
Specifying and Verifying Declarative Fluent

Temporal Logic Properties of Workflows

Germán Regis1, Nicolás Ricci1,2, Nazareno Aguirre1,2, and Tom Maibaum3

1 Departamento de Computación, FCEFQyN,
Universidad Nacional de Ŕıo Cuarto, Argentina

{gregis,nricci,naguirre}@dc.exa.unrc.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

3 Dept. of Computing & Software, McMaster University, Canada
tom@maibaum.org

Abstract. In this paper, we present a characterization of workflows as
labeled transition systems, focusing on an encoding of workflow speci-
fications based on workflow patterns. This encoding models tasks in a
convenient way, enabling us to exploit fluent linear time temporal logic
formulas for capturing typical constraints on workflows. Fluents enable us
to flexibly characterize the activities associated with workflow tasks, and
also to easily express a wide range of constraints on workflows. Moreover,
our characterization of workflows as labeled transition systems, and the
use of fluent linear time temporal logic as a language to express work-
flow properties, allows us to employ model checking for automatically
guaranteeing that a property is satisfied by a workflow, or generating
violating workflow executions when such property does not hold.

We use YAWL as a language for expressing workflows. Our charac-
terization of workflows as labeled transition systems is implemented in a
tool that translates YAWL models into FSP, and then employs the LTSA
tool to automatically verify properties of workflows, expressed as fluent
linear time temporal logic properties, on the resulting FSP models.

1 Introduction

The importance of efficiency in companies requires constant improvement to
their organizational processes. This has led to the need for expressing such pro-
cesses, typically referred to as workflows, and to the proposal of various workflow
languages. Indeed, there exist many workflow languages, differing in their degree
of formalization (e.g., informal, only with a formal syntax, with a formal syntax
and semantics, etc.), their corresponding approaches for workflow description
(e.g., declarative or procedural), their expressiveness (e.g., some support ad-
vanced conditional routing and some not), their support for automated analysis,
etc. An aspect that we consider particularly important is formal semantics. This
aspect is crucial for the analysis of models in the language, and is also strongly
related to expressiveness, since more expressive languages are more difficult to
fully formalize. Furthermore, expressiveness and automation in analysis are typi-
cally conflicting aspects, and the design of a good language involves the search of

R. Gheyi and D. Naumann (Eds.): SBMF 2012, LNCS 7498, pp. 147–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 G. Regis et al.

an adequate balance between these aspects. This applies not only to the language
in which a workflow is expressed, but also to the language used for describing
declarative properties of a workflow. The importance of declarative properties of
workflows is acknowledged by several researchers (see for instance [10,19,14,21]).
In particular, in [19] a declarative approach to business process modeling and ex-
ecution is proposed, where declarative behavioral properties of workflow models
are a central characteristic.

In this paper, we present a characterization of workflows as labeled transition
systems, focusing on an encoding of workflow specifications based on workflow
patterns. This encoding models tasks in a convenient way, enabling us to exploit
fluent linear time temporal logic (FLTL) [7], to describe declarative behavioral
properties of workflow models. As we show later on, fluents enable us to flexibly
characterize the activities associated with workflow tasks, and also to easily ex-
press a wide range of constraints on workflows. Our characterization of workflows
as labeled transition systems has as an additional motivation (besides enabling
for the use of FLTL as a language to express properties of workflows) the pos-
sibility of using Model Checking [5] for automatically verifying that a workflow
satisfies a given property. Thus, our encoding of workflows as labeled transition
systems allows us to use FLTL to express properties of workflows, as well as to
automatically verify these properties via model checking on the resulting transi-
tion systems, generating violating workflow executions when these properties do
not hold. This mechanism for the analysis of declarative properties of workflows
is very flexible, as opposed to existing tools for workflow analysis that focus on
specific properties such as soundness or deadlock-freedom (e.g., the tool in [2]).

Our approach is in essence language independent, and could in principle be
applied to any formal workflow language. In this paper, we choose to use YAWL
(Yet Another Workflow Language) [2] models to express workflows. YAWL is a
powerful workflow language based on the use of workflow patterns [1], that is
supported by an open source toolset, and has a formal semantics based on Petri
Nets. It is considered an expressive formalism, as various works dealing with
its expressiveness in relation to other business process or workflow languages
(e.g., Business Process Modeling Notation, Event-Driven Process Chains, etc)
demonstrate [9]. Indeed, the use of YAWL allows us to ensure the applicability of
our approach to other workflow languages, in many cases via the use of available
automated tools mapping other formalisms into YAWL.

The paper proceeds as follows. In the next section, we discuss workflows, and
present the use of the YAWL tool for their specification. We then argue about
the importance of being capable of expressing properties of workflows, as well
as guaranteeing their validity. In section 3 we provide the formal foundations
of our work. In section 4, we propose an automated way of encoding YAWL
specifications as Finite State Processes (FSP), characterizing tasks as fluents.
We show how convenient fluents are for expressing behavioral properties, in the
context of fluent temporal logic. In order to do that, we develop in detail a case
study, taken from the YAWL toolset, whose complexity enables us to illustrate
the advantages of the approach. Finally, we discuss related work in the area and
draw some conclusions.

Specifying and Verifying Declarative Fluent Temporal Logic Properties 149

2 Business Processes, Workflows and Patterns

In the last decade, several languages and tools have been developed in order
to provide an organized view of the structural behavior of systems. One of the
main goals of these languages and tools is to provide a setting for describing and
analyzing procedural descriptions (workflows) of the activities that take place on
the system. As part of these efforts, the Workflow Pattern Initiative was created
with the aim of identifying and providing a conceptual basis for business process
specifications. This resulted in the specification of a wide range of workflow
patterns (control flow, data, resource, etc.), and the development of a formally
founded language (and accompanying toolset), known as YAWL [2].

2.1 Workflow Specification Using YAWL

Yet Another Workflow Language (YAWL) is a language for modeling workflows.
YAWL has a formal foundation based on Petri Nets (PN) [8], and its models are
specified using workflow patterns [1]. In this paper, we concentrate on control
flow patterns; these are composed of tasks, conditions and a flow relation between
tasks and conditions. The semantics of a given model is influenced by that of
PNs, in the sense that a task is enabled when there are enough tokens in its input
conditions, according to the pattern behavior. When a task is executed, it takes
tokens out of the input conditions and puts tokens in its output conditions. As
opposed to the case of PNs, in a YAWL specification one can connect two tasks
directly. A distinguishing feature of YAWL is that it provides direct support for
the so-called cancel region pattern. This pattern enables one to model situations
in which a task can have a cancellation set associated with it. When a task is
executed, all tasks in its cancellation set are aborted (i.e., disabled if these were
not running, canceled if these were in the middle of a process).

Conditions: Simple Input Output

Tasks: Atomic Composite Multiple Instance

Split Tasks: AND XOR OR

Join Tasks: AND XOR OR

Cancel Region: . . .

Fig. 1. YAWL Symbols

A workflow specification (control flow perspective) in YAWL is a set of hier-
archically organized YAWL nets. Figure 1 shows the symbols corresponding to
the elements of the language. A YAWL net is composed of:

– A single input (start) condition and a single output (end) condition.

– Tasks : the language provides three types of tasks, namely: atomic, composite
and multiple instance.

150 G. Regis et al.

• Atomic tasks are at the lowest description level of the system.
• Composite tasks are associated with corresponding YAWL nets, model-
ing their behavior. It is assumed that there exists a main YAWL net,
which is not associated with any composite task.

• Multiple instance (MI) tasks have corresponding lower and upper bounds
on the number of instances created when the task is “started up”; MI
tasks also have a modifier indicating whether instance creation is static
or dynamic (i.e., indicating whether all instances are created at once, or
if these are dynamically created during the execution of the system).

A task T can be related to a cancel region, i.e., a set of conditions and tasks
that will be aborted when A is completed.

– Specific control flow patterns for the net. The control flow constructs used
for pattern definition are those depicted in Fig. 1. Their intended meaning
is the following:

• AND-join: a task associated with this construct starts when all of the
incoming branches have been enabled, i.e., all the preceding tasks or
associated conditions were completed.

• OR-join: a task associated with this construct starts when at least one
of the incoming branches has been enabled.

• XOR-join: the associated task starts when exactly one of the incoming
branches has been enabled.

• AND-split: when the incoming branch of this construct is enabled, the
thread of control is passed to all of the branches associated with it.

• OR-split: when the incoming branch of the OR-split is enabled, the
thread of control is passed to one or more of the branches following
the OR-split, based on the evaluation of conditions associated with each
of the outgoing branches.

• XOR-split: when the incoming branch of the XOR-split is enabled, the
thread of control is passed to exactly one of the outgoing branches, based
on the evaluation of conditions associated with them.

3 The Formal Framework

3.1 Labeled Transition Systems

Labeled Transition Systems (LTS) are typically used to model the behavior of
interacting components [13]. LTS models describe a system as a set of inter-
acting components characterized by states and transitions between them. The
transitions represent events in the system, and different components synchronize
via shared events. The behavior of the whole system is the result of the parallel
composition of its components, understood as the interleaving of the behaviors
of the components. Formally, an LTS P is a quadruple 〈Q,A, δ, q0〉, where: Q
is a finite set of states, A is the alphabet of P , a subset of the universe Act of
events; δ ⊆ Q×A ∪ {τ} ×Q is a labeled transition relation and q0 is the initial
state.

Specifying and Verifying Declarative Fluent Temporal Logic Properties 151

The semantics of an LTS P is its set of executions, i.e., the set of sequences of
events that P can perform, starting in its initial state and following P ’s transition
relation. For systems with more than a few states, their representation as LTSs
becomes impractical. In such situations, a representation of systems as processes
in the process algebra FSP, is more convenient [13]. FSP expressions can be
automatically mapped into finite LTS, and vice versa.

An FSP specification contains two sorts of process definitions: primitive pro-
cesses and composite processes. Primitive processes are expressed using event
prefix “->”, choice “|” and recursion. Conditional choices can be expressed by
means of “when” clauses or “if” expressions. Both event labels and local pro-
cess names may be indexed, and primitive processes can be parameterized. As
an example, consider the following specification of a simple bounded buffer, and
its corresponding LTS.

� �

BUFF(N=3) = STATE[0],

STATE[i:0..N] = (

when (i<N) put[i] ->STATE[i+1]

| when (i>0) get[i] ->STATE[i-1]).
� �

Fig. 2. FSP Buffer specification Fig. 3. LTS of the previous buffer

In Fig. 2, the specification contains a primitive process, parameterized with
a bound for the buffer (a default value for the parameter is provided). The
possible behaviors of the buffer are specified by means of a primitive process
which contains a choice for the two available actions, put and get. These actions
are “multiplied” via indexing, and the resulting behavior is illustrated in the LTS
in Fig. 3.

Processes can be composed in a sequential (“;”) or parallel (“||”) way. The
parallel composition combines the behavior of two processes by synchronizing
the events common to their alphabets, and interleaving the remaining events.
Continuing with our previous example, consider two processes PROD and CONS,
representing a producer and a consumer, respectively, as specified below. These
processes are composed in parallel with a buffer, instantiated with a Size (con-
stant declaration); they are synchronized via the relabeling operator “/”. Rela-
beling is a relation between actions; in our example, this is used to synchronize
all put (resp. get) actions with the action produce (resp. consume).
� �

PROD = (produce ->PROD). CONS = (consume ->CONS).

|| BOUNDEDBUFFER = (PROD || BUFF(Size) || CONS)

/{ put[0..Size-1]/produce, get[1..Size]/consume }.
� �

3.2 Linear Time Temporal Logic

In order to reason about the behaviors of an LTS, one needs a logic in which to
express properties of these behaviors. Linear Time Temporal Logic (LTL) [15,16]
is a language that is able to predicate about infinite sequences of states. Each

152 G. Regis et al.

formula expresses a property of the executions of an LTS. Given a set of atomic
propositions P , a well-formed formula is defined inductively using the standard
boolean operators and the temporal operators X (next) and U (strong until), in
the following way: (i) every p ∈ P is a formula, and (ii) if φ and ψ are formulas,
then so are ¬φ, φ ∨ ψ, φ ∧ ψ, Xφ, φUψ.

An infinite word w = x0x1x2 . . . over the power set of propositions P satisfies
an LTL formula φ, written w |= φ, if the following conditions hold:

– w |= p⇔ p ∈ x0
– w |= φ ∨ ψ ⇔ (w |= φ) or (w |= ψ)
– w |= ¬φ⇔ not w |= φ
– w |= φ ∧ ψ ⇔ (w |= φ) and (w |= ψ)
– w |= Xφ⇔ w1 |= φ
– w |= φUψ ⇔ ∃i ≥ 0 : wi |= ψ and ∀0 ≤ j ≤ i, wj |= φ

where w1 is the suffix of w resulting from removing the first element in the
sequence. The temporal operators F (eventually), G (always) and W (weak
until) are defined as follows: Fφ ≡ trueUφ, Gφ ≡ ¬F¬φ, and φWψ ≡ ((φUψ)∨
Gφ), where “true ≡ φ ∨ ¬φ”.

3.3 Fluent Linear Time Temporal Logic

Fluent Linear Time Temporal Logic (FLTL) is a variant of LTL, that is partic-
ularly well suited for describing properties of event-based discrete systems (e.g.,
LTSs) [13]. Basically, FLTL provides a convenient way of expressing state prop-
erties of a labeled transition system, associated with the occurrence of events
in the system. More precisely, FLTL extends LTL by incorporating the possibil-
ity of describing certain abstract states, called fluents, characterized by events
of the system. As defined in [17], Fluents are time-varying properties of the
world, which hold at particular instants of time if they have been initiated by a
triggering event (occurring at some earlier instant in time), and have not been
terminated by any terminating event since its initiation. Similarly, a fluent is
false at a particular time instant if none of its triggering events ever occurred, or
if it has been previously terminated (by one of its associated terminating events)
and not yet re-initiated. More formally, Fl = 〈{s1, ..., sn}, {e1, ..., en}〉initially B
defines a fluent Fl, where B is a boolean value indicating if the fluent is true or
not in the initial state, and {s1, ..., sn} and {e1, ..., en} are disjoint sets of events;
when any of the initiating events {s1, ..., sn} occurs, the fluent starts to be true,
and it becomes false again when any of the terminating events {e1, ..., en} occurs.
If the term initially B is omitted then Fl is initially false.

LTSA, a tool for the analysis of FSP descriptions, has direct support for fluent-
based specifications. Consider as an example the following characterization of
the states full and empty, capturing the obvious associated properties of the
bounded buffer:
� �

fluent Full = < put[Size-1], get[1..Size]>

fluent Empty = < get[1], put[0..Size-1]> initially True
� �

Specifying and Verifying Declarative Fluent Temporal Logic Properties 153

3.4 Model Checking

In the last two decades, the development of algorithmic methods for software
and hardware verification has led to powerful analysis mechanisms. One of these
is model checking [5]. Model checking provides an automated method for veri-
fying finite state systems, by determining whether or not a property described
by a (typically temporal) formula holds on the system’s state graph. Various
alternative model checking approaches have been proposed, which vary in the
representation of the system’s state transitions (e.g., explicit state or symbolic),
in the logic used for describing properties (e.g., linear time temporal logic, or
computation tree logic, etc.), and the language in which systems are actually
described (e.g., directly as code in a programming language, or as a model in
some more abstract modeling language, etc.). Moreover, tools are available for
many of these alternative approaches. In our case, we will use Labelled Transi-
tion System Analyzer (LTSA), a verification tool for concurrent systems models.
A system in LTSA is modeled as a set of interacting finite state machines. LTSA
supports Finite State Process notation (FSP) for concise description of compo-
nent behavior, and directly supports FLTL property verification. Following the
previous examples, we can employ the model checker behind LTSA in order to
verify that the buffer cannot simultaneously be empty and full; this is captured
by the following FLTL formula: assert CORRECT BUFFER = [](!(Full && Empty)).

4 From YAWL Workflows to Labeled Transition Systems

In this section, we present an encoding of YAWL nets into FSP processes. Basi-
cally, this encoding, which is fully automated, will allow us to interpret YAWL
(procedural) workflows as FSP processes, and thus we will be able to express
properties of workflows, using FLTL formulas over their corresponding encoding
in FSP. As we mentioned previously, this encoding will enable us to employ the
LTSA model checker for verifying behavioral properties of task activities of the
business process (BP) specifications. The basic intuition behind the encoding of
a YAWL net (control flow perspective) into FSP is the following. A system’s
behavior is characterized by the occurrence of its tasks. In an abstract way, we
can capture a task as an entity having some activity in the system between its
start and end events. So, a trace of these events describes a possible execution
of the system. In this way, a system’s behavior, i.e., all its possible runs, is cap-
tured by the set of all its execution traces. These traces are obviously constrained
according to the control flow of the system.

According to our previous observation, it is straightforward to see that a task
activity can be captured by means of a fluent, becoming true when its start
event takes place, and turning back to false when its end event task occurs. In
order to capture the behavior of the workflow’s control flow, we will need to
introduce appropriate event synchronizations and process compositions, relating
the events related to the tasks that conform the workflow. Once we achieve a
characterization of workflows as FSP processes, we can express properties of the

154 G. Regis et al.

workflows by expressing temporal formulas, employing task-related fluents as
the basic ingredient.

T1

T2

T3

T4

Fig. 4. Simple YAWL net with XOR-split and XOR-join control flow

In order to illustrate the intuition behind our encoding of YAWL into FSP,
and our motivation in doing so, let us consider the simple YAWL net shown in
Fig.4. According to the YAWL semantics, the set of all possible task occurrences
for this net is: {T1T2T4, T1T3T4}. Each of these corresponds to a trace of events
of the system; for instance, [T1.start T1.end T2.start T2.end T4.start T4.end
] corresponds to the first of the above task occurrences. We will capture the
activity of a task straightforwardly via a fluent. For instance, T2’s activity is
captured by the fluent 〈{T2.start}, {T2.end}〉. Now, these fluents can be used
in expressing properties of the system’s execution, in a declarative way. A basic
sample property of the above workflow would be to guarantee that tasks T2 and
T3 are always run mutually exclusively. This is expressed by the FLTL formula
G¬(T2 ∧ T3).

To formally describe our translation from YAWL into FSP, we consider a
formal semantics of YAWL nets [9], given in terms of Reset Petri Nets. Taking
into account this semantics, we propose an encoding for tasks and conditions,
with a particular treatment for input and output conditions. For conditions, and
due to constraints of finite LTSs (the formalism underlying our approach), we
limit their behavior to a bounded number of tokens in them. Even though we
have this significant limitation, every YAWL model can be encoded as an FSP
model. The mismatch between (unbounded) condition tokens and our intrinsi-
cally bounded setting will be reflected when analyzing properties of workflows,
via false positives reporting deadlocks. However, the analysis is still conserva-
tive: if no violations to a property are detected, then it is guaranteed that no
violations exist.

It is worth mentioning that FSP supports nondeterministic choice, and there-
fore branching constructs such as non-free choice and deferred choice can be
faithfully captured. Also, since our property language is FLTL, there is no need
to consider a branching semantics for our processes (nor a bisimulation seman-
tics) for the purpose of property verification: all possible executions (i.e., all
possible interleavings of parallel processes) are taken into account by the model
checking tool, thus exhaustively covering all behaviours of the system.

In order to represent a net behavior, we specify how to compose tasks and
conditions. In this composition we consider the control flow operators associated
with the tasks of the net, and provide an encoding for them. Finally, we address
especially sophisticated elements of YAWL nets, such as cancel regions and com-
posite tasks. Multiple instance tasks are simply treated as abbreviations of nets
composed of as many instances as the tasks indicate. The dynamic evolution

Specifying and Verifying Declarative Fluent Temporal Logic Properties 155

of multiple instance tasks is characterized via sequential compositions and OR
operations.

Definition 1. A YAWL net is a tuple (nid, C, i, o, T, TA, TC ,M, F, Split, Join,
Default, Rem,Nofi) where:

– nid is the unique identification of the YAWL net.
– C is a set of conditions, i ∈ C and o ∈ C are the input (start) and output

(end) conditions, respectively;
– T is a set of tasks; TA ⊆ T is the set of atomic tasks, and TC ⊆ T is the set

of composite tasks. M ⊆ T is the set of multiple instance tasks;
– F ⊆ (C\{o}× T)∪ (T ×C\{i})∪ (T × T) is the control flow relation; every

node in the graph (C ∪ T, F) is on a directed path from i to o;
– Split : T � {AND,XOR,OR} specifies the split behavior of each task;
– Join : T � {AND,XOR,OR} specifies the join behavior of each task;
– Default ⊆ F denotes the default arc for the OR-Split, ensuring that at least

one outgoing arc is enabled;
– Rem : T � P

+(T ∪C\{i, o}) specifies the tokens to be removed and the tasks
that should be canceled as a consequence of an instance of the task completing
its execution;

– Nofi : M → N × N
inf × N

inf × {dynamic, static} specifies the configura-
tion of multiple instance tasks: lower and upper bounds, the threshold for
continuation, and its creation’s behavior.

Let N be a YAWL net. The process representing the input(i) and output(o)
conditions, starting and ending N , is the following:
� �

YNET = (i_cond ->o_cond -> YNET).
� �

For each t ∈ TA (atomic task), we generate an FSP process characterizing its
start and end events:
� �

TASK = (start ->end -> TASK).
� �

As mentioned before, the encoding of conditions are restricted to a bounded
number of tokens. With this limitation, we represent the conditions in a way
similar to a bounded buffer, but with two parameters indicating the possible
input and output connections. The bound for tokens is the amount of input
connections given by default.
� �

CONDITION (IN=2,OUT=2) = STATE[0], STATE[i:0..IN] =

(when(i<IN) in[i:1..IN]->STATE[i+1]|when(i>0) out[j:1..OUT]->STATE[i-1]).
� �

The input/output connections are encoded as the in and out actions, and we refer
to them as ports. Let tsk1, tsk2 ∈ TA∧ (tsk1 /∈ Dom(Split)∧ tsk2 /∈ Dom(Join))
be atomic tasks of N , without split and join decorations, respectively; let c ∈
C\{i, o} be a condition with n and m input and output ports, respectively. In
order to compose tsk1 and tsk2, we have:

156 G. Regis et al.

– Sequential composition of tsk1 and tsk2: achieved by synchronizing tsk1.end
and tsk2.start, by means of relabeling.
� �

|| SYSTEM = tsk[1..2]:TASK /{tsk[2].start/tsk[1].end}
� �

– Composition of tsk1 with tsk2 through c (condition in between two tasks):
achieved by connecting the finalization of tsk1 with some input port of c,
and the start of tsk2 with some output port of c.
� �

|| SYSTEM = tsk[1..2]:TASK || c:CONDITION(n,m)

/{c.in[i]/tsk[1].end, tsk[2].start/c.out[j]}
� �

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
– Composition with decorations: Consider T ∈ TA ∧ (T ∈ Dom(Split) ∨ T ∈
Dom(Join)), i.e., T is an atomic task with some and or join decoration
(AND, OR, XOR). Let us call these decorations gates. For each possible
gate, we generate a process according to its behavior. These processes are
parameterized by the corresponding input and output ports (e.g., the process
corresponding to a join gate may have 2..n input ports and only one output).
As shown in Fig. 5, if T has some join (j) or split (s) gate associated, the
interconnection between T and the gates will be achieved by the synchro-
nization of J.out with T.start, and T.end with S.in, respectively. Let us
consider tsk1, tsk2 to be tasks of the system. In order to compose tsk1 with
tsk2 through T , we synchronize tsk1.end with some input port of J , and
tsk2.start with some output port of S.

TJ S
out start end in

in1

inn

out1

outn

Fig. 5. Task gates configurations

In order to model the task occurrences in the system, for every task Ti we define
a fluent of the form Ti = 〈{tski.start}, {tski.end}〉. This fluent predicates that
T is active between the occurrences of its start and end events. As an example,
the encoding for the YAWL net of Fig. 4 as an FSP process is the following:
� �

|| SYSTEM=(YNET ||tsk[1..4]:TASK ||xors: XOR_SPLIT(2) ||xorj:XOR_JOIN(2))

/{ TSK[1].start/i_cond, TSK[4].end/o_cond,

xors.in/TSK[1].end, TSK[2].start/xors.end[1], TSK[3].start/xors.end[2],

xorj.in[1]/TSK[2].end, xorj.in[2]/TSK[3].end, TSK[4].start/xorj.out }.

fluent T[i:1..4] = <{tsk[i].start}, {tsk[i].end}>
� �

4.1 Encoding of Gates

For each kind of gate we will generate a corresponding FSP process capturing
its behavior. These processes are parameterized by input and output ports. Due
to space limitations, we present the encodings only for some gates.

Specifying and Verifying Declarative Fluent Temporal Logic Properties 157

For AND-split, XOR-split and OR-split, the FSP processes are characterized
by one input port and N > 1 output ones. The processes will be parameterized
with N and their encodings depend on the corresponding behavior, e.g., for the
AND-split we generate a process of the form:
� �

AND_SPLIT_TRIGGER(N=1) = (in ->out[I] ->ANDSPLIT_TRIGGER).

|| AND_SPLIT(N=2) = (forall [i:1..N] ANDSPLIT_TRIGGER(i)).
� �

The AND SPLIT process triggers as many out actions as specified by the pa-
rameter which shares the in action (forall is an abbreviation for parallel “||”
composition). When the in action occurs, all the out are made available, i.e.,
the control (token) is passed to all connected output tasks or conditions.

Notice that, in the XOR and OR split gates, we use state variables in order to
encode the corresponding guard conditions. Due to restrictions in the datatypes
supported by LTSA, we only consider integer and boolean types. The choices
for the out ports are constrained by formulas involving those variables, used as
conditional when clauses in the obvious way.

The XOR-join encoding is simply a choice over its incoming events; once one
of them arrives, the outgoing event must occur: XOR JOIN (N=2) = in[1..N] ->

out -> XOR JOIN).

OR-join: Due to its non local semantics, this kind of gate has different inter-
pretations across different business process specification languages. In [9], there
is a survey of the OR-join semantics in Business Process Modeling Notation
(BPMN), in Event-driven Process Chains (EPCs) (see also [11]), etc., and the
complications in the analysis of these gates in the presence of cancel regions,
loops, or multiple instances. In YAWL, the evaluation of the gate in order to
determine if an OR-join can be fired is made via backward firing and coverability
analyses in reset nets. The encoding of the OR-join gates employed to perform
our analysis of the models mimic the informal semantic of the OR-join (cf. [9],
p. 104), that prioritizes all possible incoming events before firing the out port.
In order to encode this gate, the following process is generated:
� �

OR_JOIN(N=2) = OR_JOIN_DEF[0], OR_JOIN_DEF[b:0..1] =

(in[1..N] -> OR_JOIN_DEF[1] | when (b!=0) out ->OR_JOIN).
� �

where all incoming events are “listened to”, and if at least one of them is acti-
vated, the outgoing event will be fired. The priority on accept incoming events
before firing the output is encoded by means of the priority operator of FSP,
giving lower (>>) priority to the out action.

4.2 Cancel Regions and the Encoding of Composite Tasks

Cancel Regions provide the ability of disabling a set of tasks in a process instance.
If any of the tasks belonging to this region is already being executed (or is
currently enabled), then they are immediately terminated. Cancelation captures
the interference of an activity in the execution of others. In order to model this
interference in YAWL, a canceling task can be associated with a cancel region,

158 G. Regis et al.

Fig. 6. YAWL net corresponding to the Order Fullfilment Process

indicating a set of tasks or conditions to be canceled. In order to encode cancel
regions in FSP, first we consider an extended version for the encoding of tasks
and conditions belonging to a cancelable region. For these tasks, instead of the
original FSP process, we define a process representing a task that starts and,
either the task ends, or the task can be canceled. In a similar way, we define the
processes corresponding to the cancelable conditions. In this setting, the start
action of a canceling task is synchronized with the cancel actions of the canceled
tasks and conditions.
� �

CANCELABLE_TASK = CTASK_INACTIVE,

CTASK_INACTIVE = (start ->CTASK_ACTIVE | cancel ->CTASK_INACTIVE),

CTASK_ACTIVE = (end ->CTASK_INACTIVE | cancel ->CTASK_INACTIVE).
� �

For systems involving composite tasks, each of these tasks will have an associated
YAWL net specifying its corresponding behavior. So, in order to encode the
system, we generate a process CTi for each net associated with a composite
task, following the above procedure. Then, in the net encoding corresponding
to the main system, we declare an instance of each CTi, and we connect them
synchronizing their i cond and o cond with the corresponding input and output
task or condition. Finally, the activities corresponding to the composite tasks are
defined by fluents whose logical values depend on the occurrence of their i cond
and o cond actions in the expected way. Note that we can specify the activity of
a task ti belonging to a composite task CTk on the main process, prefixing the
task with the name of the composite task, i.e., CTk.ti.

5 Case Study

We take a case study accompanying the YAWL tool, that we consider to be a
complex and complete model, involving all kinds of components of the YAWL
language. The sources of the YAWL model can be downloaded1. The case study
describes the process of order fulfillment followed in a fictitious company, which
is divided into the following phases: ordering, logistics (which includes carrier
appointment, freight in transit, freight delivered), and payment. The order ful-
fillment process model is shown in Fig. 6, where each of the above phases is
captured by a composite task. Due to space limitations, we only explain in more
detail one of the subtasks, the Carrier Appointment process. The YAWL model
corresponding to the CA is show in Fig. 7. Basically, the model specifies that af-
ter confirmation of a Purchase Order on the previous phase, a route guide needs

1 http://www.yawlfoundation.org

http://www.yawlfoundation.org

Specifying and Verifying Declarative Fluent Temporal Logic Properties 159

to be prepared and the trailer usage needs to be estimated. These operations
are performed in parallel. If either task takes too long (calculated by the task
Carrier Timeout), a timeout is triggered, which leads the termination of the
overall process. If not, the task Prepare Transportation Quote takes place, by
establishing the cost of shipment. After this task, a distinction is made among
shipments that require a full truck load (FTL), those that require less than a
truck load (LTTL) and those that simply concern a single package (SP). In or-
der to simplify the view of the model, we depict FTL and LTTL as composite
tasks. After the FTL and LTTL, there are subsequent opportunities to modify
the appointments information until a Shipment Notice is produced; after that,
the freight can be picked up. For SP the process is straightforward.

The encoding of YAWL specifications into FSP processes is fully automated,
and a tool called YAWL2FSP was developed for this task. This tool is publicly
available2. The FSP specification was automatically generated and the resulting
LTS for the complete Order Fulfillment net (58 tasks, 30 gates, 36 conditions, 2
cancel regions) was generated in 0.298 seconds, using 28,96 Mbytes of memory,
with the tool LTSA. The LTS contains 13164 states and 59722 transitions. The
analysis for the system was performed in two phases. First, we verified properties
over tasks based on the templates published in the Declare Tool [9], including
precedence, non-coexistence, response, etc. Next, and taking advantage of the
fluent characterizations and FLTL expressiveness, we verified properties of the
system involving “sub-traces” of the execution, e.g. activities of a subtask, or
properties where the desired behavior is characterized by the occurrence of a
disjoint set of events. Due to space limitations, we only report here some of the
most relevant properties, and show how these are captured in FLTL:

1. If timeout occurs in CA, then no shipment notice can be produced.
� �

assert PROPERTY_1 = (CarrierTimeout ->!ProduceShipmentNotice)
� �

Notice that this property uses two fluents, that capture the execution of
corresponding atomic actions. The previous section describes the details on
how these fluents are defined; for instance, for CarrierTimeout, the fluent is:
fluent CarrierTimeout = <C A.task[5].start,C A.task[5].end>, where
C A references the Carrier Appointment net, and task[5] represents the
FSP process id corresponding to the CarrierTimeout task.

2. Tasks belonging to different ways of transportation cannot occur simultane-
ously. To capture this property we define three fluents, corresponding to the
whole activity of the FTL, LTTL or SP ways of transportation. For exam-
ple, FullTruckLoad=<C A.ftl.i cond,C A.ftl.o cond>, where ftl is the FSP
id of the translated sub-net, and i/o.cond are the initial and end events,
respectively. The property is specified as:
� �

assert PROPERTY_2 = !((FullTruckLoad && LessThanTruckLoad) ||

(FullTruckLoad && SinglePackage) ||

(SinglePackage && LessThanTruckLoad))
� �

2 http://sourceforge.net/projects/yawl2fsp/

http://sourceforge.net/projects/yawl2fsp/

160 G. Regis et al.

Fig. 7. YAWL net corresponding to Carrier Appointment Process

3. If Shipment Notice was produced, necessarily a delivery and pickup appoint-
ment were arranged. We define two fluents, characterizing the arranging
appointment activities, i.e., pickup and delivery. These fluents will be ac-
tivated by any of the corresponding activities of the three possible ways of
transportation (FTL, LTTL or SP). Here we can appreciate the flexibility of
fluents in order to describe abstract states in the model. As example consider
the fluent corresponding to Delivery Appointment Arranged, which is en-
abled by the occurrence of an event corresponding to the main net and events
of the FTL and LTTL sub-nets: <{C A.task[7].end,C A.ftl.task[2,3,7].end,

C A.ltl.task[2,5].end},C A.o cond> . The property is expressed as follows:
� �

assert PROPERTY_3 = (ShipmentNoticeProduced ->

(DeliveryAppointmentArranged && PickupAppointmentArranged))
� �

The time consumption associated with the verification of the above properties
was: (1) 154ms, (2) 152ms and (3) 185ms, and the memory consumption (1)
11.8MB, (2) 11.9MB and (3) 16.6MB. The encoding and verification were per-
formed using an Intel Core 2 Duo 2.2 Ghz processor, 2 GB 667 Mhz DDR2
SDRAM memory and a Unix based Operating System. Although we are unable
to provide a fully-developed example due to space limitations, it is important to
notice that in case some property does not hold, the model checker underlying
LTSA would provide a trace reproducing the erroneous behavior of the system;
this is extremely useful information, that is normally used in order to correct
the model, or the corresponding workflow.

6 Related Work and Conclusions

The formal specification and verification of business processes has gained relevance
in the last decade, not only in academic settings but also, and most importantly, in
industry, where business process optimization is a crucial task. Various languages
and methods for business process description have been proposed, most of which

Specifying and Verifying Declarative Fluent Temporal Logic Properties 161

were initially informal, but for which different formal characterizations have been
proposed. In [18] a general survey for BP specification can be found and in [4] a sur-
vey of formalizations for the Business Process Execution Language (BPEL) is an-
alyzed. Other formal approaches include that presented in [20], where a semantics
based on timed automata is proposed for the verification of Product ProcessMod-
eling Language (PPML) models. Since our work is essentially a formalization of
workflows in terms of labeled transition systems, there exist some relevant related
works; in particular, in [10] an automata-based method for formalizing workflow
schemas is proposed, but the approach suffers from expressive power limitations,
in relation to YAWL (beyond our bounded condition tokens limitation).

We have presented an encoding of YAWL (procedural) workflows into FSP pro-
cesses. This encoding, which can be performed automatically and has been imple-
mented in a tool, models tasks in a convenient way, enabling us to exploit fluent
linear time temporal logic formulas for capturing typical constraints on workflows,
and to use the model checker behind LTSA for verifying such constraints. The en-
coding adequately maps YAWL constructs to FSP elements, in order to make in-
tensive use of fluents, in particular to capture workflow tasks, and their properties.
Workflows, and in particular those based on a control-flow pattern, are inherently
event-based, and thus using state-based formal languages such as LTL makes it
more complicated to express declarative properties. FLTL, on the other hand, al-
lows one to more naturally describe execution situations in workflows, via abstract
activating/disabling events, as our encoding and examples in this paper illustrate.

We are currently conducting some experiments regarding a comparison of
ease of use of LTL vs. FLTL for the specification of properties of workflows. In
this respect, our work is twofold: we are working on a tool for automatically
translating Declare constraint models to FLTL formulas, in order to verify those
constraints over a procedural YAWL workflow, and we are developing a front-
end (graphical tool) to assist the end user in the description of properties via
FLTL and to represent violation executions when counterexamples are reported.

WehavechosentobaseourworkonYAWLbecause ithasaformalfoundation,and
it supports awide range ofworkflowpatterns, providing an expressive environment
forBPspecification.Aswementioned, theYAWLtoolsetprovides theverificationof
somepropertiesofworkflowssuchassoundnessanddeadlock-freedom[3],butitdoes
notprovideasuitableflexible language fordeclarativelyexpressingotherbehavioral
properties of its models. In this respect, the Declare tool might be applicable, but
only tomonitor executions of YAWLmodels, or analyzing the consistency of differ-
ent declarative, linear temporal logic, constraints on a proceduralYAWLworkflow.
In particular, Declare does not provide features for the verification of properties of
executions. In this aspect,works closer to our approachare thosepresented in [12,6],
where the SPINmodel checker is used to automatically verify properties of YAWL
models.However, in theseworks, standardLTL is employed as aproperty language,
which is better suited for state-based settings but less appropriate for event-based
frameworks, as is the case of workflowdescriptions [7].

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. This work was partially supported by the Argentinian

162 G. Regis et al.

Agency for Scientific and Technological Promotion (ANPCyT), through grants
PICT PAE 2007 No. 2772 and PICT 2010 No. 1690, and by the MEALS project
(EU FP7 programme, grant agreement No. 295261).

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Inf. Syst. 30, 245–275 (2005)

3. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidabil-
ity, and analysis. Formal Asp. Comput. 23(3), 333–363 (2011)

4. van Breugel, F., Koshkina, M.: Models and Verification of BPEL (2006),
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
6. Rabbi, F., Wang, H., MacCaull, W.: YAWL2DVE: An Automated Translator for

Workflow Verification. In: SSIRI, pp. 53–59 (2010)
7. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.

In: ESEC / SIGSOFT FSE, pp. 257–266 (2003)
8. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Modeling,

Verification, and Applications. Springer (2002)
9. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern

Bussiness Process Automation. Springer (2010)
10. Karamanolis, C.T., Giannakopoulou, D., Magee, J., Wheater, S.M.: Model Check-

ing of Workflow Schemas. In: EDOC, pp. 170–181 (2000)
11. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data Knowl.

Eng. 56(1), 23–40 (2006)
12. Leyla, N., Mashiyat, A.S., Wang, H., MacCaull, W.: Towards workflow verification.

In: CASCON, pp. 253–267 (2010)
13. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley

& Sons (1999)
14. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring

Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer (1991)

16. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems -Safety. Springer
(1995)

17. Miller, R., Shanahan, M.: The Event Calculus in Classical Logic - Alternative
Axiomatisations. Linkoping Electronic Articles in Computer and Information Sci-
ence 4(16), 1–27 (1999)

18. Morimoto, S.: A Survey of Formal Verification for Business Process Modeling. In:
ICCS 2008, pp. 514–522 (2008)

19. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declarative Workflow. In: Mod-
ern Business Process Automation, pp. 175–201 (2010)

20. Regis, G., Aguirre, N., Maibaum, T.: Specifying and Verifying Business Pro-
cesses Using PPML. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS,
vol. 5885, pp. 737–756. Springer, Heidelberg (2009)

21. Wong, P.Y.H., Gibbons, J.: Property specifications for workflow modelling. Sci.
Comput. Program 76(10), 942–967 (2011)

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

	Specifying and Verifying Declarative Fluent Temporal Logic Properties of Workflows
	Introduction
	Business Processes, Workflows and Patterns
	Workflow Specification Using YAWL

	The Formal Framework
	Labeled Transition Systems
	Linear Time Temporal Logic
	Fluent Linear Time Temporal Logic
	Model Checking

	From YAWL Workflows to Labeled Transition Systems
	Encoding of Gates
	Cancel Regions and the Encoding of Composite Tasks

	Case Study
	Related Work and Conclusions

