IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO.7, JULY 2013

Synthesizing Modal Transition Systems
from Triggered Scenarios

Jeff Kramer, Member, IEEE Computer Society

Abstract—Synthesis of operational behavior models from scenario-based specifications has been extensively studied. The focus has
been mainly on either existential or universal interpretations. One noteworthy exception is Live Sequence Charts (LSCs), which
provides expressive constructs for conditional universal scenarios and some limited support for nonconditional existential scenarios. In
this paper, we propose a scenario-based language that supports both existential and universal interpretations for conditional
scenarios. Existing model synthesis techniques use traditional two-valued behavior models, such as Labeled Transition Systems.
These are not sufficiently expressive to accommodate specification languages with both existential and universal scenarios. We
therefore shift the target of synthesis to Modal Transition Systems (MTS), an extension of labeled Transition Systems that can
distinguish between required, unknown, and proscribed behavior to capture the semantics of existential and universal scenarios.
Modal Transition Systems support elaboration of behavior models through refinement, which complements an incremental elicitation
process suitable for specifying behavior with scenario-based notations. The synthesis algorithm that we define constructs a Modal
Transition System that uses refinement to characterize all the Labeled Transition Systems models that satisfy a mixed, conditional
existential and universal scenario-based specification. We show how this combination of scenario language, synthesis, and Modal
Transition Systems supports behavior model elaboration.

Index Terms—Scenarios, MTS, synthesis, partial behavior models

+

a75

German Emir Sibay, Victor Braberman, Sebastian Uchitel, Member, IEEE Computer Society, and

1 INTRODUCTION

OI’F.RA'I‘IUNAL behavioral models such as labeled Transi-
tion Systems (LTSs) are convenient formalisms for
modeling and reasoning about system behavior at the
architectural level. These models provide a basis for a wide
range of automated (and semi-automatic) analysis techni-
ques, such as model-checking, simulation, and animation.

One of the limitations of operational behavior modeling
is the complexity of building the models in the first place.
Operational behavioral model construction remains a
difficult, labor-intensive task that requires considerable
expertise. To address this, a wide range of techniques for
supporting (semi-)automated synthesis of operational be-
havior models has been investigated. In particular, synth-
esis from scenarios and use cases has been studied
extensively [1], [2], [3], [4], [5].

Scenario-based specifications such as Message Sequence
Charts (MSCs) [6] describe how system components, the

e G.L. Sibay and |. Kramer are with the Department of Computing, Imperial
College London, Room 504, 180 Queen’s Gate, Huxley Building, SW7 2B7
London, United Kingdom.

E-mail: gsibay@doc.ic.ac.uk, j.kramer@imperial.ac.uk.

o V. Braberman is with the Department of Computing, FCEN, University of

Buenos Aires, Pabellon 1, Ciudad Universitaria, Intendente Giliraldes
2160, Buenos Aires (C1428EGA), Argentina. E-mail: vbraber@dc.uba.ar.
e 5. Uchitel is with the Department of Computing, lmperial College London,

London SW7 2AZ, United Kingdom, and with the Department of

Computing, FCEN, University of Buenos Aires, Pabellon 1, Ciudad
Universitaria, Intendente Giiiraldes 2160, Buenos Aires (C1428FGA),
Argentina. E-mail: suchitel@dc.uba.ar,
Manuscript received 11 Mar. 2010; revised 7 Mar. 2011; accepted 13 Sept.
2012; published online 21 Sept. 2012.
Recommended for acceptance by M. Kwiatkowska.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-03-0070.
Digital Object Identifier no. 10.1109/TSE.2012.62.

0098-5589/13/§31.00 «* 2013 IEEE

environment, and users interact in order to provide system
level functionality. Their simplicity and intuitive graphical
representation facilitate stakeholder involvement, making
them popular for requirements elicitation. Model synthesis
from scenario-based specifications facilitates early analysis,
validation, and incremental elaboration of behavior models.

A range of scenario description languages and associated
behavior model synthesis algorithms have been developed
(e.g., [1], [7], [8]). Although they differ in many aspects, a
noteworthy semantic distinction is whether scenarios are
interpreted as existential or universal statements. An
existential scenario provides an example of system behavior,
one that the system-to-be is required to provide. A universal
scenario provides a rule that all system behavior is expected
to satisfy. Although each approach is typically geared to one
interpretation or the other, some languages, notably Live
Sequence Charts (LSCs) [3], provide syntactic and semantic
support for both interpretations. The motivation is that
during the requirements process, there is a progressive shift

. from existential statements in the form of examples and use

cases to universal statements in the form of declarative
properties. A scenario-based language that supports both
interpretations is better equipped to support this shift.

1.1 Existential Triggered Scenarios (eTSs)

Despite the variety of existing approaches, no language and
associated synthesis algorithm is suitable for describing
conditional existential scenarios. Consider the statement “if
the user inserts a valid card into the ATM, and then enters
the correct password, she/he shall be able to request cash
and have it dispensed by the ATM.” This statement is
existential in that it provides an example of system
execution. It is also conditional in the sense that requesting

Published by the IEEE Computer Society



1000 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO.7, JULY 2013

7 CONCLUSION

In this paper, we have defined a scenario-specification
language which includes support for describing triggered
existential and universal scenarios. We have also defined a
synthesis algorithm that constructs MTS models which
characterize via refinement all LTS models that conform
both to the existential and universal aspects of the scenario-
based description.

A novel aspect of the approach is the use of triggered
existential scenarios which have a branching semantics.
This is in line with existing informal scenario-based and use
case-based approaches to requirements engineering exploit-
ing the expressive power of MTS in an operational behavior
model.

The approach supports behavior elaboration through the
analysis and refinement of underspecified system behavior
using MTS merging, model checking, inspection, and
animation, moving from examples to comprehensive
descriptions during the behavior elaboration process.

In future work, we intend to continue to develop and
integrate support for elicitation and elaboration of behavior
models using MTS. In particular, we are investigating the
use of learning, in the form of Inductive Logic Programming
[40], to aid the elaboration process. We aim to develop
techniques and tools to support identifying, providing
feedback, and resolving inconsistencies in the process of
merging MTS that result from scenario-based specifications.

ACKNOWLEDGMENTS

The work reported herein was partially supported by ERC
StG PBM-FIMBSE, CONICET PIP112-200801-00955K A4,
UBACYT WO0813, PICT 1774, PICT PAE 2272, PICT PAE
2278, and MEALS 295261. Finally, the authors would like to
thank the anonymous reviewers for their careful and
insightful reviews that greatly improved the quality of this

paper.

REFERENCES

[1] L Kruger, “Distributed System Design with Message Sequence
Charts,” PhD dissertation, Technical Univ. of Munich, 2000.

[2] S. Uchitel, ]. Kramer, and J. Magee, “Incremental Elaboration of
Scenario-Based ';pLCifiLannH and Behaviour Models Using
Implied Scenarios,” ACM Trans. Software Eng. and Methodology,
vol. 13, no. 1, pp. 37-85, 2004.

[3] D. Harel and R. Marelly, Cone, Let's Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[4] Y. Bontemps, P. Heymans, and P.-Y. Schobbens, “From Live
Sequence Charts to State Machines and Back: A Guided
Tour,” IEEE Trans. Software Eng., vol. 31, no. 12, pp. 999-1014,
Dec. 2005.

[5] T. Ziadi, L. Helouet, and ]-M. Jezequel, “Revisiting Statechart
Synthesis with an Algebraic Approach,” Proc. 26th IEEE Int'l Conf.
Software Eng., pp. 242-251, 2004,

[6] ITU, “Recommendation z.120: Message Sequence Charts,” 2000.

[71 B. Sengupta and R. Cleaveland, “Triggered Message Sequence
Charts,” IEEE Trans. Software Eng., vol. 32, no. 8, pp. 587-607, Aug.
2006.

[8] W. Damm and D. Harel, “LSCs: Breathing Life into Message
Sequence Charts,” Proc. Third Int’l Conf. Formal Methods for Open
ObjectBased Distributed Systems, vol. 139, 1999,

[9] K. Zachos, N. Maiden, and A. Tosar, “Rich-Media Scenarios for
Discovering Requirements,” IEEE Software, vol. 22, no. 5, pp. 89-
97, Sept./Oct. 2005.

[10] RM. Keller, “Formal Verification of Parallel Programs,”
ACM, vol. 19, pp. 371-384, July 1976.

[11] R. Milner, Communication and Concurrency. Prentice-Hall, 1989,

Comm.

[12]
[13]

[14]
[15]

(16]
(17
[18]
[19]
[20]

[21]

[26]

(27]

128]

[29]

30]
[31]
[32]
[33]

[34]

K. Larsen and B. Thomsen, “A Modal Process Logic,” Proc. Third

Ann. [EEE Symp. Logic in Computer Science, pp. 203-210, 1988.

K. Larsen, B. Steffen, and C. Weise, “The Methodology of Modal

Constraints,” Formal Systems Specification, vol. 1169, pp. 405-435,

1996.

M. Huth, R. Jagadeesan, and D.A. Schmidt, “Modal Transition

Systems: A Foundation for Three-Valued Program Analysis,”

Proc. 10th European Symp. Programming Languages and Systems,

pp. 155-169, 2001.

K.G. Larsen, B. Steffen, and C. Weise, “A Constraint Oriented

Proot Methodology Based on Modal Transition Systems,” Proc.

First Int'l Workshop Tools and Algorithis for Construction and

Analysis of Systems, pp. 13-28, 1995,

D. Fischbein and S. Uchitel, “On Correct and Complete Merging of

Partial Behaviour Models,” Proc. SIGSOFT Conf. Foundations of

Software Eng., pp. 297-307, 2008.

5. Uchitel, G. Brunet, and M. Chechik, “Synthesis of Partial

Behavior Models from Properties and Scenarios,” IEEE Trans.

Software Eng., vol. 3, no. 35, pp. 384-406, May 2009.

G. Brunet, M. Chechik, D. Fischbein, N. D’Ippolito, and S. Uchitel,

“Weak Alphabet Merging of Partial Behaviour Models,” ACM

Trans. Software Eng. and Methodology,

G. Bruns and P. Godefroid, “Generalized Model Checking:

Reasoning about Partial State Spaces,” Proc. 11th Int'l Conf.

Concurrency Theory, pp. 168-182, 2000.

D. Fischbein, N. D’'Ippolito, G. Sibay, and S. Uchitel, “Modal

Transition System Analyser (MTSA),” http://sourceforge.net/

projects/mtsa/, 2012,

J. Magee and ]. Kramer, Concurrency—State Models and Java

Programs. John Wiley, 1999.

S. Uchitel and M. Chechik, “Merging Partial Behavioural Models,”

Proc. 12th ACM SIGSOFT Int'l Symp. Foundations of Software Eng.,

pp- 43-52, 2004.

E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,

1999,

G. Sibay, S. Uchitel, and V. Braberman, “Existential Live Sequence

Charts Revisited,” Proc. 30th Int'l Conf. Software Eng., pp. 41-50,

2008.

D. Giannakopoulou and ]. Magee, “Fluent Model Checking for

Event-Based Systems,” Proc. Ninth European Software Eng. Conf.

Held Jointly with 11th ACM SIGSOFT Int’l Symp. Foundations of

Software qu 2003.

R. Alur, K. Etessami, and M. Yannakakis, “Inference of Message

Sequence Charts,” IEEE Trans. Software Eng., vol. 29, no. 7, pp. 623-

633, July 2003.

S. Mauw and M.A. Reniers, “High-Level Message Sequence

Charts,” Proc. Int’l Conf. System Design Ixmqrmgt‘s pp- 291-306, 1997.

L. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient Detection

of Vacuity in ACTL Formulas,” Proc. Ninth Intl Conf. Computer-

Aided Verification, pp. 279-290, 1997.

N. D'lppolito, D. Fishbein, H. Foster, and S. Uchitel, “MTSA:

Eclipse Support for Modal Transition Systems Construction,

Analysis and Elaboration,” Proc. OOPSLA Workshop Eclipse

Technology Exchange, pp. 6-10, 2007.

R. van Ommering, F. van der Linden, ]. Kramer, and ]. Magee,

“The Knala Component Model for Consumer Electronics Soft-
ware,” Computer, vol. 33, no. 3, pp. 78-85, 2000.

W. Damm and D. Harel, “LSCs: Breathing Life into Message

Sequence Charts,” Formal Methods in System Design, vol. 19, no. 1,

pp. 45-80, 2001.

J- Magee, N. Pryce, D. Giannakopoulou, and . Kramer, “Graphical

Animation of Behavior Models,” Proc. 22nd Int'l Conf. Software

Eng, pp. 499-508, 2000.

H. Kugler, M.J. Stern, and E.J.A. Hubbard, “Testing Scenario-

Based Models,” Proc. 10th Int'l Conf. Fundamental Approaches to

Software Eng., pp. 306-320, 2007.

K. Larsen and L. Xinxin, “Equation Solving Using Modal

Transition Systems,” Proc. Fifth Ann. IEEE Symp. Logic in Computer

Science, pp. 108-117, 1990.

Y. Bontemps, P.-Y. Schobbens, and C. Liding, “Synthesis of Open

Reactive Systems from Scenario-Based Specifications,” Fundamen-

ta Informaticae, vol. 62, no. 2, pp. 139-169, 2004.

D. Harel and H. Kugler, “Synthesizing State-Based Object Systems

from LSC '-poclhcatmn-\' “ Int'l |. Foundation of Computer Seience,

vol. 13, no. 1, pp. 5-51, 2002.



