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Synthesizing Modal Transition Systems
from Triggered Scenarios

Jeff Kramer, Member, IEEE Computer Society

Abstract—Synthesis of operational behavior models from scenario-based specifications has been extensively studied. The focus has
been mainly on either existential or universal interpretations. One noteworthy exception is Live Sequence Charts (LSCs), which
provides expressive constructs for conditional universal scenarios and some limited support for nonconditional existential scenarios. In
this paper, we propose a scenario-based language that supports both existential and universal interpretations for conditional
scenarios. Existing model synthesis techniques use traditional two-valued behavior models, such as Labeled Transition Systems.
These are not sufficiently expressive to accommodate specification languages with both existential and universal scenarios. We
therefore shift the target of synthesis to Modal Transition Systems (MTS), an extension of labeled Transition Systems that can
distinguish between required, unknown, and proscribed behavior to capture the semantics of existential and universal scenarios.
Modal Transition Systems support elaboration of behavior models through refinement, which complements an incremental elicitation
process suitable for specifying behavior with scenario-based notations. The synthesis algorithm that we define constructs a Modal
Transition System that uses refinement to characterize all the Labeled Transition Systems models that satisfy a mixed, conditional
existential and universal scenario-based specification. We show how this combination of scenario language, synthesis, and Modal
Transition Systems supports behavior model elaboration.

Index Terms—Scenarios, MTS, synthesis, partial behavior models
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1 INTRODUCTION

OI’F.RA'I‘IUNAL behavioral models such as labeled Transi-
tion Systems (LTSs) are convenient formalisms for
modeling and reasoning about system behavior at the
architectural level. These models provide a basis for a wide
range of automated (and semi-automatic) analysis techni-
ques, such as model-checking, simulation, and animation.

One of the limitations of operational behavior modeling
is the complexity of building the models in the first place.
Operational behavioral model construction remains a
difficult, labor-intensive task that requires considerable
expertise. To address this, a wide range of techniques for
supporting (semi-)automated synthesis of operational be-
havior models has been investigated. In particular, synth-
esis from scenarios and use cases has been studied
extensively [1], [2], [3], [4], [5].

Scenario-based specifications such as Message Sequence
Charts (MSCs) [6] describe how system components, the
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environment, and users interact in order to provide system
level functionality. Their simplicity and intuitive graphical
representation facilitate stakeholder involvement, making
them popular for requirements elicitation. Model synthesis
from scenario-based specifications facilitates early analysis,
validation, and incremental elaboration of behavior models.

A range of scenario description languages and associated
behavior model synthesis algorithms have been developed
(e.g., [1], [7], [8]). Although they differ in many aspects, a
noteworthy semantic distinction is whether scenarios are
interpreted as existential or universal statements. An
existential scenario provides an example of system behavior,
one that the system-to-be is required to provide. A universal
scenario provides a rule that all system behavior is expected
to satisfy. Although each approach is typically geared to one
interpretation or the other, some languages, notably Live
Sequence Charts (LSCs) [3], provide syntactic and semantic
support for both interpretations. The motivation is that
during the requirements process, there is a progressive shift

. from existential statements in the form of examples and use

cases to universal statements in the form of declarative
properties. A scenario-based language that supports both
interpretations is better equipped to support this shift.

1.1 Existential Triggered Scenarios (eTSs)

Despite the variety of existing approaches, no language and
associated synthesis algorithm is suitable for describing
conditional existential scenarios. Consider the statement “if
the user inserts a valid card into the ATM, and then enters
the correct password, she/he shall be able to request cash
and have it dispensed by the ATM.” This statement is
existential in that it provides an example of system
execution. It is also conditional in the sense that requesting
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7 CONCLUSION

In this paper, we have defined a scenario-specification
language which includes support for describing triggered
existential and universal scenarios. We have also defined a
synthesis algorithm that constructs MTS models which
characterize via refinement all LTS models that conform
both to the existential and universal aspects of the scenario-
based description.

A novel aspect of the approach is the use of triggered
existential scenarios which have a branching semantics.
This is in line with existing informal scenario-based and use
case-based approaches to requirements engineering exploit-
ing the expressive power of MTS in an operational behavior
model.

The approach supports behavior elaboration through the
analysis and refinement of underspecified system behavior
using MTS merging, model checking, inspection, and
animation, moving from examples to comprehensive
descriptions during the behavior elaboration process.

In future work, we intend to continue to develop and
integrate support for elicitation and elaboration of behavior
models using MTS. In particular, we are investigating the
use of learning, in the form of Inductive Logic Programming
[40], to aid the elaboration process. We aim to develop
techniques and tools to support identifying, providing
feedback, and resolving inconsistencies in the process of
merging MTS that result from scenario-based specifications.
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