we
defined the abstraction, we have avoided having timed self loops in the abstract states,
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which would otherwise have led to a minimal probability bound of 0. The problem of too
coarse bounds will thus disappear in many cases, because we have removed the genuine
source of bad bounds. In case that these bounds are still an issue, it is possible to
adapt an existing algorithm which does take fairness into account [BK98] to the specific
definition of fairness we use here.

To describe the policy iteration algorithm, we firstly have to define simpler models
which, other than PAs, do not contain nondeterminism but only probabilistic behaviour.
Because of this, no scheduler will be needed to specify reachability probabilities.

Definition 3.40. A Markov chain (MC) is a tuple

M = (S, s, T ),

where

• S is a set of states,

• s ∈ S is the initial state, and the

• transition matrix T : S → Distr(S) assigns to each state a probability distribution
over successor states.

The adjacency graph of M is a graph (S, s, Tadj) where we have (s, s′) ∈ Tadj if and only
if T (s)(s′) 6= 0.

Reachability probabilities in MCs could be specified using measures on sets of paths, as
for PAs. For simplicity, we define them directly as solutions of equation systems.

Definition 3.41. Given an MC M = (S, s, T ) and a set of states Reach ⊆ S, we define

valsM,Reach : S → [0, 1]

as the unique solution of the equation system where for all s ∈ S we have

v(s) =











1 if s ∈ Reach,

0 if s ∈ Reach,
∑

s′∈S T (s)(s′)v(s′) else,

where by Reach we denote the set of states which cannot reach Reach in the adjacency
graph. We also let valM,Reach

def

= valsM,Reach(s).

In the definition above, valsM,Reach(s) is the value which would be obtained if the initial
state were s instead of s. There exists a number of possible methods to solve this equation
system. Direct methods, like Gaussian elimination, obtain a solution by a transformation
of the matrix, and are thus in principle able to find an exact solution. Iterative methods
try to obtain an approximate solution by repeated vector-matrix multiplications. In
cases where the transition matrix is represented by a sparse matrix, iterative methods
often perform better, because direct methods usually destroy the sparsity of the matrix.
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input : finite MC M = (S, s, T ), state set Reach ⊆ S, precision ε.
output: valsM,Reach .

1 forall the s ∈ S do v′(s) :=

{

1 if s ∈ Reach,

0 else

2 repeat

3 v := v′

4 forall the s ∈ S \ Reach do

5 v′(s) :=
∑

s′∈S T (s)(s′)v(s′)

6 until maxs∈S |v(s)− v′(s)| < ε
7 return v

Algorithm 3.1: reachIter(M,Reach, ε).

One variant of an iterative solution method, the Jacobi method, is given in Algorithm 3.1.
Firstly, in Line 1 it initialises a vector v to be 1 for states of Reach and 0 else. Then, in
Line 5 it uses the definition of the equation system to assign weighted probability values
to a primed version of v, swaps v and v′, and repeats. This way, v approaches the exact
solution of the equation system from below. The iteration is stopped once in Line 6 the
two vectors are similar enough, so that no larger changes are expected.

We can combine a PA and a simple scheduler to obtain an MC.

Definition 3.42. Consider a PA M = (S, s,Act , T ) and a simple scheduler σ : S →
(Act × Distr(S)). The MC induced by a simple scheduler σ of M is defined as Mσ

def

=

(S, s, Tσ) where for s ∈ S we have Tσ(s)
def

= µ if σ(s) = (a, µ).

This MC then suffices to compute the reachability probabilities we obtain from the PA
and scheduler.

Lemma 3.43. Given a PA M = (S, s,Act , T ), a simple scheduler σ, and Reach ⊆ S,
we have

valsσM,Reach = valsMσ ,Reach .

Here, for s ∈ S we have valsσM,Reach(s) the reachability probability if s were the initial
state of M rather than s.

It is known [BK08] that for a finite PA there is a simple scheduler which achieves the
minimal or maximal reachability value. In principle, we could now just try out all simple
schedulers, as there are only finitely many. However, as there are exponentially many,
this would be too costly. Instead, we apply a dynamic programming algorithm, where
we try to locally optimise scheduler decisions, based on the following lemma.

Lemma 3.44. Let M = (S, s,Act , T ) be a PA, Reach ⊆ S, consider a simple scheduler
σ of M and let

Reach
def

= {s ∈ S | vals−M,Reach(s) = 0}.
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Here, for s ∈ S we denote by vals−M,Reach(s) the minimal reachability probability if s were

the initial state of M rather than s. If we have for all s ∈ Reach that valsσM,Reach(s) = 0

and for all s ∈ S \ (Reach ∪ Reach) we have

valsσM,Reach(s) = min
a∈Act,

µ∈T (s,a)

∑

s′∈S

µ(s′)valsσM,Reach(s
′),

then we have vals−M,Reach = valsσM,Reach .

This means that the optimality of a simple scheduler can be proven by a local check
for each state of the model. A corresponding lemma for the maximising case exists, in
which case we do not need to take into account the set Reach.

The variant of policy iteration we use for the minimal reachability probability is depicted
in Algorithm 3.3. The algorithm for the maximum is similar. In Line 1, we choose an
initial scheduler using the procedure minReachInit of Algorithm 3.2. The algorithm
computes a scheduler σ with valsMσ ,Reach(s) = 0 for all s ∈ Reach, which is necessary for
the correctness of Algorithm 3.3. For maximising the value, this step is not necessary
and we can start with an arbitrary scheduler. Algorithm 3.2 firstly computes the set
Reach in lines 1 to 10. It does so by computing the complement T of this set, that is
the set of states which reach Reach with a probability larger than zero for all possible
schedulers. Once Reach is computed, in lines Line 11 to Line 13 we can compute the
scheduler by fixing decisions for states of Reach where each successor state chosen with
positive probability is also in Reach.

Then in Algorithm 3.3, lines 2 to 9 try to improve the scheduler systematically. In
Line 4 we compute the reachability values when using the current scheduler. In lines
5 to 8 we improve the local decision for each state which is not contained in Reach,
if this is possible. Afterwards, the new reachability values from the new scheduler are
computed and so forth, until the scheduler cannot be improved any further. Finally,
Line 10 returns the maximal value together with a maximising scheduler.

Example 3.45. Again, consider the PA M of Figure 3.4 and let Reach
def

= {z3}.
We want to use the maximising variant of Algorithm 3.3 to compute val+M,Reach (see
Example 3.33). From Line 1 we get an arbitrary simple scheduler. We assume that we
obtain σ′ : A → (Act ,Distr(A)) with

σ′(z0)
def

= (cIH, [z1 7→1]), σ′(z1)
def

= (cHCo, [z4 7→1]), σ′(z2)
def

= (cCh, [z5 7→0.95, z3 7→0.05]),

σ′(z4)
def

= (cCoH, [z1 7→1]), σ′(z5)
def

= (cHCh, [z6 7→1]), σ′(z6)
def

= (cCh, [z7 7→0.95, z3 7→0.05]).

We now enter the main loop at Line 2. After setting σ := σ′, in Line 4 we compute the
induced MC Mσ.

Then, we start the computation of reachability probabilities in Mσ using the value iter-
ation in Algorithm 3.1. The sequence of v we compute is given in Table 3.1. Thus,
we reach the exact solution in the MC after a few iterations. Then, in Line 5 of
Algorithm 3.3, we try to improve the decisions of the scheduler. The only state for which
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input : finite PA M = (S, s,Act , T ), state set Reach ⊆ S.
output: σ ∈ Sched

simple
M with valsσM,Reach(s) = 0 for s ∈ Reach.

1 T := R := Reach

2 while R 6= ∅ do

3 choose t ∈ R
4 R := R \ {t}
5 forall the (s, a, µ) with µ ∈ T (s, a), µ(t) > 0 and s /∈ T do

6 T (s, a) := T (s, a) \ {µ}
7 if for all a ∈ Act we have T (s, a) = ∅ then

8 R := R ∪ {s}
9 T := T ∪ {s}

10 Reach := S \ T
11 forall the s ∈ Reach do

12 choose σ(s) from {(a, µ) | µ ∈ T (s, µ) ∧ ∀s′ ∈ S, µ(s′) > 0. s′ ∈ Reach}
13 return σ

Algorithm 3.2: minReachInit(M,Reach).

there are multiple possible decisions is z1. Indeed, in Line 6 (where we use argmax in-
stead of argmin), we obtain A(z1) = {(cHCh, µ)} rather than the old decision, and thus
modify the decision σ(z0) accordingly in Line 8. The updated scheduler now also yields
a value of 0.0975 for z0, and a subsequent iteration of the main loop does not lead to
further improvements. Thus, we return (v, σ).

Algorithm 3.1 does not guarantee that an exact result is ever reached. For instance,
in Table 3.2 we give the values for the first few iterations when using scheduler σ2 of
Example 3.13 on the PA of Figure 3.1. The values for s0 converge to 6

7
, but never reach

this value, which means that the computation has to be stopped at some point when the
result is precise enough, that is if maxs∈S |v(s)− v′(s)| < ε. △

3.5 Case Studies

In this section, we use the method we have developed throughout this chapter to obtain
upper bounds for probabilistic reachability properties in several case studies. We use the
hybrid solver PHAVer, which we already employed in Section 2.5. We implemented the
method to obtain reachability probabilities in a tool called ProHVer, which consists of
a modified version of PHAVer plus a component to compute values in the abstraction
PAs. All experiments were run on an Intel(R) Core(TM)2 Duo CPU with 2.67 GHz and
4 GB RAM as in the previous chapter.
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input : finite PA M = (S, s,Act , T ), state set Reach ⊆ S.
output: (vals−M,Reach , σ) with σ ∈ Sched

simple
M and vals−M,Reach = valsσM,Reach .

1 σ′ := minReachInit(M) /* cf. Algorithm 3.2 */

2 repeat

3 σ := σ′

4 v := valsMσ ,Reach

5 forall the s ∈ S \ Reach do

6 A(s) := argmin (a,µ),
µ∈T (s,a)

∑

s′∈S µ(s
′)v(s′)

7 if σ(s) ∈ A(s) then σ′(s) := σ(s)
8 else choose σ′(s) from A(s)

9 until σ′ = σ
10 return (v, σ)

Algorithm 3.3: minReach(M,Reach).

iter z0 z1 z2 z3 z4 z5 z6 z7

1 0 0 1 0 0 0 0 0
2 0 0.05 1 0 0 0 0.05 0
3 0 0.05 1 0 0 0.05 0.05 0
4 0 0.0975 1 0 0 0.05 0.05 0
5 0 0.0975 1 0 0 0.05 0.05 0

Table 3.1: Iteration values using the model
of Figure 3.4.

iter s0 s1 s2 s3

1 0 0 1 0
2 0 0.6 1 0
3 0.6 0.78 1 0
4 0.78 0.834 1 0
5 0.834 0.8502 1 0

Table 3.2: Iteration values using
the model of Figure 3.1.

3.5.1 Thermostat

We applied ProHVer on the probabilistic thermostat developed throughout the chap-
ter. The induced nonprobabilistic HA of this model was already analysed in Section 2.5.
We thus use the abstractions obtained there to build the abstractions of the PHA model.
ProHVer can then build an abstraction of the probabilistic thermostat using the ab-
straction of the induced HA. In Table 3.3, we give performance figures and probabilities
(rounded to a sufficient number of decimal places) for the analyses for different time
bounds T. Because the time to compute values from the abstract PA was negligible,
the performance values are the same as in Section 2.5. We use the PHAVer-specific
refinement technique described in Section 2.5. As expected, the probability bounds usu-
ally decrease with an decreasing constraint length and time bound. This is however not
always the case. As discussed, PHAVer does not apply a refinement in the usual sense,
and we thus cannot guarantee monotonicity of the abstraction.

3.5.2 Bouncing Ball

We consider a bouncing ball assembled from different materials. Assume this ball con-
sisting of three parts: 50 per cent of its surface consists of hard material, 25 per cent
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T
constraint length 10 constraint length 2

build (s) states prob. build (s) states prob.
2 0 8 0.000 0 11 0.000
4 0 12 1.000 0 43 0.050
5 0 13 1.000 1 58 0.098

20 1 95 1.000 13 916 0.370
40 18 609 0.512 36 2207 0.642
80 59 1717 1.000 85 4916 0.884

120 31 1502 0.878 91 4704 0.940
160 177 4260 0.954 183 10195 0.986
180 136 3768 0.961 219 10760 0.986
600 625 12617 1.000 1268 47609 1.000

Table 3.3: Probabilistic thermostat performance figures.

T
constraint length 0.15 constraint length 0.15, hull constraint length 0.05, hull

build (s) states prob. build (s) states prob. build (s) states prob.
1.0 0 38 0 0 17 0 2 56 0
2.0 1 408 0.25 2 59 0.25 5 185 0.25
3.0 9 2907 0.5 2 124 0.5 12 347 0.3125
3.5 43 11216 0.5 3 145 1 16 425 0.5
3.6 63 14297 0.5 3 150 1 19 436 0.5
3.7 94 18338 0.5 3 154 1 - - -

Table 3.4: Bouncing ball performance figures.

consists of a material of medium hardness and the rest consists of very soft material. We
drop the ball from a height h = 2. Further, we assume the gravity constant to be g = 1.
If the ball hits the floor and falls on the hard side, it will jump up again with one half
of the speed it had before, and if it falls down on the medium side it will jump up with
a quarter of the speed. However, if it hits the ground with its soft side, it will not jump
up again. We assume that the side with which the ball hits the ground is determined
randomly, according to the amount of surface covered by each of the materials.

We study the probability that the ball falls on the soft side before a given time bound
T. Results are given in Table 3.4. We conducted three main analysis settings. In
the left and medium part of the table, we used partitioning with constraint length of
0.15 on the position and speed variables. For the medium part, we used the convex hull
overapproximation (cf. Section 2.5). For the right part of the table, we used a constraint
length of 0.05, and the convex hull overapproximation. Entries for which the analysis
did not terminate within one hour are marked by “-”.

We ascertain here that, without the convex hull overapproximation, with a constraint of
length 0.15, we obtain nontrivial upper bounds. However, the analysis time as well as the
number of states grows very fast with increasing time T. The reason for this to happen
is that, each time the ball hits the ground, there are three possibilities with which side
it will hit the ground. Thus, the number of possibilities for the amount of energy the
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ball still has after a number of times n the ground is hit is exponential in n. Also, there
is some T up to which the ball has done an infinite number of jumps in all cases, which
means that this model is not structurally nonzeno (cf. Section 2.2). This indicates that
for a T near this value we have to use very small partitioning constraints to obtain tight
probability bounds. From this, we have a large time and memory consumption in the
analysis.

If we use the convex hull overapproximation and a constraint length of 0.15, far less
resources have to be used. But we only obtain nontrivial results for T up to 3. Using a
constraint length limit of 0.05, we obtain a tighter probability bound, while using still
less resources than the first configuration. However, for T = 3.7 the third configuration
does not terminate within one hour.

For instance, for T = 3, we can also compute the probability manually: the ball can hit
the ground with its soft side when it hits the floor in first place with a probability of 0.25.
It hits the ground initially with its hard side with a probability of 0.5. In this case, it will
not hit the ground again before T = 3. If it first hits the ground with its medium hard
side, it will hit the ground a second time before T = 3. After this, there is no chance of
touching the ground again before time T. Because of this, the overall probability of the
property under consideration is 0.25 + 0.25 · 0.25 = 0.3125. This means that the result
obtained by using a constraint limit of 0.05 and the convex hull overapproximation is
exact.

3.5.3 Water Level Control

We consider a model of a water level control system (extended from the one of Alur et al.
[Alu+95]) which uses wireless sensors. Values submitted are thus subject to probabilistic
delays, due to the unreliable transport medium.

A sketch of the model is given in Figure 3.5. The water level W of a tank is controlled
by a monitor. Its change is specified by a linear function. Initially, the water level is
W = 1. When no pump is turned on (Fill), the tank is filled by a constant stream of
water (Ẇ ). We let the system run up to T, by using a variable to measure the total
time until the system is started, which is only given implicitly here. When a water level
of W = 10 is seen by a sensor of the tank, the pump should be turned on. However, the
pump features a certain delay, which results from submitting control data via a wireless
network. With a probability of 0.95 this delay takes 2 time units (FillD2), but with a
probability of 0.05 it takes 3 time units (FillD3). The delay is modelled by the timer t.
After the delay has passed, the water is pumped out with a higher speed than it is filled
into the tank (Ẇ = −2 in Drain). There is another sensor to check whether the water
level is below 5. If this is the case, the pump must turn off again. Again, we have a
distribution over delays here (DrainD2 and DrainD3). For the system to work correctly,
the water level must stay between 1 and 12.

We are interested in the probability that the pump system violates the property given
above because either the water level falls below 1 or increases above 12, before the
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Init

Fill

ṫ=0
∧Ẇ=1
∧W≤10

FillD2

ṫ=1
∧Ẇ=1
∧t≤2

FillD3

ṫ=1
∧Ẇ=1
∧t≤3

DrainD3

ṫ=1
∧Ẇ=−2
∧t≤3

DrainD2

ṫ=1
∧Ẇ=−2
∧t≤2

Drain

ṫ=0
∧Ẇ=−2
∧W≥5

t′=0∧W ′=1

W=10→ 0.95:t′=0∧W ′=W 0.05:t′=0∧W ′=W

t=2→
t′=0
∧W ′=W

t=3→
t′=0
∧W ′=W

W=5→0.95:t′=0∧W ′=W0.05:t′=0∧W ′=W

t=3→
t′=0
∧W ′=W

. . .

Error

W<1∨W>12

Figure 3.5: Water level control automaton.

T
no partitioning constraint length 2

build (s) states prob. build (s) states prob.
40 0 69 0.185 1 150 0.185
82 0 283 0.370 1 623 0.370
83 0 288 1.000 1 640 0.401

120 1 537 1.000 2 1220 0.512
500 4 3068 1.000 16 7158 0.954

1000 19 6403 1.000 60 14977 0.998

Table 3.5: Water level control performance figures.

larger water tank from which the water tank is filled becomes empty. We model the
system in ProHVer and reason about this property. Performance statistics are given
in Table 3.5. Without using partitioning, we were only able to obtain useful values for
T up to 82. We did not use the convex hull overapproximation, like in the bouncing
ball case study, nor another overapproximation. For T larger than this value, we always
obtained a probability limit of 1. To get tighter results, we partitioned t by a constraint
of length 2. For T below 83 we obtain the nontrivial values in both cases, whereas for
83 we obtain a useful upper bound only when using partitioning. A plot of probabilities
for different T is given in Figure 3.6. The graph has a staircase form where wide steps
alternate with narrow ones. This form arises because, each time the longer time bound
is randomly chosen, the tank will overflow or underflow respectively, provided there is
enough time left. The wide steps corresponds to the chance of overflow in the tank, the
narrow ones to the chance of underflow.
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Figure 3.6: Graph of probabilities in water level control.

3.5.4 Autonomous Lawn-mower

We consider an autonomous lawn-mower that uses a probability bias to avoid patterns
on lawns. This mower is started on a rectangular grassed area. When it reaches the
border of the area, it changes its direction. To prevent the mower from repeating a
simple pattern, this direction is randomly biased, such as to ensure that eventually the
entire area has been cut.

A sketch of the automaton is given in Figure 3.7. There, l is the length and h the width
of the area. The position of the mower on the area is given by (x, y). With (vx, vy) we
denote the speed in (x, y) direction, which the mower takes with a probability of 0.95
when reaching a border, whereas with (v′x, v

′
y) denotes a variation of the direction that is

taken with probability 0.05. Further, (xg, yg) describes the mower’s initial position. For
clarity, we use a statechart-like extension of the PHA description. There is a transition
from Init to NE1. Except for this transition, once one of the four macro modes is entered,
there is a probabilistic choice between moving to one of the inner modes. For instance,
if there is a transition to the macro mode containing NE1 and NE2, this transition
represents a transition to NE1 with probability 0.95 and to NE2 with 0.05.

At the region with x ≥ 90 ∧ x ≤ 100∧ y ≥ 170∧ y ≤ 200 the owner of the lawn has left
a tarpaulin. We are interested in the probability that within a time bound of t = 120
the mower hits the tarpaulin, thereby inevitably ripping it up.

The creation of the LTS for this automaton took 98 seconds whereas the computa-
tion time of the failure probability was negligible. The upper bound we obtained was
0.000281861. We did not use any constraint specifications.

As in the other case studies, we also varied the time bound. Results are given in
Table 3.6. For larger time bounds the analysis time as well as the number of states
grows quickly. This is due to a similar effect as in the bouncing ball case study. Each
time the mower reaches a border, it may head into two different directions, which leads
to a combinatorial explosion, evident by the above statistics.
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Init

∧x≤l∧y≤h

NE1

ẋ=vx
∧ẏ=vy

NE2

ẋ=v′x
∧ẏ=v′y

0.95 0.05

∧x≥0∧y≤h

NW1

ẋ=−vx
∧ẏ=vy

NW1

ẋ=−v′x
∧ẏ=v′y

0.95 0.05

∧x≤l∧y≥0

SE1

ẋ=vx
∧ẏ=−vy

SE2

ẋ=v′x
∧ẏ=−v′y

0.95 0.05

∧x≥0∧y≥0

SW1

ẋ=−vx
∧ẏ=−vy

SW2

ẋ=−v′x
∧ẏ=−v′y

0.95 0.05

x′=xg∧y′=yg

x=l

x=0

x=l

x=0

y=h y=0 y=h y=0
. . .

Error

x≥90
∧x≤100
∧y≥170
∧y≤200

vx=10, vy=10, v′x=11, v′y=9, l=100, h=200, xg=10, yg=20

Figure 3.7: Probabilistic autonomous lawn-mower.

We also experimented with convex hull overapproximation without constraint refine-
ment. However, the probability bounds obtained were always 1. Using constraints also
did not improve on this, as it only made the analyses take more time. We think that for
this case study there is not much hope of obtaining better results in resource usage. The
complexity does not really live in the hybrid behaviour, but results from the excessive
number of ways the mower can pass around the area. Because of this, we do not think
it is possible to find an abstraction to handle this case study for larger time bounds.

3.6 Related Work

There are a number of HAs-based formalisms which extend the classical model by
stochastic behaviour. Kwiatkowska et al. [Kwi+02; KNP09] analyse reachability prob-
lems and related properties on probabilistic timed automata, in which the guarded com-
mands have been extended by finite-support probability distributions. Thus, this model
contains both stochastic as well as nondeterministic behaviour similar to the one we
have, but its timed behaviour is more restricted. As here, the interest is in the minimal
or maximal probability of certain events. Like the reachability problem in nonstochastic
timed automata, the problem of computing the maximal probability of reaching a given
set of states is decidable, and the authors also discuss efficient solution methods.
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T build (s) states prob.

10 0 4 0
70 1 632 1.11984E-05

100 5 3022 1.11984E-05
110 30 9076 0.000281861
120 57 12660 0.000281861
130 200 25962 0.000281861

Table 3.6: Lawn-mower performance figures.

Sproston [Spr00; Spr01] pioneered extensions of HAs to probabilistic HAs in a similar
way. He proposed a semantics given as a PA which is essentially the same as the
one one used in this thesis. For the case of rectangular and o-minimal probabilistic
HAs, he also discusses an exact solution method to obtain the maximal reachability
probability. Assouramou and Desharnais extend the overapproximation technique for
classes of decidable HAs to the probabilistic case [AD11].

All of the approaches discussed above consider solution methods for certain subclasses
of HAs, for which these methods are then exact. As more general probabilistic HAs
can be overapproximated by these classes, they can still be used to handle general
models in many cases. The approach of this thesis is different, as we start with general
probabilistic HAs and then rely on tools for general classical, nonprobabilistic HAs to
build our abstractions on. We therefore inherit the ignorance wrt. decidability from the
undecidability of these model classes.

Teige et al. [FHT08; TF09; FTE10a; Tei12] specialise in probabilistic HAs which consti-
tute discrete-time, continuous-state models with finite-support probability distributions.
They also discuss how the model they finally analyse can be obtained as an approxima-
tion of continuous-time stochastic hybrid systems. Their method is based on satisfiability
modulo theories [Gan+04]. Basically, they build a formula which reasons about the min-
imal or maximal probability to reach a certain set of states within N steps. Their
analysis is thus in principle limited to depth-bounded reachability properties, i.e., the
probability of reaching a location within at most N discrete jumps, but they discuss how
to circumvent this restriction. The method has the advantage to scale to a very large
number of different modes. The approach is orthogonal to the one we use, as the solution
method is completely different and does not rely on the construction of an abstract state
space. Another difference is that they prove lower bounds for the worst-case probability
to reach a set of unsafe states, while the method of this thesis targets at computing
upper bounds.

A model similar to the PAs which form the semantics of our PHAs is known as Markov
decision processes (MDPs). A number of papers and textbooks on both models exist
[Bel57; How60; Var85; Put94; BK98; BK08].
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H ind(H)

M∈Abs(ind(H),A,T)

JHK JH,TK abs(H,M)

Definition 3.11
val+JHK,mReach×Rk

Definition 3.11
val+JH,TK,mReach×Rk

Definition 3.11
val+abs(H,M),ReachA

Definition 3.12
val−,Cmds

JHK,mReach×Rk

Definition 3.12
val−,Cmds

JH,TK,mReach×Rk

Definition 3.12
val−,Cmds

abs(H,M),ReachA

Lemma 3.26
=

Theorem 3.31
≤ ≤ Algorithm 3.3

Lemma 3.26
=

Theorem 3.32
≥ ≥ Algorithm 3.3

Definition 3.34

Definition 3.22 Definition 3.22

Definition 2.24

Definition 3.35

Figure 3.8: Abstraction scheme for PHAs.

3.7 Conclusion

We have described an extension of classical HAs to probabilistic HAs, in which successor
states can be chosen according to finite-support distributions. This model thus involves
nondeterministic behaviours intertwined with probabilistic ones. We have formalised
the high-level model as well as its semantics in the form of PAs. We also compared our
approach to similar existing notions of probabilistic hybrid automata from the literature.
Like for the nonprobabilistic setting, we want to prove properties over the reachability of
unsafe or desirable states. However, as we are now operating in a probabilistic setting,
reachability is no longer a yes-or-no question. Instead, we reach sets of states with a given
probability, which depends on the resolution of the nondeterminism. Because of this,
we have targeted computing bounds of such reachability probabilities over all possible
resolutions. For this, we have defined an appropriate notion of abstraction, and have also
shown the correctness of the approach using probabilistic simulation relations. We build
our abstractions on solvers for the reachability problem in classical hybrid automata
of Chapter 2, for which a strong tool support exists (e.g. [HHWT97b; HHWT97a;
RS07; Fre08; Fre+11]), and thus provide the first automatic framework for the analysis
of general probabilistic hybrid automata. The approach we use has the advantage of
orthogonality: future computational advances in hybrid automata analysis directly carry
over to improvements of our framework. The practical applicability of our method
was demonstrated by analysing a number of case studies. We also sketched how the
probability bounds can be obtained in the finite abstractions we compute.

In Figure 3.8, we give an overview of the abstraction developed in this chapter.
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4
Continuous Distributions

This chapter extends our abstraction framework to handle models in which jump targets
can be chosen according to continuous probability distributions. The number of potential
successor states is then uncountably large. This extension allows us to handle more
expressive classes of models, in particular models of systems which takes measurements
with a given precision.

This chapter is organised analogously to the previous ones. In Section 4.1 we describe
nondeterministic labelled Markov processes, which will form the semantics of our ex-
tended stochastic hybrid system formalism. The formulation of the new model class is
somewhat more complicated, as we also have to take measurability issues into account
Then, in Section 4.2, we extend our probabilistic hybrid automata to allow the specifica-
tion of continuous probability measures. We will define the semantics, and discuss how
to ensure measurability. Afterwards, in Section 4.3 we will show how to overapproximate
the extended model by the probabilistic hybrid automata mechanism discussed before,
so that results from that model carry over to the new definition. In Section 4.4 we apply
the extended analysis method to a number of case studies. Section 4.5 discusses related
work and Section 4.6 concludes the chapter.

4.1 Semantic Model

In this section, we will define the semantic model for our extended class of stochas-
tic hybrid automata. To do so, we need to extend the stochastic recapitulation of
Subsection 3.1.1 by a few additional constructs.

4.1.1 Stochastic Recapitulation

A family Σ of subsets of a set Ω is a π-system, provided it is closed under binary
intersection. This means that for each A1, A2 ∈ Σ we have A1 ∩ A2 ∈ Σ.

Given a σ-algebra Σ on Ω and E ⊆ Ω, we can define the trace σ-algebra Σ|E def

= {A∩E |
A ∈ Σ} as

Σ|E def

= {A ∩ E | A ∈ Σ}.
It is known that Σ|E is indeed a σ-algebra.
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A Borel space is called standard if it is the Borel space on a Polish space. This includes
the cases (Rk,B(Rk)) of the real numbers, as well as the cases (M × Rk, 2M ⊗ B(Rk)),
which we will later on use to equip the state space of stochastic hybrid automata with
a measurable space.

Consider a measurable space (Ω,Σ). Remember that finite probability distributions are
a special case of probability measures: a finite probability distribution µ : Ω → [0, 1]

extends to a probability measure µ : Σ → [0, 1] by defining µ(A)
def

=
∑

a∈A µ(a) for all
A ∈ Σ. This way, also the construction [a1 7→p1, . . . , an 7→pn] carries over to probability
measures.

We denote the set of all probability measures in the measurable space by ∆(Ω). It can be
endowed with the σ-algebra ∆(Σ) [Gir82] generated by the measures that, when applied
to Q ∈ Σ, give a value in B ∈ B([0, 1]):
∆(Σ)

def

= σ({∆B(Q) | Q ∈ Σ∧B ∈ B([0, 1])}) where ∆B(Q)
def

= {µ ∈ ∆(Ω) | µ(Q) ∈ B}.
Note that ∆(Σ) is a set of sets of probability measures. Together with ∆(Ω), it forms the
measurable space (∆(Ω),∆(Σ)). To generate ∆(Σ), the sets ∆≥q(Q) with q ∈ Q ∩ [0, 1]
suffice [Wol12, Section 3.5].

Given a σ-algebra Σ, we can define the hit σ-algebra [Kec95; Nai03][Wol12, Definition
4.4] over Σ by

H(Σ)
def

= σ({HQ | Q ∈ Σ}) where HQ
def

= {C ∈ Σ | C ∩Q 6= ∅}.
Thus, HQ consists of all measurable sets C which have a nonempty intersection with Q.
H(Σ) is then generated by all sets of sets {C1, . . . , Cn} for which there is a set Q which
“hits” all Ci.

Given a finite index set I and a family (Σi)i∈I of σ-algebras, the product σ-algebra
⊗

i∈I Σi is defined as

⊗

i∈I

Σi
def

= σ

({

×
i∈I

Qi | ∀i ∈ I. Qi ∈ Σi

})

.

We use ⊗ as an infix operator on two σ-algebras. In case of a countable index set I,
w.l.o.g. I = N, the product σ-algebra is defined as

⊗

i∈I

Σi
def

= σ

(

∞
⋃

n=1

{

n×
i=0

Qi | ∀i, 0 ≤ i ≤ n. Qi ∈ Σi

})

.

We define
Σn def

=
⊗

i∈{1,...,n}

Σ and Σω def

=
⊗

i∈N

Σ.

Given two measurable spaces (Ωi,Σi) for i ∈ {1, 2}, a set A ∈ Σ1 ⊗ Σ2 and an element
a1 ∈ Ω1, we define the projection to a1 as

A|a1
def

= {a2 ∈ Ω2 | (a1, a2) ∈ A}.

We will need the following lemma.

72



4.1. SEMANTIC MODEL

Lemma 4.1. Let (Ω,Σ) be measurable space on which µ is a measure and let f : Ω → R
be a measurable function (cf. Subsection 3.1.1). Then there exist ωl, ωu ∈ Ω with

∫

Ω

f(ωl)µ(dω) ≤
∫

Ω

f(ω)µ(dω) ≤
∫

Ω

f(ωu)µ(dω).

Proof. We only discuss the case of ωu, as the other one is similar. Consider the case
that f does not have a supremum. In this case, we will always find an ωu which is large
enough to fulfil f(ωu) ≥

∫
Ωf(ω)µ(dω)∫

Ω1µ(dω)
, and which thus fulfils the original equation.

In the case that f has a supremum, we have
∫

Ω

f(ω)µ(dω) ≤
∫

Ω

sup f µ(dω),
✞

✝

☎

✆4.1

because f(ω) ≤ sup f for all ω ∈ Ω. If the maximum of f exists, it is equal to the
supremum and we are done.

Thus, assume that f has a supremum but no maximum. In this case, Equation 4.1 is
strict, we have

∫

Ω

f(ω)µ(dω) <

∫

Ω

sup f µ(dω),
✞

✝

☎

✆4.2

and there exists a sequence (ωi)i≥0 with limi→∞ f(ωi) = sup f . Because of this, we have

lim
i→∞

∫

Ω

f(ωi)µ(dω) =

∫

Ω

sup f µ(dω).
✞

✝

☎

✆4.3

From Equation 4.2 and Equation 4.3 we know that there is some i for which ωu = ωi

fulfils the original equation.

4.1.2 Nondeterministic Labelled Markov Processes

With the extensions defined above, we can now define nondeterministic labelled Markov
processes [Wol12; D’A+09], which will later on form the semantics of stochastic hybrid
automata with continuous distributions.

Definition 4.2 (NLMP). A nondeterministic labelled Markov process (NLMP) is a
tuple of the form

M = (S,ΣS, s,Act ,ΣAct , T ),

where

• S is a set of states,

• ΣS is a σ-algebra over S,

• s ∈ S is the initial state,

• Act is a set of actions,

• ΣAct is a σ-algebra over Act , where for all a ∈ Act we have {a} ∈ ΣAct ,
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• T : S → (ΣAct ⊗∆(ΣS)) is the ΣS-H(ΣAct ⊗∆(ΣS))-measurable transition matrix.

We define T (s, a)
def

= T (s)|a. An NLMP is called finitely probabilistic in case for each
s ∈ S, a ∈ Act and µ ∈ T (s, a) we have µ ∈ Distr(S).

We need to equip the labels with a σ-algebra to ensure measurability of T . Even if for all
labels a we have that T (·, a) : S → ∆(ΣS) is measurable, this does not imply that their
combination T is measurable, if the set of labels is uncountably large. For an example of
an NLMP in which each individual T (·, a) is indeed measurable, but T itself is not, see
[Wol12, Example 4.10]. However, from the measurability of the transition matrix T it
follows that each T (·, a) is ΣS-H(∆(ΣS))-measurable [Wol12, Proposition 4.3]. Written
without measurability requirements, T (·, a) is a function with signature S → 2∆(S).
Thus, for each state s ∈ S and action a ∈ Act we obtain a set of distributions T (s, a) to
choose from. A finitely probabilistic NLMP has similar expressive power to a PA. The
difference is that the measurability requirements still need to hold, and, as seen later, a
larger class of schedulers is supported.

Example 4.3. Let
M def

= (S,ΣS, s, {τ},ΣAct , T )

be an NLMP with

• S
def
= {s} ⊎ [0, 1] ⊎ {sb},

• ΣS
def

= σ(B([0, 1]) ⊎ {s} ⊎ {sb}),
• ΣAct

def

= {∅, {τ}},
• T (s, τ)

def

= {µ} where µ is the uniform distribution over [0, 1], with µ([a, b]) = b−a
for all a, b with 0 ≤ a ≤ b ≤ 1,

• for s ∈ V, we let T (s, τ)
def

= {[sb 7→1]}, and

• for s /∈ V we define T (s, τ)
def

= {[s 7→1]}.
It is known that a nonmeasurable set, a so-called Vitali set V ⊂ [0, 1], exists. All T (·, τ)
are singleton sets, so there is no nondeterminism in the example. Thus, the probability
to reach sb from s should be uniquely defined. However, this probability does not exist,
because it depends on the measure of the nonmeasurable Vitali set. Discrete measures
(which are the only ones allowed in PAs) eliminate this problem, since they discard all but
a finite set of points out of it. For instance, if instead of using the uniform distribution
we set µ(s1)

def

= µ(s2)
def

= µ(s3)
def

= 1
3

for some choice of s1, s2 ∈ V and s3 /∈ V, µ(·) def

= 0
otherwise, the reachability probability is 2

3
, although the model still does not fulfil the

measurability requirements. △
As for PAs, one can define the set of paths of an NLMP and the σ-algebra of infinite paths
(cf. [Wol12, Chapter 7]). However, the construction is somewhat different. Because we
now allow continuous measures, the probabilities of all individual finite paths might be
zero, which means that only certain sets of finite paths can be assigned a probability
other than zero. To take this into account, we use the σ-algebras of states and actions
to construct the σ-algebra of finite paths, instead of starting with cylinders of individual
finite paths.
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Definition 4.4. Consider an NLMP M = (S,ΣS, s,Act ,ΣAct , T ). The measurable
space of paths of length n ∈ N is

(Path0
M,ΣPath

0
M
)

def

= ({s}, {{s}, ∅}),
(Pathn

M,ΣPath
n
M
)

def

= ({s} × (Act ×∆(S)× S)n, {{s}, ∅} ⊗ (ΣAct ⊗∆(ΣS)⊗ ΣS)
n).

Then, we define

(Pathfin
M,Σ

Path
fin
M
)

def

=

(

⊎

n∈N

Pathn
M,
⊎

n∈N

ΣPath
n
M

)

.

We define the measurable space of infinite paths as

(Path inf
M,Σ

Path
inf
M
)

def

= ({s} × (Act ×∆(S)× S)ω, {{s}, ∅} ⊗ (ΣAct ⊗∆(ΣS)⊗ ΣS)
ω).

For β ∈ Pathfin
M ⊎ Path inf

M we write last(β), etc. as for PAs.

By setting ΣS
def

= 2S, we could in principle see the definition of the measurable space of
paths of PAs (cf. Definition 3.8) as a special case of the definition above. We remark
that we can ignore the restriction of Definition 3.5 that for a finite or infinite path
β = s0 a0 µ0 . . . we have for all i with 0 ≤ i < n that µi ∈ T (si, ai). As for NLMPs,
paths which do not fulfil this restriction can be defined as being valid; they will then
have a probability measure of 0.

Later on however, this most general σ-algebra 2S would be too general, because not every
A ∈ 2S is measurable by a continuous probability measure, which can be used in this
model class. This concerns for instance Vitali sets which we considered in Example 4.3.
Thus, in the later definition of the later definition of the semantics of stochastic hybrid
automata as NLMPs, we will use ΣS smaller than 2S.

We state the definition of schedulers for NLMPs.

Definition 4.5. A scheduler for an NLMP M = (S,ΣS, s0,Act ,ΣAct , T ) is a function
σ : Pathfin

M → ∆(Act×∆(S)). We require it to be Σ
Path

fin
M

-H(∆(Act×∆(S)))-measurable,

and demand that for all β ∈ Pathfin
M we have σ(β)((Act ×∆(S)) \T (last(β))) = 0. With

SchedM we denote the sets of all schedulers of M.

A scheduler is finitely probabilistic, if for all β ∈ Pathfin
M there are (a1, µ1), . . . , (an, µn) ∈

Act ×∆(S) with

σ(β)({(a1, µ1), . . . , (an, µn)}) = 1.

We can thus interpret it as being of the form σ : Pathfin
M → Distr(Act ×∆(S)).

A scheduler is Act semi-semi finitely probabilistic for a given set Act semi, if for all β ∈
Pathfin

M there are (a1, µ1), . . . , (an, µn) ∈ Act ×∆(S) and A ⊆ Act semi ×∆(S) with

σ(β)({(a1, µ1), . . . , (an, µn)} ∪A) = 1.
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In contrast to schedulers for PAs (cf. Definition 3.7), schedulers for NLMPs can thus
apply a continuous probability distribution to choose over successor transitions. This
will later turn out to be useful, as it will allow abstractions of stochastic hybrid automata
with continuous distributions to follow exactly the behaviour of the original model. To
ensure well-defined probability measures on the paths, schedulers are required to be
measurable functions. Finitely probabilistic schedulers only choose from a finite number
of successor distributions, like the schedulers of PAs. For semi finitely probabilistic
schedulers, this restriction is only required to hold for transitions which are not Act semi-
labelled. We note that semi finitely probabilistic schedulers are not necessarily fair.

As for PAs, a scheduler induces a measure on sets of paths.

Definition 4.6. Consider an NLMP M = (S,ΣS, s0,Act ,ΣAct , T ), a scheduler σ ∈
SchedM and a finite path β ∈ Pathfin

M. The combined transition TrM,σ,β(·) : (ΣAct ⊗
∆(ΣS)⊗ ΣS) → [0, 1] is defined as

TrM,σ,β(A, ξ,Q)
def

=

∫

A×ξ

µ(Q) σ(β)(da, dµ),

where A ∈ ΣAct , ξ ∈ ∆(ΣS) and Q ∈ ΣS.

We define the conditional finite path measure PrM,σ,β : ΣPath
fin
M

→ [0, 1] on finite cylin-
ders. Given a family 〈Mi〉ni=0 of sets with M0 = {s} and Mi ∈ (ΣAct ⊗∆(ΣS)⊗ ΣS) for

all i > 0 and M
def

=×n

i=0
Mi, we let

PrM,σ,β(M)
def

= Prn
M,σ,β

(M),

where in case n ≤ |β|, given the only β ∈ Pathfin
M with β ≤ β and |β| = n, we have

Prn
M,σ,β

(M)
def

=

{

1 if β ∈ M,

0 else,

and if n > |β| we define inductively

Prn
M,σ,β

((

n−1×
i=0

Mi

)

×Mn

)

def

=

∫

(×n−1
i=0 Mi)

TrM,σ,β(Mn)Pr
n−1

M,σ,β
(dβ).

The measure extends uniquely to a measure PrM,σ,β : ΣPath
inf
M

→ [0, 1] on the σ-algebra of

infinite paths if we require that for all such finite cylinders M and Minf
def

= M × (ΣAct ×
∆(ΣS)× ΣS)

ω we have
PrM,σ,β(Minf) = PrM,σ,β(M).

The (nonconditional) path measure is then defined as

PrM,σ
def

= PrM,σ,s.

The state, action and distribution processes XM : (Path inf
M × N) → S, Y M : (Path inf

M ×
N) → Act and ZM : (Path inf

M × N) → ∆(S) are defined as for PAs. We define fair paths
in the same way.
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The definition above follows mainly the one of Wolovick [Wol12, Chapter 7], who also
shows well-definedness for the constructions above. A minor extension is that we define
path measures conditional on initial finite paths.

Like for PAs, we can now also define when a scheduler is fair:

Definition 4.7. A scheduler σ ∈ SchedM of an NLMP M is called Act fair-fair if it is
Act fair-semi finitely probabilistic and we have

PrM,σ(Path
Act fair
M ) = 1.

By Sched
Act fair
M , we denote the set of all Act fair-fair schedulers of M.

We remark that we require fair schedulers to be semi finitely probabilistic, to later ensure
the comparability to schedulers of PAs.

We need to slightly adapt the definition of the properties we consider, so as to take
measurability issues into account.

Definition 4.8. Consider an NLMP M = (S,ΣS , s0,Act ,ΣAct , T ). Given a measurable
set Reach ∈ ΣS of states and a scheduler σ ∈ SchedM, we let

valσM,Reach

def

= PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

denote the reachability probability value for Reach under σ. Further, let

val+M,Reach

def

= sup
σ∈SchedM

PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

denote the maximal reachability probability for Reach. For Act fair ⊆ Act we define the
minimal Act fair-restricted reachability probability for Reach as

val−,Act fair
M,Reach

def

= inf
σ∈Sched

Actfair
M

PrM,σ(∃i ≥ 0. XM
i ∈ Reach).

The following lemma shows that the set of paths which finally reach a set Reach is
measurable. This ensures that the probability values of Definition 4.8 do exist.

Lemma 4.9. Given an NLMP M = (S,ΣS, s0,Act ,ΣAct , T ), a measurable set Reach ∈
ΣS of states and a scheduler σ ∈ SchedM, the set {β ∈ Path inf

M | ∃i ≥ 0. XM
i (β) ∈

Reach} is measurable.

Proof. We have

{β ∈ Path inf
M | ∃i ≥ 0. XM

i (β) ∈ Reach}

=

∞
⋃

i=0

{β ∈ Path inf
M | XM

i (β) ∈ Reach}

=

∞
⋃

i=0

((

i−1×
j=0

S × Act ×∆(S)

)

× Reach ×
(

∞×
j=i+1

Act ×∆(S)× S

))

.

Thus, the set is measurable as it can be expressed as a countable union of cylinders.
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We will later use the following lemma when abstracting our extended stochastic hybrid
automata to the PHAs of Chapter 3, because in PHAs we are always restricted to finitely
probabilistic schedulers.

Lemma 4.10. Given a finitely probabilistic NLMP M = (S,ΣS , s,Act ,ΣAct , T ) with a
set of states Reach ∈ ΣS and a finite subset of actions Act fair ⊆ Act , for each scheduler
σ ∈ SchedM there is a finitely probabilistic scheduler σu with

valσM,Reach ≤ valσu

M,Reach .

Also, if σ is Act fair-fair, we always find an Act fair-fair finitely probabilistic scheduler σl

with

valσM,Reach ≥ valσl

M,Reach .

Proof. We consider the case valσM,Reach ≥ valσl

M,Reach . Using Fubini’s theorem, for n ∈ N
we have

valσM,Reach

= PrM,σ(∃i ≥ 0. XM
i ∈ Reach)

=

∫

Path
n+1
M

PrM,σ,β(∃i ≥ 0. XM
i ∈ Reach)PrM,σ(dβ)

=

∫

Path
n
M

∫

Act×∆(S)×S

PrM,σ,β aµ s(∃i ≥ 0. XM
i ∈ Reach)µ(ds) σ(β)(da, dµ)PrM,σ(dβ).

✞

✝

☎

✆4.4

For n ∈ N, we define a sequence of fair schedulers σn : Path
fin
M → ∆(Act ×∆(S)) induc-

tively as follows: for β ∈ Pathfin
M, we let

• σn(β)
def

= σn−1(β) if |β| < n,

• σn(β)
def

= σ(β) for |β| > n and

• in case |β| = n,

– for a measurable set A ⊆ (Act \Act fair)×∆(S) we let σn(β)(A)
def
= σ(β)(A),

– if σn−1(β)(Act fair×∆(S)) > 0 then for afair ∈ Act fair and µfair ∈ ∆(S) defined
below, we define σn(β)(a, µβ,a)

def

= σ(β)(Act fair ×∆(S)),

which uniquely defines the probability of other sets A ∈ ΣAct ⊗∆(ΣS).

We set σ−1
def

= σ and using Lemma 4.1 then choose afair and µfair with
∫

Act fair×∆(S)×S

PrM,σn−1,β a µ s(∃i ≥ 0. XM
i ∈ Reach)µ(ds) σn−1(β)(da, dµ)

≥
∫

Act fair×∆(S)×S

PrM,σn−1,β afair µfair s(∃i ≥ 0. XM
i ∈ Reach)µ(ds) σn−1(β)(da, dµ)

=

∫

S

PrM,σn−1,β afair µfair s(∃i ≥ 0. XM
i ∈ Reach)µfair(ds).
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For the choice of afair and µfair, we also require that if

PrM,σn−1({β}) > 0,

then for all s ∈ S with µfair(s) > 0 we have

PrM,σn,β afair µfair s(Path
Act fair
M ) = 1.

Fulfilling this additional requirement is always possible. Let

Ω
def

=

{

(a, µ) ∈ Act fair ×∆(S) |
∫

S

Prσn−1,β a µ s(Path
Act fair
M )µfair(ds) = 1

}

.

We have that σn−1(β)(Ω) = 1, otherwise the probability of fair paths under σn−1 would
be lower than 1. Because of this, it suffices to integrate over this set, and we have

∫

Act fair×∆(S)×S

PrM,σn−1,β a µ s(∃i ≥ 0. XM
i ∈ Reach)µ(ds) σn−1(β)(da, dµ)

=

∫

Ω×S

PrM,σn−1,β a µ s(∃i ≥ 0. XM
i ∈ Reach)µ(ds) σn−1(β)(da, dµ).

Thus, in Lemma 4.1 we can choose afair and µfair from this Ω rather than from Act fair ×
∆(S). The measurabiltiy of Ω is not an issue. We have σn−1(β)((Act ×∆(S)) \Ω) = 0.
Thus, either (Act × ∆(S)) \ Ω is measurable, or we can construct a completion of this
measure, in such a way that (Act × ∆(S)) \ Ω is measurable there. In turn, Ω is also
measurable there.

We can now define a scheduler σl which is completely finitely probabilistic by setting

σl(β)
def

= σ|β|(β)

for all β ∈ Pathfin
M. By induction and Equation 4.4, one can show that

PrM,σl
(∃i ≥ 0. XM

i ∈ Reach) ≤ PrM,σ(∃i ≥ 0. XM
i ∈ Reach).

The scheduler constructed this way is also Act fair-fair: because we assumed the NLMP
to be finitely probabilistic and the scheduler we construct is also finitely probabilistic,
the probability is concentrated in cylinders of finite paths β with positive probability.
For β ∈ Pathfin

M with PrM,σl
({β}) > 0 we have

PrM,σl,β

({

β ′ ∈ Path inf
M | β ≤ β ′ ∧ ∃i > |β|. β ′[i] ∈ Act fair

})

= 1,
✞

✝

☎

✆4.5

that is, almost surely we finally execute a fair action when having started with β. This
is the case, because from PrM,σl

({β}) > 0 we know that scheduler σ|β| must have
chosen a fair continuation of β, which implies that Equation 4.5 is fulfilled when re-
placing σl by σ|β| there. The following schedulers σn with n > |β| do not change the
probabilities of choices of nonfair actions, and thus leave the probability of reaching
fair actions unchanged. In turn, the property also holds for σl. Now assume that
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PrM,σl
(PathAct fair

M ) < 1. Then there must be some β ∈ Pathfin
M with PrM,σl

({β}) > 0
but for which Equation 4.5 is invalid. However, we have already seen that Equation 4.5
holds, which means that σl is indeed fair.

The proof of the case valσM,Reach ≤ valσu

M,Reach is similar but simpler, because we do not
have to take fairness into account. One notable difference is that in this case we also
have to modify the transitions labelled with nonfair actions, because for this case we do
not assume the scheduler to be semi finitely probabilistic.

4.2 Stochastic Hybrid Automata

In this section, we will define the extended hybrid automata, to allow handling contin-
uous distributions. We will call them stochastic hybrid automata, to distinguish them
from the former probabilistic hybrid automata. To guarantee well-defined behaviour,
that is to ensure that the semantics fulfils the requirements of NLMPs, we will have to
put measurability restrictions on the automata components.

We extend the probabilistic guarded commands of Definition 3.20 in two different di-
rections. The first one resembles the definition of probabilistic guarded commands in
PHAs (cf. Definition 3.20) in that it only allows one to use finite-support probability
distributions. However, in contrast to the previous setting, we have to add some mea-
surability requirements to ensure the well-definedness of the semantics of our extended
model class. The second extension of probabilistic guarded commands does not allow
nondeterminism, but does allow continuous probability distributions. In addition, we
have to put measurability restrictions on the post operators.

Definition 4.11. For a dimension k ∈ N+ and a finite set of modes M , let S
def

= M×Rk

and ΣS
def

= 2M ⊗ B(Rk). A measurable finite guarded command is of the form

g → p1 : u1 + . . .+ pn : un,

where

• g ∈ ΣS is a guard,

• we have pi ≥ 0 for 1 ≤ i ≤ n,

• we have
∑n

i=1 pi = 1,

• the updates ui : S → ΣS are ΣS-H(ΣS)-measurable, and

• ui(s) 6= ∅ for 1 ≤ i ≤ n if s ∈ g .

A measurable continuous guarded command is of the form

g → M,

where

• g is as for finite commands, and

• M : S → ∆(S) is a ΣS-∆(ΣS)-measurable function.
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A post operator Post : (Rk × R≥0) → 2R
k

is called measurable if for the function
TPost : Rk → (B(R≥0)⊗ B(Rk)) with

TPost(v)
def

= {(t, v ′) | t ∈ R≥0 ∧ v ′ ∈ Post(v , t)}

we have

• TPost(v) ∈ B(R≥0)⊗ B(Rk), for v ∈ Rk, and

• the function is B(Rk)-H(B(R≥0)⊗ B(Rk))-measurable.

It might seem like a severe restriction that these guarded commands allow either a
probabilistic choice with finite support but uncountable nondeterminism, or have a single
distribution with continuous support. This is however not the case, as more complex
distributions can be simulated by a guarded command of the first type followed by one
of the second. The division into the two forms will ease the specification of models in
our new class, and will simplify the derivation of theoretical results.

Measurability of most of the above model constituents can be guaranteed by considering
o-minimal definable sets, following an idea of Martin Fränzle. General results connecting
o-minimal definability with measurability [BP98; BO04] show that a sufficient criterion
for the above TPost being measurable is that it is definable in some o-minimal theory over
the reals. In practice, this holds for the TPost manipulated by hybrid model checkers:
all current hybrid model checkers tackle overapproximations of the set of states reach-
able by timed transitions via sets definable in o-minimal theories over the reals. This
includes finite unions of rectangular boxes, zonotopes, polyhedra, ellipsoids, and differ-
ential invariants. Because of this, in the models already overapproximated by hybrid
solvers measurability concerns are not given. In a nutshell, the general results connect-
ing o-minimality with measurability consider the standard parts [BP98] of o-minimal
theories and shows them to be Borel measurable. This, together with the fact that the
standard part st(A) satisfies st(A) = A provided A ⊆ Rk [BO04] implies that relations
definable by o-minimal theories over the reals are Borel measurable [BP98]. Hence, TPost

is measurable if described in some o-minimal theory. Notably, even if each TPost(v) were
a measurable set, this does not imply measurability of TPost itself, which is why we need
to require it.

With there preparations, we are now ready to define the extended model class.

Definition 4.12. A stochastic hybrid automaton (SHA) is defined to be a tuple

H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts),

where

• M is a finite set of modes,

• k ∈ N+ is the dimension of the automaton,

• m ∈ M is the initial mode,

• for each m ∈ M , we have that Postm is a measurable post operator,

• Cmdsfin is a set of measurable finite guarded commands,
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Temperature Controller

Heat

Ṫ=2

Cool

Ṫ=−T

cool? heat?

Wait

ṫ=1
∧t≤1

React

ṫ=1
∧ṁ=0
∧t≤0.1

cWR=(t≥1→t′=0
∧m′=N (T, 0.25))

t≥0.1→t′=0

if m≤6 then heat !
if m≥9 then cool !

t′=0

Init

T ′=8

Error

T>12∨T<3

Figure 4.1: SHA modelling a thermostat.

• Cmdscts is a set of measurable continuous guarded commands, and

• for s = (m, v) with Postm(v , t) = {v} for all t ∈ R≥0, there is a (finite or contin-
uous) command with guard g with s ∈ g .

The notable difference to our basic model of Definition 3.20 is the extension by the
continuous guarded commands and the measurability restrictions.

Example 4.13. In Figure 4.1 we describe a variant of the thermostat model from
Figure 3.3. It consists of the parallel composition of two components. The modes of
the automaton are thus pairs of modes of these two components, e.g. (Heat,Wait), with
the exception of Init and Error. The component Temperature models the temperature
of a room. Similarly to the model of Figure 3.3, there are two modes, one in which the
temperature increases and one in which it decreases. Controller is supposed to ensure
that the temperature stays in a given range. If it does not succeed with this, the model
can move to the Error mode. The controller firstly waits for time 1, then measures the
temperature with a (continuous) normal distribution with standard deviation 0.25. After
a further delay of 0.1, it changes the state of Temperature accordingly, and at the same
time moves back to its waiting state.

In contrast to the previous example, there is no longer an explicit probability with which
we move to Error. Instead, because of the perturbation of measurements, there is a
chance that the controller does not react appropriately to the actual temperature, which
in turn might become too low or too high. If the measurement of the temperature were
completely accurate, one would indeed never reach Error. △

The semantics of SHAs can then be defined in terms of NLMPs.
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4.2. STOCHASTIC HYBRID AUTOMATA

Definition 4.14. The semantics of an SHA H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts)
is an NLMP

JHK = (S,ΣS, s,Act ,ΣAct , T ),

where

• S
def

= M × Rk,

• ΣS
def

= 2M ⊗ B(Rk),

• Act
def

= R≥0 ⊎ Cmdsfin ⊎ Cmdscts,

• ΣAct

def

= σ(B(R≥0) ⊎ 2Cmdsfin⊎Cmdscts),

• for s = (m, v) ∈ S we have

– for c = (g → (p1 : u1+ . . .+ pn : un)) ∈ Cmdsfin we have T (s, c)
def

= ∅ if s /∈ g

and else:

T (s, c)
def

= {[s′1 7→p1, . . . , s
′
n 7→pn] | s′1 ∈ u1(s), . . . , s

′
n ∈ un(s)},

– for c = (g → M) ∈ Cmdscts we have T (s, c)
def

= ∅ if s /∈ g and else:

T (s, c)
def

= {M(s)},

– for t ∈ R≥0 we have:

T (s, t)
def

= {[(m, v ′) 7→1] | v ′ ∈ Postm(v , t)}.

We have to show that the semantics of an SHA is indeed an NLMP, that is that all the
requirements of Definition 4.2 are fulfilled. [Wol12, Lemma 5.8] contains an according
statement for the slightly different semantics of SHAs considered there.

Lemma 4.15. If H is an SHA, then JHK is an NLMP.

Proof. Assume that H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts) and further that
JHK = (S,ΣS , s,Act ,ΣAct , T ). The requirements on states, actions and the σ-algebras
on them are obviously fulfilled. We have to show that for the transition matrix T : S →
(ΣAct ⊗ ∆(ΣS)) for s ∈ S we have T (s) ∈ ΣAct ⊗ ∆(ΣS) and that T is ΣS-H(ΣAct ⊗
∆(ΣS))-measurable.

For s = (m, v) ∈ S we have

T (s) =

(

⊎

c∈Cmds

{c} × T (s, c)

)

⊎ TR≥0
(s),

where
TR≥0

(s)
def

= {(t, [(m, v ′) 7→1]) | t ∈ R≥0 ∧ v ′ ∈ Postm(v , t)}.

We will proceed with the proof as follows: firstly, we handle the timed transitions TR≥0
.

Then, we consider the transitions {c} × T (·, c) from guarded commands, at first with
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guard true , and afterwards extend the result to arbitrary guards. Finally, we argue that
T , the union of these parts, is measurable.

We define T : S → (B(R≥0)⊗ ΣS) where for s = (m, v) ∈ S we have

T (s) = {(t, (m, v ′)) | (t, v ′) ∈ TPostm(v)},

with TPost as in Definition 4.11. By the definition of TPost , we have T (s) ∈ (B(R≥0)⊗ΣS)
and T is ΣS-H(B(R≥0)⊗ ΣS)-measurable.

The function δ : S → ∆(S), defined as δ(s)
def

= [s 7→1], is measurable since δ−1(∆≥q(Q)) =
{s | δ(s)(Q) ≥ q} and this set is identical to Q if q > 0, and else it equals S. Because
of this, D : (R≥0 × S) → (R≥0 ×∆(S)) with D(t, s)

def

= (t, δ(s)) is also measurable. We
have TR≥0

(s) = {D(t, s) | (t, s) ∈ T (s)}, that is TR≥0
(s) = D(T (s)).

We have that ∆(S) standard Borel, because S is standard Borel [DTW12, Proposition
5.1], and thus so are R≥0 × S and R≥0 ×∆(S). Since

• R≥0 × S and R≥0 ×∆(S) are standard Borel,

• D : (R≥0 × S) → (R≥0 ×∆(S)) is measurable and injective, and

• T (s) ∈ B(R≥0)⊗ ΣS,

we have that D(T (s)) ∈ B(R≥0)⊗∆(ΣS) [Kec95, Corollary 15.2].

Measurability follows using the measurability of T and D:

T −1
R≥0

(HΘ)

= {s | TR≥0
(s) ∩Θ 6= ∅}

= {s | D(T (s)) ∩Θ 6= ∅}
= T−1(HD−1(Θ)).

For the transitions resulting from guarded commands, there are two components: mea-
surable finite guarded command and measurable continuous guarded command. Let
c = (true → p1 : u1 + . . . + pn : un) be a measurable finite guarded command. We
have to show that T (s, c) = {[s′1 7→p1, . . . , s

′
n 7→pn] | s′1 ∈ u1(s), . . . , s

′
n ∈ un(s)} gives

a measurable set for each s and that the function T (·, c) : S → ∆(S) is ΣS-H(∆(Σ))-
measurable. It can be shown that, for disjoint ui, the semantics is the set of discrete
probability measures Φ≤n having at most n points of mass, so that any of those discrete
measures when applied to event ui(s) is equal to pi:

T (s, c) = Φ≤n ∩
n
⋂

i=1

∆=pi(ui(s)).

For n ≥ 1, the set Φ≤n for a one-dimensional state space R is defined as:

Φ≤n
def

=
⋂

qi<q′
i
,qi,q

′
i
∈Q,

i6=j⇒[qi,q
′
i
]∩[qj,q

′
j
]=∅



∆=0





(

n
⋃

i=1

[qi, q
′
i]

)C


 ∪
n
⋃

i=1

∆=0([qi, q
′
i])



 .
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Therefore, the complete set T (s, c) is measurable, as it is a denumerable intersection of
finite unions of generators for ∆(Σ). The generalisation to Rn is obtained using rectan-
gles with rational endpoints in the n-dimensional space. Adding the mode component
of the state space S does not raise any measurability issues, since it is a finite set having
a finite number of subsets as measurable events.

If ui(s) sets are not disjoint, the expression is also measurable, but we have to take
into account the intersections where two different update functions can choose the same
point of mass, therefore the probabilities have to be added. Using Φ≤n, we can define
Φ=n

def

=
(
⋂n−1

i=1 ΦC
≤i

)

∩ Φ≤n the measurable set of discrete measures having exactly n
points of mass. There are as many intersection combinations as partitions of the set
{1 . . . n}, and we denote this family as SetPart(n):

T (s, c) =
⋃

P∈SetPart(n)

Φ=|P | ∩
|P |
⋂

i=1

∆=
∑

j∈Pi
pj

(

⋂

j∈Pi

uj(s)

)

.

Let f : Sn → ∆(S) with f(s1, . . . , sn)
def

= [s1 7→p1, . . . , sn 7→pn] be a function generating
discrete measures, and let u : S → Sn with u(s)

def

= (u1(s), . . . , un(s)) be a function
building the cross product of the nondeterministic update functions. Taking the set-wise
extension of f we have T (s, c) = f(u(s)), for c = (true → c = p1 : u1 + . . .+ pn : un).

We now develop the backwards image of a ∆(Σ) generator:

T (·, c)−1(HΘ)

= {s | f(u(s)) ∩Θ 6= ∅}
= {s | ∃(s1, . . . , sn) ∈ u(s). f(s1, . . . , sn) ∈ Θ}
= u−1(Hf−1(Θ)).

We have that f : S → ∆(S) is measurable if and only if its uncurried version f ′ : (S ×
ΣS) → [0, 1] with f ′(s, A)

def

= f(s)(A) for A ∈ ΣS is measurable in its first coordinate
[D’A+09, Lemma 1]. Being the uncurried version of f , a linear combination of measurable
functions, by standard results f ′(·, Q) is measurable, therefore f : S → ∆(S) is also
measurable. Function u inherits measurability from its components [ADD00, Theorem
1.5.8], concluding that T (·, c)−1(HΘ) is a measurable set.

For a measurable continuous guarded command c = (true → M), the Markov kernel
M : S → ∆(S) is embedded as T (s, c) = {M(s)}. Using a result of D’Argenio et
al. [D’A+09, Proposition 5]—the embedding of labelled Markov processes (LMPs) into
NLMPs—the result follows. We have that singletons {µ} ∈ ∆(Σ) since the state space
is generated by a denumerable π-system, namely the intervals with rational endpoints
[D’A+09, Lemma 2].

Given a command c with a guard g other than true , we have

T (s, c) =

{

T (s, ctrue) if s ∈ g ,

∅ else,
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where ctrue is a variant of c where we replaced the guard by true , and this construction
preserves both properties required for T (·, c). From the measurability of T (·, c), we can
conclude the one of {c} × T (·, c).
Now we have to show that the complete T is measurable. As seen above, the transition
relation T (s) is the finite union T (s) =

⋃n

i=1 Ti(s) of a number of components Ti : S → Σ
for 1 ≤ i ≤ n representing timed or command transitions, and each Ti is B(S)-H(Σ)-
measurable, with Σ

def

= ΣAct ⊗∆(ΣS). Thus, we have

T −1(HΘ)

= {s | T (s) ∩Θ 6= ∅}

=

{

s |
(

n
⋃

i=1

Ti(s)

)

∩Θ 6= ∅
}

=

n
⋃

i=1

{s | Ti(s) ∩Θ 6= ∅},

and because the Ti are measurable, each {s | Ti(s) ∩Θ 6= ∅} ∈ ΣS and thus their finite
union is an element of ΣS, which shows that T is measurable.

Example 4.16. Consider the SHA of Figure 4.1. Most parts of its behaviour could be
described also by a PA using Definition 3.22. The exception here is the command cWR

which features a normal distribution. We are given k = 3, and the three dimensions t,
T and m. Assume we are in state s

def

= ((Heat,Wait), 1, 10, 0), that is we are just about
to move to mode react and have a temperature of 10. We have T (s, cWR) = {µ} where
for a, b ∈ R with a ≤ b we have

µ({(Heat,React), 0, 10} × [a, b])
def

=
1

0.25
√
2π

b
∫

a

exp

(

−1

2

(

x− 10

0.25

)2
)

dx,

which uniquely determines the probabilities of other measurable sets. △

We are now able to determine minimal and maximal reachability probabilities of SHAs.

Definition 4.17. Let H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts) be an SHA with a
mode mReach . We define

val+H,mReach

def

= val+JHK,{mReach}×Rk and val−H,mReach

def

= val−,Cmds

JHK,{mReach }×Rk .

Because of the complex stochastic behaviour of the extended running example, we cannot
give a manual estimation of the reachability probability here. We will however apply an
automatic analysis in Subsection 4.4.1.
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4.3 Abstractions

In this section, we will show how we can overapproximate SHAs by PHAs, which are
then guaranteed to safely overapproximate the behaviour of the original model.

The following definition states how a single measurable continuous guarded command
can be overapproximated by a measurable finite guarded command.

Definition 4.18. Consider a measurable continuous guarded command c = (g → M).
Fix pi ≥ 0 with 1 ≤ i ≤ n and

∑n

i=1 pi = 1. Let û1, . . . , ûn : S → Σ and u1, . . . , un : S →
Σ be functions where for all s ∈ S we have that

• ûi and ui are ΣS-H(ΣS)-measurable for all i with 1 ≤ i ≤ n,

• M(s)(ûi(s)) = pi,

• M(s) (
⋃n

i=1 ûi(s)) = 1,

• the sets û1(s), . . . , ûn(s) are pairwise disjoint, and

• ûi(s) ⊆ ui(s) for all 1 ≤ i ≤ n.

We call f = (û1, . . . , ûn, u1, . . . , un, p1, . . . , pn) a command abstraction and define the
measurable finite guarded command

abs(c, f)
def

= (g → p1 : u1 + . . .+ pn : un).

By abstracting a command this way, we introduce (in most cases) uncountable additional
nondeterminism, but reduce the complexity of the stochastic behaviour, because the
abstractions of guarded commands no longer use continuous probability distributions.
Overlapping sets ui(s), uj(s), i 6= j are allowed. This feature can be used, for instance, if
the exact ûi(s), ûj(s) corresponding to probabilities pi, pj cannot be computed, thus to
obtain a tolerance to guard against the imprecision of the pi. The abstraction of a single
command will be done symbolically in the high-level description of the probabilistic
hybrid automaton (instead of the low-level model, as for instance in grid-based methods
[PH06; HLS00]).

Example 4.19. Consider the stochastic guarded command cWR of the SHA of Figure 4.1.
Let p1

def

= . . .
def

= p5
def

= 0.2 and consider a1 ∈ T +[−0.22,−0.21], a2 ∈ T +[−0.07,−0.06],
a3 ∈ T + [0.06, 0.07], a4 ∈ T + [0.21, 0.22]. We define for s = ((Heat,Wait), t, T,m)

û1(s)
def

= {((Heat,Wait), t, T )} × (−∞, a1],

û2(s)
def

= {((Heat,Wait), t, T )} × (a1, a2],

û3(s)
def

= {((Heat,Wait), t, T )} × (a2, a3],

û4(s)
def

= {((Heat,Wait), t, T )} × (a3, a4],

û5(s)
def

= {((Heat,Wait), t, T )} × (a4,∞),
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N (T, 0.25)

a1∈T+
[−0.22,
−0.21]

a2∈T+
[−0.07,
−0.06]

T

a3∈T+
[+0.06,
+0.07]

a4∈T+
[+0.21,
+0.22]

=0.2 =0.2 =0.2 =0.2 =0.2

. . . . . .

Figure 4.2: Abstraction of a normal distribution.

and accordingly for s = ((Cool,Wait), t, T,m). Assume that by a precomputation (which
will later on be described in Subsection 4.3.1) we known that

M(s)(û1(s)) = M(s)(û2(s)) = M(s)(û3(s)) = . . . = pi = 0.2,

as illustrated in Figure 4.2. Then the ûi fulfil the requirements of Definition 4.18. Fur-
ther define

u1(s)
def

= {((Heat,Wait), t, T )} × (−∞,−0.21],

u2(s)
def

= {((Heat,Wait), t, T )} × [−0.22,−0.06],

u3(s)
def

= {((Heat,Wait), t, T )} × [−0.07, 0.07],

u4(s)
def

= {((Heat,Wait), t, T )} × [0.06, 0.22],

u5(s)
def

= {((Heat,Wait), t, T )} × [0.21,∞).

Then we have ûi(s) ⊆ ui(s) for all i ∈ {1, . . . , 5}. Because of this, the probabilistic
guarded command

g → 0.2 : u1 + 0.2 : u2 + 0.2 : u3 + 0.2 : u4 + 0.2 : u5

with g = {(m, t, T,m) | m = (Heat,Wait)∨m = (Cool,Wait)} is a command abstraction
of cWR. △

To overapproximate an entire SHA, we just abstract all measurable continuous guarded
commands.

Definition 4.20. Let H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts) be an SHA and
consider a family of command abstractions F = 〈fc〉c∈Cmdscts

. Then we define the PHA
abstraction of H as

abs(H,F)
def

= (M, k,m, 〈Postm〉m∈M ,Cmdsfin ⊎ {abs(c, fc) | c ∈ Cmdscts}).
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Example 4.21. If we overapproximate the only stochastic guarded command cWR of
the SHA in Figure 4.1 as in Example 4.19, we can easily check that the resulting model
indeed fulfils all requirements of a PHA and of Definition 4.20. △

The following theorem shows that we can use the abstractions of Definition 4.20 to prove
probability bounds p of SHAs by transforming them to PHAs and proving the bound
there.

Theorem 4.22. Given an SHA H with a mode mReach and a family of command ab-
stractions F for its commands, we have

val+H,mReach
≤ val+abs(H,F),mReach

and val−H,mReach
≥ val−abs(H,F),mReach

.

Proof. Assume that

• H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts),

• F = 〈fc〉c∈Cmdscts
,

• abs(H,F) = (M, k,m, 〈Postm〉m∈M ,Cmds),

• JHK = (S,ΣS, s,Act ,ΣAct , T ),

• Jabs(H,F)K = (S, s,Actabs, Tabs).

Let
f : (Pathfin

Jabs(H,F)K ⊎ Path inf
Jabs(H,F)K) → (Pathfin

JHK ⊎ Path inf
JHK)

be defined so that for βabs ∈ Path inf
JH,FK ⊎ Path inf

JH,FK we have

f(βabs)
def

= β,

with |βabs| = |β| (we let |βabs| def

= |β| def

= ∞ for infinite paths), where for valid i ≥ 0 we
have

• β[i]
def

= βabs[i],

• trace(β)[i]
def

= trace(βabs)[i] if trace(βabs)[i] ∈ R≥0 ⊎ Cmdsfin,

• trace(β)[i]
def

= c if trace(βabs)[i] = abs(c, fc),

• distrs(β)[i]
def

= distrs(βabs)[i] if trace(βabs)[i] ∈ R≥0 ⊎ Cmdsfin,

• distrs(β)[i]
def

= M(β[i]) if trace(βabs)[i] = abs(c, fc) with c = (g → M) ∈ Cmdscts.

This way, f maps paths of abs(H,F) to the corresponding paths of H.

To show the theorem, we interpret Jabs(H,F)K as a finitely probabilistic NLMP

Jabs(H,F)K = (S,ΣS, s,Actabs,ΣAct , Tabs),

in which schedulers are allowed to take a randomised choice. We then proove that for
an arbitrary scheduler σ ∈ Sched JHK we can construct a scheduler σabs ∈ Sched Jabs(H,F)K

where for all A ∈ Σ
Path

inf
JHK

and Aabs ∈ Σ
Path

inf
Jabs(H,F)K

with f(Aabs) = A we have

Pr Jabs(H,F)K(Aabs) = Pr JHK(A).
✞

✝

☎

✆4.6
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This means that, apart from the renaming of guarded commands and the distributions
appearing on the paths, the stochastic behaviour under these two schedulers agrees. In
turn, reachability probabilities agree, and fairness is also maintained.

Let β ∈ Pathfin
Jabs(H,F)K. For measurable sets A ⊆ (R≥0 ⊎ Cmdsfin)×∆(S) we define

σabs(β)(A)
def

= σ(f(β))(f(A)).
✞

✝

☎

✆4.7

We consider

• c = (g → M) ∈ Cmdscts with

• cabs = abs(c, fc) = (g → p1 : u1, . . . , pn : un) where

• fc = (û1, . . . , ûn, u1, . . . , un, p1, . . . , pn).

We define a family of measure spaces

〈(Si,Σi, µi)〉ni=1,

with

• Si
def

= ûi(last(β)),

• Σi
def
= ΣS|ûi(last(β)), and

• µi(Ai)
def

= M(last(β))(A)
pi

for Ai ∈ Σi.

Then consider the product measure space

(Sprod,Σprod, µprod),

with

• Sprod
def
=×n

i=0
Si,

• Σprod
def
=
⊗n

i=0Σi,

• µprod(×n

i=1
Ai) = µi(Ai) where Ai ∈ Σi for i ∈ {1, . . . , n},

where µprod is uniquely extended to other sets A ∈ Σprod. Define

Uc

def

= {[s′1 7→p1, . . . , s
′
n 7→pn] | s′1 ∈ û1(last(β)), . . . , s

′
n ∈ ûn(last(β))},

and let g : Uc → Sprod be the bijection defined as

g([s′1 7→p1, . . . , s
′
n 7→pn])

def

= (s′1, . . . , s
′
n).

Using g, we can define a measure µc on Uc where for measurable B ⊆ Uc we have

µc(B)
def

= µprod(g(B)).
✞

✝

☎

✆4.8

Then for A = {cabs} × Adistrs ⊆ {cabs} ×∆(S) we define

σabs(β)(A)
def

= µc(Adistrs ∩ Uc)σ(β)({c} ×∆(S)).
✞

✝

☎

✆4.9

For the combined transition of Definition 4.6, with
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• c = (gc → Mc) for all c ∈ Cmdscts,

• abs(c, fc) = (gc → pc,1 : uc,1 + . . .+ pc,nc
: uc,nc

) for all c ∈ Cmdscts
with fc = (ûc,1, . . . , ûc,n, uc,1, . . . , uc,n, pc,1, . . . , pc,n),

• β ∈ Pathfin
JHK,

• βabs ∈ Pathfin
Jabs(H,F)K with βabs = f(β),

• A ∈ ΣAct ,

• Aabs ∈ ΣActabs
with Aabs = (A ∩ (R≥0 ⊎ Cmdsfin)) ⊎ {abs(c, fc) | c ∈ A},

• Arest = Aabs ∩ (R≥0 ⊎ Cmdsfin) and Ac = Aabs ∩ abs(c, fc),

• Q ∈ ΣS,

• Qc,i = Q ∩ ûc,i(last(β)),

• ξ ∈ ∆(ΣS),

• ξabs ∈ ∆(ΣS) where ξabs = ξ ∪⋃
c∈Cmdscts

{

Uc if Mc(β) ∈ ξ,

∅ else,
,

• ξc,i
def

= {µ ∈ ξabs | µ(Qc,i) = pc,i}
we have

Tr Jabs(H,F)K,σabs,βabs
(Aabs, ξabs, Q)

=

∫

Aabs×ξabs

µ(Q) σabs(βabs)(da, dµ)

=

∫

Arest×ξabs

µ(Q) σabs(βabs)(da, dµ) +
∑

c∈Cmdscts

∫

Ac×ξabs

µ(Q) σabs(βabs)(da, dµ)

Eqn. 4.7

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

∫

Ac×ξabs

µ(Q) σabs(βabs)(da, dµ)

Eqn. 4.9

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

∫

Ac×ξabs

µ(Q)µc(dµ)σ(β)({c} ×∆(S))

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

nc
∑

i=1

∫

Ac×ξabs

µ(Qc,i)µc(dµ)σ(β)({c} ×∆(S))

Eqn. 4.8

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

nc
∑

i=1

∫

Ac×ξc,i

µ(Qc,i)µc(dµ)σ(β)({c} ×∆(S))

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

nc
∑

i=1

pc,i
Mc(Qc,i)

pc,i
σ(β)({c} ×∆(S))

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

nc
∑

i=1

Mc(Qc,i)σ(β)({c} ×∆(S))

=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

Mc(Q)σ(β)({c} ×∆(S))
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=

∫

Arest×ξ

µ(Q) σ(β)(da, dµ) +
∑

c∈Cmdscts

∫

{c}×ξ

µ(Q) σ(β)(da, dµ)

=

∫

A×ξ

µ(Q) σ(β)(da, dµ)

= Tr JHK,σ,β(A, ξ,Q).

From this, by the definition of path measures in Definition 4.6 the validity of Equation 4.6
follows, and thus reachability probabilities and fairness agree.

By Lemma 4.10, we can transform the scheduler constructed this way to a finitely prob-
abilistic scheduler σl (σu) which is guaranteed to obtain a lower (higher) probability than
σabs and maintains fairness. This scheduler is also a scheduler in the interpretation of
Jabs(H,F)K as a PA. Interpreting this model as a PA does not change the reachability
probabilities, from which we can conclude the lemma.

4.3.1 Computing Abstractions

For the abstraction to be applicable in practice, it is crucial to compute the family of
abstraction functions effectively. As there exist quite diverse forms of random variables,
we cannot give an algorithm to handle all cases. Instead, we sketch how to obtain
over-approximation functions for certain classes of random variables.

Firstly, consider a one-dimensional probability measure µ : B(R) → [0, 1] given by a
density function f(x), for instance the normal distribution. Using numerical methods, we
then compute bounds for ai with µ((−∞, a1]) = p1, µ((a1, a2]) = p2, . . . , µ((an−1,∞)) =
pn, for some p1, . . . , pn. In Example 4.19, we assumed that we are already given a
valid abstraction of the normal distribution N (T, 0.25). We first consider the case of
a constant T

def

= 0, that is N (0, 0.25). An abstraction of this distribution could be
obtained as follows. Fixing n = 5 and pi = 0.2, we use numerical methods to find out
that the ai are in the intervals a1 ∈ [−0.22,−0.21], a2 ∈ [−0.06,−0.06], . . .. We can
now transform the random variable to handle the general case N (T, 0.25), in which the
distribution depends on the state variable T . We use the fact that N (x, y) = N (0,1)−x

y
.

Thus, we can transform corresponding interval endpoints bi to bi(x, y) = bi(0, 1) · y + x.
When setting x = T, y = 0.25, we obtain the same intervals as given in Example 4.19.

If the cumulative distribution function F (x) of a random variable is known and we can
compute a closed-form of F−1, we can use a method similar to the inverse transform
method. Consider the exponential distribution with state-dependent λ. We have that if
Fλ(ai) = pi then ai = − ln(1− pi)

1
λ
. We can then obtain adjoint intervals which have a

certain probability by precomputing [bi, b
′
i] ∋ − ln(1− pi) and thus we specify command

branches pi :
bi−1

λ
≤ x ≤ b′i

λ
.

For probability measures in two variables, we consider f(·, (−∞,∞)) at first, and then
split each f([ai, ai+1], ·) again. This technique extends to any finite number k of vari-
ables. If we split each of them into a number of n parts, the support of the abstracting
distribution has a size of nk. Thus, the worst-case complexity of this method is rather
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bad, because the number of parts increases quickly with an increasing number of dimen-
sions. As an alternative, one could divide the space by spheres of similar distance. This
way, one would only need n parts, but would loose more information. However, the case
that only one or few variables change appears to be the practically relevant case for us.
It occurs in settings where the environment can be observed only with limited accuracy,
as the ones discussed in Section 4.4.

After we have transformed each stochastic guarded command into a probabilistic guarded
command, we can use the methods from the previous chapters to obtain an overapprox-
imation of the new PHA.

Corollary 4.23. Consider a PHA H, let Habs
def
= abs(H,F) for an according family

of abstraction functions F. Further, consider an abstraction Mind of ind(Habs), M def

=
abs(Habs,Mind) and a mode mReach of H. Let Reach be defined as in Theorem 4.22 and
let Cmds be the set of probabilistic guarded commands of Habs. Then

val+H,mReach
≤ val+M,Reach and val−H,mReach

≥ val−,Cmds

M,Reach .

This follows directly from Theorem 4.22 and Corollary 3.38.

4.4 Case Studies

We use the extended analysis method described above to obtain upper bounds for reach-
ability properties in several case studies. In each case, we firstly abstract stochastic
guarded commands to probabilistic guarded commands, which ProHVer can handle.
Thus, we obtain a PHA which overapproximates our SHA, as described. The transfor-
mation to PHAs is so far done manually. The methods described in Subsection 4.3.1
could however be automated further in such a way that one for instance only had to
specify the intervals into which a one-dimensional random variable is to be divided in-
stead of applying the transformation by hand. Again, we use PHAVer and our tool
ProHVer to obtain overapproximations of the reachability probabilities in the PHA.
Experiments were run on an Intel(R) Core(TM)2 Duo CPU with 2.67 GHz and 4 GB
RAM as before.

4.4.1 Thermostat

We reconsider the extended thermostat of Figure 4.1 and ask for the maximal probability
to reach Error within a given time bound T. Like the thermostat from Chapter 3, this
model features dynamics which can be described by affine differential equations, but
which is not linear. We choose a fixed splitting of the normal distribution, but vary the
refine constraints used by PHAVer (cf. Section 2.5) to analyse the model.

In Table 4.1, we give probability bounds and performance statistics. We used a refine
constraint on the variable T which models the temperature. To abstract the normal
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T
constraint length 2 constraint length 1 constraint length 0.5

build (s) states prob. build (s) states prob. build (s) states prob.
2 1 16 0.000 0 21 0.000 1 31 0.000
4 1 269 1.000 2 316 0.285 3 546 0.285
6 6 1518 1.000 10 2233 0.360 17 3797 0.360
8 21 4655 1.000 38 8261 1.000 87 16051 0.488

10 58 10442 1.000 131 20578 1.000 529 44233 0.591

Table 4.1: Thermostat results.

distribution N (T, 0.25), we used

T + {[−0.25, 0.25], (−∞,−0.25], [0.25,∞)}.

For all instances, there is a constraint length small enough to obtain a probability bound
that is the best possible using the given abstraction of the normal distribution. Smaller
constraints were of no use in this case. The drastic discontinuities in probability bounds
obtained are a consequence of how the abstraction by PHAVer works: it splits ab-
stract states into smaller abstract states when exploring the model parts reachable by
timed transitions. This is necessary to obtain reasonable results for nonlinear hybrid
automata. Using smaller constraints usually results in a better abstraction, but this is
not guaranteed. For a more thorough discussion of the abstraction used by PHAVer,
see Section 2.5.

4.4.2 Water Level Control

We consider a model of a water level control system, extended from Subsection 3.5.3.
In particular, we use this case study to demonstrate the influence which different ab-
stractions of the same continuous stochastic command have. A water tank is filled by a
constant stream of water, and is connected to a pump which is used to avoid overflow of
the tank. A control system operates the pump in order to keep the water level within
predefined bounds. The controller is connected to a sensor measuring the level of water
in the tank. A sketch of the model is given in Figure 4.3. The mode Tank models the
tank and the pump, and W is the water level. Initially, the tank contains a given amount
of water. Whenever the pump is turned off in mode Off, the tank fills with a constant
rate due to the inflow. Conversely, more water is pumped out than flows in when the
pump is on.

The controller is modelled by the part Controller. In mode Wait, the controller waits for
a certain amount of time. Upon the transition to React, it measures the water level. To
model the uncertainties in measurement, we set the variable m to a normal distribution
with expected value W (the actual water level) and standard deviation 1. According
to the measurement obtained, the controller switches the pump off or on. We remark
that this measurement is not necessarily realistic, because no filtering is involved here
to guard against measurements which are obviously far off from the real value.
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Tank Controller

Off

Ẇ=1

On

Ẇ=− 2

on? off ?

Wait

ṫ=1
∧t≤1

React

ṫ=1
∧ṁ=0
∧t≤0.1

cWR=(t≥1→t′=0
∧m′=N (W, 1))

t≥0.1→t′=0

if m≤5 then off !
if m≥8 then on!

t′=0

Init

W ′=6.5

Error

W>12∨W<1

Figure 4.3: Sketch of water level control case study.

T
Abstraction A Abstraction B Abstraction C Abstraction D

b.(s) states prob. b.(s) states prob. b.(s) states prob. b.(s) states prob.
20 3 999 0.199 3 1306 0.098 3 1306 0.136 5 1920 0.047
30 7 2232 0.283 8 2935 0.143 8 2935 0.187 16 4341 0.069
40 16 3951 0.358 20 5212 0.186 19 5212 0.255 48 7734 0.092
50 36 6156 0.425 44 8137 0.226 45 8137 0.302 111 12099 0.113
60 71 8847 0.485 89 11710 0.265 89 11710 0.358 224 17436 0.135

Table 4.2: Water level control results.

We are interested in the probability that within a given time bound T, the water level
leaves the legal interval. In Table 4.2, we give upper bounds for this probability for
different time bounds as well as the number of states in the abstraction computed by
PHAVer and the time needed for the analysis. We round probabilities to four decimal
places. For the stochastic guarded command simulating the measurement, we consider
different abstractions by probabilistic guarded commands of different precision:

A = w + {[−2, 2], (−∞, 1.9] ∪ [1.9,∞)},
B = w + {[−2, 2], (−∞, 1.9], [1.9,∞)},
C = w + {[−2.7, 2.7], (−∞, 1.2), [1.2,∞)},
D = w + {[−1.5, 1.5], [−1.5,−2], [1.5, 2], (−∞, 1.9), [1.9,∞)}.

For better comparability of the different abstractions, we visualise them in Figure 4.4.
When we refine the abstraction A to the more precise abstraction B, the probability
bound decreases. We remark that A consists of two different sets, whereas B consists of
three, as we have split (−∞, 1.9]∪ [1.9,∞) into (−∞, 1.9] and [1.9,∞). If we introduce
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A

B

C

D

−∞ −3 −2 −1 0 1 2 3 ∞

Figure 4.4: Visualisation of abstractions for water level control.

additional nondeterminism as in abstraction C, probabilities increase again. If we refine
B again into D, we obtain even lower probability bounds. The price to be paid for
increasing precision, however, is in the number of abstract states computed by PHAVer

as well as a corresponding increase in the time needed to compute the abstraction.

Manual analysis shows that, in this case study, the over-approximation of the prob-
abilities only results from the abstraction of the stochastic guarded command into a
probabilistic guarded command and is not increased further by the state-space abstrac-
tion of PHAVer.

4.4.3 Moving-block Train Control

As a more complex example of a hybrid system implementing a safety-critical control
policy, we present a model of headway control in the railway domain (Figure 4.5). A
more extensive description of the setting plus a closely related case study containing a
sampling-related bug not present in the current model appeared in a previous publica-
tion [Her+08]. In contrast to fully automated transport, which is in general simpler to
analyse (as the system is completely under control of the embedded systems) our sample
system implements safe-guarding technology that leaves trains under full human control
provided safety is not at risk. It is thus an open system, giving rise to the aforementioned
analysis problems.

Our model implements safe interlocking of railway track segments by means of a “moving
block” principle of operation. While conventional interlocking schemes in the railway
domain lock a number of static track segments in full, the moving block principle en-
hances traffic density by reserving a “moving block” ahead of the train which moves
smoothly with the train. This block is large enough to guarantee safety even in cases
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Init Error

sf≥sl−l

Follower

FreeRun

vf∈[0m
s , vmax]

∧af∈[amin, amax]
∧v̇f=af
∧ṡf=vf

∧vfvmax≤2bon(sf−auth)

Leader

MovingBlock

AutoBrake

vf∈[0m
s , vmax]

∧af=amin

∧v̇f=af
∧ṡf=vf

∧vfvmax≥2boff(sf−auth)

FreeRun

vl∈[0m
s , vmax]

∧al∈[amin, amax]
∧v̇l=al
∧ṡl=vl

Idle

ṫ=1
∧t≤8

Send

ṁ=0
∧ṫ=1
∧t≤8

vfvmax≥
2bon(sf−auth)

vfvmax≤
2boff(sf−auth)

t≥8→

0.1:t′=0

0.9:t′=0∧
auth′=m−l−sd

t≥8→m′=N (sl, σ)

auth′=800m

s′f=200m∧v′f=0m
s s′l=1400m∧v′l=0m

s

vmax=83.4m
s , l=200m, sd=400m, amin=−1.4m

s2 , amax=0.7m
s2 , bon = −0.7m

s2 , boff = −0.3m
s2 ,

Figure 4.5: Moving-block train distance control with perturbed measurement of leader
train position (using normal distribution N (sl, σ) centred around the actual
value, with standard deviation σ) and unreliable communication of resultant
movement authorities (failure probability 0.1). Error represents collision of
the two trains.

requiring emergency stops, i.e. has a dynamically changing block-length depending on
current speed and braking capabilities. There are two variants of this principle, namely
train separation in relative braking distance, where the spacing of two successive trains
depends on the current speeds of both trains, and train separation in absolute braking
distance, where the distance between two trains equals the braking distance of the sec-
ond train plus an additional safety distance (here given as sd = 400m). We study the
second variant, as employed in the European Train Control System (ETCS) Level 3.

Our simplified model consists of a leader train, a follower train, and a moving-block
control regularly measuring the leader train position and communicating a movement
authority to the follower. The leader train is freely controlled by its operator within the
physical limits of the train, while the follower train may be forced to controlled braking
if coming close to the leader. The control principle is as follows:

1. 8 seconds after communicating the last movement authority, the moving-block con-
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T
Abstraction A Abstraction B

b.(s) states probability (σ = 10, 15, 20) b.(s) states probability (σ = 10, 15, 20)
60 59 571 7.110E-19 6.216E-09 2.141E-05 63 571 1.806E-06 2.700E-03 3.847E-02
80 199 1440 1.016E-18 8.879E-09 3.058E-05 199 1440 2.580E-06 3.855E-03 5.450E-02

100 524 2398 1.219E-18 1.066E-08 3.669E-05 493 2392 3.096E-06 4.624E-03 6.504E-02
120 1455 4536 1.524E-18 1.332E-08 4.587E-05 1347 4524 3.870E-06 5.777E-03 8.063E-02
140 3024 6568 1.727E-18 1.509E-08 5.198E-05 2885 6550 4.386E-06 6.544E-03 9.088E-02
160 6783 10701 2.031E-18 1.776E-08 6.116E-05 6678 10665 5.160E-06 7.695E-03 1.060E-01

Table 4.3: Train control results.

trol takes a fresh measurement m of the leader train position sl. This measurement
may be noisy.

2. Afterwards, a fresh movement authority derived from this measurement is sent
to the follower. The movement authority is the measured position m minus the
length l of the leader train and further reduced by the safety distance sd . Due to
an unreliable communication medium, this value may reach the follower (in which
case its movement authority auth is updated to m− l − sd) or not. In the latter
case, which occurs with probability 0.1, the follower’s movement authority stays
as is.

3. Based on the movement authority, the follower continuously checks the decelera-
tion required to stop exactly at the movement authority. Due to PHAVer being
confined to linear arithmetic, this deceleration is conservatively approximated as
areq = v·vmax

2(s−auth)
, where v is the actual speed, vmax the (constant) top speed, and s

the current position of the follower train, rather than the physically more adequate,
yet nonlinear, areq = v2

2(s−auth)
of the original model [Her+08].

4. The follower applies automatic braking whenever the value of areq falls below a
certain threshold bon. In this case, the follower’s brake controller applies maximal
deceleration amin, leading to a stop before the movement authority as amin < bon.
Automatic braking ends as soon as the necessary deceleration areq exceeds a switch-
off threshold boff > bon. The thresholds bon and boff are separate to prevent the
automatic braking system from repeatedly engaging and disengaging in intervals
of approximately 8 seconds when the leading train is moving.

We consider the probability to reach the mode Error in which the follower train has
collided with the leader train. In Table 4.3, we give probability bounds and perfor-
mance results. For abstraction A we use a division of the normal distribution into
sl + {(−∞, 91], [89,∞)}. For B, we split the distribution into sl + {(−∞, 51], [49,∞)}.
We give probabilities for different values σ of the standard deviation of the measure-
ment. We modelled the measurement error using a normal distribution with expected
value sl, i.e. the current position of the leader train. In the table, we considered dif-
ferent standard deviations of the measurement. The abstraction used for each of them
can be obtained using structurally equal Markov decision processes, only with different
probabilities. Thus, we only needed to compute the abstraction once for all deviations,
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A

B

−∞ 30 40 50 60 70 80 90 100 110 ∞

Figure 4.6: Visualisation of abstractions for moving-block train control.

and just had to change the transition probabilities before obtaining probability bounds
from the abstraction. It was sufficient to split the normal distribution into two parts.
Depending on where we set the split-point, we obtained probability bounds of different
quality. Although this hybrid automaton is not linear, which implies that PHAVer

needs to over-approximate the set of reachable states, we are still able to obtain useful
probability bounds when using an adequate abstraction, without refine constraints.

4.5 Related Work

There are a number of existing notions of HAs which also feature continuous distribu-
tions. Most of them do not contain nondeterminism. All of them are built on specialised
solvers and do not (in the end) rely on existing solvers for nonprobabilistic HAs.

Davis [Dav84] introduced piecewise-deterministic Markov processes (PDMPs). The
continuous-time transitions of this model are described by ordinary differential equa-
tions. State changes are triggered, on the one hand, spontaneously according to a gen-
eralisation of exponential distributions, similarly to continuous-time Markov chains. On
the other hand, jumps can be forced in case a differential equation is about to violate a
certain invariant. Other notions of stochastic HAs comprise stochastic differential equa-
tions [Arn74; BL06a; Buj04; BLB05; BL06b; BLL08]. They can incorporate random
perturbations, such as Brownian motion, into the continuous dynamics. As PDMPs,
they usually do not contain nondeterminism and their solution methods are rather dif-
ferent from the ones of nonstochastic HAs. There are some versions of these models
with nondeterministic decisions [AG97], but the solution methods for these models are
rather different than those of the stochastic HAs models discussed before.

Solution methods for stochastic HAs without nondeterminism but with stochastic dif-
ferential equations often rely on grid-based methods. These methods subsume concrete
states of a stochastic HA and in turn approximate the original model by finite discrete-
time Markov chains [HLS00; PH06]. It is proven that the results of analyses of these
Markov chains converge to the result in the original hybrid models, but there are no
exact error bounds. Related solution methods assume that the model has already been
discretised in time, but still has a continuous state space [Aba+08; Aba+10; AKM11;
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TA12]. Again, for the step from the continuous-time model to the discrete-time model no
error bounds exist, but for the step from a discrete-time, continuous-state to a discrete-
time, discrete-state model error bounds do exist.

The grid-based approach is similar to our approach insofar as it subsumes concrete states
to abstract ones. Differently from ours, this abstract model is, in most cases, again a
purely stochastic model without nondeterminism, from which an error has to be added
or subtracted to obtain over- or underapproximations of the actual value. As we abstract
to nondeterministic models, the maximal reachability probabilities in the abstract model
are guaranteed to be no lower than the ones of the concrete model, and similarly for
the minimal ones. Thus, in contrast to the methods discussed here, we do not explicitly
compute the error bounds.

There are also some works which do not rely on a grid. Althoff et al. consider a method
[ASB08] in which they use zonotopes to compute overapproximations of the states in
which a system described by a stochastic differential equation will remain with a sufficient
probability. Other methods use Lyapunov functions [JP09] or barrier certificates [PJP07]
to decide safety properties.

The NLMPs we use as our semantical model have been developed by Wolovick et al.
[D’A+09; DTW12; Wol12].

4.6 Conclusion

We have extended our basic PHA model of Chapter 3 by continuous distributions, thus
allowing to faithfully model a class of relevant reals-world systems. In particular, this
approach is a natural model of perturbed measurement processes, as was demonstrated
by a number of case studies. Because PAs do not allow for the specification of con-
tinuous distributions, we had to change our underlying semantical model to NLMPs.
The continuous distributions raised questions of measurability, which did not occur in
PAs. Because of this, the formulation of the NLMP model and its properties was more
complicated than previously. Also, when describing the semantics of SHAs in terms of
NLMPs, it was no longer obvious that this semantics indeed fulfils all the requirement of
an NLMP, as it was for PAs. To guarantee that it is, we put measurability restrictions
on the system components, and showed that their measurability implies the measura-
bility of the complete system. We have described how we can overapproximate SHAs
by PHAs, and have proven the correctness of this abstraction. As we already have de-
veloped an abstraction framework for this restricted class of models, we concluded that
we are now able to decide properties of general SHAs, and demonstrated our practical
ability to do so on a number of case studies, one of which was a complex model of a
real-world railroad coordination system.

The overall abstraction scheme is given in Figure 4.7. It thus extends Figure 3.8.
For clarity we have left out the steps concerning the time-restricted semantics (cf.
Definition 2.16 and Definition 3.22) of PHAs, which is used as an intermediate step
of the abstraction of PHAs.
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H G=
abs(H,F)

ind(G)

M∈Abs(ind(G),A,T)

JHK JGK abs(H,M)

Definition 4.8
val+JHK,mReach×Rk

Definition 3.11
val+JGK,mReach×Rk

Definition 3.11
val+abs(H,M),ReachA

Definition 4.8
val−,Cmds

JHK,mReach×Rk

Definition 3.12
val−,Cmds

JGK,mReach×Rk

Definition 3.12
val−,Cmds

abs(H,M),ReachA

Theorem 4.22
≤

Theorem 3.31
≤ ≤ Algorithm 3.3

Theorem 4.22
≥

Theorem 3.32
≥ ≥ Algorithm 3.3

Definition 4.20 Definition 3.34

Definition 4.14 Definition 3.22

Definition 2.24

Definition 3.35

Figure 4.7: Abstraction scheme for SHAs.
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5
Partial Control

In this chapter, we focus on probabilistic hybrid automata which are under our partial
control. We divide the nondeterminism into two parts, one where we are in control
and another which is assumed to be controlled by a possibly malevolent environment.
In addition, we still have complex dynamics as well as probabilistic choices. In the
setting we analyse, we assume that we are in control of the guarded commands which
we can execute to influence the environment, and can decide to wait for a specific
amount of time. The environment can then choose the exact effect of the guarded
command, or of the timed transition. We chose this kind of division between the two
types of nondeterminism, because it is a very natural one: mode-switching controllers
of hybrid systems are often realised as digital circuits with a finite number of possible
outputs, which corresponds to the finite number of commands between which it can
choose. On the other hand, a controller can silently wait for a given time, during which
continuous values of the environment (temperature, level of water in a tank, etc.) are
changed. We then show how we can use results in the abstraction of such systems to
synthesise controllers which can steer a system thus to guarantee bounds on reachability
probabilities.

In Section 5.1 we show how probabilistic automata can be interpreted as probabilistic
games. We also define the optimal values of reachability properties which a controller
can enforce against a most malevolent environment. In Section 5.2 we discuss an in-
terpretation of probabilistic hybrid automata as partially controllable systems and give
their semantics in terms of a probabilistic game. Then, in Section 5.3 we show how
we can obtain suitable abstractions, which are finite games. Section 5.4 will discuss
how properties can be decided once the abstraction has been computed and Section 5.5
will discuss how we can then use these results to synthesise controllers for the concrete
system. In Section 5.6 we apply the method on a case study. Afterwards, Section 5.7
discusses related work. Section 5.8 concludes the chapter.

5.1 Game Interpretation of Probabilistic Automata

As in Chapter 3, our semantical models are PAs. However, we interpret the transition
matrix in a different way. Instead of assuming that the entire nondeterminism is resolved
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by a single scheduler, we assume that one instance chooses between the different possible
actions, and another instance is then responsible for choosing the exact effect of an action.
Both choices combined in turn yield a scheduler in the previous sense.

Definition 5.1. Consider a PA M = (S, s,Act , T ). A player-con strategy is a function
σcon : Path

fin
M → Distr(Act). We require, for each β ∈ Pathfin

M and a ∈ Act , that if
σcon(β)(a) > 0 then we have T (last(β), a) 6= ∅. A player-env strategy is a function
σenv : (Path

fin
M × Act) → Distr(Distr(S)). We require that if T (last(β), a) 6= ∅ and

σenv(β, a)(µ) > 0 then µ ∈ T (last(β), a). By Stratwho
M for who ∈ {con, env}, we denote

the set of all player-who strategies.

A player-con strategy σcon is called simple if it only maps to Dirac distributions and if for
all β, β ′ ∈ Pathfin

M with last(β) = last(β ′) we have σcon(β) = σcon(β
′). We can interpret

it as being of the form σcon : S → Act . A player-env strategy σenv is called simple if
it only maps to Dirac distributions and if for all β, β ′ ∈ Pathfin

M with last(β) = last(β ′)
and a ∈ Act we have σcon(β, a) = σcon(β

′, a). We can interpret it as being of the form
σcon : (S,Act) → Distr(S). By Strat

who,simple
M for who ∈ {con, env}, we denote the set of

simple player-who strategies.

The joint scheduler join(σcon, σenv) ∈ SchedM of a player-con strategy σcon and a player-
env strategy σenv is defined so that for β ∈ Pathfin

M, a ∈ Act and µ ∈ Distr(S) we
have

join(σcon, σenv)(β)((a, µ))
def

= σcon(β)(a)σenv(β, a)(µ).

A player-con strategy together with a player-env strategy is thus sufficient to determine
the stochastic behaviour of a PA.

Because player con is responsible for choosing the actions, for fairness to hold, we require
it to ensure that the behaviour of the model is fair with probability 1, regardless of what
player env does.

Definition 5.2. A player-con strategy σcon ∈ Strat conM of a PA M is called Act fair-fair
if for all player-env strategies σenv ∈ Strat envM we have

PrM,join(σcon ,σenv)(Path
Act fair
M ) = 1.

By Strat
Act fair
M we denote the set of all Act fair-fair player-con strategies of M.

With these preparations, we can define the extremal values over all possible resolutions
of strategies.

Definition 5.3. For a PA M = (S, s,Act , T ), a set Reach ⊆ S of states, and a subset
Act fair ⊆ Act of the actions of M and for σcon ∈ Strat conM and σenv ∈ Strat envM we define

valσcon,σenv

M,Reach

def

= val
join(σcon ,σenv)
M,Reach .

Then, let

val+,−
M,Reach

def

= sup
σcon∈StratconM

inf
σenv∈StratenvM

valσcon,σenv

M,Reach and
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val−,+,Actfair
M,Reach

def
= inf

σcon∈Strat
Actfair
M

sup
σenv∈StratenvM

valσcon,σenv

M,Reach .

We use the fairness restriction only if player con minimises. The reason is that we will
later on use the game interpretation of PAs to build a game-based semantics of PHAs.
There, if player con maximises, it has no interest in choosing nonfair behaviours (see the
discussion in Section 2.2 on time-convergent behaviours). In Definition 5.3, val+,+

M,Reach

and val−,−,Actfair
M,Reach , that is values in which the two players collaborate, are left out, because

these values would be the same as the ones of Definition 3.11 and Definition 3.12.

Example 5.4. Reconsider the PA M of Figure 3.1 and let Reach
def

= {s2}. We want to
compute val+,−

M,Reach . Now, player con, who has control over the choice of actions, tries to
maximise the probability to reach Reach, whereas player env, who controls the remaining
choices, tries to minimise it.

It turns out that we have val+,−
M,Reach = 20

21
≈ 0.952: in s0, the best choice for player

con is the action a. Here, there is only one choice for player env left. By a repeated
choice of this transition, s2 is reached with probability 2

3
, whereas s1 is reached with

probability 1
3
. In contrast to the maximising scheduler of Example 3.13, for player con

it does not make sense to choose action a in s1, because it has no control about the
concrete successor distribution. If it had choosen this action, player env would choose
the distribution leading back to s1 with certainty instead of the one to s0. Instead, in
s1 player con should repeatedly choose b. Under the condition that we are in state s1,
this leads to a probability of 6

7
to reach s2. In total, the reachability probability is thus

2
3
+ 1

3
· 6
7
= 20

21
≈ 0.952. △

5.2 Controlled Probabilistic Hybrid Automata

Our high-level model is exactly the same as the one of Definition 3.20. However, we
interpret it in a different way. We assume that we are in control of whether we let a
certain amount of time pass, or whether to execute a certain action. Then, a possibly
malevolent environment resolves the internal nondeterminism of the timed transition or
the command chosen. This is then followed by a probabilistic choice.

Example 5.5. In Figure 5.1 we sketch a variant of the PHA of Figure 3.3. In contrast
to the former example, the automaton does not have an Error mode. Instead, we assume
that it is broken from the beginning, and needs to be steered into the failsafe mode Safe
as quickly as possible.

The automaton now contains more timed behaviours. For instance, in mode Check,
instead of Ṫ = −T

2
, the behaviour of the temperature is now given as −0.7T ≤ Ṫ ≤

−0.3T . In Figure 5.2 we depict the possible behaviours if we are in the state with mode
Check and have a temperature of T = 5 and a timer value of t = 0. From the graph we
see that if player con chooses to wait for time 0.25, player env can choose a temperature
between about 4.20 and 4.64. △
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Init

Heat

1.6≤Ṫ≤2.4
∧T≤10
∧t≤3

Cool

−1.4T≤Ṫ ≤ −0.6T
∧T≥5

Check

−0.7T≤Ṫ≤− 0.3T
∧t≤1

Safe

cHCo=(T≥9→T ′=T∧t′=0)

cCoH=(T≤6→T ′=T∧t′=0)

cIH=(true→9≤T ′≤10∧t′=0)

cHCh=(t≥2→T ′=T∧t′=0)

cCh=(t≥0.5→

0.3:T ′=T∧t′=0,

0.7:T ′=T∧t′=0)
cS

Figure 5.1: Controlled PHA modelling a thermostat.
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Figure 5.2: Post operator of PHA with partial control.

We consider the division of the two choices in which player con chooses commands or
time durations whereas player env chooses the exact outcome as natural: the controller
of a hybrid system is often given as a digital circuit, which can thus choose to between
a finite number of different outputs, corresponding to the guarded commands. Using
a stopwatch, it can also choose to wait for a specific time duration. The environment
on the other hand is usually continuous, which is taken into account by allowing it to
choose from the remaining continuous nondeterminism.

The definition of values in this interpretation is then as follows.

Definition 5.6. Let H = (M, k,m, 〈Postm〉m∈M ,Cmds) be a PHA with a mode mReach .
We define

val+,−
H,mReach

def

= val+,−
JHK,{mReach}×Rk and val−,+

H,mReach

def

= val−,+,Cmds

JHK,{mReach }×Rk .

As in Chapter 3, we also consider the time-restricted semantics and prove that it is
equivalent to the semantics without time restrictions. In Chapter 3 we did so, because
the abstractions we obtain from hybrid solvers are abstractions for the time restricted
semantics, rather than for the original one. In this chapter, the time restrictions will
also be used to obtain more precise results in the later abstraction. Thus, in contrast to
the basic setting, it is even advantageous to consider the time restriction, rather than
just necessary because of the way the hybrid solvers work.

Lemma 5.7. Given a PHA H with commands Cmds, a set of states ReachJHK =
ReachJH,TK ⊆ M × Rk, and a time restriction T we have

val+,−
JHK,ReachJHK

= val+,−
JH,TK,ReachJH,TK

and val−,+,Cmds

JHK,ReachJHK
= val−,+,Cmds

JH,TK,ReachJH,TK
.
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Proof. The result follows similarly to Lemma 3.26: assume T = 〈tm〉m∈M and that the
dimension of H is k. Consider a situation where we are in mode m with variable valuation
vstart of H and player con chooses a time duration of t with tm(vstart) < t in the semantics
without time restriction. In the time-restricted semantics, player con can use a similar
construction as the time-restricted scheduler T(σ) in Definition 3.25. By definition of
the post operator and the time restriction (cf. Definition 2.12 and Definition 2.16), there
is a function f : Rk → R≥0 for which

• f(v) ∈ tm(v) for all v ∈ Rk,

• V0
def

= {vstart},
• Vi+1

def
=
⋃

v∈Vi
Postm(v , f(v)) for i ≥ 0, and

• the fixed point of the sequence Vi for i → ∞ is V ,

and we have
Postm(vstart, t) = V.

This means that player con can divide the duration t into a series of smaller time steps,
which lead to the same set of states being potentially reached. From this, player env
has the same choice of the actual successor state. As this division of t into several
shorter durations is also possible in the original model, it also does not increase the
power of the controller player. Because of this, the reachability probabilities in both
models agree.

5.3 Abstractions

As in Chapter 3, we want to estimate bounds on the behaviour of the controlled PHA.
In addition, we want to synthesise a strategy in the abstraction which is guaranteed
to maintain a certain bound also in the concrete model. To do so, we have to extend
the previous definition of an abstraction slightly, to take into account that we have two
competing players.

Definition 5.8. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds), an abstract state
space A = {z1, . . . , zn} of corresponding dimension and modes as well as a time restric-
tion T = 〈tm〉m∈M . A game abstraction

M = (A ⊎ {⊥}, z0,Cmds ⊎ {τ}, T )

has to fulfil the requirements of the abstractions in Definition 2.24. In addition, it con-
tains a new state ⊥ and we add the requirements

• for z ∈ A for which there is s = (m, v) ∈ z so that for all t ≥ 0 we have
Postm(v , t) = {v}, there is [z′ 7→1] ∈ T (z, τ) where s ∈ z

′ ∈ A,

• if for some z ∈ A and c = (g → p1 : u1 + . . .+ pn : un) ∈ Cmds we have z \ g 6= ∅,
then we have [⊥7→1] ∈ T (z, c), and

• for all a ∈ Cmds ⊎ {τ} we have T (⊥, a)
def

= {[⊥7→1]}.
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By GAbs(H,A,T) we denote the set of all game abstractions.

The state ⊥ and the transitions to this state are used to prevent that player con chooses
to execute c in an abstract state z which contains a state s in which c cannot actually
be executed. In principle, we could also have set T (z, c)

def

= ∅ in such a case. Basically,
having a transition to ⊥ has the same effect: we will define values so that transitions to
⊥ are always most disadvantageous for player con, implying that player env will always
choose such a transition in case player con executes c in the situation above. Thus,
the transition has the same effect as disabling the command completely. However, we
still want to use the LTSs computed by usual hybrid system solvers, and these solvers
compute overapproximations and not underapproximations of the actual transitions.
The timed self loops we introduce in Definition 5.8 are used for the same effect.

Because we are now considering two competing players, we can no longer use simulation
relations to prove properties of abstractions. Instead, we will give a number of interme-
diate models, for which we show that they do not improve the chances of player con to
win the game. Finally, this will allow us to build a chain of inequations allowing us to
show that the abstraction yields safe bounds.

The first intermediate model is obtained by copying the states of the semantics for each
abstract state they are contained in. The transitions between the new states are basically
the same.

Definition 5.9. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds), a time restric-
tion T = 〈tm〉m∈M , and a game abstraction M = (A ⊎ {⊥}, z,Cmds ⊎ {τ}, T ) ∈
GAbs(H,A,T). We say that

M× JH,TK
def

= (Scopy, scopy,Act , Tcopy)

is the M-copied semantics of H with time restriction T if

• Scopy
def

= {(z, s) | z ∈ A ∧ s ∈ z},
• scopy

def

= (z, (m, 0, . . . , 0)),

• for all (z, s) ∈ Scopy and all c = (g → p1 : u1 + . . . + pn : un) ∈ Cmds with s ∈ g

and

– µ = [s′1 7→p1, . . . , s
′
n 7→pn] ∈ {[s′1 7→p1, . . . , s

′
n 7→pn] | s′1 ∈ u1(s), . . . , s

′
n ∈ un(s)},

– [z′1 7→p1, . . . , z
′
n 7→pn] ∈ Lift

A
(µ) ∩ T (z, c) with s′i ∈ z

′
i for i ∈ {1, . . . , n}

we have
[(z′1, s

′
1) 7→p1, . . . , (z

′
n, s

′
n) 7→pn] ∈ Tcopy((z, s), c).

• For all (z, s) ∈ Scopy with s = (m, v) and all t ∈ R≥0

– let tT
def

= min{t, tm(v)},
– consider s′ = (m, v ′) with v ′ ∈ Postm(v , tT),

– then if s′ ∈ z, we require [(z, s′) 7→1] ∈ Tcopy((z, s), t),

– else, for all z′ ∈ T (z, τ) with s′ ∈ z
′ we require that [(z′, s′) 7→1] ∈ Tcopy((z, s), t).
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There are no other transitions in Tcopy than the ones described above.

As we have only copied the states of the semantics a few times, the bounds on reachability
probabilities stay the same. However, we will only need the direction that they do not
improve the reachability values for player con.

Lemma 5.10. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with a mode mReach .

Let ReachJH,TK
def

= {mReach} × Rk and ReachM×JH,TK
def

= {(z, s) ∈ A × (M × Rk) | s ∈
z ∩ ReachJH,TK}. Then we have

val+,−
JH,TK,ReachJH,TK

≥ val+,−
M×JH,TK,ReachM×JH,TK

and

val−,+,Cmds

JH,TK,ReachJH,TK
≤ val−,+,Cmds

M×JH,TK,ReachM×JH,TK
.

Proof. We consider the case

val−,+,Cmds

JH,TK,ReachJH,TK
≤ val−,+,Cmds

M×JH,TK,ReachM×JH,TK
.

✞

✝

☎

✆5.1

The other one is similar but simpler, because we do not have to take fairness into
account. To show the validity of Equation 5.1, it suffices to show that for each σcon,copy ∈
StratCmds

M×JH,TK there is σcon ∈ StratCmds

JH,TK with

sup
σenv∈ReachM×JH,TK

valσcon,σenv

JH,TK,ReachJH,TK
≤ sup

σenv,copy∈StratenvJH,TK

val
σcon,copy,σenv,copy

M×JH,TK,ReachM×JH,TK
.

✞

✝

☎

✆5.2

Consider σcon,copy ∈ StratCmds

M×JH,TK. We can construct σcon,impr ∈ StratCmds

M×JH,TK so that for

all β, β ′ ∈ Pathfin
M×JH,TK with

β = (z0, s0) a0 µ0 (z1, s1) a1 µ1 . . . an−1 µn−1 (zn, sn),

β ′ = (z′0, s0) a0 µ0 (z
′
1, s1) a1 µ1 . . . an−1 µn−1 (z

′
n, sn),

✞

✝

☎

✆5.3

that is for finite paths which only differ in the components of abstract states, we have

σcon,impr(β) = σcon,impr(β
′),

and

sup
σenv,copy∈StratenvJH,TK

val
σcon,impr,σenv,copy

M×JH,TK,ReachM×JH,TK
≤ sup

σenv,copy∈StratenvJH,TK

val
σcon,copy ,σenv,copy

M×JH,TK,ReachM×JH,TK
.

This is the case because the abstract state component does not influence the reachability
probability, so that σcon,impr can choose the better alternative of the two paths β and β ′.
As there are only finitely many abstract states, this argument carries over to more than
two of such paths. Fairness is maintained by this construction, because otherwise the
original strategy σenv,copy could not have been fair before: there would be a strategy of
player env so that the probability is concentrated in the paths from which the decisions
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are taken over in σcon,impr. In turn, if σenv,copy was not fair, then the probability of fair
paths would be below 1 when using the player env strategy and σenv,copy.

Because of this, it suffices to show Equation 5.2 for these kinds of strategies. We can
then define σcon ∈ StratCmds

JH,TK for which with β in the form of Equation 5.3 and

βJH,TK
def

= s0 a0 µ0 s1 a1 µ1 . . . an−1 µn−1 sn

we have
σcon(βJH,TK)

def

= σcon,impr(β).
✞

✝

☎

✆5.4

We can consider an infinite-state model JH,TKσcon in which we have integrated the
decisions of σcon into the model, which means that for all σenv ∈ Strat envJH,TK we have

valσenv

JH,TKσcon
= valσcon,σenv

JH,TK ,
✞

✝

☎

✆5.5

and a corresponding construction is possible to obtain (M× JH,TK)σcon,impr
from M×

JH,TK. Also, JH,TKσcon and (M× JH,TK)σcon,impr
simulate each other in the notion of

Definition 3.15, which by Lemma 3.17 means that

sup
σenv∈StratenvMσcon

valσenv

JH,TKσcon
= sup

σenv,copy∈Stratenv(M×JH,TK)con,impr

val
σenv,copy

(M×JH,TK)σcon,impr
.

✞

✝

☎

✆5.6

From Equation 5.5 and Equation 5.6 we can conclude the validity of Equation 5.2.

In the next intermediate step, player con can no longer choose to wait for an exact time
duration. Instead, it can only choose whether to execute a command or to let time pass.
If it decides to let time pass, a sequence of timed transitions is executed, each with the
maximal time allowed by the time restriction. These transitions are repeated until the
current abstract state is left, if this is possible. Consider the sequence of state sets Fi

which are reached by the i-th timed transition. The valuations of continuous model
variables which are reached when a timed transition is chosen can be specified using the
fixed point F of this sequence.

This intermediate step limits the power of player con, as it can no longer choose the
exact time to wait. On the other hand, in case an abstract state is always eventually left
by the sequence of timed transitions described above, we do not have to add a timed self
loop to this abstract state. If we were not able to leave out most of the self loops, we
would obtain very bad bounds (that is, 0 in most cases) on the reachability probabilities
in case of a minimising player env. This player would then always choose to loop back
to the abstract state in case player con chooses to let time pass.

Definition 5.11. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds), a time restric-
tion T = 〈tm〉m∈M , and a game abstraction M = (A ⊎ {⊥}, z,Cmds ⊎ {τ}, T ) ∈
GAbs(H,A,T). We say that

(M, τ)× JH,TK
def

= (Scopy, scopy,Cmds ⊎ {τ}, Tcopy)
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is the M-copied τ -semantics of H. Here, Scopy, scopy and the command transitions are
as in the M-copied semantics.

Concerning the timed transitions, for s = (m, v) ∈ z we define F as the fixed point of
the sequence

F 0 def

= {v}, F n+1 def

= (F n \ z) ∪
(

⋃

v ′∈Fn∩z

Postm(v
′, tm(v

′))

)

.

Consider an arbitrary s′ ∈ {m} × F . For all [z′ 7→1] ∈ T (z, τ) with s′ ∈ z
′ we require

that [(z′, s′) 7→1] ∈ Tcopy((z, s), τ). These are all transitions of Tcopy((z, s), τ).

As we limit the choices of player con, the bounds get worse.

Lemma 5.12. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with a mode mReach .

Let ReachM×JH,TK
def

= Reach(M,τ)×JH,TK
def

= {(z, s) ∈ A× (M ×Rk) | s ∈ z∩ ({mReach} ×
Rk)}. Then we have

val+,−
M×JH,TK,ReachM×JH,TK

≥ val+,−
(M,τ)×JH,TK,Reach(M,τ)×JH,TK

and

val−,+,Cmds

M×JH,TK,ReachM×JH,TK
≤ val−,+,Cmds

(M,τ)×JH,TK,Reach(M,τ)×JH,TK
.

Proof. We remark that F (s, τ) is well defined, that is the fixed point of Definition 5.11
always exists. This holds because of requirements 2 and 3 of Definition 2.12.

The transitions resulting from commands are the same in both models. Concerning
the timed transitions, the choice of player con is restricted in (M, τ)× JH,TK: instead
of choosing an exact time duration, the player can only choose τ to execute a timed
transition. The resulting transition defined by the fixed point F corresponds to forcing
player con to let a maximal amount of time pass repeatedly, until either the current
abstract state is left or letting time pass has no further effect. Player env can choose
the exact target of these transitions. As this limits the power of player con but increases
the one of player env, the inequations follow.

The next model we consider consists of several copies of a game abstraction.

Definition 5.13. Consider a game abstraction M = (A ⊎ {⊥}, z,Act , T ) of a PHA
H = (M, k,m, 〈Postm〉m∈M ,Cmds). The S-copied abstraction is defined as

M× S
def

= (Scopy ⊎ {⊥}, scopy,Act , Tcopy),

where for S
def

= M × Rk we have

• Scopy
def

= {(z, s) | z ∈ A ∧ s ∈ z},
• scopy

def

= (z, (m, 0, . . . , 0)),

• for all (z, s) ∈ Scopy, a ∈ Act , [z1 7→p1, . . . , zn 7→pn] ∈ T (z, a) and s′i ∈ z
′
i for

1 ≤ i ≤ n, we have {[(z′1, s′1) 7→p1, . . . , (z
′
n, s

′
n) 7→pn]} ∈ Tcopy((z, s), a),
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• for all z ∈ A and a ∈ Act , if [⊥7→1] ∈ T (z, a) then [⊥7→1] ∈ Tcopy(z, a),

• for all a ∈ Act we have Tcopy(⊥, a)
def

= {[⊥7→1]}, and

• there are no other transitions than the ones required above.

Basically, for each state s ∈ z in M, the state (s, z) of Mcopy contains the same possible
behaviours as z. If there is a transition from z to z

′ in M, in Mcopy we have a transition
with the same action and probability from (s, z) to (s′, z′), for all s′ ∈ z

′. In the M-
copied semantics in Definition 5.9, we have already used a similar construction in which
we have constructed a model that contains multiple copies of the states of the semantics.

Indeed, Mcopy is just a blown-up version of M, which is however easier to compare
to the M-copied τ -semantics. The probability bounds which player con can enforce in
Mcopy are worse than in the M-copied τ -semantics, as the model limits the power of
this player further.

Lemma 5.14. For a game abstraction M = (A ⊎ {⊥}, z,Cmds ⊎ {τ}, T ) of a PHA H
with a mode mReach and Reach(M,τ)×JHK

def

= ReachM×S
def

= {(z, s) ∈ A× (M × Rk) | s ∈
z ∩ {mReach} × Rk} we have

val+,−
(M,τ)×JHK,Reach(M,τ)×JHK

≥ val+,−
M×S,ReachM×S

and

val−,+,Cmds

(M,τ)×JHK,Reach(M,τ)×JHK
≤ val−,+,Cmds

M×S,ReachM×S⊎{⊥}.

Proof. We compare the two models

(M, τ)× JH,TK = (S, s,Act , T ) and M× S = (S ⊎ {⊥}, s,Act , T ′).

By their definition, we have for all s ∈ S and a ∈ Act that T (s, a) ⊆ T ′(s, a), and if
T (s, a) = ∅ then [⊥7→1] ∈ T ′(s, a). From this and by the definition of the set of states
to reach, in each state of S, in M× S we leave more choices for player env and never
add transitions which are an advantage to player con. Because of this, we can conclude
the inequations.

As the S-copied abstraction consists of copies of a game abstraction, the reachability
values in the two models are the same.

Lemma 5.15. Consider a game abstraction M = (A ⊎ {⊥}, z,Cmds ⊎ {τ}, T ) and
its S-copied abstraction M × S = (S ′ ⊎ {⊥}, s′,Cmds ⊎ {τ}, T ′) of a PHA H with a

mode mReach . Then we have that for ReachM
def

= {(m, ζ) ∈ A | m = mReach} and

ReachM×S
def

= ReachM × S we have

val+,−
M,ReachM

≤ val+,−
M×S,ReachM×S

and

val−,+,Cmds

M,ReachM⊎{⊥} ≥ val−,+,Cmds

M×S,ReachM×S⊎{⊥}.

Proof. The proof is similar to the one of Lemma 5.10. We consider the case

val−,+,Cmds

M,ReachM⊎{⊥} ≥ val−,+,Cmds

M×S,ReachM×S⊎{⊥}.
✞

✝

☎

✆5.7
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The other one is similar but simpler, because we do not have to take fairness into account.
To show the validity of Equation 5.7, it suffices to show that for each σcon ∈ StratCmds

M

there is σcon,copy ∈ StratCmds

M×S with

sup
σenv∈StratenvM

valσcon,σenv

M,ReachM⊎{⊥} ≥ sup
σenv,copy∈StratenvM×S

val
σcon,copy,σenv,copy

M×S,ReachM×S⊎{⊥}.
✞

✝

☎

✆5.8

Given σcon, we define σcon,copy with

σcon,copy(βcopy)(a)
def

= σcon(β)(a)

for β ∈ Pathfin
M and βcopy ∈ Pathfin

M×S where

β = z0 a0 µ0 . . . zn−1 an−1 µn−1 zn and

βcopy = (z0, s0) a0 µ0,copy . . . (zn−1, sn−1) an−1 µn−1,copy (zn, sn),

and where for all i ≥ 0 we have si ∈ zi and µi,copy = [(z′1, s
′
1) 7→ p1, . . . , (z

′
1, s

′
m) 7→ pm]

for µi = [z′1 7→ p1, . . . , z
′
1 7→ pm] where s′j ∈ z

′
j for j with 1 ≤ j ≤ m.

By construction, if σcon ∈ StratCmds

M then we have σcon,copy ∈ StratCmds

M×S. We can consider
an infinite-state model Mσcon in which we have integrated the decisions of σcon into the
model, which means that for all σenv ∈ Strat envM we have

valσenv
Mσcon

= valσcon,σenv

M ,
✞

✝

☎

✆5.9

and a corresponding construction is possible to obtain (M × S)σcon,copy from M × S.
Also, Mσcon and (M × S)σcon,copy simulate each other in the notion of Definition 3.15,
which by Lemma 3.17 means that

sup
σenv∈StratenvMσcon

valσenv
Mσcon

= sup
σenv,copy∈StratenvMσcon

val
σenv,copy

(M×S)σcon,copy
.

✞

✝

☎

✆5.10

From Equation 5.9 and Equation 5.10 we can conclude the validity of Equation 5.8.

With the definitions and lemmas above, we can now state the main result of this chapter.
It allows us to reason about the bounds on reachability values we can enforce given a
partially malevolent and partially probabilistic environment.

Theorem 5.16. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds), a game abstrac-

tion M = (A⊎ {⊥}, z,Cmds ⊎ {τ}, T ) and a mode mReach . Let Reach
def

= {(m, ζ) ∈ A |
m = mReach}. Then

val+,−
H,mReach

≥ val+,−
M,Reach and val−,+

H,mReach
≤ val−,+,Cmds

M,Reach⊎{⊥}.

Proof. We only consider the first inequation, as the second one is analogous. We have
to show that for ReachJHK

def

= {mReach} × Rk and ReachM
def

= Reach we have

val+,−
JHK,ReachJHK

≥ val+,−
M,ReachM

.
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This follows by the following chain of inequations, derived from the previous lemmas:

val+,−
JHK,ReachJHK

Lem. 5.7

= val+,−
JH,TK,ReachJHK

Lem. 5.10

≥ val+,−
M×JH,TK,ReachM×JH,TK

Lem. 5.12

≥ val+,−
(M,τ)×JH,TK,Reach(M,τ)×JH,TK

Lem. 5.14

≥ val+,−
M×S,ReachM×S

Lem. 5.15

≥ val+,−
M,ReachM

.

Example 5.17. In Figure 5.3, we sketch the chain of abstraction used in the proof
of Theorem 5.16. For this, we abstract the PHA of Figure 5.1. As the semantics is
uncountably large, we are only able show a small part of the semantics for the model.

In the part JHK, we show a piece of the semantics of mode Check. All the states are
thus of the form (Check, t, T ) which (for compactness of the drawing) we show only as
(t, T ). We also round the temperature values to just one decimal place, which suffices for
this example. Thus, for instance in the state (0, 5) we are in mode Check, have a local
timer value of t = 0 and a temperature of T = 5. In this state, we can choose to wait,
for instance, for 0.25 time units. The environment can then choose the exact outcome
of this timed transition, which means that we can move to (0.25, 4.2), (0.25, 4.6), or to
one of the states with a temperature between 4.2 and 4.6. We could also choose to wait
for time 0.5, then possibly ending up in (0.5, 4.3), or any other time value.

In JH,TK we have applied a time restriction of 0.25 in some of the states, thereby
removing some of the timed transitions.

In M × JH,TK, we have built the M-copied semantics. Most states shown are only
contained in one abstract state, but (0.5, 4.0) is contained in both z2 and z3. If in the
game abstraction M we have transitions from z1 to both of them, we also have two
corresponding transitions here.

Then, in (M, τ)×JH,TK we give the M-copied τ -semantics. As seen, we no longer have
control about the exact time, but instead are only given the action τ . Previously, we had
a transition from (z1, 0, 5) to (z1, 0.25, 46) from which we could then reach (z2, 0.5, 4.0)
and (z3, 0.5, 4.0). Because of the fixed point construction, we now rather have direct
transitions from (z1, 0, 5) to (z2, 0.5, 4.0) and (z3, 0.5, 4.0).

In the S-copied abstraction M×S, we have a few more timed transitions. In the example
here, the only additional transition given is from (z1, 0.25, 4.6) to (z0, 0.25, 4.2), which
by the definition of the S-copied abstraction is indeed necessary. The definition of the
game abstraction would allow to have more additional transitions, for instance it would
be perfectly legal to have one from (z4, 1, 3.7) to (z0, 0.25, 4.2).

Finally, M is the game abstraction of H. The difference to the previous model is that
we now have transitions directly between abstract states rather than between pairs of
concrete and abstract states.
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The example shows why the time restriction allows to obtain tighter bounds. If we had
applied the abstraction without the time restrictions, we would have more t-labelled tran-
sitions in the final abstraction. For instance, because we can move from (0, 5) to (1.37)
by letting time 1 pass, we would have a transition from z1 to z4, in addition to the exist-
ing ones. Now, because we can only choose whether to execute τ or a command, player
env is free to choose z4 as the successor state, even though we intended to wait for a
shorter time than 1.

For the same reason, the fixed point construction is in some way an advantage for player
con, although it restricts the choices of player con and thus initially decreases the chance
of player con to win the game. Without this construction, we would still have a τ -labelled
transition from (z1, 0, 5) to (z1, 0.25, 4.6) in (M, τ)×JH,TK. This transitions would have
to be represented by a τ -labelled self loop in the abstraction, leading to bad probability
bounds in case player env is the minimising player. △

5.3.1 Computing Abstractions

We have defined the game abstraction in Definition 5.8, and previously in Subsection 3.3.1
we already described how we can obtain abstractions for PHAs without control. To
transfer the mechanism to the game setting, we have to add the missing behaviours
involving ⊥ described in Definition 5.8. For this, we have to extend the induced non-
probabilistic hybrid automaton accordingly, so that we can reconstruct the behaviours
of the abstraction of this automaton.

Definition 5.18. The induced game HA of a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds)
is defined as

gind(H)
def

= (M ⊎ {m⊥}, k,m, 〈Postgind,m〉m∈M ,Cmdsgind).

Let S
def

= (M ⊎ {m⊥}) × Rk. Each c = (g → p1 : u1 + . . . + pn : un) ∈ Cmds induces

a set of nonprobabilistic guarded commands gind(c)
def

= {(ggind → ugind,1), . . . , (ggind →
ugind,n), (g → u)} where we have

• ggind
def

= g ⊎ ({m⊥} × Rk),

• ugind,i(s)
def

= ui(s) for s ∈ M × Rk and i with 1 ≤ i ≤ n,

• ugind,i(s)
def

= {[s 7→1]} for s ∈ {m⊥} × Rk and i with 1 ≤ i ≤ n,

• g
def
= S \ g , and

• for s ∈ S we have u(s)
def

= {m⊥} × Rk.

Further, consider cτ
def

= (gτ → uτ ) where we have

• gτ
def

= {(m, v) | ∀t ≥ 0. Postm(v , t) = {v}}, and

• uτ (s)
def
= {s}.

Then, Cmdsgind
def

=
⋃

c∈Cmds
gind(c) ∪ {cτ}.

For the post operators we have
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• Postgind,m(v)
def
= Postm for m ∈ M , and

• Postgind,m⊥
(v)

def

= {v}.

We use the command cτ to introduce timed self loops at the right place of the automaton.
The mode m⊥ is used to introduce the sink state ⊥. The commands (g → u) are then
used to add the transitions to it. The induced game HA can be constructed from the
PHA on a syntactical level, following the recipe discussed in Subsection 3.3.1. For most
parts, this construction is straightforward. In the part gτ , we have to check for states in
which no further time progress is possible. Whether and how this can be done depends on
the type of the timed dynamics under consideration. For instance, assume it is specified
by a combination of differential (in)equations together with a set of of constraints on
the flow, e.g. −0.7T ≤ Ṫ ≤ −0.3T ∧ t ≤ 1 as in the mode Check of the automaton in
Figure 5.1. In this case, we can replace the guard by the border of the constraint, e.g.
t = 1 in the example.

Using the induced game HA, we can construct a game abstraction of the original PHA.

Definition 5.19. Let M = (A, z,Cmdsgind ⊎ {τ}, T ) ∈ Abs(gind(H),A,T) be an ab-
straction of the induced game HA gind(H) of a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds).
We define the induced game abstraction as

gabs(H,M) = (A, z,Cmds ⊎ {τ}, Tgabs),

where

• for c = (g → p1 : u1 + . . . + pn : un) ∈ Cmds with gind(c) = {(ggind →
ugind,1), . . . , (ggind → ugind,n), (g → u)},

– for all z ∈ A, z
′
1, . . . , z

′
n ∈ A with z

′
1 ∈ T (z, (ggind → ugind,1)), . . . , z

′
n ∈

T (z, (ggind → ugind,n)) we have [z′1 7→p1, . . . , z
′
n 7→pn] ∈ Tgabs(z, c),

– for all z ∈ A, z′ ∈ A with z
′ ∈ T (z, (g → u)) we have [z′ 7→1] ∈ Tgabs(z, c),

• for z, z′ ∈ A with z
′ ∈ T (z, τ) we have [z′ 7→1] ∈ Tgabs(z, τ),

• for z, z′ ∈ A with z
′ ∈ T (z, cτ) we have [z′ 7→1] ∈ Tgabs(z, τ).

As in Lemma 3.37 the abstraction of Definition 5.19 is indeed a valid game abstraction.

Lemma 5.20. For a PHA H, abstract state space A, time restriction T and abstraction
M ∈ Abs(gind(H),A,T), we have gabs(H,M) ∈ GAbs(H,A,T).

The result follows along the lines of Lemma 3.37. The presence of two players does not
alter the proof structure, because the resulting additional nondeterminism only adds to
the power of player env.

Corollary 5.21. Consider a PHA H, an abstraction M′ of the induced game HA
gind(H), M def

= gabs(H,M′) and a mode mReach of H. Let Reach be defined as in
Theorem 3.31 and let Cmds be the set of probabilistic guarded commands of H. Then

val+,−
H,mReach

≥ val+,−
M,Reach and val−,+

H,mReach
≤ val−,+,Cmds

M,Reach⊎{⊥}.

This corollary follows from Theorem 5.16 and Lemma 5.20.
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5.4 Algorithmic Consideration

As in Section 3.4, we are interested in deciding properties of the actual hybrid system
using the abstraction we have computed. In the context of this chapter, this means
that we want to use the game abstraction to decide whether it is possible to ensure
bounds on the reachability probability in the actual system, and we are also interested
in computing a controller which indeed steers the system to enforce these bounds.

In the following, we will restate some results about the computation of optimal values
and strategies [HK66; Con93; FV96] in the abstract game. It is known that in finite two-
player probabilistic reachability games both players can obtain their respective optimal
value by simple strategies. We will sketch the Hoffman-Karp algorithm, which provides
such strategies. We picked this algorithm, as it is a direct extension of Algorithm 3.3
which we used previously, and can also be combined with other extensions of our PHA
setting (see Section 8.5 and Section 8.4).

We need the following definition to obtain a PA modified by a simple player-con strategy.

Definition 5.22. Consider a PA M = (S, s,Act , T ) and a simple player-con strategy
σcon : S → Act . The PA induced by σcon in M is defined as

Mσcon

def

= (S, s,Act , Tσcon),

where for s ∈ S and we have Tσcon(s, σcon(s))
def

= T (s, σcon(s)) and Tσcon(s, a)
def

= ∅ for
a ∈ Act \ {σcon(s)}.

In Algorithm 5.1 we consider the case where player con maximises and player env min-
imises. The reverse case is similar. In the algorithm, maxMinReachInit(M) selects
two arbitrary strategies for the two players. As in Section 3.4, vals+,−

M,Reach(s) is the
mutually optimal value in case s were the initial state.

However, when minimising, we have to take some care with respect to the result of
the algorithm, because the algorithm does not guarantee to return fair strategies. As
discussed in Section 3.4, it is unlikely that this happens. To check for this problem, we
can do a graph-based search on the MC induced by the joint schedulers. In case we
come across nonfair behaviours of player con, we can remove the nonfair behaviour of
the affected abstract states by removing all timed transitions. This way, we force player
con to execute a command rather than letting time pass. In case this does not provide
a fair strategy of player con, we repeat this step until the resulting strategy is fair. This
method is guaranteed to terminate, because the abstraction is finite.

5.5 Synthesising Controllers

Next, we consider the problem of synthesising a controller for a PHA that makes optimal
decisions so as to provably maintaining a certain threshold of the reachability probability.
That is, if the objective is to maximise (minimise) the reachability probability, then the
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input : finite PA M = (S, s,Act , T ), state set Reach ⊆ S.
output: (vals+,−

M,Reach , σcon, σenv) with σcon ∈ Strat
con,simple
M and σenv ∈ Strat

env,simple
M

and
vals+,−

M,Reach = vals
join(σcon ,σenv)
M,Reach

= infσ′
env∈Strat

env
M

vals
σcon,σ

′
env

M,Reach = supσ′
con∈Strat

con
M

vals
σ′
con,σenv

M,Reach .
1 (σcon, σenv) := maxMinReachInit(M)
2 v := valsMjoin(σcon,σenv),Reach

3 repeat

4 v′ := v
5 forall the s ∈ S \ Reach do

6 A(s) := argmax a∈Act,
T (s,a) 6=∅

∑

s′∈S σenv(s, a)(s
′)v(s′)

7 if σcon(s) /∈ A(s) then choose σcon(s) from A(s)

8 (v, σenv) := minReach(Mσcon ,Reach) /* cf. Algorithm 3.3 */

9 until v = v′

10 return (v, σcon, σenv)
Algorithm 5.1: maxMinReach(M,Reach).

controller takes decisions so as to maximise (minimise) this probability under all possible
reactions of the environment. The controller can base its decisions on the current state of
the PHA, including the values of the continuous variables. In practice, such a controller
would be implemented with the aid of sensors and timers.

We will construct controllers from the strategies of player con in the game abstraction of
a PHA. For clarity, we will restrict to abstractions which are partitionings of the concrete
state space. We will also assume that each s ∈ z can execute the command c chosen
by a scheduler in z, because if this is not the case, the transition to the sink state will
cause the abstraction to be too bad to be useful. The quality of the controller of course
depends on the precision of the abstraction computed. Conversely, the complexity of
the implemented controller will increase when extracted from a finer abstraction. We
begin by defining a relation between strategies in a game abstraction and in the concrete
semantics.

Definition 5.23. Let H be a PHA with semantics JHK = (S, s,Act , T ), let A be an
abstract state space, let T = 〈tm〉m∈M be a time restriction and consider a game abstrac-
tion M = (A ⊎ {⊥}, z0,Cmds ⊎ {τ}, T ) ∈ GAbs(H,A,T). Further, consider a simple
player-con strategy σcon : A → (Cmds ⊎ {τ}) of the abstraction. We assume that

• A is a partitioning, and

• for all z ∈ A and s ∈ z we have T (s, σcon(z)) 6= ∅.
We define the concretisation strategy σ′

con : S → (Cmds ⊎ R≥0) of σcon as follows: for
each s = (m, v) ∈ S, let z ∈ A be the abstract state with s ∈ z. If σcon(z) = a then

σ′
con(s)

def

=

{

a if a ∈ Cmds,

tm(v) if a = τ.
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We can use Definition 5.23 to guarantee bounds on the reachability probabilities in the
model semantics.

Theorem 5.24. Let H be a PHA, let A be an abstract state space, let T be a time restric-
tion and consider a game abstraction M ∈ GAbs(H,A,T). Further, let σcon ∈ Strat conM

be a simple player-con strategy in M and let σ′
con ∈ Strat conJH,TK be the concretisation

strategy of σcon. Then we have

inf
σ′
env∈Strat

env
JH,TK

val
σ′
con,σ

′
env

JH,TK ≥ inf
σenv∈StratenvM

valσcon,σenv

M and

sup
σ′
env∈Strat

env
JH,TK

val
σ′
con,σ

′
env

JH,TK ≤ sup
σenv∈StratenvM

valσcon,σenv

M .

Proof. We restrict to the case with the infimum, as the other one is similar. Assume
M = (A ⊎ {⊥}, z0,Cmds ⊎ {τ}, T ). Then let

Mσcon

def

= (A ⊎ {⊥}, z0,Cmds ⊎ {τ}, Tσcon),

where for a ∈ Cmds ⊎{τ} and z ∈ A⊎{⊥} we have Tσcon(s, a)
def

= T (s, a) if σcon(z) = a,
and Tσcon(s, a)

def

= ∅. Further, let JM,TKσ′
con

be defined accordingly. We have

inf
σenv∈StratenvM

valσcon,σenv

M

= inf
σenv∈StratenvMσcon

valσenv
Mσcon

= sup
σ′′
con∈Strat

con
Mσcon

inf
σenv∈StratenvMσcon

val
σ′′
con,σenv

Mσcon

= val+,−
Mσcon

,

✞

✝

☎

✆5.11

and accordingly for JH,TK. In a similar way as the chain of lemmas used in Theorem 5.16,
we can show that

val+,−
JH,TKσcon

≥ val+,−
Mσcon

.
✞

✝

☎

✆5.12

From Equation 5.11 and Equation 5.12, we have

inf
σ′
env∈Strat

env
JH,TK

val
σ′
con,σ

′
env

JH,TK ≥ inf
σenv∈StratenvM

valσcon,σenv

M .

This way, we can also implement a controller control sketched in Algorithm 5.2 which
guarantees these bounds under the assumption that it can react fast enough. Firstly,
in Line 1 the controller finds out about the current system configuration by executing
the method currentState, which reads values from sensors. If the unsafe or safe
mode mReach has not been reached yet (cf. Line 2), in Line 3 it checks in which abstract
state the current configuration is contained. If there the player-con strategy in the
abstraction chooses a certain guarded command to execute, it executes the guarded
command using exec, which influences the environment using actuators. If the abstract
controller chooses τ , it waits as long as the time restriction allows in Line 5 using wait,
which can be implemented using simple timers. By executing this sequence of commands
in a loop between lines 2 and 6, by Theorem 5.24 we can control the system in a way that
it fulfils reachability probability bounds that we can compute as discussed in Section 5.4.
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input : Partially-controllable PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds), set of
abstract states A,time restriction T = 〈tm〉m∈M , σcon ∈ Strat

con,simple
M ,

mReach ∈ M .
1 (m, v) := currentState()
2 while m 6= mReach do

3 find z ∈ A with (m, v) ∈ z

4 if σcon(z) ∈ Cmds then exec(σcon(z))
5 else wait(tm(v))
6 (m, v) := currentState()

Algorithm 5.2: control(H,A,T, σcon, mReach).

T
interval length 0.5 interval length 0.2

prob. build (s) states prob. build (s) states

1 0.000 0 20 0.000 0 79
4 0.000 10 917 0.000 44 3590
5 0.000 14 1051 0.700 54 4066

10 0.910 81 4330 0.910 413 16773
15 0.973 50 3216 0.992 2578 53289
20 0.998 214 10676 0.999 1435 41313
25 0.999 160 8671 1.000 928 32864

Table 5.1: Thermostat results.

5.6 Case Study

We have implemented the abstraction developed in this chapter in an extension of our
tool ProHVer. It is able to reconstruct the game abstraction and compute values in
a similar way as Algorithm 5.1. We return to the thermostat example and consider the
probability that a failure is detected (i.e. that Safe is entered) within time bound T.
As in the original thermostat example, we do so by using a global timer c. We assume
that the player con tries to maximise the probability to reach Safe. In turn, player env
minimises in order to simulate the worst-case behaviour of the environment. This way,
we obtain lower bounds for the maximal reachability probabilities the controller can
enforce against a most malevolent environment.

Table 5.1 gives probability bounds and performance results for different values of T.
Probability bounds obtained are rounded to 3 decimal places. We see that increasing
analysis precision gives tighter probability bounds but requires more resources in general.
Because of the way PHAVer computes abstractions however, increase in memory and
time usage is not monotonic, as we have already observed and discussed in more detail
in Chapter 2.
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5.7 Related Work

For classical HAs which are partially controllable, there exist works for both specialised
classes such as timed automata [Beh+07; AMP94], rectangular hybrid automata [HK99]
as well as general HAs notions [LGS95; Asa+00].

Sproston [Spr11] discusses solution methods of partially controllable rectangular prob-
abilistic HAs, which can also be used to handle ω-regular properties which are more
complex than reachability.

Our abstraction methods for probabilistic HAs were heavily inspired by abstraction
methods for the area of probabilistic systems with purely discrete state space [KNP06;
WZ10; Wac11], in particular the menu-based, or parallel abstraction, by Wachter et al.

Abate et al. [Aba+08] have provided a solution method in the area of hybrid systems
with a continuous state-space but discrete-time behaviour. In contrast to the setting
of this chapter, they assume that the entire nondeterminism of the hybrid system is
controllable, which means that player con only has to play against the random behaviour
of the system. Their setting could however be extended to the case of two opposing
players.

To the best of our knowledge, our approach of using solvers for classical HAs to synthesise
controllers of PHAs has not been considered before.

5.8 Conclusion

We have discussed how we can extend our existing analysis framework to PHAs which
are under our partial control. A number of related works exist. In our own setting, we
have assumed that the controller is able to choose which actions to execute and how long
to wait. We consider this model to be natural, given that usually a discrete controller,
which might use stopwatches, steers a system operating in a continuous environment.
As for the noncontrolled case of Chapter 3, we developed an abstraction scheme building
on classical HAs, which we also have shown to be work in practice by applying it on
a case study. Using these abstractions, we not only compute worst-case bounds which
we can achieve by an according controller, but we can also use results obtained from
the abstraction to synthesise controllers which control the actual system, thus to en-
force probability bounds there. When proving the correctness, we could no longer use
probabilistic simulations, because we are given two different types of nondeterminism.
Instead, we used a chain of intermediate models, each weakening power of the controller
player a bit further, to finally prove that the abstraction indeed overapproximates the
concrete semantics. We had to take care to avoid having to introduce timed self loops,
because in certain cases they might lead to very bad value bounds.
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Figure 5.3: Sketch of game-based abstraction scheme.
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6
Parameters

In this chapter, we consider probabilistic hybrid automata with parametric probabili-
ties. Each instantiation of the parameters represents one concrete probabilistic hybrid
automaton. We extend our analysis framework, so as to quickly obtain an overview of
the behaviour of an entire family of models much faster, than if we had to do a separate
analysis for each of them. It allows to establish the parameter instantiations for which
a given property is guaranteed to hold, or to reason about optimal parameters of such
system families.

This chapter is organised as follows: in Section 6.1, we extend PAs to parametric PAs
which will be the semantics of parametric PHAs. Then, in Section 6.2, we describe
parametric PHAs and define their semantics. The section Section 6.3 describes how we
can obtain and work with abstractions of parametric PHAs. Section 6.4 will discuss how
properties can be decided once the abstraction has been computed. In Section 6.5, we
apply the methods developed here on parametric variants of the models of Section 3.5.
Afterwards, in Section 6.6 we discuss related work. Section 6.7 concludes the chapter.

In contrast to the other main chapters, Section 6.4 about the algorithmic considerations
will be the most extensive section of this chapter. The reason is that the extension of
the models and abstractions of Chapter 3 is quite direct, but the subsequent analysis of
abstract models is more intricate.

6.1 Parametric Probabilistic Models

In this section, we extend the PAs which formed the semantics of PHAs in Chapter 3 to
parametric variants which can then form the semantics of parametric PHA. Firstly, we
provide some basic definitions for the parameters and functions specifying probabilities.

Definition 6.1. Consider a finite ordered set of variables V = 〈x1, . . . , xn〉. With each

variable x, we associate a closed interval range(x)
def
= [Lx, Ux] specifying which values

of x are valid. An evaluation v is a function v : V → R respecting the variable ranges,
that is for all x ∈ V we have v(x) ∈ [Lx, Ux]. With Evals(V ) we denote the set of all
evaluations on V . A polynomial g : Rn → R over V is a sum of monomials

g(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inx
i1
1 · · ·xin

n ,
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where each ij ∈ N and each ai1,...,in ∈ R. A rational function f : Dom(f) → R with

Dom(f) ⊆ Rn is a fraction f(x1, . . . , xn) = g1(x1,...,xn)
g2(x1,...,xn)

of two polynomials g1, g2 over
V . We assume that numerator and denominator are in irreducible ratio form, so that
Dom(f) is maximal. Let Rat(V ) denote the set of all rational functions over V . Given

f ∈ Rat(V ) and an evaluation v for which (v(x1), . . . , v(xn)) ∈ Dom(f), we let f〈v〉 def
=

f(v(x1), . . . , v(xn)) denote the rational number obtained by substituting each occurrence
of xi with v(xi). We identify 0 with the polynomial which is 0 for all evaluations.

Each parameter thus has a certain range of values of interest. For instance, if x is a
failure probability, the largest range would be from 0 to 1. Polynomials are always
defined on the complete parameter space. We require rational functions to be free of
common factors in numerator and denominator. For instance, instead of f(x, y) = xy

x
,

we would consider f(x, y) = y where the x has been cancelled, which means that f is
also defined for x = 0. Pointwise addition, subtraction, multiplication and division of
two rational functions again yields a rational function, because of which we can use these
operations on them in the following. We also identify constants with constant functions
and write 0 instead of f if f(·) = 0.

Assumption 6.2. We remark that there are v ∈ Evals(V ) with (v(x1), . . . , v(xn)) /∈
Dom(f) and in turn f〈v〉 is not defined. In the following, when using f〈v〉 we implicitly
restrict to v for which this number is well-defined.

With these preparations, we can now define parametric probability distributions.

Definition 6.3. A parametric probability distribution over a finite set of parameters A
is a function µ : A → Rat(V ) with

∑

a∈A µ(a) = 1 and for all a ∈ A and all evaluations
v ∈ Evals(V ) we have µ(a)〈v〉 ∈ [0, 1]. With PDistr(A, V ) we denote the set of all
finite parametric probability distributions with parameters V over A. The probability
distribution µv ∈ Distr(A) induced by an evaluation v is defined so that µv(a)

def

= µ(a)〈v〉
for all a ∈ A. Given ai ∈ A and pi ∈ Rat(V ), 1 ≤ i ≤ n for some n ≥ 1 with
pi〈v〉 ∈ [0, 1] for v ∈ Evals(V ) and

∑n

i=1 pi = 1, we let [a1 7→p1, . . . , an 7→pn] denote the
parametric probability distribution that chooses a ∈ A with probability

∑

ai=a pi.

We say that a certain evaluation v ∈ Evals(V ) is valid for such a parametric probability
distribution if for each a ∈ A, either µv(a) 6= 0, or for all v′ ∈ Evals(V ) we have
µv′(a) = 0. By Evals(µ) we denote the set of all valid evaluations for µ.

Parametric probability distributions thus allow to represent an uncountable number of
induced nonparametric probability distributions at once. We usually consider valid eval-
uations of probability distributions. The analyses we will specify later on will guarantee
correct results for only this kind of distributions. If necessary, we can however perform
separate analyses to also obtain results for distributions which are not valid.

The following then defines the parametric PAs.

Definition 6.4. A parametric probabilistic automaton (PPA) is a tuple

M = (S, s,Act , T , V ),
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Figure 6.1: Parametric PA.

where S, s and Act are as for PAs (cf. Definition 3.3), V is a set of variables, and
the transition matrix T : (S × Act) → 2PDistr(V,S) assigns sets of parametric probability
distributions to pairs of states and actions. We require that for each s ∈ S we have
{a ∈ Act | T (s) 6= ∅} 6= ∅. An evaluation v ∈ Evals(V ) is valid for M if if is valid for
all parametric probability distributions occurring in T . By Evals(M) we define the set
of all valid evaluations of M.

Example 6.5. In Figure 6.1, we depict a finite example PPA M def

= (S, s,Act , T , V ).

We have V
def
= {x, y} and

T (s0, b)
def

= {[s0 7→
x

2
, s1 7→

x

2
, s2 7→x]} and T (s1, b)

def

= {[s1 7→y, s2 7→2y, s3 7→1−3y]}.

Thus, it makes sense to define the ranges of variables as

range(x)
def

= [0, 1] and range(y)
def

=

[

0,
1

3

]

. △

PPAs represent an uncountable number of concrete PAs, which can be obtained using
evaluations.

Definition 6.6. Let M = (S, s,Act , T , V ) be a PPA. The PA Mv induced by an eval-

uation v ∈ Evals(V ) is defined as Mv
def

= (S, s,Act , Tv). Here, the transition matrix

Tv : (S × Act) → 2Distr(S) is defined so that Tv(s, a)
def

= {µv | µ ∈ T (s, a)}.
Example 6.7. Consider again the PPA M in Figure 6.1 and the evaluation v with
v(x)

def

= 0.5 and v(y)
def

= 0.3. We have that v ∈ Evals(M). The induced model Mv is the
nonparametric PA already given in Figure 3.1. Further, consider the evaluation v′ with
v′(x)

def

= 1 and v′(y)
def

= 0.3. Then we have v′ /∈ Evals(M): in [s0 7→x
2
, s1 7→x

2
, s2 7→1−x]

we have (1− x)〈v′〉 = 0, but for instance (1− x)〈v〉 6= 0. △

6.2 Parametric Hybrid Automata

In this section, we extend PHAs to involve parametric probability distributions. This
way, we are able to specify an uncountably large family of PHAs with a single descrip-
tion. This is useful, for instance, if we are given a certain threshold p as the largest
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probability which is acceptable for a system failure, and we want to reason about the
maximal distributions of a component failure which is still guaranteed to lead to a failure
probability no larger than p.

A parametric PHA is defined as follows.

Definition 6.8. A parametric probabilistic hybrid automaton (PPHA) is a tuple

H = (M, k,m, 〈Postm〉m∈M ,Cmds, V ),

where V is a set of variables and M , k ∈ N+, m, Postm are as in the nonparametric
case (cf. Definition 3.20). Each element of the finite set of parametric probabilistic
guarded commands Cmds is of the form g → p1 : u1 + . . .+ pn : un, where

• g ⊆ M × Rk is a guard,

• we have that ui : (M × Rk) → 2M×Rk

is an update with ui(s) 6= ∅ for 1 ≤ i ≤ n if
s ∈ g , and

• for 1 ≤ i ≤ n we have pi ∈ Rat(V ) and
∑n

i=1 pi = 1.

An evaluation v ∈ Evals(V ) is valid for (g → p1 : u1 + . . .+ pn : un) ∈ Cmds if for all i
with 1 ≤ i ≤ n we have pi〈v〉 6= 0 or if for all v′ ∈ Evals(V ) pi〈v′〉 = 0. An evaluation
v ∈ Evals(V ) is valid for H if it is valid for all c ∈ Cmds. By Evals(H) we denote the
set of all evaluations which are valid for H.

The definition is thus as in Definition 3.20, with the exception that the probabilities in
the guarded commands are parametric.

As stated, a PPHA represents an uncountably large family of nonparametric PHAs
which are obtained by using a valid evaluation.

Definition 6.9. The PHA induced by an evaluation v ∈ Evals(V ) in a PPHA H =

(M, k,m, 〈Postm〉m∈M ,Cmds, V ) is defined as Hv
def

= (M, k,m, 〈Postm〉m∈M ,Cmdsv)
where

Cmdsv
def

= {g → p1〈v〉 : u1 + . . .+ pn〈v〉 : un | (g → p1 : u1 + . . .+ pn : un) ∈ Cmds}.

As for the PPAs before, we usually restrict to a set of valid evaluations for which we
consider the induced PHA, because the later analysis method is only valid for this subset
of evaluations. Evaluations within the range of variables which are not valid are usually
pathological cases, which are usually not of interest. A common example is a failure
probability of 0 or 1. If required however, one can perform analyses for these cases
separately from the other ones.

Example 6.10. In Figure 6.2 we depict a parametric version of the thermostat example
of Figure 3.3. The continuous behaviour is the same as in the nonparametric case, as
are most of the guarded commands. The main difference is the command cCh for which
we now have

cCh
def

= (g → (1− x) : uChH + x : uChE),
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Figure 6.2: Parametric probabilistic hy-
brid automaton.
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Figure 6.3: Abstraction for parametric
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with uChH and uChE as in Example 2.15. We can define range(x)
def
= [0, 1]. The set

of valid variable evaluations Evals(H) however excludes v′ and v′′ with v′(x)
def

= 0 and

v′′(x)
def

= 1: both of them set either the probability to reach Heat or Error to 0, while
there are other evaluations for which these values are not 0.

The nonparametric PHA Hv induced by v with v(x)
def

= 0.05 is then the previous non-
parametric thermostat case study depicted in Figure 3.3. △

The semantics of a PPHA is a PPA.

Definition 6.11. The semantics JHK = (S, s,Act , T , V ) and time-restricted semantics
JH,TK = (S, s,Act , T ′, V ) of a PPHA H = (M, k,m, 〈Postm〉m∈M ,Cmds, V ) are defined
as in the nonparametric case (cf. Definition 3.22), except that parametric probability
distributions are used on the transitions.

Example 6.12. For the PHA H of Figure 6.2 we have JHK = (S, s,Act , T ) and or
s = (Check, t, T, c) ∈ {Check} × R3 we have

T (s, cCh) =

{

∅ if t < 0.5,

{[(Heat, 0, T, c) 7→(1− x), (Error, 0, T, c) 7→x]} else.

Other transitions stay as in Example 3.23, except that probabilities are now constant
functions rather than constant numbers. △

6.3 Abstractions

As we target at practical means of bounding properties of our models, we also describe
abstractions in the parametric case.

Definition 6.13. The abstractions Abs(H,A,T) of a PPHA H are defined as in the
nonparametric case (cf. Definition 3.30), except that parametric probability distributions
are used.
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Example 6.14. In Figure 6.3 we depict an abstraction of the PPHA of Figure 6.2.
The abstraction is structurally equivalent to the one in Figure 3.4, the difference is that
instead of probability distributions we now have parametric probability distributions. △

With the following theorem, we can bound the values of the induced nonparametric
PHAs of a PPHA by using the abstraction of the PPHA.

Theorem 6.15. Consider a PPHA H, an abstraction M ∈ Abs(H,A,T) and an unsafe

mode mReach . Let Reach
def

= {(m, ζ) ∈ A | m = mReach}. For each v ∈ Evals(V ) we have

val+Hv,mReach
≤ val+Mv,Reach

and val−Hv,mReach
≥ val−,Act

Mv,Reach
.

Proof. Mv is an abstraction of JH,TKv, and thus the results follow from Theorem 3.31
and Theorem 3.32.

Thus, after we have computed the abstraction of a PPHA, we can obtain a bound for
a specific induced PHA by inserting the parameter values in the parametric abstraction
and then performing the analysis of the concrete abstraction obtained this way. Thus, if
we are interested of bounding the properties of the induced models of a limited number
of evaluations, we can use this theorem to avoid having to recompute the abstraction
for each of them separately.

6.3.1 Computing Abstractions

We can obtain induced HAs for PPHAs in the same way as in Definition 3.34 and also
the induced abstractions as in Definition 3.35: in Definition 3.34, the probabilities are
handled in a purely symbolic way, which means it does not matter whether they are
real numbers or functions. The construction of Definition 3.35 can also be applied,
because we have extended the construct [a1 7→p1, . . . , an 7→pn] to parametric probability
distributions.

6.4 Algorithmic Consideration

With Theorem 6.15 we already have a means of using the abstraction to speed up the
analysis of PPHAs, given that we are interested in a limited number of concrete induced
models. In this subsection, we aim at developing a method to analyse an uncountably
large number of concrete PHAs at once. For this, we will show how we can express reach-
ability properties of PPHA abstractions in terms of rational functions, and synthesise
regions, that is, multidimensional intervals of the variables for which the reachability
probability respects a given bound. The basic idea is to extend the policy iteration
algorithm Algorithm 3.3 of the nonparametric case to the parametric one.

As in Section 3.4, we need to consider models which have a probabilistic behaviour even
without a scheduler.
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input : finite PMC M = (S, s, T , V ), state set Reach ⊆ S.
output: valsM,Reach where for all v ∈ Evals(M) and all s ∈ S we have

valsM,Reach(s)〈v〉 = valsMv,Reach(s).
1 for s ∈ S \ Reach with T (s)(s) 6= 1 do

2 for (s1, s2) ∈ preM(s)× postM(s) with s1 6= s ∧ s2 6= s do

3 T (s1)(s2) := T (s1)(s2) + T (s1)(s)
1

1−T (s)(s)
T (s)(s2)

4 for s′ ∈ preM(s) with s′ 6= s do T (s′)(s) := 0

5 for s′ ∈ postM(s) with s′ 6= s do T (s)(s′) := T (s)(s′)
1−T (s)(s)

6 T (s)(s) := 0

7 for s ∈ Reach do v(s) := 1
8 for s ∈ S \ Reach do v(s) :=

∑

s′∈Reach T (s)(s′)
9 return v

Algorithm 6.1: reachParam(M,Reach).

Definition 6.16. A parametric Markov chain (PMC) is a tuple

M = (S, s, T , V ),

where S and s are as in Definition 3.40, V is a set of variables, and the transition matrix
T : S → PDistr(V, S) assigns to each state a parametric distribution over successor
states. We also define the adjacency graph in the same way as in the nonparametric case.
That is, it is a graph (S, s, Tadj) where we have (s, s′) ∈ Tadj if and only if T (s, s′) 6= 0
(where 0 is the constant function f with f(·) = 0), and we define Reach accordingly.

As for PPAs, we consider the nonparametric instantiations of PMCs.

Definition 6.17. Let M = (S, s, T , V ) be a PMC. The MC Mv induced by an eval-

uation v ∈ Evals(V ) is defined as Mv
def

= (S, s, Tv). Here, the transition matrix

Tv : S → Distr(S) is given as Tv(s)(s
′)

def
= T (s)(s′)〈v〉.

A simple scheduler then induces a PMC from a PPA.

Definition 6.18. Let M = (S, s,Act , T , V ) be a PPA. The PMC induced by a simple

scheduler σ of M is defined as Mσ
def

= (S, s, Tσ, V ), where for s ∈ S we have Tσ(s)
def

= µ
if σ(s) = (a, µ).

We define predecessors and successors of states in a PMC.

Definition 6.19. Given a PMC M = (S, s, T , V ), we define the set of predecessors
and successors of a given state s ∈ S as

preM(s)
def

= {s′ ∈ S | T (s′)(s) 6= 0} and postM(s)
def

= {s′ ∈ S | T (s)(s′) 6= 0}.

In Algorithm 6.1, we give an algorithm which computes parametric reachability probabil-
ities in PMCs. That is, the algorithm computes a function, so that instead of performing
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Figure 6.4: Parametric MC.
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Figure 6.6: Handling s0.

an analysis on the nonparametric MC induced by a certain evaluation v, we can insert
the parameter values of v into the function to obtain the same result. The following
states the correctness of the algorithm.

Lemma 6.20. Let M = (S, s, T , V ) be a PMC, consider Reach ⊆ S and let valsM,Reach

be the result of reachParam(M,Reach) of Algorithm 6.1. Then for all s ∈ S and all
v ∈ Evals(M) we have

valsM,Reach(s)〈v〉 = valsMv,Reach(s).

Proof. Let M0
def

= M and let Mi be the PMC resulting from the i-th execution of the
main loop of Algorithm 6.1 in lines 2 to 6 for 0 ≤ i ≤ n with n = |S \ Reach|. We
have Evals(Mi) ⊆ Evals(Mi+1) for all valid i. Further, for v ∈ Evals(M) we have
valsMi,Reach(s)〈v〉 = valsMi+1,Reach(s)〈v〉. This holds, because the unique solution of the
equation system from Definition 3.41 for (Mi)v is also the unique solution for (Mi+1)v.

Consider now Mn = (S, s, Tn, V ), that is the model resulting after the complete execut-
ing of the main loop. The assignment of reachability probabilities for states of Reach in
Line 7 is trivial. Consider a state s of Mn with s /∈ Reach. Then for all s′ ∈ S with
Tn(s)(s

′) 6= 0 we have either s′ ∈ Reach or Tn(s
′, s′) = 1. Because of this, we have for

all v ∈ Evals(Mn) that vals(Mn)v,Reach(s) =
∑

s′∈Reach(Tn)v(s, s
′). Thus, Line 8 assigns

the correct values for each s /∈ Reach.

Algorithm 6.1 is a direct algorithm similar to Gaussian elimination, in contrast to
Algorithm 3.1. We apply this algorithm, as it has been shown to perform well on models
outside the area of hybrid systems [HHZ11b]. Iterative methods to compute reachability
probabilities do not perform well, because the functions one would obtain this way can
get very complex, as we discuss in the following example.

Example 6.21. We demonstrate the method on the PMC given in Figure 6.4 with
Reach

def

= {s2}. In the main loop, states s2 and s3 are ignored, because s2 ∈ Reach

and s3 has a self loop with probability 1. Assume thus that we handle s1. The result-
ing PMC is given in Figure 6.5. We then handle s0, thus to obtain the PMC given in
Figure 6.6. The values we obtain are

valsM,Reach(s0) = valsM,Reach(s1) = valsM,Reach(s2) = 1, valsM,Reach(s3) = 0.
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We remark that for v /∈ Evals(M) with v(x)
def
= 1 we cannot use this function to compute

the reachability probabilities. We would obtain valsM,Reach(s0)〈v〉 = 1, whereas actually
we have valsMv,Reach(s0) = 0. The problem here is that the set Reach is {s3} for valid
evaluations, but we have {s0, s1, s3} for v.

If we had used value iteration in the form of Algorithm 3.1, the sequence of values ob-
tained for v(s0) would be

0

1− x

1− 1

2
x− 1

2
x2

1− 3

4
x2 − 1

4
x3

1− 1

4
x2 − 5

8
x3 − 1

8
x4

1− 1

2
x3 − 7

16
x4 − 1

16
x5

1− 1

8
x3 − 9

16
x4 − 9

32
x5 − 1

32
x6

. . . .

As we see, the length of the function increases in each iteration step. It would thus be hard
to decide when the function is precise enough to stop the iteration. Also, the resulting
inexact function would then be much more complicated than the exact one obtained by
the Algorithm 6.1. △

For now, we have a method to symbolically compute reachability probabilities in PMCs.
However, the semantics of PPHAs are PPAs, and the probabilistic behaviour of these
models needs to be resolved by a scheduler. Even though we know that simple schedulers
suffice to obtain minimal or maximal reachability probabilities for nonparametric PAs
(cf. Section 3.4), it is possible that for different variable evaluations different schedulers
provide minimal or maximal probabilities. Also, we are often interested in proving
that probabilities are bounded by a value p. Considering the function of reachability
probabilities, it is not clear which values maintain this bound. To solve this problem,
we divide the space of possible parameter valuations into regions.

Definition 6.22. A region is a high-dimensional rectangle

r =×
x∈V

[lx, ux],

where for all x ∈ V we have [lx, ux] ⊆ range(x) = [Lx, Ux]. A region represents those
evaluations v with v(x) ∈ [lx, ux] for all x ∈ V : in this case, we write v ∈ r, and also
use set operations on regions. We define the centre of a region r =×x∈V

[lx, ux] by

centre(r)(x)
def

= lx+ux

2
for x ∈ V .
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We let

split(r)
def

= split(r, y) so that y ∈ argmaxx∈V
ux − lx
Ux − Lx

,

with

split(r, y)
def

=

{

×
x∈V

[lx,l, ux,l],×
x∈V

[lx,u, ux,u]

}

,

where we have

[ly,l, uy,l]
def

=

[

ly,
ly + uy

2

]

and [ly,u, uy,u]
def

=

[

ly + uy

2
, uy

]

,

and for x 6= y we have
[lx,l, ux,l]

def

= [lx,u, ux,u]
def

= [lx, ux].

We define the volume µ of a region r =×x∈V
[lx, ux] as µ(r)

def

=
∏

x∈V
ux−lx
Ux−Lx

. For a set

K = {r1, . . . , rn} of regions, we define µ(K)
def

=
∑n

i=1 µ(ri).

A region is thus a multidimensional interval in the space of parameter valuations. The
centre of a region is the evaluation in middle of the region. We can use split to divide
a region into two smaller ones, and the volume is the relative length of the sides of a
region.

To decide properties on regions, we can assume that we are given a semi-decision pro-
cedure to prove inequations over them.

Definition 6.23. A semi-decision procedure is a tool deciding the validity of formulae
for a given region. Consider a predicate constraint

def

= f ⊲⊳ q where f is a rational
function over the variables in V , ⊲⊳ ∈ {<,≤,≥, >} and q ∈ R. Let r be a given re-
gion. For an evaluation v, with constraint〈v〉 we denote f〈v〉 ⊲⊳ q, i.e., the constraint
obtained under the valuation v. We assume that we are given a semi-decision procedure
check(constraint , r) which

• returns true only if for all v ∈ r we have that constraint〈v〉 is true, and

• returns false in case this does not hold or the result cannot be decided.

A number of different semi-decision procedures exist [Rat06; Frä+07; PJ09; Han09].
Some of them work approximately, that is they cannot guarantee correctness in all
cases, while others are precise. The definition allows check to return false even if
all evaluations indeed fulfil the property, as many semi-decision procedures have this
property, that is they do not feature completeness.

Using check, we can easily check whether an entire region fulfils a certain probability
bound obtained from Algorithm 6.1 when given a PMC and set Reach. Algorithm 6.2
targets at a similar problem for PPAs. Here, we also have to find the minimising and
maximising scheduler, in case there is such a scheduler for the entire region, and prove
that it is indeed minimal or maximal for the entire region. The algorithm handles the
minimising case, but the maximising one is similar. The following lemma states the
correctness of the algorithm.
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input : finite PPA M = (S, s,Act , T , V ), state set Reach ⊆ S, region r.
output: either ? or (vals−M,Reach , σ) with σ ∈ Sched

simple
M and for all

v ∈ Evals(M) ∩ r and s ∈ S we have
vals−M,Reach(s)〈v〉 = vals−Mv,Reach

(s) = valsσMv,Reach
(s).

1 c := centre(r)
2 if c /∈ Evals(M) then return ?
3 (_, σ) := minReach(Mc,Reach) /* cf. Algorithm 3.3 */

4 v := paramReachProb(Mσ,Reach) /* cf. Algorithm 6.1 */

5 valid := true

6 forall the s ∈ S \ Reach, a ∈ Act , µ ∈ T (s, a) do

7 vcmp(s) :=
∑

s′∈S µ(s
′)v(s′)

8 valid := valid ∧ check(v(s) ≤ vcmp(s), r) /* cf. Definition 6.23 */

9 if valid then return (v, σ)
10 else return ?

Algorithm 6.2: minReachParamRegion(M,Reach, r).

Lemma 6.24. Let M = (S, s,Act , T , V ) be a PPA, consider Reach ⊆ S and let
(vals−M,Reach , σ) be the result of minReachParamRegion(M,Reach, r) of Algorithm 6.2.
Then for all s ∈ S and all v ∈ Evals(M) ∩ r we have

vals−M,Reach(s)〈v〉 = vals−Mv,Reach
(s) = valsσMv,Reach

(s).

Proof. From the first three lines of Algorithm 6.2 we obtain a scheduler where Reach

of Lemma 3.44 agrees for all v ∈ Evals(M). In addition, it is minimal for the centre
of the region. By Lemma 6.20, for the value v we obtain in Line 4 we have v(s)〈v〉 =
valsMσ ,Reach . In lines 5 to 8 we then prove the optimality equation from Lemma 3.44 for
all valid evaluations of the region at the same time.

Example 6.25. Consider the abstraction M of the thermostat example from Figure 6.3
and the region r with r(x)

def

= [0, 1]. We want to compute the probability to reach z3. We
have c = centre(r)(x) = 0.5, and the scheduler we obtain from Mc is σ with

σ(z0) = (cIH, [z1 7→1]), σ(z1) = (cHCh, [z2 7→1]), σ(z2) = (cCh, [z5 7→0.5, z3 7→0.5]),

σ(z4) = (cCoH, [z1 7→1]), σ(z5) = (cHCh, [z6 7→1]), σ(z6) = (cCh, [z5 7→0.5, z3 7→0.5]).

The parametric reachability probabilities with this scheduler are

v(z0) = v(z1) = v(z2) = v(z4) = x+ (1− x)x,

v(z5) = v(z6) = x, v(z3) = 1, v(z7) = 0.

It turns out that in the loop starting in Line 6 the values vcmp equal those of v(s), so
that the calls to check return true. The algorithm thus returns v(s). △

Algorithm 6.2 allows to compute the optimal values and scheduler for a given region.
With Algorithm 6.3, we can find functions representing minimal or maximal values for
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input : finite PPA M = (S, s,Act , T , V ), state set Reach ⊆ S, area tolerance ε.
output: vals−M,Reach = {(r1, b1, σ1), . . . , (rn, bn, σn)} with µ({r1, . . . , rn}) ≥ 1− ε

and for all (ri, bi, σi) we have σi ∈ Sched
simple
M and for v ∈ Evals(M) ∩ ri

and s ∈ S it is bi(s)〈v〉 = vals−Mv,Reach
(s) = valsσi

Mv,Reach
(s).

1 unprocessed := {×x∈V
range(x)}

2 result := ∅
3 while µ(unprocessed) ≥ ε do

4 choose one largest r ∈ unprocessed

5 unprocessed := unprocessed \ {r}
6 resRegion := minReachParamRegion(M,Reach, r)

/* cf. Algorithm 6.2 */

7 if resRegion =? then unprocessed := unprocessed ∪ split(r)

8 else result := result ∪ {(r, v, σ)} with (v, σ)
def

= resRegion

9 return result

Algorithm 6.3: minReachParam(M,Reach, ε).

a significant amount of the parameter space by dividing it into a number of regions. It
is in general not possible to provide results for the complete parameter space. Thus, we
stop when the volume of the remaining area is below a certain precision.

Theorem 6.26. Let M = (S, s,Act , T , V ) be a PPA, consider Reach ⊆ S, and a
precision ε ∈ (0, 1). Further, let vals−M,Reach = {(r1, b1, σ1), . . . , (rn, bn, σn)} be the result
of minReachParam(M,Reach, ε) of Algorithm 6.3. Then we have µ({r1, . . . , rn}) >
1− ε and for all (ri, bi, σi), v ∈ Evals(M) ∩ ri and s ∈ S we have

bi(s)〈v〉 = vals−Mv,Reach
(s) = valsσi

Mv,Reach
(s).

Proof. It is µ({r1, . . . , rn}) > 1 − ε, because the loop starting in Line 3 terminates if
µ(unprocessed) < ε, and we have µ(unprocessed)+µ({r1, . . . , rm}) = 1 where {r1, . . . , rm}
are the regions after the m-th iteration of the loop. The correctness of the (ri, bi, σi)
follows from Lemma 6.24.

Because check is defined as a semi-decision procedure, we can not guarantee termi-
nation of Algorithm 6.3. If we are however given a decision procedure, we can indeed
guarantee termination.

Theorem 6.27. Assume that check is implemented in such a way that instead of the
requirements in Definition 6.23 we have for check(constraint , r) that it

• returns true if and only if for all v ∈ r we have that constraint〈v〉 is true.

Then minReachParam terminates for all valid inputs.

Proof. Assume that the procedure is called as minReachParam(M,Reach, ε) with
M = (S, s,Act , T , V ). The termination of Algorithm 6.1 and Algorithm 6.2 is clear,
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because in each of them the number of iterations in the loops is bounded by the number
of states and transitions in M.

Rational functions g are continuous in Dom(g), and thus for each ε we can find a set A
of regions which only overlap at the borders and cover the complete parameter space,
and we have for

B
def

= {r | r ∈ A ∧ ∃v, v′ ∈ A. g〈v〉 ≤ 0 ∧ g〈v′〉 > 0}
that

µ(B) < ε,

which intuitively means that the “measure” of the points where the function is 0 is 0.
From this, we can derive a corresponding property for v for which g〈v〉 is not defined,
and we also obtain a corresponding result for the v /∈ Evals(M). We can extend this
result to multiple rational functions and thus we can extend the optimality equation of
Lemma 3.44 to the parametric case:

B
def

=

{

r | ¬∀s, v ∈ r. valsσM,Reach(s)〈v〉 = min
a∈Act,

µ∈T (s,a)

(

∑

s′∈S

µ(s′)valsσM,Reach(s
′)

)

〈v〉
}

.

We can also add regions with centre(r) /∈ Evals(r) to the above set B because also the
measure of these evaluations is 0.

If we apply Algorithm 6.2 to each such region of A, by Theorem 6.26 and because check

is assumed to be a complete decision procedure, we will obtain ? if and only if r ∈
B. Algorithm 6.3 splits region until unprocessed equals such a B with small enough
measure, which means, that by the condition at the main loop in Line 3, it will finally
terminate.

Example 6.28. We reconsider the thermostat example of Figure 6.2, the region r with
r(x) = [0, 1] and apply the variant of Algorithm 6.3 to maximise the probability. As seen
from Example 6.21, in this case it is possible to handle the entire region at once, and we
obtain a singleton result set. △
Using Algorithm 6.3, we now have an effective method to bound the reachability values
of all induced PHAs of a PPHA.

Corollary 6.29. Consider a PPHA H, an abstraction M ∈ Abs(H,A,T) and an unsafe

mode mReach . Let Reach
def

= {(m, ζ) ∈ A | m = mReach}. Further, let vals−M,Reach =
{(r1, b1, σ1), . . . , (rn, bn, σn)} be the result of minReachParam(M,Reach, ε) given in
Algorithm 6.3. Then for all (ri, bi, σi), v ∈ Evals(M) ∩ ri and s ∈ S we have

vals−Hv ,mReach
≥ bi(s)〈v〉,

and accordingly for the maximising variant maxReachParam of the algorithm.

The corollary follows from Theorem 6.15 and Theorem 6.26.

As stated, to prove that reachability probabilities in a certain region are bounded by p,
we can use check. It is easy to implement an extension of Algorithm 6.3 which also
proves bounds on regions, and splits them as necessary in case the bound is not fulfilled
for an entire region.
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6.5 Case Studies

In this section, we consider parametric variants of the case studies of Section 3.5. For
each case study, we describe which probabilities we have parametrised. Results were ob-
tained using our tool Param [Hah+10], which implements the algorithms of Section 6.4.
As before, experiments were run on an Intel(R) Core(TM)2 Duo CPU with 2.67 GHz
and 4 GB RAM. However, as we used the same settings in PHAVer as in Section 3.5,
we do not restate the time to obtain the abstraction and number of abstract states,
because they are the same as in the corresponding nonparametric models of the former
section. We were able to obtain results for parametric versions of all case studies of
Chapter 3, of which we state a few in the following.

6.5.1 Thermostat

Consider the parametrised thermostat model of Figure 6.2 (cf. Subsection 3.5.1). Due
to the structure of the model, the maximal probability to reach Error within T can
always be stated as

(1− x)nx

for some n depending on the time bound T: each time the automaton executes the
guarded command in Check, there is a chance of x to move to Error, while the execution
continues with probability 1− x. Later on, if time has not yet run out, one might have
another chance of reaching Error. Depending on the time, there is a maximal number of
chances n to perform the guarded command in Check. Thus, the probability to finally
reach Error can be described by a geometric distribution. If we insert the x = 0.05 into
the corresponding functions, we obtain the same values as in Table 3.3.

6.5.2 Water Level Control

We apply our method on a parametrised version of the water level control case study (cf.
Subsection 3.5.3). We denote the probability that we obtain a delay of 3 rather than 2
when filling the tank by x, and the probability that we have a delay of 3 instead of 2
when draining the tank is denoted by y.

In Figure 6.7, we depict bounds for the reachability probabilities dependent on x and y
for the different time bounds T already used in Table 3.5. We restrict to a maximal value
of x and y of 1

5
. As expected, with an increasing time bound or failure probabilities the

probability bounds increase. For this case study, there is a single maximising function
and we did not have to divide the parameter space to take into account valuation-
dependent scheduler decisions.

We ask whether the probability to reach Error can be bounded by p = 0.3. In Figure 6.8,
we divide the parameter space into regions, where for each of them in the abstraction
the property holds or does not hold. Thus, in the white area the property is guaranteed
to hold, also in the concrete model semantics. In the black boxes, the property does
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Figure 6.7: Bound for reachability probability in water level control dependent on failure
probabilities.

not hold in the abstract model, but it might still hold in the concrete model semantics.
The grey areas are mixed and thus inconclusive. The border between the black and the
white area is a curved form, and thus we cannot cover the entire parameter space by
rectangles. Because of this, we chose a tolerance of 0.03 for the maximal amount of grey
regions.

6.6 Related Work

There exist a number of related works in the area of parametric HAs, which however do
not consider parametrised probability distributions, but rather parameters on the timed
or discrete behaviour. For instance, they allow to specify an invariant (x ≤ b), where
x is a continuous model variable, whereas b is a parameter. The goal is then to find
the parameter valuations in which certain properties are fulfilled, in particular safety.
Different methods exist for timed automata [And+09; BT09], a subclass of linear HAs
[DISS11] and for linear and affine HAs [FK11] and have found successful applications,
e.g. [PQ08].

Our initial works in this area [Hah+10; HHZ11a; HHZ11b] was concerned with models
given in a variant of the guarded command language of Prism [KNP11], outside the
area of HAs. The method of Algorithm 6.1 was originally inspired by a state-elimination
approach by Daws [Daw04], which in turn builds on results in the context of regular lan-
guages. A similar method has also been used to generate counterexamples for properties

137



CHAPTER 6. PARAMETERS

T = 40
x

y

0 1
5

0

T = 82
x

y

0 1
5

0

T = 83
x

y

0 1
5

0

T = 120
x

y

0 1
5

0

T = 500
x

y

0 1
5

0

T = 1000
x

y

0 1
5

0

Figure 6.8: Regions for which a reachability probability below 0.3 can or cannot be
guaranteed.

of Markov models [Ábr+10]. For continuous-time Markov chains, a similar method di-
viding the parameter space into regions has been considered by Han [Han09]. We are
the first ones to apply this kind of parameter analysis to parametric PHAs models.

A closely related work is due to Fribourg and André [FA09]: for a given PPA and valua-
tion of the parameters, they compute a scheduler for this instantiation which is optimal
for a certain property. Afterwards, they compute the set of parameter evaluations for
which the scheduler is still optimal. Compared to their work, we do not have a fixed
scheduler a priori, but use different optimising schedulers for different regions in case
this is necessary. Also, they do not consider parametric probabilities, but parametric
reward values (see also Chapter 7), and concentrate on reward-based properties.

The related area of parameter estimation targets at finding the parameters of differential
equations or MCs which fit best to a given set of measurements which the system is
required to be consistent with [BBC08; MW12].

6.7 Conclusion

We have introduced parametric PHAs, in which probabilities are not constant but de-
pend on a number of model parameters. As the semantic basis, we have introduced
PPAs. We have discussed restrictions to a certain subset of variable evaluations, which
in turn induce nonparametric PAs. Then, we moved on to the high-level model where
we have extended the probabilistic guarded commands with parameters, matched by
the parametric probability distributions of the previous extension of PAs. Next, we
defined abstractions of PPHAs in terms of PPAs. A relevant part of the chapter was
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then involved with developing a method to find optimal schedulers of entire regions of
parameters, and how to synthesise regions of parameters which fulfil certain properties.
For this, we extended the dynamic programming approach previously discussed in the
context of Algorithm 3.3 to PPHAs. Doing so allowed us to end up with an efficient
means to analyse an entire class of PHAs at once, rather than just a single specific
model, and synthesise the set of concrete models satisfying a given property. We then
discussed the related works, and applied the model on a number of parametric versions
of our case studies, thus to show its practical applicability.

This chapter was mainly involved with algorithmic considerations to analyse the para-
metric abstractions, while the computation of the abstractions was almost the same as
for nonparametric models. Because of this, considerations about the fairness were not
necessary here, as they have already been handled for the nonparametric models.
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7
Rewards

In this chapter, we decorate our probabilistic hybrid automata with rewards, which
are costs or bonuses, and discuss how our solution method can be extended to handle
reward-based properties. Doing so allows us to reason about the time until a system
terminates, the long-run cost of its operation, percentage of the time in an operational
state, time until stabilisation, and many other properties of interest.

This chapter is organised as follows: in Section 7.1 we equip probabilistic automata with
reward structures and discuss the properties we can express this way. In Section 7.2,
we extend probabilistic hybrid automata with rewards, and show how these are mapped
to reward structures of the semantics. Section 7.3 then discusses how we can extend
our abstraction technique of Section 3.3 to obtain guarantees on the values of the ex-
tended properties we have defined. Section 7.4 will discuss how properties can be decided
once the abstraction has been computed. Then in Section 7.5 we apply the abstraction
method to compute reward-based properties of two of our case studies. Section 7.7
concludes the chapter.

7.1 Rewards for Probabilistic Automata

In this section, we will extend the PAs with rewards and discuss reward-based prop-
erties. As these properties are expected values, we firstly have to define the notion of
expectation.

7.1.1 Stochastic Recap

Consider a measurable space (Ω,Σ). The expectation Eµ with respect to a probability
measure µ : Σ → [0, 1] for a Σ-B(R)-measurable function X : Ω → R is defined as

Eµ(X)
def

=

∫

Ω

X(ω)µ(dω).

Given a path probability measure PrM,σ : ΣM → [0, 1], we abbreviate

EM,σ
def

= EPrM,σ
.
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7.1.2 Reward Structures and Properties

We equip our PAs with reward structures. We remark that rewnum and rewden of the
same reward structure rew in the following definition are not meant to denote lower
or upper bounds on the specification of rewards. Instead, we will later on use them to
denote pairs of reward and time.

Definition 7.1. A reward structure for a PA M = (S, s,Act , T ) is a pair (rewnum, rewden)
of two functions

rewnum, rewden : (S × Act × Distr(S)) → R≥0.

If for all s ∈ S and µ, µ′ ∈ Distr(S) we have rewnum(s, a, µ) = rewnum(s, a, µ
′) and

rewden(s, a, µ) = rewden(s, a, µ
′), we call this a simple reward structure and interpret as

a pair of functions
rewnum, rewden : (S ×Act) → R≥0.

Given a simple reward structure (rewnum, rewden), we say that it is affine, if for all
a ∈ Act there are mula ∈ R≥0 and adda ∈ R≥0, where for all s ∈ S with T (s, a) 6= ∅ we
have

rewnum(s, a) = mularewden(s, a) + adda.

We will use reward structures rew = (rewnum, rewden) to specify two different reward-
based properties of PAs. For the definition of one of them, we will use both the functions
rewnum and rewden, whereas for the other one we will only need rewnum.

Example 7.2. In Figure 7.1 we depict a PA along with a reward structure rew
def

=
(rewnum, rewden). We have

rewnum(s1, a, [s1 7→1])
def

= 0, rewden(s1, a, [s1 7→1])
def

= 0,

rewnum(s1, a, [s0 7→1])
def

= 4, rewden(s1, a, [s0 7→1])
def

= 2, . . . .

Thus, rew is not simple.

Now, consider the PA of Figure 7.2. The reward structure of this PA is indeed simple.
Also, rew is affine, where for action b we have the factors

mul b = 2 and add b = 1. △

We can then define properties based on these reward structures.

Definition 7.3. Given a PA M = (S, s,Act , T ) together with a reward structure rew =
(rewnum, rewden) and a fair scheduler σ, the accumulated reward is defined as

valσM,rew ,lra
def

= EM,σ

[

lim
n→∞

n
∑

i=0

rewnum(X
M
i , Y M

i , ZM
i )

]

.

The fractional long-run average reward is defined as

valσM,rew ,lra
def

= EM,σ

[

lim
n→∞

∑n

i=0 rewnum(X
M
i , Y M

i , ZM
i )

∑n

i=0 rewden(X
M
i , Y M

i , ZM
i )

]

,
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s0

s1

b:(3, 1)

b:(3, 1)

a:(4, 2)

a:(0, 0)

0.25

0.75

Figure 7.1: Reward-extended
PA.

(s0, 0, 0)

(s1, 0, 0)

(s0, 4, 2)

b:(3, 1)

b:(3, 1)

0.25

0.75

a:(0, 0)

a:(0, 0)

b:(7, 3)

b:(7, 3)

0.25

0.75

Figure 7.2: Encoded version
of the PA of
Figure 7.1

ssim,0

ssim,1

b:(7, 1)

b:(7, 1)

a:(0, 0)

a:(0, 0)

0.25

0.75

Figure 7.3: PA simulating the
one of Figure 7.2.

ssim,0

ssim,1

bl:(3, 1),
bu:(7, 3)

bl:(3, 1),
bu:(7, 3)

al, au:(0, 0)

al, au:(0, 0)

0.25

0.75

Figure 7.4: PA affinely simu-
lating the one of
Figure 7.2.

in case we have
PrM,σ(A) = 1,

where A is the set of paths on which the property is well-defined. In the above, we let
0
0

def

= 0 and x
0

def

= ∞ for x 6= 0. For Act fair ⊆ Act , we define the Act fair-fair extremal
values

val+,Actfair
M,rew ,lra = sup

σ∈Sched
Actfair
M

valσM,rew ,acc and val+,Actfair
M,rew ,lra = sup

σ∈Sched
Actfair
M

valσM,rew ,lra,

and accordingly for val−,Actfair
M,rew ,acc and val−,Actfair

M,rew ,lra. For val+,Actfair
M,rew ,lra (val−,Act fair

M,rew ,lra) we only
take the supremum (infimum) over the schedulers σ for which PrM,σ(A) = 1.

We will later on use reward-extended PAs as the semantics of reward-extended PHAs.
When considering accumulated reward properties, we add up all rewards we come across
along a certain path. The value we consider then is the expected value over all paths.
Properties of this kind can for instance be used to reason about the expected time until
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system termination, the number of steps until an error is reached, and so on. Fractional
long-run average values specify a value that is reached in the long-run operation of a
system. The numerator will later on describe the value for which we want to obtain
the average. The denominator will describe the time which has passed in a PHA. It is
necessary to use a variable denominator here rather than to assume that each step takes
one unit of time, because in the semantics of PHAs not all steps take the same amount
of time. For instance, executing a guarded command is instantaneous, so that for these
transitions no time passes at all.

We remark that the fractional long-run average reward might not be well-defined on all
paths of a given model, which is the reason why we require the paths on which it is
well-defined to have measure one. Jobstmann et al. [Blo+09; EJ11; EJ12] solve this
problem in a different way by using

EM,σ

[

lim
n→∞

lim inf
m→∞

∑m

i=n rewnum(X
M
i , Y M

i , ZM
i )

1 +
∑m

i=n rewden(X
M
i , Y M

i , ZM
i )

]

.
✞

✝

☎

✆7.1

This way, the value on each path always exists. In case the expected fractional long-run
average value of Definition 7.3 exists, it agrees with the one defined in Equation 7.1.
However, we cannot use this modified definition. Later on, in Lemma 7.6 we have
to apply a certain model transformation the validity of which is not valid under the
definition by Jobstmann et al.

As for reachability properties, we need to consider fairness conditions here. The reason
we have to do this is similar to the basic setting: if a scheduler were allowed to let time
stop, it could for instance let the time stop at a moment in which a very high or very low
value has been reached. In this case, this value would then form the long-run average
value. It would be unrealistic to consider this the extremal average over time, as indeed
the time flow has stopped. This phenomenon could occur for both minimal and maximal
values, and thus we consider fair schedulers in all cases.

Example 7.4. Reconsider the PA of Figure 7.1. In this model, the accumulated reward
would be infinite, so that we only consider the fractional long-run average reward. We
have for Act fair

def
= {b} that

val+,Act fair
M,rew ,lra =

12

5
= 2.4 and val−,Actfair

M,rew ,lra =
7

3
≈ 2.333,

which are for instance obtained by the simple schedulers σ+ and σ− with

σ+(s0)
def

= (b, [s0 7→0.25, s1 7→0.75]), σ+(s1)
def

= (a, [s1 7→1]),

σ−(s0)
def

= (b, [s1 7→1]), σ−(s1)
def

= (a, [s1 7→1]). △

We now consider variants of PAs where we postpone the rewards of certain actions, in
such a way that they are then collected along with the rewards of later actions. For
this, we set the rewards resulting from a subset of actions to zero, and instead remember
these rewards by encoding them into the state space. Later on, we can collect these
values when executing one of the remaining actions.
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Definition 7.5. Consider a PA M = (S, s,Act , T ) with the reward structure rew =
(rewnum, rewden) and a subset Act enc ⊆ Act of the actions. The Act enc-encoded PA and
reward structure

enc(M, rew ,Actenc)
def

= (Menc, rew enc)

are defined as Menc
def

= (Senc, senc,Act , Tenc), rew enc
def

= (rew enc,num, rew enc,den) where

• Senc
def

= S × R2,

• senc
def

= (s, 0, 0),

• for senc = (s, vnum, vden) and a ∈ Act enc we have

Tenc(senc, a)
def

= {[(s′1, 0, 0) 7→p1, . . . , (s
′
n, 0, 0) 7→pn] | [s′1 7→p1, . . . , s

′
n 7→pn] ∈ T (s, a)},

• for senc = (s, vnum, vden) and a ∈ Act \ Act enc we have

Tenc(senc, a)
def

= {[(s′1, v′num, v′den) 7→p1, . . . , (s
′
n, v

′
num, v

′
den) 7→pn] |

[s′1 7→p1, . . . , s
′
n 7→pn] ∈ T (s, a)

∧ v′num = vnum + rewnum(s, a, µ) ∧ v′den = vden + rewden(s, a, µ)},

• for senc = (s, vnum, vden), a ∈ Act enc and µ ∈ Tenc(senc, a) we have

rew enc,num(senc, a, µ)
def

= rewnum(s, a, µ) + vnum and

rew enc,den(senc, a, µ)
def

= rewden(s, a, µ) + vden,

• for senc = (s, vnum, vden), a ∈ Act \ Act enc and µ ∈ Tenc(s, a) we have

rew enc,num(senc, a, µ)
def

= 0 and rew enc,den(senc, a, µ)
def

= 0.

Thus, the rewards are stored in the continuous dimensions vnum and vden of the state
space. Each time we come across a ∈ Act enc, we collect the original reward from this
command plus the values of vnum and vden, and reset these variables to zero. When
executing a command a /∈ Act enc, we collect a reward of 0, but increase vnum and vden
accordingly. In Section 7.2, we will use this definition to postpone rewards of timed
actions, to overcome the loss of timing information in the computed abstractions.

We can show that this construction maintains reward values, under the condition that
Act enc = Act fair is the set of fair actions.

Lemma 7.6. Let M = (S, s,Act , T ) be a PA with reward structure rew and consider
the Act fair-encoded model and reward structure (Menc, rew enc) = enc(M, rew ,Act fair) for
Act fair ⊆ Act . Then we have

val+,Actfair
M,rew ,acc = val+,Actfair

Menc,rewenc,acc
and val+,Act fair

M,rew ,lra = val+,Actfair
Menc,rewenc,lra

,

and accordingly for the minimal values.

145



CHAPTER 7. REWARDS

Proof. We only consider the case of maximal fractional rewards, because the other cases
are similar (but simpler for the accumulated rewards). For this, we have to show that
for each σ ∈ Sched

Act fair
M we have σenc ∈ Sched

Act fair
Menc

with

valσM,rew ,lra = valσenc

Menc,rewenc,lra
,

and vice versa when starting with σenc ∈ Sched
Act fair
Menc

.

For β ∈ Pathfin
M ⊎ Path inf

M, denote by enc(β) the corresponding path in Path inf
Menc

, in
which we have encoded the rewards of a ∈ Act \ Act fair into the state space, as in
the definition of Tenc in Definition 7.5. Assume rew = (rewnum, rewden) and rew enc =
(rew enc,num, rew enc,den). We then define the measurable functions fn, f : Path

inf
M → R≥0

and fenc,n, fenc : Path
inf
Menc

→ R≥0 for n ∈ N as

fn
def

=

∑n

i=0 rewnum(X
M
i , Y M

i , ZM
i )

∑n

i=0 rewden(X
M
i , Y M

i , ZM
i )

and fenc,n
def

=

∑n

i=0 rew enc,num(X
Menc
i , Y Menc

i , ZMenc
i )

∑n

i=0 rew enc,den(X
Menc
i , Y Menc

i , ZMenc
i )

,

f
def

= lim
n→∞

fn and fenc
def

= lim
n→∞

fenc,n.

For σ ∈ Sched
Act fair
M , we define σenc ∈ Sched

Act fair
Menc

where for all β ∈ Pathfin
M we let

σenc(enc(β)) be defined so that it corresponds to the decision of σ(β), in that it chooses
the same actions and the corresponding distributions for each path. For A ∈ ΣM and
Aenc

def

= {enc(β) | β ∈ A}, we have

PrM,σ(A) = PrMenc,σenc(Aenc) and PrM,σ(Path
Act fair
M ) = PrMenc,σenc(Path

Act fair
Menc

) = 1.

Because of this, and by the definition of the expectation as an integral, to show that
valσM,rew ,lra = valσenc

Menc,rewenc,lra
, it suffices to show that for each β ∈ Path

Act fair
M we have

f(β) = fenc(enc(β)).

Consider thus an arbitrary β ∈ Path
Act fair
M . We define

Act fair(β)
def

= {i ∈ N | β[i] ∈ Act fair},
that is the set of the positions in a path which contain actions of the fairness set Act fair.
By the definition of a fair path (cf. Definition 3.5), this set is infinitely large. Then, by
definition of the encoding, for all n ∈ Act fair(β) we have

fn(β) = fenc,n(enc(β)),

and thus also
f(β) = fenc(enc(β)).

For the other direction, we start with σenc ∈ Sched
Act fair
Menc

, construct σ ∈ Sched
Act fair
M and

show equality in the same way.

As seen from the proof, Lemma 7.6 indeed requires to restrict to Act fair schedulers.
Otherwise, we could have a situation where in the original model we obtain some reward
which we do not obtain in the encoded model, because we just encode this reward in
the state space but never actually collect it later.
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Example 7.7. The PA of Figure 7.2 is the Act fair-encoded PA of the one in Figure 7.1,
for Act fair

def

= {b}. Because of this, the maximal and minimal fair average values of
12
5
= 2.4 and 7

3
≈ 2.333 are the same in both models. △

To prove the validity of abstractions of PHA for reward-based properties, we extend
the definition of a simulation relation from Definition 3.15 to take into account reward
structures. We only consider simple reward structures, because we will only need this
restricted form for the analysis of PHAs.

Definition 7.8. Consider two PAs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim)
related by a simulation relation R and for which we are given simple reward structures
rew = (rewnum, rewden) and rew sim = (rew sim,num, rew sim,den). We say that R is upper-
bound compatible, if in case we have (s, ssim) ∈ R then for all a ∈ Act we have

rewnum(s, a) ≤ rew sim,num(ssim, a) and rewden(s, a) ≥ rew sim,den(ssim, a).

If there exists such a relation, we write

(M, rew)
up

� (Msim, rew sim).

We define lower-bound compatible simulations R accordingly by swapping ≤ and ≥
above and write

(M, rew)
lo
� (Msim, rew sim).

With simulations, we can establish upper and lower bounds on the reward properties of
simulated models by considering the corresponding property in the simulating model.

Lemma 7.9. For PAs M and Msim with corresponding simple reward structures rew

and rew sim, if (M, rew)
up

� (Msim, rew sim) then

val+,Actfair
M,rew ,acc ≤ val+,Actfair

Msim,rew sim,acc and val+,Act fair
M,rew ,lra ≤ val+,Actfair

Msim,rew sim,lra.

Likewise, if (M, rew)
lo
� (Msim, rew sim) then

val−,Actfair
M,rew ,acc ≥ val−,Actfair

Msim,rew sim,acc and val−,Act fair
M,rew ,lra ≥ val−,Actfair

Msim,rew sim,lra.

Proof. We restrict to the proof of

val+,Act fair
M,rew ,lra ≤ val+,Act fair

Msim,rewsim,lra,
✞

✝

☎

✆7.2

the other three cases follow along the lines.

For M = (S, s,Act , T ) and (rewnum, rewden) = rew , we define the PA and reward
structure

S ×M def
= (S, s, S × Act , S × T ) and S × rew

def
= (S × rewnum, S × rewden),

where
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• for s ∈ S and a ∈ Act we have (S × T )(s, (s, a))
def
= T (s, a) and (S × T )(·, ·) def

= ∅
else,

• for s ∈ S and a ∈ Act we have (S× rewnum)(s, (s, a))
def

= rewnum(s, a), accordingly
for S × rewden.

Then, for Msim = (Ssim, ssim,Act , Tsim) and (rew sim,num, rew sim,den) = rew sim, we define
the PA and reward structure

S×Msim
def

= (Ssim, ssim, S×Act , S×Tsim) and S×rew sim
def

= (S×rew sim,num, S×rew sim,den),

where

• for ssim ∈ Ssim, s ∈ S and a ∈ Act , we have (S × Tsim)(ssim, (s, a))
def

= Tsim(ssim, a),

• for ssim ∈ Ssim, s ∈ S and a ∈ Act , we specify (S × rew sim,num)(ssim, (s, a))
def

=
rew sim,num(ssim, a), and accordingly for S × rew sim,den.

Consider arbitrary schedulers σ ∈ SchedM and σsim ∈ SchedMsim
. We can construct

corresponding schedulers S × σ ∈ SchedS×M and S × σsim ∈ SchedS×Msim
with

valσM,rew ,lra = valS×σ
S×M,S×rew,lra and valσsim

Msim,rew sim,lra = valS×σsim
S×Msim,S×rewsim,lra,

✞

✝

☎

✆7.3

and vice versa when starting with schedulers S × σ ∈ SchedS×M and S × σsim ∈
SchedS×Msim

. We have (we remark that (rewnum, rewden) is a reward structure in M
and not in S ×M)

valS×σ
S×M,S×rew,lra = ES×M,S×σ

[

lim
n→∞

∑n

i=0 rewnum(Y
S×M
i )

∑n
i=0 rewden(Y

S×M
i )

]

,
✞

✝

☎

✆7.4

and accordingly for S ×Msim. This means, that the average reward can be derived in
this extended model by only looking at the sequence of actions, rather than requiring to
consider also states and distributions. It can be shown that S ×Msim simulates S ×M
by using a simulation relation between M and Msim, which we already know to exist.
Because of this, from S×σ we can construct a scheduler S×σsim for which measures on
traces agree [Seg95, Proposition 7.7.1]. From Equation 7.4 and by the definition of the
reward structures, we have

ES×M,S×σ

[

lim
n→∞

∑n
i=0 rewnum(Y

S×M
i )

∑n

i=0 rewden(Y
S×M
i )

]

= ES×Msim,S×σsim

[

lim
n→∞

∑n
i=0 rewnum(Y

S×Msim
i )

∑n

i=0 rewden(Y
S×Msim
i )

]

≤ ES×Msim,S×σsim

[

lim
n→∞

∑n
i=0 rew sim,num(X

S×Msim
i , Y S×Msim

i )
∑n

i=0 rew sim,den(X
S×Msim
i , Y S×Msim

i )

]

.

✞

✝

☎

✆7.5

By Equation 7.3 and Equation 7.5, for each σ ∈ SchedM we can construct σsim ∈
SchedMsim

with
valσM,rew ,lra ≤ valσsim

Msim,rewsim,lra,

which implies Equation 7.2.
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Thus, the principal idea of this simulation is that the simulating automaton can mimic
the behaviour of the simulated one, while overapproximating or underapproximating
respectively rewnum and rewden.

Example 7.10. In Figure 7.3 we give a PA with corresponding reward structures which
simulates the one of Figure 7.2 by an upper-bound compatible simulation relation. The
maximal fractional long-run average reward of the latter is indeed much higher than the
former, namely, 7 rather than 12

5
= 2.4. To obtain a lower-bound compatible simulation

relation, we would replace the rewards (7, 1) by (3, 3), thus obtaining a reward of 1 which
is considerably lower than the minimal reward 7

3
≈ 2.333 of the original model. △

In the case of affine reward structures, we can define a simulation relation with which
we can obtain more precise results.

Definition 7.11. Consider two PAs M = (S, s,Act , T ) and Msim = (Ssim, ssim,Act , Tsim)
which are related by a simulation relation R. Further, consider three affine reward struc-
tures

rew = (rewnum, rewden),

rew sim,up = (rew sim,up,num, rew sim,up,den),

rew sim,lo = (rew sim,lo,num, rew sim,lo,den).

We require that rew , rew sim,up and rew sim,lo are affine with the same factors mula, adda

(cf. Definition 7.1) for each action a, that is for s ∈ S and z ∈ A we have

rewnum(s, a) = mularewden(s, a) + adda,

rew sim,up,num(z, a) = mularew sim,up,den(z, a) + adda,

rew sim,lo,num(z, a) = mularew sim,lo,den(z, a) + adda.

Then, we define R as being affine compatible if for all (s, ssim) ∈ R and a ∈ Act we have

rew sim,lo,num(ssim, a) ≤ rewnum(s, a) ≤ rew sim,up,num(ssim, a).

If there exists such a relation, we write

(M, rew)
aff
� (Msim, rew sim,up, rew sim,lo).

As before, affine simulations maintain reward properties.

Lemma 7.12. Consider the PAs M = (S, s,Act , T ) with the reward structure rew

and Msim = (Ssim, ssim,Act , Tsim) with reward structures rew sim,up and rew sim,lo with

(M, rew)
aff

� (Msim, rew sim,up, rew sim,lo). We define

M′
sim

def

= (Ssim, ssim,Act × {lo, up}, T ′
sim) and rew ′

sim = (rew ′
sim,num, rew

′
sim,den),

where
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• for s ∈ Ssim and a ∈ Act we have T ′
sim(s, (a, lo))

def
= T ′

sim(s, (a, up))
def
= Tsim(s, a),

• for s ∈ Ssim and a ∈ Act we have rew ′
sim,num(s, (a, lo))

def

= rew sim,lo,num(s, a), and
accordingly for rew ′

sim,num(s, (a, up)), rew
′
sim,den(s, (a, lo)) and rew ′

sim,den(s, (a, up)).

Then we have

val+,Actfair
M,rew ,acc ≤ val+,Actfair

M′
sim,rew ′

sim,acc and val+,Act fair
M,rew ,lra ≤ val+,Actfair

M′
sim,rew ′

sim,lra,

and accordingly for the minimising cases.

Proof. Firstly, we remark that we also have

rew sim,lo,den(ssim, a) ≤ rewden(s, a) ≤ rew sim,up,den(ssim, a)

which follows from the definition of affine simulations. We define S×M and S×Msim as
in the proof of Lemma 7.9. As there, for σ ∈ SchedM we can construct S×σ ∈ SchedS×M

and from this S × σsim ∈ SchedS×Msim
so that measures on the traces agree. We also

consider a corresponding model S ×M′
sim

def

= (Ssim, ssim, S ×Act × {lo, up}, S × T ′
sim).

From S × σsim, we construct a scheduler S × σ′
sim ∈ SchedS×M′

sim
as follows. For β ∈

Pathfin
S×M′

sim
⊎ Path inf

S×M′
sim

let β ∈ Pathfin
S×Msim

be so that for all β[i] = (a, lo) or β[i] =

(a, up) we have β[i] = a. For s ∈ S, ssim ∈ Ssim and a ∈ Act , let pup,s,ssim,a, plo,s,ssim,a ∈
[0, 1] be so that

• pup,s,ssim,a + plo,s,ssim,a = 1 and

• rewnum(s, a) = pup,s,ssim,arew sim,up,num(ssim, a) + plo,s,ssim,arew sim,lo,num(ssim, a),

• (which by the definition of affine rewards in Definition 7.11 also implies that
rewden(s, a) = pup,s,ssim,arew sim,up,den(ssim, a) + plo,s,ssim,arew sim,lo,den(ssim, a)).

For β ∈ Pathfin
S×M′

sim
, s ∈ S, a ∈ Act and µ ∈ Distr(Ssim), we let

(S × σ′
sim)(β)((s, a, up), µ)

def
= pup,s,last(β),a(S × σsim)(β)((s, a), µ) and

(S × σ′
sim)(β)((s, a, lo), µ)

def

= plo,s,last(β),a(S × σsim)(β)((s, a), µ).

With

fn
def
=

∑n

i=0 rewnum(Y
S×Msim
i )

∑n
i=0 rewden(Y

S×Msim
i )

and f ′
n

def
=

∑n

i=0 rewnum(Y
S×M′

sim
i )

∑n
i=0 rewden(Y

S×M′
sim

i )
,

we have for β ∈ Pathfin
S×Msim

with |β| ≥ n that

fn(β) =
∑

β′∈Pathfin
S×M′

sim

,

β′=β

f ′
n(β

′)
PrS×M′

sim,S×σ′
sim

(β ′)

PrS×Msim,S×σsim
(β)

.
✞

✝

☎

✆7.6

Further, for A ⊆ Path inf
S×Msim

and A′ def
= {β ′ ∈ Path inf

S×M′
sim

| β ′ ∈ A} we have

PrS×Msim,S×σsim
(A) = PrS×M′

sim,S×σ′
sim
(A′).

✞

✝

☎

✆7.7
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Init

Heat

Ṫ=2
T≤10
∧t≤3

Cool

Ṫ=−T
∧T≥5

Check

Ṫ=−T/2
∧t≤0.5

Error

Ṫ=−T/2
∧t≤0.5

cHCo=(T≥9→T ′=T∧t′=0)

cCoH=(T≤6→T ′=T∧t′=0)

cIH=(true→9≤T ′≤10∧t′=0)

cHCh=(t≥2→T ′=T∧t′=0)

cCh=(t≥0.25→

0.95:T ′=T∧t′=0,

0.05:T ′=T∧t′=0) cECo =
(t≥0.5→T ′=T∧t′=0)

Figure 7.5: Thermostat modified for long-run average rewards.

By the definition of the expectation as an integral, from Equation 7.6 and Equation 7.7,
we can conclude that

valS×σ
S×M,S×rew,lra = val

S×σ′
sim

M′
sim,rew ′,lra,

which proves the lemma.

Similarly as for upper-bound and lower-bound compatible simulations, the affinely simu-
lating automaton Msim can mimic the behaviours of the simulated one. In M′

sim we also
mimic the behaviours of the original model, but we use randomised choices over (a, up)
and (a, lo) to obtain exactly the same reward as when choosing a in the original model.
The reason is that we will obtain results which are more precise, that is for both rewnum

and rewden we either minimise or maximise, whereas for nonaffine reward structures we
had to minimise and optimise in the opposite directions.

Example 7.13. In Figure 7.4 we give a PA which affinely simulates the one of Figure 7.2.
Maximal and minimal fractional long-run averages are 3 and 7

3
≈ 2.333, which is more

precise than the values obtained from Figure 7.3 as discussed in Example 7.10. △

7.2 Rewards for Probabilistic Hybrid Automata

We can now define reward structures of PHAs.

Definition 7.14. A reward structure for a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) is
a tuple

rew = (rewdis, rew cts)

of two functions, the discrete reward function rewdis : ((M × Rk) × Cmds) → R≥0 and
the continuous reward function rew cts : ((M × Rk) × R≥0) → R≥0. We require that for
each m ∈ M and v ∈ Rk we have

• rew cts((m, v), ·) monotonically increasing,

• rew cts((m, v), t) = rew cts((m, v), t1) + rew cts((m, v), t2) for t, t1, t2 ≥ 0 with t =
t1 + t2.
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A discrete reward function is called affine if rewdis(·, c) is constant for all c ∈ Cmds.
In this case, we can write it as rewdis : Cmds → R≥0. A continuous reward function is
called affine if for all m ∈ M there is mulm ∈ R≥0 where for all v ∈ Rk and t ∈ R≥0

we have rew cts((m, v), t) = mulmt. In this case, we also write it as rew cts : M → R≥0,
where rew cts(m) = mulm. If both the discrete and the continuous part are affine, we call
rew affine.

Example 7.15. Consider the thermostat of Figure 3.3 in which it is not possible to
leave the Error mode. As we do not consider time-bounded properties, we assume that
the global clock c is no longer part of the model. We define a reward structure rewacc

def

=
(rewacc,dis, rewacc,cts) with

rewacc,cts(·, ·) def

= 0 and rewacc,dis(s, c)
def

=

{

0 if c ∈ {cE, cIH},
1 else.

We thus obtain a reward for executing a command except the one of Error or the one to
initialise the system. Thus, using the minimal accumulated reward we can reason about
the minimal expected number of commands executed until an error happens.

Now consider the modified thermostat of Figure 7.5. We have extended the Error mode
so that the system can recover from an error after a certain time. We define another
reward structure rew lra = (rew lra,dis, rew lra,cts) where

rew lra,dis(·, ·) def

= 0 and rew lra,cts((m, t, T ), t)
def

=

{

1 if m = Error,

0 else.

Thus, we obtain a reward of 1 per time unit when being in mode Error. By considering the
maximal fractional long-run average reward, we can reason about the maximal percentage
of time the system can spend in the Error mode. △

In the definition of the semantics of a PHA, it is possible to choose any nonnegative
time duration to wait. However, depending on the corresponding post operator, the
actual time for which the model will wait might be lower. Indeed, by Requirement 3 of
Definition 2.12 there is always a fixed upper bound for the maximal time to wait. Also,
depending on which state the automaton actually moves to, the timed transition might
stop earlier or later. To specify time-dependent rewards correctly, we must thus have
some means to find out how long the PHA has actually waited, if we intended to wait
for a certain amount of time and reach a certain state.

Definition 7.16. Consider a k-dimensional post operator Post . For v ∈ Rk, t ∈ R≥0

and v ′ ∈ Post(v , t) we define durPost(v , t, v
′)

def
=

sup ({0} ∪ {t1 + t2 | t1 + t2 ≤ t ∧ ∃v ′′ ∈ Post(v , t1). v
′′ 6= v ′ ∧ v ′ ∈ Post(v ′′, t2)}) .

We shortly write durm(v , t, v
′) for durPostm(v , t, v

′), where Postm is the post operator of
a given mode m in a PHA.

152



7.2. REWARDS FOR PROBABILISTIC HYBRID AUTOMATA

v v ′ ∈ Post(v ′′, t2)

v ′′ ∈ Post(v , t1)

t
′′ = t1 + t2

t
′ ≤ t1 + t2

t1 t2

Figure 7.6: Illustration of dur.

Thus, durm(v , t, v ′) is the latest time in which variable configuration v ′ is reached from
v in mode m if we intend to wait for t. This means that if we have durm(v , t, v

′) � t,
we have a time lock in v ′.

Example 7.17. Consider again the model of Figure 7.5. For (t′, T ′) ∈ PostCheck((t, T ), t)
we have

durCheck((t, T ), t, (t
′, T ′)) =

{

0 if t ≥ 0.5,

t′ − t else.

The definition for the other modes is similar. △

We use the somewhat complicated Definition 7.16 to take into account cases in which
we start in a certain v , wait for t and might reach v ′ at two different points of time
t
′ < t

′′ ≤ t, as illustrated in Figure 7.6. As we intended to wait for t, we would want dur
to return t

′′ rather than t
′. If we had defined dur just to take the minimal time at which

v ′ is visited, we would have obtained t1 instead. On the other hand, we also cannot
define dur using the maximum time, because in case of a time lock this value would be
equal to t, although the given value might have been reached long before t.

Example 7.18. We illustrate the issues by a simple example. Consider a post operator
Post : (R× R≥0) → 2R

k

where for 0 ≤ t ≤ 1 we have

Post(t, t)
def

= {min{t′, 1} | t′ ∈ [t + t, t+ 2t]}.
Then we have

Post(0, 0.5) = [0.5, 1],Post(0.5, 0.5) = {1},Post(0, 1) = {1}, and Post(0, 2) = {1}.
Because of this, we have dur((0), 2, (1)) = 1 rather than 0.5 or 2. △

With these preparations, we can define the semantics of PHAs reward structures.

Definition 7.19. Given a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with semantics
JHK = (S, s,Act , T ) and a corresponding reward structure rew = (rewdis, rew cts), the se-
mantics of the reward structures is the PA reward structure JrewK

def

= (JrewKnum, JrewKden).
For s ∈ S, c ∈ Cmds and µ ∈ T (s, c) we have

JrewKnum(s, c, µ)
def

= rewdis(c) and JrewKden(s, c, µ)
def

= 0.
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For s = (m, v) ∈ S, t ∈ R≥0 and µ = [(m, v ′) 7→1] ∈ T (s, t) we define

JrewKnum(s, t, µ)
def

= rew cts(s, durm(v , t, v
′)) and JrewKden(s, t, µ)

def

= durm(v , t, v
′).

Example 7.20. Reconsider the reward structure rew lra = (rew lra,dis, rew lra,cts) given in
Example 7.15. For a state s = (Error, t, T ) of the mode Error and µ = [(Error, t′, T ′) 7→1],
we have

Jrew lraK(s, t, µ) = durError((t, T ), t, (t
′, T ′)),

which means that we cannot obtain a reward of more than 0.5. If we had not taken
durError into account, and simply defined

Jrew lraK(s, t, µ) = t,

the maximal fractional long-run average reward in the semantics with this reward struc-
ture would be limt→∞

t

r+t
= 1 for some constant r, because the reward would be the same

as if we could stay in Error for an arbitrarily long time. △

We can then define the values of reward properties using the semantics of PHAs and
their reward structures.

Definition 7.21. Given a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with semantics
JHK = (S,Act , T ) and a corresponding reward structure rew , we define the maximal
accumulated reward as

val+H,rew ,acc
def
= val+,Cmds

JHK,Jrew K,acc,

and define the minimal accumulated reward accordingly. We define the maximal time-
average reward as

val+H,rew ,lra
def

= val+,Cmds

JHK,Jrew K,lra,

and accordingly the minimal time-average reward.

As for reachability properties, it does not matter whether or not we apply a time restric-
tion. Because we use abstractions which actually abstract the time-restricted semantics
as in Chapter 3, we need the following lemma.

Lemma 7.22. For a PHA H given time restriction T we have

val+H,rew ,acc = val+,Cmds

JH,TK,JrewK,acc,

val+H,rew ,lra = val+,Cmds

JH,TK,JrewK,lra,

and accordingly for the minimal values.

The proof follows along the lines of Lemma 3.26.

As already prepared for a similar form for the semantical model in Definition 7.5, we
now define a transformation to PHAs, in which we postpone the rewards obtained by
timed transitions. This way, we collect the rewards only at the execution of commands.
This will turn out to be advantageous in the later abstraction in which we lose the
information about the duration of timed transitions.
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Definition 7.23. Given a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with the reward
structure rew = (rewdis, rew cts), the reward-encoded PHA and reward structures

enc(H, rew)
def

= (Henc, rew enc, rew t),

with Henc
def

= (M, k+2, m, 〈Postenc,m〉m∈M ,Cmdsenc), rew enc = (rew enc,dis, rew enc,cts) and
rew t = (rew t,dis, rew t,cts), are defined so that

• for each s = (m, v , vnum, vden) with m ∈ M , v ∈ Rk, vnum, vden ∈ R, and t ∈ R≥0,
we have (v ′, v ′

num, v
′
den) ∈ Post enc,m((v , vnum, vden), t) if and only if

– v ′ ∈ Postm(v , t),

– v ′
num = vnum + rew cts(m, v , durm(v , t, v

′)),

– v ′
den = vden + durm(v , t, v

′),

• for each c = (g → p1 : u1 + . . . + pn : un), we have exactly one corresponding
cenc = (genc → p1 : uenc,1 + . . .+ pn : uenc,n) and for all s ∈ M ×Rk, vnum, vden ∈ R,
we have

– genc = g × R2,

– for all i with 1 ≤ i ≤ n we have uenc,i(s, vnum, vden) = ui(s)× {(0, 0)},
• we have rew enc,cts(·, ·) def

= rew t,cts(·, ·) def

= 0,

• for each s = (m, v , vnum, vden) and cenc ∈ Cmdsenc we have

rew enc,dis(s, c)
def

= rewdis(s, c) + vnum and rew t,dis(s, c)
def

= vden.

In this definition, rew enc describes the rewards we obtain by executing a command plus
the reward stored in the state space by timed transitions since the current mode was
entered. This way, it can be used to substitute JrewKnum of Definition 7.19. The reward
structure rew t describes the time since a mode was entered, implying it can replace the
denominator reward JrewKden.

As this transformation corresponds to a transformation of the PA semantics, it does not
change the values of reward properties.

Lemma 7.24. Consider a PHA H = (M, k,m, 〈Postm〉m∈M ,Cmds) with a reward
structure rew and the reward-encoded variants enc(H, rew) = (Henc, rew enc, rew t) as
well as a time restriction T. For Jrew encK = (Jrew encKnum, Jrew encKden) and Jrew tK =
(Jrew tKnum, Jrew tKden) we have

val+H,rew ,acc = val+,Cmdsenc

JHenc,TK,(JrewencKnum,Jrew tKnum),acc and

val+H,rew ,lra = val+,Cmdsenc

JHenc,TK,(JrewencKnum,Jrew tKnum),lra,

and accordingly for the minimal values.

Proof. If in the semantical models we equate commands of Cmds with corresponding
ones of Cmdsenc, we have

(JHenc,TK, (Jrew encKnum, Jrew tKnum)) = enc(JH,TK, JrewK,Cmds),

and thus the statement follows from Lemma 7.22 and Lemma 7.6.
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Example 7.25. The PHA of Figure 7.5 already contains the necessary variable t to
encode the reward rewError. As we obtain a reward of 1 per time unit, it can be used to
represent both time and rewards. We thus obtain the encoded model by defining

rew enc,dis((m, t, T ), c)
def

=

{

t if m = Error,

0 else
and rew t,dis((m, t, T ), c)

def

= t. △

7.3 Abstraction

We can now equip our abstractions of PHAs with corresponding rewards structures.

Definition 7.26. Let H be a PHA with rewards rew , and consider its encoded PHA
with reward structures (Henc, (rew enc,dis, rew enc,cts), (rew t,dis, rew t,cts)) and an abstraction
M = (A, z,Cmds ⊎ {τ}, T ) ∈ Abs(Henc,A,T) of Henc. The abstract upper-bound
reward structure is defined as rabsup(H,M, rew)

def

= (rewnum, rewden) where

• for all z ∈ A we have rewnum(z, τ)
def

= rewden(z, τ)
def

= 0,

• for all z ∈ A and c = (g → p1 : u1 + . . .+ pn : un) ∈ Cmds we have

rewnum(z, c)
def

= sup
s∈z

rew enc,dis(s, c) and rewden(z, c)
def

= inf
s∈z

rew t,dis(s, c).

The abstract lower-bound reward structure rabslo is defined accordingly by swapping sup
and inf.

We can use these reward structures to safely bound the reward values of PHAs semantics.

Theorem 7.27. Consider a PHA H with reward structure rew and an abstraction M =
(A, z,Cmds ⊎ {τ}, T ) ∈ Abs(Henc,A,T) of its encoded PHA Henc, with the abstract

upper-bound reward structure rewup
def

= rabsup(H,M, rew). Then

val+H,rew ,acc ≤ val+,Cmds

M,rewup,acc
and val+H,rew ,lra ≤ val+,Cmds

M,rewup,lra
,

and accordingly for abstract lower-bound reward structures by changing ≤ to ≥.

Proof. We only consider the case val+H,rew ,lra ≤ val+M,rewup,lra
as the other cases are similar.

Using Lemma 7.24, we assume that H is already reward encoded, and by Lemma 7.22
it suffices to show that

val+,Cmds

JH,TK,JrewK,lra ≤ val+,Cmds

M,rewup,lra
.

For this, we can use the same simulation relation R as in the proofs of Theorem 3.31 and
Theorem 3.32, with corresponding intermediate models. The additional requirements
on the simulation concerning the reward values by Definition 7.8 are fulfilled (timed self
loops get assigned rewards of 0), and so the result follows by Lemma 7.9.
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z0 Init

z3 Heat z4 Check

z1 Cool

z2 ErrorcIH:(0, 0) cHCo:(0, 0) cCoH:(0, 0.5)

cHCh:(0, 2)

cCh:(0, 0.25)

0.05

0.95

cECo:(0.5, 0.5)

Figure 7.7: PHA abstraction for rewards.

Example 7.28. In Figure 7.7 we sketch an abstraction of Figure 7.5 with an abstract
upper-bound reward structure for the PHA reward structure rewError of Example 7.25.
Thus, we have a reward of 1 per time in Error and 0 otherwise. In the abstract states,
we left out constraints to restrict to states which are actually reachable. Consider the
abstract state z4. As the mode of this state is Check, we obtain a reward of 0 when
executing cCh. According to the guard of this command, we have to wait at least until
t ≥ 0.25 to execute it. Now consider z2. We can leave this state at point t = 0.25, and
we thus obtain a reward and time of 0.25. △

In case we are given affine reward structures, we can use more precise reward structures
in the abstraction.

Definition 7.29. Consider a PHA H with commands Cmds and an affine reward
structure rew = (rewdis, rew cts) and an abstraction M = (A, z,Cmds ⊎ {τ}, T ) ∈
Abs(H,A,T) of enc(H, rew). We define the affine abstraction

Maff
def

= (A, z,Cmdsnum ⊎ Cmdsden ⊎ {τnum, τden}, Taff),

where we have a one-to-one correspondence between actions a and anum as well as aden,
and define Taff as Taff(s, anum)

def

= Taff(s, aden)
def

= T (s, a). Then, the abstract affine
reward structure is defined as rew aff = (rewnum, rewden) where

• for all z ∈ A we have

rewnum(z, τnum)
def

= rewnum(z, τden)
def

= rewden(z, τnum)
def

= rewden(z, τden)
def

= 0,

• for all z ∈ A with mode m and c = (g → p1 : u1 + . . .+ pn : un) ∈ Cmds we have

rewnum(z, cnum)
def
= rewdis(c) + rew cts(m)tsup and rewden(z, cnum)

def
= tsup,

rewnum(z, cden)
def

= rewdis(c) + rew cts(m)tinf and rewden(z, cden)
def

= tinf ,

with

tsup
def

= sup{vden | (m, v , vnum, vden) ∈ z} and tinf
def

= inf{vden | (m, v , vnum, vden) ∈ z}.
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We then define rabsaff(H,M, rew)
def
= (Maff , rewaff).

Theorem 7.30. Consider a PHA H with reward structure rew and an abstraction
M = (A, z,Cmds ⊎ {τ}, T ) ∈ Abs(Henc,A,T) of its encoded PHA Henc, with the affine
abstraction and reward structure rabsaff(H,M, rew) = (Maff , rewaff). Then

val+H,rew ,acc ≤ val+,Cmds

Maff ,rewaff ,acc
and val+H,rew ,lra ≤ val+,Cmds

Maff ,rewaff ,lra
,

val−H,rew ,acc ≥ val−,Cmds

Maff ,rewaff ,acc
and val−H,rew ,lra ≥ val−,Cmds

Maff ,rewaff ,lra
.

Proof. The reward structure rewM is affine, as is the reward structure in the seman-
tics of Henc. The proof then follows along the lines of the one of Theorem 7.27 using
Definition 7.11 and Lemma 7.12.

Example 7.31. If using an affine abstraction, we replace the actions of Figure 7.7 by

cIH,u:(0, 0), cIH,l:(0, 0), cCoH,u:(0, 2), cCoH,l:(0, 0.5), cECo,u:(0.5, 0.5), cECo,l:(0.5, 0.5),

cHCo,u:(0, 3), cHCo,l:(0, 0), cCh,u:(0, 0.5), cCh,l:(0, 0.25). △

7.3.1 Computing Abstractions

We have already discussed in Subsection 3.3.1 how we can obtain abstractions of PHAs.
What remains is the computation of the reward-encoded PHAs and the one of the reward
structures of the abstraction.

Obtaining the reward-encoded PHAs is simple: we just have to add two new variables
in the PHA, one for the continuous reward function and one for the time component,
according to Definition 7.23. We then use the specification language of the hybrid solver
used to specify the behaviour of these additional variables. That is, we have to reset
them to zero on mode changes and take care that they increase their value during
timed transitions, for instance by using differential equations. We can then compute the
abstraction from the induced HA as before.

It is a bit more complicated to obtain the abstract reward structures. In case we only
have rewards which depend on the commands and which are constant for each state, the
reward values can be obtained directly from the abstraction of the induced HA. Other-
wise, we have to take a deeper look at the abstract states. According to Definition 7.26
and Definition 7.29, we have to find suprema and infima of the variables for rewards and
time. How this can be done depends on the hybrid solver used. We consider the case of
PHAVer which we use throughout the thesis. This solver uses polyhedra to represent
abstract states, which can be represented as sets of linear inequations. Because of this,
we can use a linear programming tool to find the minimal and maximal values of reward
and time variables.

If we do not have timed rewards and only a constant reward value for each command
and want to consider the expected accumulated reward, we do not need to consider
the encoded PHA, as we need not keep track of continuous rewards or time. Also, for
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affine abstractions, we only need a variable to remember the time since a mode change,
because we can compute the rewards from these values; in Definition 7.29 the values
vnum are not used.

7.4 Algorithmic Consideration

After we have obtained finite abstractions and have computed the according reward
structure using linear programming, it remains to compute expected accumulated or
long-run average rewards in the abstraction. As in Section 3.4, we briefly state how
such values can be obtained.

We firstly restate some results for accumulated rewards [Put94; FV96] (given for the
slightly different model of Markov decision processes). In addition to the induced MCs
we have used in Section 3.4, here we will also need to consider induced reward structures
on these MCs.

Definition 7.32. Let M = (S, s,Act , T ) be a PA and consider a reward structure rew =
(rewnum, rewden) with rewnum, rewden : (S×Act×Distr(S)) → R≥0 and a simple scheduler
σ : S → (Act × Distr(S)). The MC reward structure rewσ = (rewσ,num, rewσ,den) with
rewσ,num, rewσ,den : S → R≥0 induced by σ in M is defined so that for s ∈ S we have

rewσ,num(s)
def

= rewnum(s, σ(s)) and rewσ,den(s)
def

= rewden(s, σ(s)).

Given an MC and a reward structure for this MC, we can specify their accumulated
reward.

Definition 7.33. Given an MC M = (S, s, T ) and an MC reward structure rew =
(rewnum, rewden), we define

valsM,rew ,acc : S → R≥0

as the smallest nonnegative solution of the equation system where for all s ∈ S we have

v(s) = rewnum(s) +
∑

s′∈S

T (s)(s′)v(s′).

Then, we can use Algorithm 7.1 to compute minimal expected accumulated rewards on
finite PAs. As in Section 3.4, vals−M,rew ,acc(s) is the value in case s were the initial state.
The basic principle of the algorithm is very similar to Algorithm 3.3: an initial scheduler
is chosen by minAccInit, which is then improved until no further improvements are
possible. As in Algorithm 3.3, we have to perform a graph-based search to find states
for which the expected accumulated reward is 0 when starting there. If we want to
compute the minimal values instead, we have to take care about the initial scheduler,
similarly to what has been done in the algorithm for reachability. As Algorithm 3.3,
that algorithm does not take fairness into account, but we can still apply it for the same
reasons as discussed in Section 3.4. Other algorithms based on value iterations or linear
programming also exist.

In case we want to compute long-run average values, there are also algorithms using
linear programming [Alf97; EJ11] or policy iteration [EJ12].
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input : finite PA M = (S, s,Act , T ) with reward structure
rew = (rewnum, rewden).

output: (vals−M,rew ,acc, σ) with σ ∈ Sched
simple
M and vals−M,rew ,acc = valsσM,rew ,acc.

1 σ′ := minAccInit(M)
2 repeat

3 σ := σ′

4 v := valsMσ ,rewσ ,acc

5 forall the s ∈ S do

6 A(s) := argmin (a,µ),
µ∈T (s,a)

rewnum(s, a, µ) +
∑

s′∈S µ(s
′)v(s′)

7 if σ(s) ∈ A(s) then σ′(s) := σ(s) else choose σ′(s) from A(s)

8 until σ′ = σ
9 return (v, σ)

Algorithm 7.1: minAcc(M, rew).

constraint
PHAVer (s) states

time until error commands until error
length constr. (s) ana. (s) result constr. (s) ana. (s) result

− 0 7 0 0 0.0000 0 0 42.0000
1 1 102 0 0 45.3347 0 0 42.0000
0.5 0 288 0 0 53.4934 0 1 42.0000
0.1 18 5909 1 8 61.3732 1 14 50.7820
0.05 151 24593 6 65 62.0170 1 103 48.8410
0.04 296 37511 10 154 62.0633 1 189 48.8410
0.03 2566 93979 25 584 62.7227 2 722 50.7820
0.02 6628 156864 44 1509 62.6245 5 1867 50.7820

Table 7.1: Accumulated rewards in thermostat.

7.5 Case Studies

We implemented the analysis methods to compute expected accumulated and long-run
average rewards in our tool ProHVer, and have applied them on two of the case studies.
As before, experiments were run on an Intel(R) Core(TM)2 Duo CPU with 2.67 GHz
and 4 GB RAM.

7.5.1 Thermostat

The first properties we consider for our running thermostat example are the minimal
expected time and the expected number of commands (except the one from Init to Heat)
it takes until the Error mode is reached. For this, we consider the original thermostat
model of Figure 3.3, with the difference that we no longer need the global time c. Instead,
we add reward structures, where the one for the expected number of commands agrees
with the one of Example 7.15. To improve the quality of the overapproximation, we
apply the PHAVer-specific constraint on the variable T modelling the temperature.
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Results are given in Table 7.1. We provide the constraint lengths, the time PHAVer

needed to construct the model and the number of states. Because we use the same
abstraction of the PHA to compute both accumulated and long-run average rewards,
these values are the same for both properties. The runtime of ProHVer is no longer
negligible. We give the time this tool needed to compute the reward by using linear
programming on the polyhedra built up by PHAVer, and the time needed to compute
the result value once the model with its reward structure is available. We also state the
final result rounded to four decimal digits.

PHAVer computes more abstract states than for the larger time bounds of Table 3.3,
though, because of the differences in the property type, the number of continuous vari-
ables and analysis settings, those results are hard to compare. The time needed in terms
of the runtime of PHAVer and linear programming is relatively low, taking into account
the large number of abstract states.

Initially, we performed these experiments with constraints on the local time t. Doing so,
we obtained much worse reward bounds, indeed always 42 for the expected number of
commands until Error. Manual analysis showed that this refinement only excluded the
first direct transition from Heat to Check without a previous visit to Cool. The resulting
lower bound on the expected number of commands therefore is

rewnum(cHCo) + rewnum(cCoH) + (rewnum(cHCh) + rewnum(cChH))
1

0.05

= 1 + 1 + (1 + 1)
1

0.05
= 42.

Table 7.1 shows that this is not the ultimate answer to the minimal expected number
of executed commands, which means that also at later points of time a direct transition
from Heat to Check without visiting Cool in between is not always possible.

The time needed to construct the reward structures for the expected number of com-
mands is much lower than the one for the expected time, because in the first case the
reward is constant, and we thus can avoid solving a large number of linear programming
problems. The time for the analysis is higher, though.

The analysis of the abstract model needed considerably more time than the one for
reachability in Subsection 3.5.1. In the abstract models which we obtain, there are
often large chains of states connected only by timed transitions. Techniques building on
bisimulation-like methods could in the future speed up the analysis by taking this fact
into account. This might be necessary for larger case studies.

Next, we consider the maximal expected time spent in the Error mode of the modified
thermostat model in Figure 7.5. We also provide results when using the more precise
method taking advantage of the fact that the reward structure is affine by using a reward
structure as in Example 7.31. Results are given in Table 7.2. As seen, using affine reward
structures does not improve the result: this was expected by comparing Example 7.28
and Example 7.31. Some of the actions of Example 7.31 have the same values as actions
in Example 7.28 (e.g. cCoH,l : (0, 0.5) corresponds to cCoH : (0, 0.5)), while the remaining
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constraint
PHAVer (s) states

time in error time in error (lin)
length constr. (s) ana. (s) result constr. (s) ana. (s) result

1 0 126 0 0 0.0131 0 0 0.0131
0.5 1 382 0 0 0.0111 1 0 0.0111
0.1 28 7072 4 9 0.0094 6 14 0.0094
0.05 185 29367 8 124 0.0093 25 313 0.0093

Table 7.2: Long-run average rewards in thermostat.

constraint
PHAVer (s) states

time until error commands until error
length constr. (s) ana. (s) result constr. (s) ana. (s) result

− 1 10 0 0 0.0000 0 0 40.0000
1 0 53 0 0 137.0320 0 0 40.0000
0.5 0 95 0 0 150.1600 0 0 40.0000
0.1 3 411 0 0 163.0980 0 1 40.0000
0.05 5 814 1 1 164.8010 0 2 40.0000
0.02 15 2151 0 11 165.7080 0 11 40.0000
0.01 31 4294 1 42 166.0560 0 46 40.0000
0.005 74 8580 1 167 166.2350 0 186 40.0000

Table 7.3: Accumulated rewards in water level control.

ones are suboptimal choices for a maximising scheduler (e.g. cCoH,u : (0, 2)). Thus, a
scheduler in the affine abstraction basically takes the same choices as in the previous
abstraction.

By the definition of affine simulation, it is necessary to solve twice as many linear
optimisation problems to obtain an abstraction as when using an abstract upper-bound
reward structure, so that the time needed by ProHVer is greater.

7.5.2 Water Level Control

Similarly to the thermostat case, for our water level control model (cf. Subsection 3.5.3)
we considered the minimal expected time and number of command executions until the
Error mode is reached. As this model features only affine continuous dynamics, we
successfully obtained results using constraints on the local timers t. Results are given
in Table 7.3.

For the second property, we remove the error mode and assume that the operational
bounds of the system are safe. We are interested in the average energy consumption of
the system. We assume that no energy is spent in the modes where the pump is switched
off. While the pump is running, 2 units of energy are consumed per time unit, starting
the pump takes 10 units of energy and switching it off again takes 6 units. The reward
structure thus features both rewards obtained from timed transitions as well as those
obtained from command executions. Results are given in Table 7.4. As seen, using affine
reward structures improves the result more than in the thermostat case. This happens
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constraint
PHAVer (s) states

average energy average energy (lin)
length constr. (s) ana. (s) result constr. (s) ana. (s) result

1 0 51 0 0 1.9854 0 0 1.8145
0.5 0 93 0 0 1.7995 0 0 1.7069
0.1 2 409 0 0 1.6564 0 0 1.6397
0.05 4 812 0 0 1.6395 0 0 1.6314
0.02 11 2149 0 0 1.6303 1 0 1.6268
0.01 24 4292 0 1 1.6268 2 1 1.6250
0.005 58 8578 2 4 1.6250 2 7 1.6242

Table 7.4: Long-run average rewards in water level control.

because in a larger percentage of the time a nonzero reward in the numerator is obtained.
In the thermostat case study, this was only possible in mode Error. As the time spent in
Error in the thermostat is also rather small, the difference between the lower and upper
values with the two kinds of reward abstractions was rather small.

7.6 Related Work

Reward-based properties for (nonstochastic) timed automata have been considered by
Bouyer et al. [BM07; Bou+07]. Jurdziński et al. [JLR09; RLJ11] consider a problem
of controller synthesis for average-reward properties in classical HAs. The discrete-time
stochastic hybrid automata by Abate et al. (cf. also Section 4.5) can be used for the
analysis of reward-based properties as sketched e.g. in [TA12]. Methods which approxi-
mate continuous-time stochastic hybrid automata by Markov chains [PH06; HLS00] also
allow for an extension to reward-based properties. Another related work is by Fränzle
et al. [FTE10b], which considers approximations of the step-bounded expected accu-
mulated reward. To the best of our knowledge, this thesis is the first work to address
reward-based properties of PHAs involving nondeterminism, continuous-time as well as
stochastic behaviour by building upon well-understood and effective abstraction methods
for classical hybrid automata.

For the underlying PAs, solution methods for various reward-based properties exist, see
e.g. [Put94] for an overview. Fractional long-run average properties have been discussed
by de Alfaro [Alf97] and Jobstmann et al. [EJ11; EJ12].

7.7 Conclusion

We have extended our abstraction framework to handle properties of PHAs based on
rewards, thus considerably enlarging the class of properties we are able to analyse. For
this, we firstly had to consider the semantical model of PAs. We defined reward struc-
tures, costs or bonuses associated with taking a transition in a PA. We then defined
properties, reasoning over the expected total or long-run average reward with a given
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reward structure. We also extended probabilistic simulation relations, thus maintaining
the correctness of reward-based properties rather than just probabilistic reachability.
Then, we have decorated PHAs with reward structures, have discussed how these struc-
tures carry over to the semantical model and how properties of PHAs are defined. To
allow for the automatic analysis of reward-based properties, we extended our framework
accordingly. In case we have rewards depending on the time, as for instance the average
time the system is operational, it was necessary to take a closer look at the form of the
abstract states, to find out about minimal or maximal reward values. We compared
our conceptual approach to similar ones from the literature. The effectiveness of our
approach was demonstrated by using it to compute reward-based values on two of our
case studies.
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8
Orthogonal Combinations

In this chapter, we discuss orthogonal combinations of the models and techniques devel-
oped in the preceding four chapters. This way, we can handle very general models and
properties. In the following, we will consider each pair of two different extensions and
describe what has to be done to integrate them. The integration of more than two of
the extensions is then straightforward.

8.1 Continuous Distributions and Partial Control

If we combine continuous distributions with partial control, the semantic model of an
SHA H is still an NLMP

M = (S,ΣS, s,Act ,ΣAct , T ),

as is Definition 4.14 on page 83. However, we interpret it as a two-player game with con-
tinuous distributions. In this setting, we can define strategies similarly to Definition 5.1
on page 104. However, we have to take care to apply restrictions to enforce that the
joint scheduler of Definition 5.1 is a measurable function, as required in Definition 4.5 on
page 75. For this, we can define the set of measurable player-con strategies Strat conM,meas

as functions of the form
σcon : Path

fin
M → ∆(Act),

for which for all β ∈ Pathfin
M we have

σcon(β)({a ∈ Act | ∄µ ∈ ∆(S). (a, µ) ∈ T (last(β))}) = 0,

which are additionally required to be Σ
Path

fin
M

-H(∆(Act))-measurable. The measurable
player-env strategies Strat envM,meas are then defined as the set of functions

σenv : (Path
fin
M × Act) → ∆(∆(S)),

where for all β ∈ Pathfin
M and a ∈ Act for which there is µ ∈ ∆(S) with (a, µ) ∈

T (last(β)) we have

σenv(β, a)({µ ∈ ∆(S) | ∄a ∈ Act . (a, µ) ∈ T (last(β))}) = 0,
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and which are (Σ
Path

fin
M

⊗H(Act))-H(∆(∆(S)))-measurable.

We can then define the joint scheduler join(σcon, σenv) ∈ SchedM of σcon ∈ Strat conM,meas

and σenv ∈ Strat envM,meas, where for β ∈ Pathfin
M and A ⊆ Act ×∆(S) we have

join(σcon, σenv)(β)(A)
def

=

∫

Act

σenv(β, a)(A|a) σcon(β)(da).

We further change the definition of the maximal value val+,−
M,Reach which a controller can

enforce against any malevolent environment in Definition 5.3 of page 104 to

val+,−
M,Reach

def

= sup
σcon∈StratconM,meas

inf
σenv∈StratenvM,meas

valσcon,σenv

M,Reach .

The definition of the case val−,+,Actfair
M,Reach in which the controller minimises is similar, but

we still have the requirement that σcon is only chosen from strategies where for all
σenv ∈ Strat envM,meas the joint scheduler is Act-fair.

Analogously to Definition 4.5, we define finitely probabilistic player-con strategies σcon

by requiring that for each β ∈ Pathfin
M there is a finite number of actions a1, . . . , an ∈ Act

with
σcon(β)({a1, . . . , an}) = 1.

For finitely probabilistic player-env strategies σenv we require that for each β ∈ Pathfin
M

and a ∈ Act there is a finite number of distributions µ1, . . . , µn ∈ ∆(S) with

σcon(β, a)({µ1, . . . , µn}) = 1.

Semi finitely probabilistic strategies are defined in the same manner. After we abstract
the measurable continuous guarded commands as in Definition 4.20 on page 88 by a fam-
ily of command abstractions F, we implicitly have three types of nondeterminism: the
nondeterminism of the controller in the original hybrid system, the one of the environ-
ment, and the one resulting from the abstraction of continuous distributions. However,
in the current method of abstraction, the latter two types of nondeterminism are indis-
tinguishable and are thus automatically combined. Because of this, we end up with a
two-player game in which the controller player plays against the environment and the
abstraction. Thus, the abstraction is in favour of the environment player. Similarly to
Theorem 4.22 on page 89, the environment player can simulate the continuous distribu-
tions, and thus for each strategy of the original model it can construct an equivalent
strategy of the abstract model. It might be able to choose a more powerful one, which
was not possible in the original model. The controller has the same choices as before.
In turn, the abstraction is advantageous for the environment, and thus for an unsafe or
desirable mode mReach of H we have

val+,−
H,mReach

≥ val+,−
abs(H,F),mReach

and val−,+
H,mReach

≤ val−,+
abs(H,F),mReach

.

Similar to Lemma 4.10 at page 78, one can show that the environment player can obtain
its optimal value by only using finitely probabilistic strategies. Because of this, the result
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also holds if we restrict to this class of strategies, which are the ones also valid in the
interpretation of finitely probabilistic NLMPs as PAs.

If we then apply the abstraction of Section 5.3 on page 107, the abstraction is again in
favour of the environment player. Because of this, if we establish a certain bound in the
abstraction of such a system, the controller is guaranteed to achieve at least this bound
in the original semantics.

8.2 Continuous Distributions and Parametric Models

We can consider PHAs which are parametric and also feature continuous distributions.
What we have to do is to extend the definition of post operators, measurable finitely-
probabilistic guarded commands, and measurable continuous guarded commands in
Definition 4.18 on page 87. In this extension, moments of the continuous distributions,
for instance their mean or variation, can also be given as parameters rather than con-
stants. If we do so, we can define a parametric SHA (PSHA) as a model of the form

H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts, V ),

where the parameters V are as in Definition 6.8 on page 126. The commands Cmdsfin
are as the commands Cmds of Definition 6.8. Continuous commands c ∈ Cmdscts are of
the form g → M where g is as for finite commands, and M : S → (Evals(V ) → ∆(S))
is a function mapping states to parametric probability distributions. We define the
set of valid evaluations Evals(H) as in Definition 6.8. The post operators are required
to fulfil the measurability restrictions of Definition 4.11 on page 80, and for each valid
evaluation v ∈ Evals(H) and command c ∈ Cmdsfin ⊎ Cmdscts we must have that the
induced nonparametric guarded command fulfils Definition 4.11.

As in Definition 6.9 on page 126, the set of nonparametric models a parametric SHA
represents, are the models obtained by inserting the parameter values in both finitely-
probabilistic as well as continuous guarded commands.

To analyse such a model, we have to use an adapted version of the methods described
in Section 4.3 on page 87. Afterwards, we have a PPHA which overapproximates the
original PSHA, and can thus continue with the abstraction scheme on Section 6.3 on
page 127, the validity of which we have already shown before. The part we have to adapt
is Definition 4.18 on page 87. Here, we overapproximated a continuous command c by a
finitely-probabilistic guarded command abs(c, f) = (g → p1 : u1+ . . .+pn : un). Being in
state s, we divided the possible successor states of the commands into a number of sets
ui(s). The finitely-probabilistic guarded command was then defined in such a way that
each of the set is chosen by its probability pi, but the successor within the set was selected
nondeterministically. For the parametric setting, we abstract parametric continuous
commands to parametric finitely-probabilistic commands. For the correctness to hold,
we thus have to make sure that for each v ∈ Evals(H) the probabilities pi are chosen to
guarantee that the finitely-probabilistic command induced by v overapproximates the
continuous command induced by v.
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Figure 8.1: Bounds for probability of crashing as a function of probability of movement
authority loss p and standard deviation σ of distance measurement. A time
bound of 100s and Abstraction A was used.

As an example of this combination, reconsider the moving-block train controller case
study from Subsection 4.4.3 on page 96. The graph in Figure 8.1 displays the expected
positive correlation between measurement error (standard deviation) and risk, but also
the effectiveness of the fault-tolerance mechanism handling communication loss. We see
that crashes due to communication losses are effectively avoided, rooted in the principle
of maintaining the last received movement authority whenever no fresh authority is at
hand. In fact, risk correlates negatively with the likelihood of communication loss: if
no new movement authority is received, the follower train cannot proceed further to the
next block, and will thus avoid crashing into the leader train.

The model we analysed here is thus a parametric SHA with two parameters, the loss
probability p and the standard deviation σ. To obtain the graph, we applied (a straight-
forward extensions of) the abstraction mechanism of Chapter 4 to obtain a parametric
PHA from the original parametric SHA. The function correlating risk to measurement
error and probability of communication loss has been computed using the methods of
Chapter 6. This way, we were able to save a lot of time. Without using the parametric
method here, we would have had to perform a separate PHAVer run for each of the
357 points used to draw the graph, each of which already takes several minutes, as can
be seen from Table 4.3 on page 98.

8.3 Continuous Distributions and Rewards

If we want to consider reward-based properties of an SHA

H = (M, k,m, 〈Postm〉m∈M ,Cmdsfin,Cmdscts),

168



8.3. CONTINUOUS DISTRIBUTIONS AND REWARDS

at first we have to ensure that the value of interest is measurable in the NLMP semantics

M = (S,ΣS, s,Act ,ΣAct , T ).

We discuss the case of long-run average rewards, the other one is similar but simpler.
Given a scheduler σ and a reward structure (rewnum, rewden) of M, for the fractional
long-run average reward of Definition 7.3 on page 142 we have

valσM,rew ,lra
def

= EM,σ

[

lim
n→∞

∑n
i=0 rewnum(X

M
i , Y M

i , ZM
i )

∑n

i=0 rewden(X
M
i , Y M

i , ZM
i )

]

.

If the reward functions rewnum, rewden : (S×Act×∆(S)) → R≥0 are (ΣS⊗ΣAct⊗∆(ΣS))-
B(R≥0)-measurable, we can derive the measurability of

lim
n→∞

lim inf
m→∞

∑m
i=n rewnum(X

M
i , Y M

i , ZM
i )

1 +
∑m

i=n rewden(XM
i , Y M

i , ZM
i )

.
✞

✝

☎

✆8.1

As in the discussion of Definition 7.3 on page 142, we then assume σ is chosen so that

lim
n→∞

∑n

i=0 rewnum(X
M
i , Y M

i , ZM
i )

∑n
i=0 rewden(XM

i , Y M
i , ZM

i )

exists for a set of paths with probability 1. This value agrees with the one of Equation 8.1,
which means that valσM,rew ,lra exists. We remark that, in case of PAs, we would in prin-
ciple also have to take into account measurability considerations. However, we only had
to show that the reward functions are (2S ⊗ 2Act ⊗ 2Distr(S))-B(R≥0)-measurable, which
is trivially the case.

To ensure the measurability of the semantics, we have to show that the reward structures
of H as in Definition 7.14 on page 151 are measurable. Because we can encode continuous
reward functions in discrete reward functions (cf. Definition 7.23 on page 155), we only
consider the latter form. Let Cmds

def

= Cmdsfin⊎Cmdscts. To guarantee the measurabil-
ity of rewnum and rewden, we have to make sure that rewdis : ((M ×Rk)×Cmds) → R≥0

is (ΣS ⊗ 2Cmds)-B(R≥0)-measurable where ΣS = 2M ⊗ B(Rk). Because there are only
finitely many modes and commands, this is equivalent to showing that for each m ∈ M
and c ∈ Cmds we have that rewdis(m, ·, c) : Rk → R≥0 is B(Rk)-B(R≥0)-measurable.
Similarly to the discussion after Definition 4.11 on page 80, we can argue that this mea-
surability requirement is fulfilled when formulating the rewards in common mathematical
theories, for instance o-minimal ones.

To perform the analysis, one can perform the same abstraction as in Section 4.3 on
page 87 to obtain a PHA. With this PHA and the same reward structure as for the
original SHA, we can then use the solution methods for PHAs of Section 7.3 on page 156
to obtain valid bounds, the correctness of which we have already shown before. To show
that the abstraction from SHAs to PHAs is correct, we have to extend Lemma 4.10 on
page 78. This lemma states that finitely probabilistic schedulers, which are the ones
valid in PAs, suffice to obtain optimal reachability probabilities, even under fairness.
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input : finite PPA M = (S, s,Act , T , V ), state set Reach ⊆ S, region r.
output: either ? or (vals+,−

M,Reach , σcon, σenv) with σcon ∈ Strat
con,simple
M and

σenv ∈ Strat
env,simple
M and for all v ∈ Evals(M) ∩ r and s ∈ S we have

vals+,−
M,Reach(s)〈v〉 = vals

join(σcon ,σenv)
M,Reach (s)〈v〉

= infσ′
env∈Strat

env
M

vals
σcon,σ

′
env

M,Reach(s)〈v〉 = supσ′
con∈Strat

con
M

vals
σ′
con,σenv

M,Reach(s)〈v〉.
1 c := centre(r)
2 if c /∈ Evals(M) then return ?
3 (_, σcon, σenv) := maxMinValSched(Mc,Reach) /* cf. Algorithm 5.1 */

4 v := reachParam(Mjoin(σcon,σenv),Reach) /* cf. Algorithm 6.1 */

5 valid := true

6 forall the s ∈ S \ Reach, a ∈ Act with T (s, a) 6= ∅ do

7 vcmp(s) :=
∑

s′∈S σenv(s, a)(s
′)v(s′)

8 valid := valid ∧ check(v(s) ≥ vcmp(s), r) /* cf. Definition 6.23 */

9 forall the s ∈ S \ Reach, µ ∈ T (s, σcon(s)) do

10 vcmp(s) :=
∑

s′∈S µ(s
′)v(s′)

11 valid := valid ∧ check(v(s) ≤ vcmp(s), r) /* cf. Definition 6.23 */

12 if valid then return (v, σcon, σenv)
13 else return ?

Algorithm 8.1: maxMinReachParamRegion(M,Reach, r).

To adapt the proof, we basically have to replace the reachability probabilities within
the inequations connecting semantics and abstractions by the expected reward values.
Theorem 4.22 on page 89 does not need to be modified much. Its proof shows that we
can simulate any stochastic behaviour of the original model by the abstract model, which
also includes reward-based properties.

8.4 Partial Control and Parametric Models

The definition of a parametric PHA H with partial control is the same as in Definition 6.8
on page 126, because the definition of nonparametric PHAs with partial control is the
same as the one for PHAs without control in Definition 3.20 on page 46. A parametric
game abstraction M can then be defined similarly to the nonparametric game-based ab-
straction in Definition 5.8 on page 107. The main difference is, that we use parametric
probability distributions in the same way as in Definition 6.13 on page 127. Given an
evaluation v ∈ Evals(H), the nonparametric automaton induced by v on H is then ab-
stracted by the induced abstraction of M by v. The correctness for these nonparametric
models follows by Theorem 5.16 on page 113.

To compute functions which bound the mutually optimal values in the abstraction, we
have to adapt Algorithm 6.2 on page 133. This algorithm computes a function which
depends on the model parameters and represents the optimal value for an entire pa-
rameter region. Using techniques from Algorithm 5.1 on page 118, we have to adapt
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Algorithm 6.2 to compute the mutually optimal values rather than the minimal one.
We give a sketch of the modified algorithm in Algorithm 8.1. As Algorithm 6.3, the al-
gorithm operates on regions of parameter evaluations. In the first two lines it computes
the centre evaluation v of the region. Then, in Line 3, it uses Algorithm 5.1 to compute
the player-con and player-env strategies σcon, σenv which are mutually optimal for v, in
contrast to Algorithm 6.2 which uses Algorithm 3.3 on page 63. In Line 4, it computes
the reachability values obtained if the two players play according to σcon, σenv. In lines
6 to 8 the algorithm verifies that these strategies are mutually optimal for the entire
parameter region. As in Algorithm 6.3, we might find out that we cannot find mutually
optimal strategies for the entire region, and thus the algorithm might return ?, which
means that when returning to Algorithm 6.3 the region will be split further.

8.5 Partial Control and Rewards

It is possible to analyse PHAs with partial control for reward-based properties. To do so,
we have to adapt the definition of mutually optimal values in PAs with a given reward
structure in Definition 5.3 on page 104 to the reward-based value of Definition 7.3 on
page 142. The definition of player-con and player-env strategies, fairness and so on
can stay the same. If we want to synthesise a controller which maximises the long-run
average rewards, the objective becomes

val+,−
M,rew ,lra

def

= sup
σcon∈StratconM

inf
σenv∈StratenvM

valσcon,σenv

M,rew ,lra where valσcon,σenv

M,rew ,lra

def

= val
join(σcon,σenv)
M,rew ,lra ,

with

valσM,rew ,lra
def

= EM,σ

[

lim
n→∞

∑n
i=0 rewnum(X

M
i , Y M

i , ZM
i )

∑n
i=0 rewden(XM

i , Y M
i , ZM

i )

]

,

as in Definition 7.3. The definitions for a minimising controller and accumulated rewards
are similar.

The definition of reward structures (cf. Definition 7.14 on page 151) of PHAs can stay
the same, as can the definition of their semantics in terms of reward structures of PAs.
To define long-run average values in PHAs, we can combine Definition 7.21 on page 154
with Definition 5.6 on page 106. Both definitions only map the definition of values to
the PA semantics.

For the abstraction, one firstly has to consider the reward-encoded PHA of Definition 7.23
on page 155, in which a part of the reward is encoded in the state space and certain
rewards are obtained later than in the original model. The mutually optimal values stay
the same in the reward-encoded PHA, because for each pair of player-con and player-env
strategies σcon, σenv the value functions using the joint scheduler join(σcon, σenv) stays the
same, as we have already shown this for general schedulers in Lemma 7.24 on page 155.
In the proof, we only considered maximal and minimal values, but the result holds in-
deed for all fair schedulers, as it relies on Lemma 7.6 on page 145 in the proof of which
we considered values of all fair schedulers.
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input : finite PA M = (S, s,Act , T ), reward structure rew = (rewnum, rewden).
output: (vals+,−

M,rew ,acc, σcon, σenv) with σcon ∈ Strat
con,simple
M and

σenv ∈ Strat
env,simple
M and

vals+,−
M,rew ,acc = vals

join(σcon,σenv)
M,rew ,acc

= infσ′
env∈Strat

env
M

vals
σcon,σ

′
env

M,rew ,acc = supσ′
con∈Strat

con
M

vals
σ′
con,σenv

M,rew ,acc.
1 (σcon, σenv) := maxMinAccInit(M)
2 v := valsMjoin(σcon,σenv),rew ,acc

3 repeat

4 v′ := v
5 forall the s ∈ S do

6 A(s) := argmax a∈Act,
T (s,a) 6=∅

rewnum(s, a, σenv(s, a)) +
∑

s′∈S σenv(s, a)(s
′)v(s′)

7 if σcon(s) /∈ A(s) then choose σcon(s) from A(s)

8 (v, σenv) := minAcc(Mσcon , rew) /* cf. Algorithm 7.1 */

9 until v = v′

10 return (v, σcon, σenv)
Algorithm 8.2: maxMinAcc(M, rew).

In Definition 5.8 on page 107 we have defined a game-based abstraction for reachability
probabilities, and in Definition 7.26 on page 156 and Definition 7.29 on page 157, we
have defined two different abstractions of rewards on abstractions of PHAs without
synthesis, as in Definition 3.30 on page 52. The difference between Definition 5.8 and
Definition 3.30 is basically that in Definition 5.8 we have a few additional transitions,
which are used to model the fact that the controller cannot execute each command in
each situation. For transitions already existing in the abstraction of Definition 3.30 we
assign a reward as it was given in Definition 7.26 or Definition 7.29, and assign a reward
which is bad for player con to the additional transitions. This way, the abstraction
is guaranteed to disadvantage player con, which is necessary to obtain bounds on the
values the controller can obtain. To show the correctness of this abstraction, one has
to adapt Theorem 5.16 on page 113, which uses a chain of (in)equations obtained by
showing a number of lemmas. The basic argumentation when using reward-based value
functions stays the same for each of these lemmas.

To analyse properties of accumulated rewards in the abstractions, we can use an ex-
isting algorithm [FV96], which we sketch in Algorithm 8.2. It combines the ideas of
Algorithm 5.1 on page 118 and methods of Algorithm 7.1 on page 160.

An algorithm to solve fractional long-run average games was described by Bloem et al.
[Blo+09]. Its basic idea is to reduce such games to the case of long-run average rewards
in which each step takes one unit of time.
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input : finite PMC M = (S, s, T , V ), reward structure rew = (rewnum, rewden).
output: valsM,rew ,acc where for all v ∈ Evals(M) and all s ∈ S we have

valsM,rew ,acc(s)〈v〉 = valsMv,rew ,acc(s).
1 for s ∈ S with T (s)(s) 6= 1 do

2 for s′ ∈ preM(s) with s′ 6= s do

3 rewnum(s
′) := rewnum(s

′) + T (s′)(s)
1−T (s)(s)

rewnum(s)

4 for (s1, s2) ∈ preM(s)× postM(s) with s1 6= s ∧ s2 6= s do

5 T (s1)(s2) := T (s1)(s2) + T (s1)(s)
1

1−T (s)(s)
T (s)(s2)

6 for s′ ∈ preM(s) with s′ 6= s do T (s′)(s) := 0

7 for s′ ∈ postM(s) with s′ 6= s do T (s)(s′) := T (s)(s′)
1−T (s)(s)

8 rewnum(s) :=
1

1−T (s)(s)
rewnum(s)

9 T (s)(s) := 0

10 for s ∈ S do v(s) := rewnum(s)
11 return v

Algorithm 8.3: accParam(M,Reach).

8.6 Parametric Models and Rewards

If we consider reward-based properties of parametric PHA, the adaption of notations is
rather straightforward. As the semantical model, we can use the PAs of Definition 6.4
on page 124. We can take over the definition of the reward structures on transitions of
these models from Definition 7.1 on page 142. The definitions for the high-level PHA
model is also simple. We use Definition 6.8 on page 126 and can take over the definition
of rewards from Definition 7.14 on page 151.

The definition of reward-encoded PAs, etc. is as in the nonparametric case. We can use
Definition 6.13 on page 127 to abstract the parametric PHAs, and use Definition 7.26
on page 156 or Definition 7.29 on page 157 as abstractions for the rewards. We have to
make sure that rewards in abstractions are always higher (or lower, respectively) than
certain rewards in the semantics. In the nonparametric reward-based analysis, we used
linear programming for this issue. In case the reward structures stay nonparametric, the
abstraction can be done as before. In the case of reward structures which depend on the
model parameters, we have to adapt the method accordingly to ensure that for all valid
parameter evaluations the requirements on the reward structures of the induced PHA
are fulfilled.

To compute the values in the abstract model, we have to adapt the algorithm which
computes values in Markov chains in Algorithm 6.1 on page 129, as well as the algorithm
to verify optimality of a given value function in Algorithm 6.2 on page 133. We consider
the case of expected accumulated rewards here. The main algorithm Algorithm 6.3 on
page 134 responsible for dividing regions can remain basically as it is. As an adaption
of Algorithm 6.1, we use a method already described in a previous publication [HHZ09;
HHZ11a]. The values in induced PMCs are solved by a variant of Algorithm 6.1, where
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input : finite PPA M = (S, s,Act , T , V ), reward structure
rew = (rewnum, rewden), region r.

output: either ? or (vals−M,rew ,acc, σ) with σ ∈ Sched
simple
M and for all

v ∈ Evals(M) ∩ r and s ∈ S we have
vals−M,rew ,acc(s)〈v〉 = vals−Mv,rew ,acc(s) = valsσMv,Reach,acc(s).

1 c := centre(r)
2 if c /∈ Evals(M) then return ?
3 (_, σ) := minAcc(Mc,Reach) /* cf. Algorithm 7.1 */

4 v := accParam(Mσ,Reach) /* cf. Algorithm 8.3 */

5 valid := true

6 forall the s ∈ S, a ∈ Act , µ ∈ T (s, a) do

7 vcmp(s) := rewnum(s, a, µ) +
∑

s′∈S µ(s
′)v(s′)

8 valid := valid ∧ check(v(s) ≤ vcmp(s), r) /* cf. Definition 6.23 */

9 if valid then return (v, σ)
10 else return ?

Algorithm 8.4: minAccParamRegion(M,Reach, r).

processing one state maintains the accumulated reward value instead of the reachability
probability. To prove the optimality we apply an algorithm of a previous publication
[HHZ11a]. The algorithm there works in a similar way as in Algorithm 6.3 by proving
that a certain scheduler is optimal for an entire region.

Bloem et al. [Blo+09] describe an algorithm to solve fractional long-run average games
in the nonparametric case. Its basic idea is to reduce such games to the case of long-run
average rewards in which each step takes one unit of time. Because this algorithm is an
iteration based on policy iteration, it can also be adapted to the parametric case.

As an example for this combination we consider the parametric water level control of
Subsection 6.5.2 on page 136 and consider the minimal expected number of commands
executed until termination as in Subsection 7.5.2 on page 162. It turns out that there
is a single optimal scheduler for all variable evaluations and the expected reward is at
least as large as

2x− 4

xy − x− y
.

In Figure 8.2 we give a plot for this function on the left. On the right, we check whether
the minimal expected number of commands executed until termination is at least as
large as 15. As in Subsection 6.5.2, the white regions are the ones guaranteed to fulfil
the bound. The expected number of commands executed decreases with increasing
failure probability, because a higher failure probability increases the chance of an earlier
termination of a system, which means that fewer commands can be executed.
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Figure 8.2: Results for reward-based properties in parametric water level control.

8.7 Conclusion

We have shown how we can combine the results of the previous chapters to handle more
general models and properties. To show how such a combination can take place, we
consider all pairs of different extensions, and discuss the necessary steps to combine
them. Combinations of more than two of them are then straightforward. We also
exemplified two of the orthogonal combinations by sketching corresponding extensions
of our case studies.
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9
Summary and Future Work

The analysis of hybrid systems is intricate, as reflected by the undecidability results
for most models, except restricted subclasses of such systems. Integrating stochastic
behaviours further complicates the situation; in addition to the discrete-continuous dy-
namics on the infinite state space, abstractions have to take probabilistic behaviours
into account. Although previous works have provided significant results for many im-
portant classes of such models, including exact solution methods, prior to our work it
was not clear how to develop a generic analysis framework for the automatic analysis of
the generic class of stochastic hybrid systems we operate on.

9.1 Summary of Contributions

In this thesis, we have developed an efficient analysis framework for a generic class
of stochastic hybrid systems, based on solution methods for classical nonprobabilistic
hybrid automata. After having developed the basic method, we have expanded it into
a number of different directions, thus increasing the expressivity of the models and
properties we can analyse.

Probabilistic Reachability

We have developed the foundation of our framework in terms of a flexible method to
analyse two kinds of reachability properties of probabilistic hybrid automata. To do
so, we combined methods for the abstraction of classical hybrid automata with results
from the analysis of Markov models, both to show the correctness results—for which
we used probabilistic simulation—as well as to compute value bounds in the abstract
models—by using policy iteration and related methods. Doing so, we were able to
conservatively overapproximate reachability probabilities in abstract versions of models
under considerations, and thus develop the first automatic and generic framework for
this generic class of stochastic hybrid systems.
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Continuous Distributions

To extend the set of models we can analyse, we extended the class of probability dis-
tributions which can appear in a stochastic hybrid system to continuous distributions.
We solved not only theoretical issues concerning the well-definedness of such models,
but also extended our existing analysis framework in order to handle this more general
model class.

Partial Control

For cases in which the nondeterminism of a system is under our partial control, we have
developed an extension of our method to synthesise controllers which resolve this nonde-
terminism. When used to steer an actual system, they are then guaranteed to maintain
the validity of reachability properties by the bounds computed in the abstraction. The
proof of correctness turned out to be more complicated than for the case without con-
trol, because we could no longer use probabilistic simulation as a means of relating two
system models.

Parametric Probability Distributions

We have considered systems in which probabilities are not fixed, but given by a set
of parameters. Combining our results on stochastic hybrid systems with our previous
works in parametric probabilistic model checking, we were able to provide an extension
of our framework which can handle this kinds of models. Instead of ending up with a
single number describing a bound on the reachability probability, we are now able to
compute parameter instantiations which fulfil a given property, and to obtain functions
describing reachability probabilities. These functions are subject to further analysis,
for instance to find optimal parameter values for a given property using for instance
nonlinear optimisation tools or computer algebra systems.

Rewards

Extending the previous analysis of reachability probabilities, we have assigned rewards
to timed and discrete transitions of our hybrid automata. In turn, we were able to reason
about expected accumulated reward values, or expected long-run reward values. Doing
so allowed us to reason about properties which are related to resource consumption or
are more on the economical side, like for instance the energy consumption or cost of a
system until termination, or the long-run cost of running a given system.
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9.2 Conclusions

By the orthogonal combination of concepts from the area of classical hybrid automata
with those from the area of Markov models, we arrive at an analysis framework that can
handle a significant class of stochastic hybrid systems, involving nondeterminism, general
probability distributions, continuous time and complex properties. Our framework is
implemented in a way which allows for a completely automatic analysis without the
need of manual intervention. This admits to automatically verify stochastic hybrid
systems far beyond the reach of any previous method.

9.3 Future Works

The work we have presented in this thesis gives path to several ideas of future works.

State-dependent probabilities. In this thesis, all probabilities of the models consid-
ered were indeed fixed or parametric in a set of model variables, but they could not
depend on the current system state. For instance, we could not analyse a model which
involves a probabilistic guarded command g → x : u1+(1−x) : u2 where x is not a model
parameter in the sense of Chapter 6 but a continuous variable of the model. However, we
have developed a solution method for systems in the area of probabilistic discrete-time,
discrete-state systems [Fio+12]. Here, similarly to the methods of Chapter 7, we have to
find certain minima and maxima over the abstract states, like x in the example above.
Having done so, we use an extension of abstract (or interval) Markov chains [Kat+12]
as the abstract model. This method can be extended to probabilistic hybrid automata.
In particular, if we are using polyhedra-based representations of abstract states, we can
again use linear programming to reason about these extrema, which is indeed simpler
than the optimisation problem we had to solve in the previous publication.

Richer properties. We already considered an extension from reachability to reward-
based properties. In the future, it might be of interest to consider other classes, such as
for instance specifications in logics such as PCTL [HJ94] or properties based on words,
e.g. given as Büchi automata [Büc62]. A similar method has proven successful in the
area of discrete-time stochastic hybrid systems [AKM11]. Depending on the property
under consideration, as in for the extensions discussed above, we might have to take a
closer look at the abstract states.

Improving time-bounded reachability. In the case studies we considered so far, we
have handled time-bounded reachability by using an additional variable, which increases
the complexity of the model and thus the cost of the analysis. If we instead use a timer
which is reset in each mode, as in Chapter 7, we can find out about the minimal and
maximal times for staying in each abstract state. Using an approach related to a method
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by Andova et al. [AHK03], we could use an abstraction of the latter model to handle
time-bounded properties, by building a new model consisting of several copies of the
abstract state space in a chain. This has the advantage that the computational cost
within the hybrid solver is independent of the time bound, though results obtained this
way might become less precise for larger time bounds.

Stochastic differential equations. In the hybrid automata we were considering, we
have used differential (in)equations, but have thus far not included stochastic differential
equations. Althoff et al. [ASB08] use zonotopes to compute overapproximations of the
states in which the system will remain with a guaranteed probability. The systems they
consider do so far not contain nondeterminism, but, differently from our method, they
do contain stochastic differential equations. It would be interesting to combine with
their methods thus to handle systems which contain both features.

State-space refinement. In our approach so far, we relied on solvers computing the
abstraction of the stochastic hybrid automaton. In many cases, this method turned out
to work very well, but in other cases, it did not. For instance, we also tried to use the tool
HSolver [RS07] instead of ProHVer to compute an overapproximation. This failed,
because HSolver always tries to prove the complete safety of the system. As in our
models there are indeed some paths leading to unsafe states, HSolver never stopped
trying to disprove these paths in favour of trying to disprove paths which indeed are
only present in the abstract model. Because HSolver has indeed been successful in
showing the safety of completely safe systems, this indicates that it might be worthwhile
to adapt existing methods to our needs, rather than relying on an existing solver to
compute the abstraction. Doing so decreases the generality of the method, as new
abstraction methods have to be adapted to our probabilistic setting. It has however the
potential to provide more precise results and reduce the cost of analyses, as we might
be able to work with a fewer number of abstract states.

Refined continuous distributions. In Chapter 4, we handle continuous probability
distributions by dividing the possible successor states into several sets, already on the
high-level description of the automaton. The approach does not take into account auto-
matically that certain parts of the possible successor state set might be more important
than others, and furthermore relies on a good guess for the splitting. Along with the
state-space refinement of the previous paragraph, one could implement a method to split
the distributions in a more target-oriented way. It might also be worthwhile to consider
whether an extension of interval Markov chains we discussed previously could be used
as an alternative to the splitting of distributions. Intervals would then overapproximate
the possible probabilities over all concrete states of a given abstract state to move to a
certain successor abstract state.
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