
A Heterogeneous Characterisation of
Component-Based System Design in a

Categorical Setting

Carlos G. Lopez Pombo1,3, Pablo F. Castro2,3, Nazareno Aguirre2,3, and
Tomas S.E. Maibaum4

1 Department of Computing, FCEyN, Universidad de Buenos Aires
2 Department of Computing, FCEFQyN, Universidad Nacional de Ŕıo Cuarto
3 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)

4 Department of Computing & Software, McMaster University

Abstract. In component-based design, components and communication
mechanisms have a different nature; while the former represent the agents
that cooperate to fulfill a certain goal, the latter formalise the commu-
nication mechanism through which these agents interact. A proper for-
malisation of the heterogeneity that arises from this difference requires
one to employ the most adequate formalism for each of the parts of a
specification and then proceed to merge the parts of the system speci-
fication characterised in different languages. The approach we propose
in this paper is based on the notion of institution, and makes extensive
use of institution representations in order to relate the specifications of
components and communication mechanisms, each of which might be
expressed in different formalisms. The contribution focuses on providing
tools needed to engineer heterogeneous languages arising from particular
choices for the specification of components and communication devices.

1 Introduction

Nowadays, software artefacts are ubiquitous in our lives, being an essential part
of home appliances, cars, cell phones, and even in more critical activities like
aeronautics and health sciences. In this context, software failures may produce
enormous losses, either economical or, in the worst case, in human lives. In
order to provide better guarantees for the correct functioning of software, various
elements are necessary, among which formal foundations, that enable a precise
reasoning about software, and modularity, that helps in dealing with software
complexity, are crucial.

The importance of modularity has been acknowledged since the foundational
work of Parnas, which promoted building software artefacts (and more specif-
ically software specifications) modularly, enhancing reusability of modules and
contributing to a better separation of concerns, and leading to an improved qual-
ity in specification and development. Modularisation is generally understood as
the process of dividing a system specification, or implementation, into manage-
able parts: the modules or components. It leads to a structural view of systems,

called architecture, as described in [16], in which the relevance of component
interaction is brought out. Aside from its crucial relevance for managing the
complexity of systems, a system’s architectural structure also plays an impor-
tant role in its functional and non-functional characteristics.

Given the relevance of software architecture, its formal foundations are es-
sential to guarantee the correct functioning of component based systems. There
exist various approaches to formally capture component based systems, which
are either language-specific (e.g., formalisations of schema operators in Z or
structuring mechanisms in B), making its results difficult to generalise to other
component-based settings, or target specific ways of communicating components
(e.g., formalising particular communication mechanisms, such as synchronisation
in process algebra based approaches). Moreover, these approaches support com-
munication mechanisms that are influenced (or defined) by the nature of the
components they communicate (e.g., synchronisation in event based models, or
shared memory in state based models).

In this work, we tackle the above described limitations of existing formalisa-
tions of component based systems by introducing an abstract and heterogeneous
categorical characterisation of component-based systems. Our characterisation
is presented in a logic or language independent setting, by making use of the
notion of institution. Moreover, the approach is heterogeneous, favouring a more
genuine separation of concerns in the specification of components, and that of
the communication mechanisms. Finally, although there exist other abstract and
heterogeneous approaches, most notably the work related to The Heterogeneous
Tool Set HETS [26, 27], our approach differs from these in that it focuses on
providing a formal characterisation of the elements of the domain of component-
based software architecture (to be further discussed in Sec. 5).

The practical usefulness of heterogeneous specification formalisms in the con-
text of component-based systems is acknowledged by the existence of languages
such as Acme [17] (and others), designed with the aim of putting together speci-
fications originating in different formalisms. Generally, heterogeneity arises from
two different angles: it arises from the fact that the description of each com-
ponent or module could be given in a different specification language; and as a
consequence of components and communication mechanisms being of a different
nature. The existing literature concentrates on the first kind of heterogeneity;
we will devote this work to providing formal foundations for the second one.

The formal tools we use in this paper are those coming from the field of
category theory, more specifically from the domain of algebraic specifications
[6]. They have been shown to be useful for enabling the formal characterisation
of different kinds of specification structuring mechanisms and refinement in dif-
ferent settings; a few examples are: [7, 9, 22, 33]. We employ a well established
abstract definition of logical systems, known as institutions [18], to achieve gen-
erality (in the sense of the approach being language independent). In order to
appropriately combine different formalisms, we make extensive use of institu-
tion representations [30]. These serve the purpose of relating and, consequently,

combining different (abstract) logics used for different purposes in a given spec-
ification, e.g., those used for component and connector specifications.

In summary, the main contributions of this work are: a) providing a formal,
and language independent, interpretation of the concepts arising from the field of
software architecture, and b) providing formal foundations for the heterogeneity
observed when components interact through communication channels.

2 Preliminaries

From now on, we assume that the reader has a nodding acquaintance with the
basic definitions of category theory, including the concepts of category, functor,
natural transformation, etc. We mainly follow the notation of [23]: given a cat-
egory C, |C| denotes its collection of objects, while ||C|| denotes its collection
of arrows. g ◦ f : A → C denotes the composition of arrows f : A → B and
g : B → C. Natural transformations will be indicated with the arrow

·→.

The theory of institutions [18] provides a formal definition of logical system,
and of how specifications in a logical system can be put together. They also serve
as a suitable framework for addressing the problem of heterogeneity [27, 32].

Definition 1. An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ

}Σ∈|Sign|〉 satisfying the following conditions: a) Sign is a category of signa-
tures, b) Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) corre-
sponds to the set of Σ-formulae), c) Mod : Signop → Cat is a functor (let
Σ ∈ |Sign|, then Mod(Σ) corresponds to the category of Σ-models), d) {|=Σ

}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| × Sen(Σ), is a family of binary relations.
Such that, for every signature morphism σ : Σ → Σ′ ∈ ||Sign||, φ ∈ Sen(Σ)
and M′ ∈ |Mod(Σ)| the following |=-invariance condition must hold: M′ |=Σ′

Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Institutions are an abstract formulation of the notion of logical system, more
specifically, of its model theory, where the concepts of languages, models and
truth are characterised in a category theoretic way. Examples of institutions
are: propositional logic, equational logic, first-order logic, first-order logic with
equality, dynamic logics and temporal logics (a detailed list is given in [18]).

Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 be an institution, Σ ∈ |Sign| and Γ ⊆
Sen(Σ) then, we define the functor Mod(Σ,Γ) as the full subcategory of
Mod(Σ) determined by those models M ∈ |Mod(Σ)| such that for all γ ∈ Γ ,
M |=Σ γ. We also overload the symbol |=Σ , to define a relation between
sets of formulae and formulae, as follows: Γ |=Σ α if and only if M |=Σ

α for all M∈ |Mod(Σ,Γ)|. where α ∈ Sen(Σ).

Definition 2. We define the category of theory presentations as the pair 〈O,A〉
(usually denoted as Th) where: O = { 〈Σ,Γ 〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) },

and A =

{
σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉

∣∣∣∣ 〈Σ,Γ 〉, 〈Σ′, Γ ′〉 ∈ O, σ : Σ → Σ′ ∈ ||Sign||
and Γ ′ |=Σ′

Sen(σ)(Γ)

}
.

In addition, if a morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 satisfies Sen(σ)(Γ) ⊆ Γ ′, it
is called axiom preserving. By keeping only those morphisms of Th which are
axiom preserving we obtain the category Th0.

As we mentioned before, an institution is a structure 〈Sign,Sen,Mod, {|=Σ

}Σ∈|Sign|〉 so from now on, whenever we make reference to a given institution I

we will be referring to the structure I = 〈SignI,SenI,ModI, {|=I
Σ}Σ∈|SignI|〉.

Next, we define the notion of institution representation (also find in the
literature under the name of co-morphism)[30, Def. 12, Sec. 5].

Definition 3. Let I and I ′ be institutions then, the structure 〈γSign, γSen, γMod〉 :
I → I ′ is an institution representation if and only if: a) γSign : Sign → Sign′

is a functor, b) γSen : Sen
·→ Sen′ ◦ γSign, is a natural transformation such

that for every Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 ∈ ||Sign||, γSenΣ2
◦ Sen(σ) =

Sen′(γSign(σ)) ◦ γSenΣ1
, c) γMod : Mod′ ◦ (γSign)op

·→Mod, is a natural trans-
formation such that for every Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 ∈ ||Sign||,
Mod(σop)◦γMod

Σ2
= γMod

Σ1
◦Mod′((γSign)op(σop)), such that, for any Σ ∈ |Sign|,

γSenΣ : Sen(Σ) → Sen′(γSign(Σ)) and γMod
Σ : Mod′(γSign(Σ)) → Mod(Σ)

preserve the following satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈
|Mod(γSign(Σ))|, M′ |=γSign(Σ) γ

Sen
Σ (α) iff γMod

Σ (M′) |=Σ α.

An institution representation intuitively corresponds to the relationship between
a given institution, and how it is interpreted into another one, in a semantics
preserving way. It may be regarded as a realisation for institutions of the estab-
lished concept of property preserving translation between two theories in two
different logics.

Property 1. Let I and I′ be institutions, and ρ : I → I′ an institution represen-
tation. For every signature Σ ∈ |Sign|, set Φ ⊆ Sen(Σ) of Σ-sentences, and
Σ-sentence ϕ ∈ Sen(Σ), if Φ |=Σ ϕ, then ρSenΣ (Φ) |=′ρSign(Σ) ρ

Sen
Σ (ϕ).

We will also use a few other categorical concepts, such as that of a bicategory
and a lax functor ; the interested reader is referred to [23].

3 A Characterisation of Component-Based Design

Two main goals of our approach to component-based specification are gener-
ality and abstraction, in the sense that we have designed our characterisation
of component-based systems to be specification language independent. We start
by providing a category theoretic characterisation of the concepts used in the
field of software architecture. There, the building blocks for software design are
components, glues, ports, roles and adaptors.

Components A component describes an independent computational unit of a
system. They are formally characterised by theories in a given institution. Note
that the approach presented here does not prevent the introduction of another
level of heterogeneity where each component is specified in a different formalism,

Component: Producer
Attributes: p-current: Bit, p-waiting: Bool,

ready-in: Bool
Actions: produce-0 , produce-1 , send-0 , send-1 ,

p-init
Axioms:
1. �(p-init →©(p-current = 0 ∧ ¬p-waiting))
2. �(produce-0 ∨ produce-1 → ¬p-waiting∧

©p-waiting)
3. �(produce-0 →©(p-current = 0))
4. �(produce-1 →©(p-current = 1))
5. �((send-0 → p-current = 0)∧

(send-1 → p-current = 1))
6. �(send-0 ∨ send-1 → p-waiting∧

©¬p-waiting)
7. �(send-0 ∨ send-1 → ready-in∧

p-current =©p-current)
8. �(send-0 ∨ send-1 ∨ produce-0∨

produce-1 ∨ p-init∨
(p-current =©p-current∧
p-waiting =©p-waiting))

Component: Consumer
Attributes: c-current: Bit, c-waiting: Bool,

ready-ext: Bool
Actions: consume, extract-0 , extract-1 , c-init
Axioms:
1. �(c-init →©(c-current = 0 ∧ c-waiting))
2. �(extract-0 ∨ extract-1 → c-waiting∧

©¬c-waiting ∧ ready-ext)
3. �(extract-0 →©(c-current = 0))
4. �(extract-1 →©(c-current = 1))
5. �(consume → ¬c-waiting ∧©c-waiting)
6. �(consume → c-current =©c-current)
7. �(consume ∨ extract-0 ∨ extract-1 ∨ c-init∨

(c-current =©c-current∧
c-waiting =©c-waiting))

Fig. 1. A Producer-Consumer specification

in which case the language must deal with this internally, e.g., by instantiat-
ing the institution for describing components with a Grothendieck institution
formed by all the specification languages needed for the task, as proposed in [5,
27]. Without loss of generality we will assume a single language for component
specification formalised as an institution, which will be referred to as IComp.

Example 1. (A simple producer and consumer specification) In Fig. 1 we present
a formalisation of a producer and a consumer in propositional temporal logic [13],
a specification language based on linear temporal logic [24]; as a consequence,
our specifications are state-based. For simplicity, we assume that messages are
bits identified by the type Bit . The producer’s state is defined by a bit-typed
attribute p-current to store a produced element, a boolean attribute p-waiting
to indicate whether an item is already produced and ready to be sent (so that
null values for items are not necessary), and a boolean attribute ready-in, so
that a producer is informed by the environment when this is ready to receive
a product. This specification consists of a set of sorts (Bit and Bool, in this
case), a set of attributes (i.e., flexible variables), some of which are supposed
to be controlled by the environment, and a set of action symbols (they are
flexible boolean variables indicating the occurrence of an action). The axioms of
the specification are linear temporal logic formulae characterising the behaviour
of the component, in a rather obvious way. The consumer component can be
specified in a similar way.

Notice that these components are coherent with the notion of component in
software architecture [16]. The theory associated with a component represents
the computational aspects of it, in our case indicating via axioms (and their
corresponding consequences) the behaviour of the actions of the component and
their effect on its state. It is worth noticing that components described below
do not formalise any aspect of the communication between them.

Ports Ports constitute the communication interfaces of a component. As in [13],
ports can be captured by using channels, which consist of theories with no ax-

ioms. Given A ∈ |Th0I
Comp

|, a port for A is a morphism σ : Th(Σ) → A ∈
||Th0I

Comp

|| such that Σ ∈ |SignIComp |.5

In software architecture, emphasis is put on the explicit description of com-
munication aspects of a system, separated from the computational, component
related, aspects. Below we define the elements relevant in our formalisation, var-
ious of which are inspired by the formal approach to interaction characterisation
put forward in [12].

Glues In a communication mechanism between two components, a glue captures
the way in which these components interact, that is, computational aspects of
the interaction, e.g., a protocol. In our setting, glues are also required to be
organised in an institution, thus being theories in a given specification language.
From now on, the institution used to specify glues will be denoted as IGlue. Also
in this case, similarly to components, the use of more than one specification
language can be considered, so different glues can be described by means of
different languages.

Roles Roles constitute the interfaces of glues. Thus, given G ∈ |Th0I
Glue

|, a role

for G is a morphism π : Th(Σ)→ G ∈ ||Th0I
Glue

|| such that Σ ∈ |SignIGlue |.

Connector A connector represents a mechanism for interconnecting two compo-
nents, and establishes: a) the roles of the glue, and b) the glue itself. Given a glue

G ∈ |Th0I
Glue

|, and the roles σ1 : Th(Σ1) → G, σ2 : Th(Σ2) → G ∈ ||Th0I
Glue

||
for G, a connector with behaviour G and roles σ1 and σ2, is a structure of the
form 〈σ1, G, σ2〉. If we restrict ourselves to binary connectors, they are required

to be organised as a subcategory of the bicategory co− spans(ThI
Glue

0), denoted
by Connector(IGlue). The generalisation to n-ary connectors is straightforward
but their category theoretic characterisation is no longer a bicategory but a gen-
eralised version of it.

As mentioned above, heterogeneity arises, in architecture description lan-
guages, as a reflection of the different nature of components and communication
mechanisms. This led us to the use of separate institutions for formalising com-
ponents (and their ports) and the glues (and their roles). So, we need a way of
establishing the relationship between component and connector specifications,
or more generally, between their corresponding institutions. There exist vari-
ous mechanisms for relating institutions, each with a particular meaning when
interpreted in the context of software design. The interested reader is referred
to [30, 19], where the authors make a thorough study of these mechanisms. We

5 Th : SignI
Comp

→ Th0
IComp

is the right adjoint of the forgetful functor Sign : ThI
Comp

→
SignI

Comp

.

can use Property 1 to draw the relationship between the institutions IComp and
IGlue needed to be able to obtain a complete description of a system as commu-
nicating components. Such a relationship is captured as follows. Let ISys be an
institution, and let γComp : IComp → ISys and γGlue : IGlue → ISys be institution
representations. Thus, ISys serves as a common formal language, in which the
components and connectors of a system can be interpreted and put together

Example 2. (Connecting components and connectors directly) A straightforward
way of establishing links between components and connectors is by requiring the
roles and the ports one wants to connect to be equal when they are translated
to the ISys institution. This situation is illustrated in Fig. 2, a) for a component
denoted as A and a glue denoted as G; connections between G and a different
component B are analogous. Observing the upper part of the diagram, compo-
nent A communicates using ports πA → A, using a medium characterised by
the connector formed by the glue G and the role ρl → G, to be attached to
the port πA → A. Dashed arrows express the application of the corresponding
institution representation to the theories and morphisms appearing in the upper
part of the diagram in order to provide a homogeneous description of the whole
system in the institution ISys. The bottom part of the diagram shows how things
are put together in ISys, thus obtaining a diagram, in the usual sense of category
theory, consisting of the behaviour associated with component A and glue G.

This simple way of connecting the components, though correct, has some
limitations. The differences between IComp and IGlue might not be merely syn-
tactical, but sometimes their semantics also need to be “harmonized”. Assume,
for instance, that we use Propositional Dynamic Logic (PDL) [20] in order to
describe the components of a system, whereas the glues are formalised in Linear
Temporal Logic (LTL). The models of these two logics have different structures,
since LTL models are interpret formulas along traces, while PDL models have
state-based semantics. Even when a more expressive logic might be capable of
interpreting both PDL and LTL theories, the coordination of the semantic ob-
jects cannot always be obtained merely by a syntactic identification in the more
expressive logic. Following the principles of software architecture, we deal with
this problem using so called adaptors.

Adaptor An adaptor is a connector in ISys. The intuition behind the inclusion
of adaptors is that roles will interact with ports, not only at a syntactic level as
shown in Ex. 2, but mediated by a semantic synchronisation of models, induced
by the axioms of the theory characterising the connector. Adaptors in software
architecture serve the purpose of solving or alleviating architectural mismatches.
In our case, the (potential) mismatch is related to the difference between the
logics used for the specification of the components and the connectors.

Example 3. Adaptors help in establishing the links between roles and ports. This
situation is illustrated in Fig. 2 b) for a component denoted as A, a glue denoted
as G and an adaptor ΓGA; connections between G and a different component B
are analogous.

A

γC.

��

G

γG.

��

πA

__

γC.

��

ρl

@@

γG.

��

γC.(A) γG.(G)

γC.(πA)
=

γG.(ρl)

ee ::

A

γC.

��

ΓGA

id I
Sys

��

G

γG.

��

πA

bb

γC.

��

δA

δGAl

BB

id I
Sys

δGl

δGAr

\\

id I
Sys

��

ρl

πl

AA

γG.

��

γC.(A)

ΓGA

γC.(πA)
=
δA

XX

::

γG.(ρl)
=
δGl

II

dd

a) Conn. of comp. and glues by sharing b) Conn. of comp. and glues by means of adaptors.

ports and roles.

Fig. 2. Connections between components, glues, adaptors, roles and ports.

Note: γC. → γCompTh0 , γG. → γGlueTh0 .

Connection A connection is formed by a connector together with a pair of
adaptors linking the ports of the components participating in the communi-
cation. Let ISys, IComp and IGlue be institutions, γComp : IComp → ISys and γGlue :
IGlue → ISys be institution representations. Let π = 〈πl : ρl → G,G, πr : ρr →
G〉 ∈ |Connector(IGlue)| and δGA = 〈δGAl : δA → ΓGA, ΓGA, δGAr : δGl →
ΓGA〉, δGB = 〈δGBl : δGr → ΓGB , ΓGB , δGBr : δB → ΓGB〉 ∈ |Connector(ISys)|.
Then a connection is a structure of the form 〈δGA, π, δGB〉 such that δGl =

γGlue
Th0

(ρl) and δGr = γGlue
Th0

(ρr). Given the institutions ISys and IGlue such
that γGlue : IGlue → ISys is an institution representation, the connections definable
over these two institutions will be the complete subcategory of Connector(ISys)×
Connector(IGlue) ×Connector(ISys) whose objects are those triples satisfying
the conditions stated above and will be denoted as Connection(IGlue, ISys).

The previous definitions allow us to formalise in a categorical setting the
main notions involved in component-based designs as a labeled graph. The next
definition formalises graph labelings.

Definition 4. Let ISys, IComp and IGlue be institutions, and γComp : IComp → ISys

and γGlue : IGlue → ISys be institution representations. Let G = 〈V,E〉 be a graph;

then a labeling ι for G is a structure of the form 〈f : V → |Th0I
Comp

|, p : V →
2||Th0

IComp
||, g : E → |Th0

IComp

| ×Connection(IGlue, ISys)× |Th0
IComp

|〉 such that:

– p(v) ⊆
{

Th(σ)
∣∣∣σ : Σ → Sign(f(v)) ∈ ||SignIComp ||

}
, for all v ∈ V ,

– let π1, π2 and π3 are the first, second and third projections of a tuple, re-
spectively, and dom retrieves the domain of a morphism, then for all e ∈ E,
dom(π1(π1(π2(g(e))))) = dom(π1(g(e))) and

dom(π3(π3(π2(g(e))))) = dom(π1(g(e))), and
– π1(g(e)) ∈ p(src(e)) and π3(g(e)) ∈ p(trg(e)), for all e ∈ E.

The intuition behind Def. 4 is that configurations are captured by graphs
whose nodes are interpreted as components, and edges as tuples formed by ports
and connections capable of enabling the communication.

Definition 5. Let ISys, IComp and IGlue be institutions, and γComp : IComp → ISys

and γGlue : IGlue → ISys be institution representations. Let G = 〈V,E〉 be a graph,
and ι a labelling for G according to Def. 4, then a system design is a structure
of the form 〈G, ι〉.

As usual in the field of institutions, a specification of a system will be a
diagram in the category of theories of a given institution, and the composition
of the theories in the system specification will be the co-limit of such a diagram.
This requires the category of theories to be finitely co-complete which, by [18,
Thm. 11], follows directly when the category of signatures is finitely co-complete.
In our case, the diagram is obtained by using the fact that the graph is expressed
in terms of two institutions, IComp and IGlue, for which there exists an institution
ISys and institution representations γComp : IComp → ISys and γGlue : IGlue → ISys,
guaranteeing that a common interpretation is feasible.

The following theorem will be an important tool. Intuitively, this theorem

tells us that whenever a connector (a co-span in Th0
IGlue) is translated from IGlue

to ISys, using an institution representation, it yields a co-span in Th0
ISys , thus

complying with the restrictions associated with composition in the bicategory

co-span(Th0
ISys).

Theorem 1. Let I and I′ be institutions such that SignI and SignI
′

are co-complete
and have pushouts, and let γ : I→ I′ be an institution representation. Then, the

pointwise extension of γTh0
I

: Th0
I → Th0

I′ , γ̂Th0
I
: co-span(Th0

I)→ co-span(Th0
I′),

is a lax functor.

The following definition is based on the previous result, and enables us to
integrate the computational parts of the glue and the adaptors in a communi-
cation mechanism. As the reader will notice, the connections, which are triples
involving a connector and two adaptors, are translated into a single connector
in the richer institution used to integrate components and connectors.

Definition 6. Let ISys, IComp and IGlue be institutions, and γComp : IComp → ISys

and γGlue : IGlue → ISys be institution representations. Let G = 〈V,E〉 be a graph
and ι = 〈f, p, g〉 an interpretation for G. We define F (〈G, ι〉) = 〈δ0, δ1〉 : Gι →
graph(Th0

ISys) as follows:

Gι = 〈V ∪
⋃
e∈E{r1

e , ge, r
2
e},
⋃
e∈E{e1, e

′
1, e
′
2, e2}〉 such that:

src(e1) = r1
e and trg(e1) = src(e),

src(e′1) = r1
e and trg(e′1) = ge,

src(e′2) = r2
e and trg(e′2) = ge, and

src(e2) = r2
e and trg(e2) = trg(e),

δ0(v) =

γComp

Th0(f(v)) , if v ∈ V .
dom(π1(π1(π2(g(e))))) , if v = r1

e .

π2(π1(π2(g(e))) ;γ̂Glue(π2(g(e))); π3(π2(g(e)))) , if v = ge.
dom(π3(π3(π2(g(e))))) , if v = r2

e .

δ1(e) =

γComp

Th0(π1(g(e))) , if src(e) = r1
e and trg(e) = a.

π1(π1(g(e)) ;γ̂Glue(π2(g(e))); π3(g(e))) , if src(e) = r1
e and trg(e) = ge.

π3(π1(g(e)) ;γ̂Glue(π2(g(e))); π3(g(e))) , if src(e) = r2
e and trg(e) = ge.

γComp
Th0(π3(g(e))) , if src(e) = r2

e and trg(e) = b.

In order to make the previous construction clearer, we illustrate how this
applies to our previously introduced example of the producer and consumer,
when we interconnect the parts and form a system design.

Example 4. (Putting the producer and the consumer together in a synchronous
way) Putting the Producer and Consumer component specifications together in
a synchronous way requires just coordinating them. As put forward in [9], this
can be achieved by indicating how attributes are “connected” or identified with
attributes of other components, and by synchronising actions.

This is a straightforward way of connecting two components, which sim-
ply expresses a correlation between the symbols of the components. In our ex-
ample, we may want to make the components interact by synchronising the
send-i and extract-i actions, of the producer and consumer, respectively,
and by identifying ready-in and p-waiting, in the producer, with c-waiting

and ready-ext in the consumer, respectively. This situation requires the sys-
tem design to be over a single institution, so components and glues are ex-
pressed in a common language, as theories in ILTL. To make it clearer, Σ =

[Attributes : x,y : Bool; Actions : a,b], and γComp
Th0 = γGlue

Th0
= id

Th0I
LTL .

Putting together Producer and Consumer in a synchronous way can be
done in a homogeneous setting. Of course, the machinery we have defined will
actually demonstrate its potential when dealing with heterogeneous specifica-
tions. Example 5 generalises the previous one, in which the components need to
be connected asynchronously, and the communication mechanism is specified in
a formalism different from that used for components.

Example 5. (Putting the producer and the consumer together in an asynchronous
way) Consider a more complex communicating scenario for the producer and the
consumer, in which these components need to interact via an asynchronous com-
munication channel. The idea is to maintain the specifications for producer and
consumer, which have already been appropriately characterised, and model the
asynchronous nature of the channel within the communication specification, i.e.,
in the connector. This cannot be captured simply by identification of symbols
in the interconnected parts. We will assume the state of the glue is charac-
terised just by a queue whose functional behaviour is described in equational
logic (Fig. 3). Now, we put these specifications together, so that the producer

Component: BitQueue
Sorts: Queue
Ops:

empty : Queue,
isEmpty? : Queue→ Bool,
enqueue : Queue× Bit→ Queue,
dequeue : Queue→ Queue,
front : { q : Queue | ¬isEmpty?(q) } → Bit.

Axioms: vars : q : Queue, b, b’ : Bit
1. isEmpty?(empty) = true
2. isEmpty?(enqueue(b, q)) = false
3. front(enqueue(b, empty)) = b
4. front(enqueue(b’ , enqueue(b, q))) =

front(enqueue(b, q))
5. dequeue(enqueue(b, empty)) = empty
6. dequeue(enqueue(b, enqueue(b’ , q))) =

enqueue(b, dequeue(enqueue(b’ , q)))
Vars: q: Queue

Fig. 3. Producer and Consumer with Asynchronous communication

and the consumer communicate via a buffer of bit messages specified by the
above queue. As opposed to the previous example, now we have a different for-
malism for the communication specification, i.e., IGlue is Eq (equational logic),
and the problem of putting together the three components cannot be syntacti-
cally solved.

We need to find an appropriate institution ISys, expressive enough to inter-
pret, in a semantics preserving way, both linear temporal logic and equational
logic. We will use first-order linear temporal logic [24]. The institution repre-
sentation γComp is the standard embedding of propositional temporal logic into
first-order temporal logic. The institution representation γGlue is the embedding
of equational logic into first-order logic with equality.

The reader should notice that, since the components and the glue are spec-
ified in different logics, we need suitable adaptors to put them together, which
have to be specified in the richer institution ISys. Figs. 4 a) and 4 b) correspond
to the adaptors in first-order LTL. Note that in the axioms q is a flexible vari-
able, and q′ is a rigid or logical (specification) variable. The reader should notice
that even when the adaptors presented in Figs. 4 a) and 4 b) look complex in
relation to the components being connected, they would remain the same, inde-
pendently of the complexity of the components; this means that one could con-
sider a more complex specification of the producer and the consumer, including
the formalisation of the internal processes by which the information is produced
and consumed, which could be highly complex. Objects originating ports and
roles are the axiomless theories with signatures: 1. {send-i i=1,2, ready-in, p-init}
for πA, 2. {Bool, q, isEmpty? : Queue→ Bool, enqueue : Queue×Bit→ Queue}
for ρl, 3. {extract-i i=1,2, ready-ext , c-init} for πB , and 4. {Bool, q, isEmpty? :
Queue → Bool, dequeue : Queue × Bit → Queue, front : Queue → Bit} for ρr.
The morphisms relating πA, ρl, πB and ρr with the corresponding theories asso-
ciated with components, adaptors and glues, are inclusions in the corresponding
category of signatures.

The reader should notice that the way in which the definitions and methodology
we provided above interpret the elements of an architecture, allowed us to go from
a model of a producer and a consumer connected in a synchronous way (see Ex. 4)
to a model of a producer and a consumer connected in an asynchronous way

Component: Adapt
Sorts: Queue
Attributes: q: Queue
Actions: p-init, send-0 , send-1 , ready-in
Functions:

enqueue : Queue× Bit→ Queue,
isEmpty? : Queue→ Bool

Axioms:
1. (∀q′ : Queue)q = q′ ∧ send-0 →

©(q = enqueue(0, q′))
2. (∀q′ : Queue)q = q′ ∧ send-1 →

©(q = enqueue(1, q′))
3. (∀q′ : Queue)q = q′ ∧ ¬send-1 → ¬send-0 →

©(q = q′)
4. p-init → isEmpty?(q)
5. ready-in ↔ true

Component: Adapt’
Sorts: Queue
Attributes: q: Queue
Actions: c-init, extract-0 , extract-1

, ready-ext
Functions:

isEmpty? : Queue→ Bool,
dequeue : Queue→ Queue,
front : { q : Queue | ¬isEmpty?(q) } → Bit

Axioms:
1. isEmpty?(q)→ ¬extract-0 ∧ ¬extract-1
2. (∀q′ : Queue)(q = q′ ∧ extract-0)→

(front(q) = 0 ∧©(q′ = dequeue(q)))
3. (∀q′ : Queue)(q = q′ ∧ extract-1)→

(front(q) = 1 ∧©(q′ = dequeue(q)))
4. (∀q′ : Queue)(q = q′ ∧ ¬extract-1∧

¬extract-0)→©(q = q′)
5. c-init → isEmpty?(q)
6. ready-ext ↔ ¬isEmpty?(q)

a) A first-order LTL specification of Adapt. b) A first-order LTL specification of Adapt′.

Fig. 4. Specification of an adaptor.

(see Ex. 5), just by replacing the connection without modifying the components
involved in the architectural design.

4 On the Institutions for Systems

In this section we introduce some results that allow us to obtain an institution
of systems in a systematic way based on suitable specification languages for de-
scribing components and communications. A property that we want for such an
institution is that both components and communications interpreted in the sys-
tem institution can be mapped back to their original languages. This requirement
emerges from the fact that it is often useful to be able to move back and forth
from the (perhaps less expressive) specification languages used for components
and communications to the formalism used to build the complete descriptions
of the system. Moving from the component (resp. communication) specification
language to the system specification language enables one to promote proper-
ties; moving from the system back to the components (resp. communications)
allows us, for instance, to identify problems in the specifications of our “building
blocks” when a counterexample of a property of the (whole) system is found.

Glueing two institutions together in a general way We provide a simple and
general way of glueing two institutions into a new one. The motivation for doing
so is, as we mentioned before, to help the specifier in the development of a
suitable logic in which to express the system description, when one does not
have in hand such a formalism.

Once IComp and IGlue are fixed, it is possible to characterise an institution I#

in which IComp and IGlue can be put together. Furthermore, ISys can be obtained
by extending I# with additional logical structure depending on the properties
required to be expressed. This must be done in such a way that there exists an
institution representation ιC : IComp → I#, ιG : IGlue → I# and ε : I# → ISys.

Let IC and IG be institutions. The following definition provides an institu-
tion constructed out of IC and IG . It is inspired by the construction presented
by Sannella and Tarlecki in [29, Sec. 4.1.2], but it is slightly different. In [29,
Ex. 4.1.44] and [29, Ex. 4.1.45], Sannella and Tarlecki provide the definitions
of co-product and product of institutions, respectively. In the first case, as ex-
plained by the authors, the construction corresponds to putting two institutions
together with no interaction; in the second case, the construction provides a
way of putting them together but synchronising formulae by means of pairs. In
our case, we need formulae to remain independent (requiring a co-product), but
composite models to be pairs, each model coming from the corresponding insti-
tution (requiring a product). This need will become clear in Ex. 6 where we will
extend the institution of the next definition with boolean operators combining
formulae coming from any of the two logical systems, thus requiring models to
give semantics to them.

Definition 7. I#(IComp , IGlue) is defined as follows:

– Sign# = SignC × SignG ,
– Sen# =

(
SenC ◦ πleft

)
+
(
SenG ◦ πright

)
,

– Mod# =
(
ModC ◦ πleft

)
×
(
ModG ◦ πright

)
,

– Let α ∈ Sen#(〈ΣC , ΣG〉) and 〈MC ,MG〉 ∈ |Mod#(〈ΣC , ΣG〉)|, then we

say that 〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 α if and only if: 1. ∃αC ∈ SenC (ΣC)|α =

in left(α
C) ∧ MC |=Comp

ΣC
αC , or 2. ∃αG ∈ SenG(ΣG)|α = inright(α

G) ∧
MG |=Glue

ΣG αG.

Theorem 2. Let IC and IG be institutions. Then, I#(IC , IG) is an institution.

Property 2. Let IC and IG be institutions such that SignC and SignG are finitely
co-complete. Then Sign# is finitely co-complete.

Definition 8. ιC = 〈γSignC , γSenC , γMod
C 〉 : IC → I#(IC , IG) is defined as follows:

– for Σ ∈ |SignC |, γSignC (Σ) = 〈Σ, ∅G〉, where ∅G is the empty signature in IG,

and if σ ∈ ||SignC ||, then γSignC (σ) = 〈σ, id∅G〉,
– for Σ ∈ |SignC |, we define γSenCompΣ

: SenComp(Σ) → Sen# ◦ γSignC (Σ), as

γSenC Σ = inleft , and

– for Σ ∈ |SignC |, γMod
C Σ : Mod# ◦ (γSignC)

op
(Σ)→ModC (Σ), is defined as

γMod
C Σ = πleft .

ιG = 〈γSignG , γSenG , γMod
G 〉 : IG → I#(IC , IG) is defined in an analogous way.

Theorem 3. Let IC and IG be institutions. Then, ιC and ιG are institution
representations.

So far we have put together components and glues in a single language. However,
it is obvious that we have not achieved any interaction between the languages as
there is no actual “coordination” of their semantics. To deal with this issue, we

can extend I# by adding logical behaviour that “coordinates” elements from IC

and IG . The idea consists of extending I#(IC , IG) to a new institution ISys where
the additional logical behaviour is incorporated, but satisfying the following
conditions: 1. SignSys = Sign#, 2. for all Σ ∈ |SignSys |, SenSys(Σ) ⊇ Sen#(Σ),
3. for all Σ ∈ |SignSys |, ModSys(Σ) = Mod#(Σ), and 4. for all Σ ∈ |SignSys |,
α ∈ Sen# and M∈ModSys(Σ): M |=Sys

Σ α iff M |=#
Σ α.

Then, if ISys = 〈SignSys ,SenSys ,ModSys , {|=Sys
Σ }Σ∈|SignSys |〉 is an institution,

we have the guarantee that an institution representation ε exists simply by taking
it to be the trivial inclusion institution representation, which of course satisfies
the satisfaction invariance condition.

The following example shows how to extend an institution with boolean op-
erators. Our construction, although very similar to the one presented by Sannella
and Tarlecki in [29, Ex. 4.1.41], requires a slightly different treatment of formu-
lae because their satisfaction, as we demonstrated before, must be evaluated in
the corresponding model of the pair. Notice that as we are building composite
formulae out of formulae coming from different institutions, the only way to
assert their satisfaction by a model is by having a notion of model capable of
interpreting every piece, thus justifying the need for a definition of institution
whose formulae is the co-product of the sets of formulae of the two institutions
and whose class of models is the product of the corresponding classes of models.
Extending I#(IC , IG) with boolean operators provides the most basic coordina-
tion of behavior by synchronising models through formulae they must be satisfy.
More complex extensions can be made by choosing other logics to build on top
of I#(IC , IG); some of them also require a more complex class of models.

Example 6. Let IC and IG be institutions. Then, ISys is defined as the structure

〈SignSys ,SenSys ,ModSys , {|=SysΣ}Σ∈|SignSys |〉 where:

– SignSys = Sign#,
– for all ΣC ∈ |SignComp |, ΣG ∈ |SignGlue |:
• inleft(α) ∈ SenSys(〈ΣC , ΣG〉), for all α ∈ SenC (ΣC),
• inright(α) ∈ SenSys(〈ΣC , ΣG〉), for all α ∈ SenG(ΣG),
• if α, β ∈ SenSys(〈ΣC , ΣG〉), then
{¬α, α ∨ β} ∈ SenSys(〈ΣC , ΣG〉).

– ModSys = Mod#, and
– for all 〈ΣC , ΣG〉 ∈ |SignSys |, 〈MC ,MG〉 ∈ |Mod#(〈ΣC , ΣG〉)|:

〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 inleft(α

C) iff MC |=C
ΣC α

C

〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 inright(α

G) iff MG |=C
ΣG α

G

〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 ¬α iff not 〈MC ,MG〉 |=#

〈ΣC ,ΣG〉 α

〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 α ∨ β iff

〈MC ,MG〉 |=#
〈ΣC ,ΣG〉 α or〈MC ,MG〉 |=#

〈ΣC ,ΣG〉 β

Proving that ISys is an institution is simple because I# is an institution and the
boolean addition constitutes no problem in the proof. Equally simple is the proof
that there exists an institution representation ε : I# → ISys .

Glueing two institutions in a known logic When one has in hand a logical system
I formalised as an institution 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 such that, given IC

and IG as defined in the previous example, there exists institution representations
γC : IC → I and γG : IG → I, part of the problem is already solved. We
however need a way of getting, from a whole system’s specification, the parts
that composed it in their original formalisms. The main technical difficulty at
this point arises from the fact that symbols coming from components and glues
may be identified as a single symbol in the system’s language.

Definition 9. Let SignC and SignG have pushouts of arbitrary co-spans and
have initial objects ∅C and ∅G respectively; and suppose γSignC (∅C) = γSignG (∅G).
Then, we define ISys(I) in the following way:

– SignSys = 〈O,A〉 such that:

• O =
{〈
σc : ΣC → Σ′, σg : ΣG → Σ′

〉
pushout in Sign

}
,

• A =
{〈
σl : ΣC → ΣC ′, σs : ΣS → ΣS ′, σr : ΣG → ΣG′

〉
|

〈σc, σg〉 , 〈σc′, σg ′〉 ∈ O and σc
′ ◦ σl = σs ◦ σc, σs ◦ σg = σg

′ ◦ σr}
Identities and composition are defined component-wise.

– for all 〈σc : ΣC → Σ′, σg : ΣG → Σ′〉 ∈ |SignSys | and

〈σl : ΣC → ΣC ′, σs : ΣS → ΣS ′, σr : ΣG → ΣG′〉 ∈ ||SignSys ||:
SenSys(〈σc, σg〉) = Sen(Σ′), SenSys(〈σl, σs, σr〉) = Sen(σs),

– for all 〈σc : ΣC → Σ′, σg : ΣG → Σ′〉 ∈ |SignSys | and

〈σl : ΣC → ΣC ′, σs : ΣS → ΣS ′, σr : ΣG → ΣG′〉 ∈ ||SignSys ||:
ModSys(〈σc, σg〉) = Mod(Σ′) and ModSys(〈σl, σs, σr〉) = Mod(σs),

– for all 〈σc : ΣC → Σ′, σg : ΣG → Σ′〉 ∈ |SignSys |, α ∈ SenSys(〈σc, σg〉) and

M∈ModSys(〈σc, σg〉), M |=Sys
〈σc,σg〉 α iff M |=Σ′ α.

Notice that the definition of ISys(I) only differs from I in the category of sig-
natures. This is because having pushouts as signatures opens up the possibility
of tracing back the source of the objects we are dealing with. In the case of
sentences and models, we only consider the signature that is in the target of the
morphisms constituting the pushout. This construction is particularly useful in
the cases there is a need to identify both the common part of the partial descrip-
tions of the system (the fraction of the description on which the synchronisation
of the languages takes place), and the elements that correspond to only one of
the descriptions6.

Theorem 4. Let I be an institution. Then, ISys(I) is an institution.

Theorem 5. Let I be an institution such that Sign has an initial object ∅I and
pushouts for arbitrary co-spans. Then, SignSys is finitely co-complete.

6 In [3] we use institution representations to give semantics to schema promotion in Z
notation. There, whenever a manager for the whole system is constructed, the only
way to prove the commutativity of the diagrams (see [3, Sec. 4.1]) is by preserving
the information revealing the language from which each of the elements originates.

Definition 10. Let SignC and SignG have pushouts of arbitrary co-spans and
have initial objects ∅C and ∅G respectively, and γSignC (∅C) = γSignG (∅G). Then,

we define ιC = 〈ιSignC , ιSenC , ιMod
C 〉 : IC → ISys(I) as follows:

– if Σ ∈ |SignC |, then ιSignC (Σ) = 〈σC , σG〉 such that 〈σC , σG〉 is the pushout

of 〈γSignC (∅C → Σ), γSignG (id∅G)〉; if σ ∈ ||SignC ||, then

ιSignC (σ) = 〈γSignC (σ), γSignC (σ), γSignG (id∅G)〉,
– if Σ ∈ |SignC |, then we define ιSenC Σ : SenC (Σ) → SenSys ◦ ιSignC (Σ), as
ιSenC Σ = γSenC Σ,

– we define ιMod
C Σ : ModSys ◦ (ιSignC)

op
(Σ)→ModC (Σ), as ιMod

C Σ = γMod
C Σ.

ιG = 〈γSignG , γSenG , γMod
G 〉 : IG → ISys(I) is defined analogously.

Theorem 6. Let SignC and SignC have pushouts of arbitrary co-spans and have
initial objects ∅C and ∅G respectively, and γSignC (∅C) = γSignG (∅G). Then, ιC and
ιG are institution representations.

5 Conclusions and related work

We have presented an abstract and heterogeneous categorical characterisation of
component-based systems. Our characterisation is logic/language independent,
based on the categorical notion of institution. The heterogeneity of the approach
is aimed at favouring a more genuine separation of concerns in the specification
of components, and how these communicate. Our characterisation is based on
the view that the different elements of a software architecture, such as compo-
nents, connectors, roles, ports and adaptors, may be more faithfully specified in
different formalisms, which have then to be put together into a setting in which
one can reason about these parts and the whole system in a coordinated way.
While institutions are used to abstractly capture specification formalisms, we
employ institution representations to relate the different formalisms. In particu-
lar, we show how to build a system institution, in which the various parts of the
specification can be represented as identifiable pieces of the overall specification,
and we can reason about system properties by performing relevant formal anal-
yses over it. Our contribution involves then a the formal characterisation of the
conditions to combine formalisms in a heterogeneous setting, heavily relying on
the notions of institution and institution representation.

Our work is related to various formalisms for the specification of component-
based systems, in particular those seeking heterogeneity and abstraction. A main
source of inspiration is the categorical approach put forward by Fiadeiro et al [9,
15, 11] in relation to the architecture description language CommUnity [15, 13].
CommUnity comprises a specific component-based design language, in which
components and connectors are specified in a particular way. In our approach,
components and connectors might be defined in any formalism, CommUnity
being a particular case. Acme [17] seeks similar objectives; it is defined as an in-
terchange architecture description language, a setting where different formalisms

might be combined. However, Acme has no actual formal semantics, and the
examples of translations from particular architecture description languages to
Acme are defined in an ad-hoc manner, generally dealt with only at a syntactic
level. Thus, questions such as the coherence of resulting Acme specifications,
cannot be answered in Acme’s context.

CASL [2] is an algebraic language for formal specification, which uses the
notion of institutions to achieve a high degree of abstraction. Architectural spec-
ifications in CASL [1] are built by using basic relationships between modules like
refinement or extension, i.e., the architectural structure of a system in terms of
components and connections are not explicitly captured in CASL.

In [21] an heterogeneous approach for specifying service-oriented systems is
presented. The basic idea is to use two different institutions to capture the dif-
ferent levels involved in a service-oriented system. One institution is used to
specify the local behaviour of services, while the other institution is used as a
global logic to describe the orchestration of services. The two levels are related
via a co-morphism (or institution representation). Notice that the global logic
is used for the description of the common behaviour of components, but it is
not used for describing coordination mechanisms in an abstract way, as is done
by glues in the present paper. Also notice that this approach is heterogeneous
but not language independent. HETS [26, 27] is a framework for integrating dif-
ferent institutions to support heterogeneous specifications of systems. We share
the interest in heterogeneous frameworks of institutions, but our focus is on for-
malising the notions from software architecture and the corresponding kinds of
entities, namely components, connectors, roles, ports, and adaptors, to struc-
ture heterogeneous system specifications. Nevertheless, we are committed to the
HETS view that whenever the design requires the use of different languages for
describing components (reap. glues) Grothendieck institutions provide the most
suitable tool to deal with that level of heterogeneity. In [28], Mossakowski and
Tarlecki presented a framework meant to be a tool for heterogeneous software
specification. This framework exploits the use of morphisms and co-morphisms
between institutions in a coordinated way, not only allowing moving a specifica-
tion to a more expressive language, but also to project a part of the system into
a less expressive one. Differences and similarities between their framework and
ours are essentially the same as mentioned in the comparison above with HETS.

References

1. M. Bidoit, D. Sannella and A. Tarlecki, Architectural Specifications in CASL, in
Proc. of AMAST ’98, LNCS, 1999.

2. T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tarlecki. CASL: The com-
mon algebraic specification language: Semantics and proof theory, Computing and
Informatics, vol. 22, 2003.

3. P.F. Castro, N. Aguirre, C.G. López Pombo, T.S.E. Maibaum: A Categorical Ap-
proach to Structuring and Promoting Z Specifications, in Proc. FACS, LNCS, 2012.

4. M. Cengarle, A. Knapp, A. Tarlecki and M. Wirsing, A Heterogeneous Approach
To UML Semantics, in Proc. of Concurrency, Graphs and Models, LNCS, 2008.

5. R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ. Theor. Comp.
Sc. 285(2), 2002.

6. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 2, Springer, 1990.
7. H. Ehrig, M. Große-Rhode and U. Wolter, On the Role of Category Theory in the

Area of Algebraic Specification, in Proc. of COMPASS/ADT, LNCS, 1995.
8. E. Allen Emerson, Temporal and modal logic, Handbook of Theoretical Computer

Science, Vol. B, Elsevier, 1990.
9. J. Fiadeiro and T. Maibaum, Temporal Theories as Modularisation Units for Con-

current System Specification. Formal Asp. of Comp., 4(3), Springer, 1992.
10. J. Fiadeiro and T. Maibaum, Describing, Structuring and Implementing Objects,

In Proc. of the REX Workshop, LNCS, 1990.
11. J. Fiadeiro and M. Wermelinger, A graph transformation approach to software

architecture reconfiguration, Sc. of Comp. Prog. 44(2), Elsevier, 2002.
12. J. Fiadeiro and V. Schmitt, Structured Co-spans: An Algebra of Interaction Pro-

tocols, In Proc. CALCO 2007, LNCS, 2007.
13. J. Fiadeiro, Categories for Software Engineering, Springer, 2004.
14. J. Fiadeiro and T. S. E. Maibaum. A Mathematical Toolbox for the Software Ar-

chitect, in Proc. Workshop on Software Specification and Design, IEEE, 1995.
15. J. Fiadeiro and T. S. E. Maibaum. Categorical Semantics of Parallel Program

Design, Sc. of Comp. Prog. 28, 1997.
16. D. Garlan, Software Architecture: A Roadmap, ACM, 2000.
17. D. Garlan, R. Monroe and D. Wile, Acme: an architecture description interchange

language, in Proc. of CASCON 97, 1997.
18. J. Goguen and R. Burstall, Institutions: Abstract Model Theory for Specification

and Programming. Journal of the ACM, 39(1), ACM, 1992.
19. J. Goguen and G. Rosu, Institution Morphisms, Formal Asp. of Comp., V.13,

Springer, 2002.
20. D. Harel, D. Kozen and J. Tiuryn, Dynamic Logic, MIT Press, 2000.
21. A. Knapp, G. Marczynski, M. Wirsing and A. Zawlocki, A Heterogeneous Approach

to Service-Oriented Systems Specification, in Proc. of SAC 2010, ACM, 2010.
22. A. Lopes and J. Fiadeiro, Superposition: composition vs refinement of non-

deterministic, action-based systems, Formal Asp. of Comp. 16(1), Springer, 2004.
23. S. McLane, Categories for working mathematicians, Springer, 1971.
24. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,

Springer, 1991.
25. J. Meseguer, General Logics, in Logic Colloquium ’87, North Holland, 1989.
26. Till Mossakowski, Heterogeneous Theories and the Heterogeneous Tool Set, in Se-

mantic Interoperability and Integration, Dagstuhl Seminar Proc., 2005.
27. T. Mossakowski, C. Maeder and K. Luttich, The Heterogeneous Tool Set, Hets, in

Proc. of TACAS 2007, LNCS, 2007.
28. T. Mossakowski and A. Tarlecki. Heterogeneous Logical Environments for Dis-

tributed Specifications. In Proc. of WADT 2009, LNCS, 2009.
29. D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal

Software Development. Springer, 2012
30. A. Tarlecki, Moving Between Logical Systems, in Proc. of COMPASS, LNCS, 1995.
31. A. Tarlecki, Toward Specifications for Reconfigurable Component Systems, In Proc.

of ICATPN 2007, LNCS, 2007.
32. A. Tarlecki, Towards Heterogeneous Specifications, in Frontiers of Combining Sys-

tems, Vol. 2, 2000.
33. M. Wermelinger and J. Fiadeiro, A graph transformation approach to software

architecture reconfiguration, Sc. of Comp. Prog. 44(2), Elsevier, 2002.

