
PIRSES-GA-2011-295261 /MEALS
November 29, 2013

Page 1 of 25

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 5.4 / 1

Title of Deliverable: Choice-preserving Multiparty Session Types

Contractual Date of Delivery to the CEC: 1-Apr-2013
Actual Date of Delivery to the CEC: 15-Mar-2013
Organisation name of lead contractor for this deliverable: IMP
Author(s): Laura Bocchi, Hernán Melgratti, Emilio Tuosto
Participants(s): UBA, IMP, ULEIC, UNR, ITBA
Work package contributing to the deliverable: WP5
Nature: R
Dissemination Level: Public
Total number of pages: 25
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

In the realisability of choreographies it is crucial how distributed choices are resolved. We introduce a novel notion of
realisability for distributed choreographies –called whole-spectrum realisation– requiring implementations to resolve
non-deterministic choices so that each branch has a context firing it. We represent choreographies as minor variants of
global types of Carbone, Honda, and Yoshida and use local types projections to validate processes in a type system that
guarantees whole-spectrum realisability.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 25 Public

Contents
1 Introduction 3

2 Global and Local Types 5
2.1 Global types . 6
2.2 Local types . 8
2.3 Behaviour of types . 9

3 Systems 10

4 Runtime Types 13

5 Whole-Spectrum Realisation 13

6 Typing rules 16

7 Properties of the type system 19
7.1 Soundness . 19
7.2 Whole-spectrum realisation by typing . 20

8 Conclusion and related work 21

Bibliography 22

A Typing rules for systems 24

MEALS Partner Abbreviations 24

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 25 Public

1 Introduction

The context A choreography gives a description of the expected behaviour of a composed system
in terms of the message exchanged between its component parties. Consider the following simple
choreography, ATM, involving two parties (aka roles) B and C, where B is the cash machine of a
bank that offers a deposit and overdraft service (after a successful authentication) to a client C.
If C decides to make a deposit, it indicates the amount of money to be deposited. If C asks to
overdraft then B can either grant it or deny it; in the former case C will communicate the amount
of money required. ATM is depicted as follows:

The doubly stroked lines represent choices and the dashed lines connect interactions with the
branches where they occur.

Choreographies are understood to be descriptions of the system from a global perspective,
hence they do not have a single execution control. On the contrary, each role needs to be im-
plemented with its own independent control flow. A set of role implementations is a suitable
realisation of a given choreography when the behaviour emerging from the concurrent execution
of the role implementations matches the behaviour prescribed by that choreography. We say that
a choreography is realisable when it has a realisation.

A possible realisation of the ATM choreography can be given using two CCS-like processes
augmented with internal (⊕) and external (+) choices:

TB = login.(deposit.amount + overdraft.(ok.amount ⊕ ko))
TC = login.(deposit.amount ⊕ overdraft.(ok.amount + ko))

TB and TC implement roles B and C, respectively. For instance, TB specifies that, after C logs in, B
waits to interact on ports deposit or overdraft; in the latter case, B non-deterministically decides
whether to grant or deny the overdraft. TC is dual.

As noted in [18], realisability of choreographies requires one to considers several issues.
Here, we focus on the interpretation of the prescriptive behaviour of choreographies. In fact,
choreographies have been interpreted as either constraints or obligations of distributed interac-
tions [18]. According to the former interpretation, a realisation is admissible if it exhibits a subset
of the behaviour (hence such realisations are also referred to as partial [18] or weak [20]). For
instance, ATM is partially realised when considering an implementation for B, T ′B, which denies
every overdraft request:

T ′B = login.(deposit.amount + overdraft.ko)

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 25 Public

On the contrary, a realisation is admissible when interpreting choreographies as interaction obli-
gations if it is able to exhibit all interaction sequences (hence such realisations are also referred
to as complete realisations [18]). For instance, TB and TC form a complete realisation of ATM.

Complete realisations Multiparty session types [1, 15] address the problem of checking whether
a distributed implementation realises a choreography but avoids the direct comparison of traces.
This is done in two steps: (i) projection: the choreography (i.e., a global type) is projected onto
one local specification (i.e., local type) for each role, (ii) validation: each role implementation
is type-checked against its local type. If both steps are successful, then it is guaranteed that the
implementation realises the choreography.

While complete realisations have been the predominant interpretation in several research
lines (see [20] for a survey), it has been largely neglected in the context of multiparty session
types, in which realisation is generally understood as partial (see [12]). In fact, since the pioneer
work of [14], session types are aimed at guaranteeing the interaction compatibility among parties
(i.e., they express behaviour constraints instead of behaviour obligations).

To the best of our knowledge, the only proposal dealing with complete (i.e., exhaustive)
realisations in the context of multiparty session types is the one in [7]. This approach, as others
dealing with complete realisations [20], adopt non-deterministic languages (e.g., featuring non-
deterministic internal choices as the one in TB).

While being a suitable abstraction for choreographies and their roles, internal non-determinism
has to be resolved in concrete implementations using deterministic constructs such as conditional
branch statements. Defining complete realisation for deterministic languages poses some diffi-
culties, which we illustrate using the example ATM.

The non-deterministic choice in TB abstracts away from the actual conditions used in a con-
crete implementation to resolve a choice. This permits e.g. different banks to adopt different
policies depending, for instance, on the type of the clients’ accounts. Consider the following two
possible deterministic implementations, B1 and B2, of TB:

Bi ::= l(c); (d();a(x); . . .+ o(); Pi(c)) for i = 1,2

with
P1(c) ::= if check(c) : ok.a(x) else ko P2(c) ::= ko

where for brevity, each name in the process refers to the interaction in the diagram above with
the same initial and the ellipses are for inconsequential actions. The expression check(c) in P1
denotes the actual deterministic verification performed by B to decide if the overdraft should be
granted.

Clearly both B1 and B2 can be used as implementations of TB in partial realisations of the
choreography. For instance, both B1 and B2 type-check against TB considered as a session type1

(as e.g. in [12]).
Contrariwise, neither B1 nor B2 can be used as part of any complete realisation of the chore-

ography. This observation is straightforward for B2, which is unable to interact over ok after

1This is due to the notion of subtyping for session types [13] which is contra-variant wrt internal choices (and
covariant wrt external choices).

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 25 Public

receiving an overdraft request. The case for B1 is more subtle. Fixed a deterministic realisation
for the client role TC, B2 will receive a specific account identification within the login request,
namely c in the input l(c). Depending on c, check(c) may return either true or false. Hence,
the implementation will be unable to exhibit both alternative traces for all customers. This will
be the case for any possible deterministic implementation of the choreography: just one of the
alternative traces will be matched.

Contribution We argue that B1 and B2 are not equally appealing when interpreting choreogra-
phies as interaction obligations; in fact, B2 consistently precludes the realisation of one alterna-
tive while B1 realises one or the other alternative (provided that check is not the constant map)
depending on the deterministic implementation of the role TC.

We introduce whole-spectrum realisations, a new notion of realisation tailored to the inter-
pretation of choreographies as interaction obligations. A whole-spectrum realisation of a role
R guarantees that, whenever the choreography allows R to make an internal choice, there is a
context (i.e., a realisation of the remaining roles) for which R chooses such alternative.

Our contributions are a formalisation of whole-spectrum realisation, and a sound type system
that guarantees that typable processes form whole-spectrum realisations. For instance, our type
system validates B1 against TB while it discards B2. Typing is decidable if the logic used to ex-
press internal conditions is decidable (e.g., Presburger arithmetic). As a technical contribution,
we give a denotational semantics of global types in which mandatory and optional behaviours are
distinguished. Then, we relate it to the operational semantics of local types (c.f. Theorem 2). Fi-
nally, the strong connection between local types and processes ensures that well-typed processes
enjoy whole-spectrum realisability (c.f. Theorem 3).

Synopsis § 2 - § 4 give the syntax and semantics of types and processes. § 5 gives a denotational
semantics of global types and defines whole-spectrum realisation. § 6 presents the typing rules.
Typing checks that processes: (1) syntactically conform to types (i.e., they follow the prescribed
interactions and message sorting) and (2) are whole-spectrum realisations. § 7 presents the main
technical results. § 8 draws some conclusions and discusses related work. The proofs can be
found in [3].

2 Global and Local Types
Our global types (§ 2.1) and the corresponding local types (§ 2.2) are borrowed with some adap-
tation from [15]. A main difference is that we replace branching constructs with internal and
external choices; this increases the uniformity in our theory. We also borrow the generalised
form of sequencing of [17] and, as discussed below, we use a less general, but more tractable
form of iteration. Finally, we forbid the parallel composition of local types; this simplification is
not a major limitation since global types assume single-threaded roles.

Fix a countable infinite set of (session channel) names C ranged over by u,y, s, . . . and a set
of roles ranged over by p,q,r, Also, we assume basic data types (called sorts) such as bool
(for booleans), int (for integers), str (for strings), etc.; we let U to range over (tuples of) sorts.

The cardinality of a set X is denoted by #X. Tuples are written in bold font and, abusing

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 25 Public

notation, we use them to represent their underlying set; for instance, if y = (y1,y2,y3), we write
y2 ∈ y to mean y2 ∈ {y1,y2,y3}. Substitutions are denoted by { / } and when writing {y/s} we
mean that s and y have the same length, that the components of y are pairwise disjoint, and that
the i-th element of y is replaced by the i-th element of s.

2.1 Global types

ch(p→ q : y 〈U〉) = {y}
ch(G+G′) = ch(G)∪ch(G′)
ch(G | G′) = ch(G)∪ch(G′)
ch(G;G′) = ch(G)∪ch(G′)
ch(G∗

f
) = ch(G)∪ cod(f)

ch(end) = ∅

P(p→ q : y 〈U〉) = {p,q}
P(G+G′) = P(G | G′) = P(G;G′) = P(G)∪P(G′)
P(G∗

f
) = P(G)

P(end) = ∅

rdy(G) = {p
∣∣∣ G ≡ ((

p→ q : u 〈U〉;G+G′
)
;G1 | G2

)
;G3}

(a) Set of channel names ch(G) ⊆ C (b) Set of roles P(G) and ready roles rdy(G)

fst(p→ q : y 〈U〉) = {(p,y), (q,y)}
fst(G+G′) = fst(G | G′) = fst(G)∪fst(G′)
fst(G;G′) = fst(G)∪{(p,y) ∈ fst(G′)

∣∣∣ ¬∃(p,z) ∈ fst(G)}
fst(G∗

f
) = fst(G)

fst(end) = ∅

(c) Set of enabled events fst()

Figure 1: Auxiliary functions

A global type term G is derived by the following grammar:

G ::= p→ q : y 〈U〉
∣∣∣ G+G

∣∣∣ G | G ∣∣∣ G;G ∣∣∣ G∗ f ∣∣∣ end
In words, a global type term can either be a single interaction, the non-deterministic (+),

parallel (|), or sequential (;) composition of two global type terms, the iteration of a global
type term (∗), or the empty term. We opt for a limited (wrt e.g., [15]) form of recursion based on
the Kleene-star (as in [7]), because checking for whole-spectrum realisation requires to statically
determine if an iteration terminates (see § 5). In G∗

f
, f injectively maps roles in G to C; name

f (p) is used to notify role p ∈ G when the iteration finishes.
Given a global type term G, Figure 1 defines the sets ch(G) ⊆C of names used by G, of (ready)

roles of G, and of enabled actions fst(G), i.e., the input and output actions initially enabled in G.
For example, let G f st = p→ q : y 〈U〉;q→ s : z 〈U〉, then fst(G f st) = {(p,y), (q,y), (s,z)}.

A global type is defined by an equation G(y) 4= G such that the names in y ⊆ C are pairwise
distinct and ch(G) ⊆ y. Hereafter, we write G(y) when the defining equation of a global type is
understood or its corresponding term G is immaterial; also, abusing notation, we may write G or
G instead of G(y) when parameters are clear from the context.

Definition 1 (Structural Congruence). The structural congruence over global type terms is the
least congruence ≡ such that ; , | and + form a monoid with identity end and both |

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 25 Public

and + are commutative. Global types Gi(yi)
4
= Gi for i = 1,2 are structurally equivalent when

G1 ≡ G2{y2/y1}, in which case we write G1 ≡ G2.

We extend P() and rdy() to global types G(y) 4= G by defining P(G) = P(G) and rdy(G) =

rdy(G).
Informally, p is waiting when its first enabled actions are only inputs. Formally, p is waiting

in G iff fst(G)∩ ({p}×C) = ∅ and fst(G)∩ ({p}×C) , ∅. In G f st above, q and s are waiting, while
p is not.

Definition 2 below adopts the syntactic restrictions on global types given in [17], generalising
the condition on the branching construct (along the lines of [11]).

Definition 2 (Well-formedness). A global type G(y) 4= G is well-formed iff one of the following
cases apply

1. G = end or, if G = p→ q : y 〈U〉 then p , q

2. if G = G1 | G2 then G1(y1) 4= G1 and G2(y2) 4= G2 with y1 ∩ y2 = ∅ are well-formed, and
P(G1)∩P(G2) = ∅, i.e., parallel branches are disjoint,

3. if G = G1 + . . .+Gn then the following conditions hold

(a) #rdy(G) = 1, i.e., one choosing partner,

(b) for each j = 1, . . . ,n, G j(y) 4= G j is well-formed, G j is a guarded by a prefix whose
continuation is well-formed, and P(G j) = P(G),

(c) for all i , j ∈ {1, . . . ,n}, fst(Gi)∩ fst(G j) = ∅, i.e., each partner knows the selected
branch when performing its first action,

(d) for all p , r ∈ P(G), for i, j ∈ {1, . . . ,n}, if (p,y) ∈ fst(Gi) and r is waiting on y in a
sub-term of G j, then (r,y) < fst(G j) and, in G j, the first input on y of r follows an
input of p, i.e., there is no race in the use of channels.

4. if G = G∗
f

0 then G0(y) 4= G0 is well-formed, cod(f)∩ch(G0) = ∅, if G0 , end then

(a) #rdy(G0) = 1 and dom(f) = P(G0)\rdy(G0),

(b) for any two different subterms G∗
f1

1 ,G∗
f2

2 of G0, cod(f1)∩ cod(f2) = ∅ and dom(f1) =

dom(f2) = dom(f).

Clause (2) requires parallel threads to have disjoint roles and channels, to prevent races on
channels. In (3), besides the usual condition on the uniqueness of the selector [17], we allow for
a more general form of branching (as in [11]) that does not constraints roles not directly informed
from the selector to have the same behaviour in all the branches. In fact, our condition is milder
than in [17] as it requires such a role p to be guarded by inputs on different names in each branch
(otherwise p should not appear in none of the branches). Also, whenever p is waiting in a branch
i on a name y used in input by r , p in another branch j, there should be an input of p in the

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 25 Public

branch j preceding the one on y of r; this guarantees that p and r will not have a race on y
(because the former would be aware that either branch j or i had been chosen). This condition
and (2) avoid races on channels similarly to linearity in [15] so to rule out choreographies like
the one in the following example.

Example 1. Consider G1 +G2 where

G1 = s→ q : x 〈U〉; q→ r : y 〈U〉; q→ p : z 〈U〉
G2 = s→ p : y 〈U〉; p→ q : z′ 〈U〉; q→ r : y′ 〈U〉

If s chooses G1, the output on y from q might be received either by r or by p causing, in the
latter case, a deadlock. The condition (3)(d) in Definition 2 rules out such choreography since
the input of r in G1 is not preceded by an input of p. �

Clause 4 in Definition 2 is specific to our form of iteration; it requires a unique role to signal
the termination of the iteration to any other role p by using the name f (p). Also, in case of nested
iterations, there is no confusion on the names used to signal the termination of each iteration.

2.2 Local types
A local type term T is derived by the following grammar:

T ::=
⊕

i∈I

yi!Ui;Ti
∣∣∣ ∑

i∈I

yi?Ui;Ti
∣∣∣ T1;T2

∣∣∣ T∗ ∣∣∣ end
A local type term is either an internal (

⊕
) or external (

∑
) guarded choice, the sequential com-

position of two local type terms ; , the iteration of a term ∗, or the empty local type term end.
Local type terms cannot be composed in parallel.

The set ch(T) of channels of T is defined as follows:

ch(
⊕

i∈I

yi!Ui;Ti) = ch(
∑
i∈I

yi?Ui;Ti) = {yi
∣∣∣ i ∈ I}

ch(T1;T2) = ch(T1)∪ch(T2) ch(T∗) = ch(T) ch(end) = ∅

A local type is defined by an equation T (y) 4= T such that the names in y are pairwise distinct
and ch(T) ⊆ y. Hereafter, we write T (y) when the defining equation of a local type is understood
or its corresponding term T is immaterial; also, abusing notation, we may write T or T instead of
T (y) when parameters are clear from the context.

We overload ≡ to denote the structural congruence over local types defined as the least con-
gruence such that internal and external choice are associative, commutative and have end as
identity, while ; is associative and has end as identity.

Projection extracts the local types from a global type. We remark that our projection is total
on well-formed global types.

Definition 3 (Projection). The projection written G�r of a well-formed global type term G on
r ∈ P(G) is a function which returns a local type term as defined in Figure 2. The projection
G(y)�r of a global type G(y) 4= G wrt to a role r is a local type T (y) 4= T where T = G�r.

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 25 Public

G�r =



y!U if G = r→ p : y 〈U〉
y?U if G = p→ r : y 〈U〉
(G1�r)⊕ (G2�r) if G = G1 +G2 and r ∈ rdy(G)
(G1�r) + (G2�r) if G = G1 +G2 and r < rdy(G)
(G1�r); (G2�r) if G = G1;G2

Gi�r if G = G1 | G2 and r < P(G j) with j , i ∈ {1,2}
(G1�r)∗;b1!; . . . ;bn! if G = G∗

f

1 , cod(f) = {b1, . . . ,bn}, and r ∈ rdy(G1)
(G1�r)∗;b? if G = G∗

f

1 , f (r) = b, and r < rdy(G1)
end if G = p→ q : y 〈U〉 and r , p,q or if G = end

end if G = G∗
f

1 and r < P(G1) or f (r) is undefined

Figure 2: Projection of Global Types

All but the clauses for the projections of iteration in Definition 3 are straightforward and
inspired by [15]. Each iteration has a unique role r ∈ rdy(G1) that decides when to stop the
iteration (c.f. clause (4) in Definition 2), and a number of ‘passive’ roles. Projection sends
messages on b j from r to each passive role to signal the termination of the iteration.

Example 2. Let f (q) = b1 and f (r) = b2. Then

G�p = (y!U)∗;b1!;b2!,
G�q = (y?U;z!U)∗;b1?
G�r = (z?U)∗;b2?

are the projections of G∗
f
. �

2.3 Behaviour of types
The semantics of local types is given in terms of specifications, that is pairs of partial functions
Γ and ∆ such that: Γ maps session names to global types and variables to sorts, and ∆ maps
tuples of session names to local types. We use Γ•∆ to denote a specification and adopt the usual
syntactic notations for environments:

Γ ::= ∅
∣∣∣ Γ,u : G

∣∣∣ Γ, x : U ∆ ::= ∅
∣∣∣ ∆,s : T

as usual ∆1,∆2 ≡ ∆2,∆1 and s < dom(∆) is implicitly assumed when writing ∆,s : T (likewise for
Γ, :).

The semantics of specifications abstracts away from the actual values exchanged in commu-
nications and is generated by the rules in Figure 3 using the labels

α ::= uns | uis | sv | sv | τ (4)

that respectively represent the request on u for the initialisation of a session among n + 1 roles,
the acceptance of joining a session of u as the i-th role, the sending of a value on s, the reception

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 25 Public

Γ(u)≡G(y) T = G(y)�0

Γ•∆
uny
→ Γ•∆,y : T

[TReq]
Γ(u)≡G(y) T = G(y)�i

Γ•∆
uiy
→ Γ•∆,y : T

[TAcc]

v : U j s j ∈ s j ∈ I

Γ•∆,s :
⊕

i∈I

si!Ui;Ti
s jv
→ Γ•∆,s : T j

[TSend]
v : U j s j ∈ s j ∈ I

Γ•∆,s :
∑
i∈I

si?Ui;Ti
s jv
→ Γ•∆,s : T j

[TRec]

Γ•∆,s : T
α
−→ Γ•∆,s : T ′

Γ•∆,s : T ;T ′′
α
−→ Γ•∆,s : T ′;T ′′

[TSeq]
Γ•∆1

τ
→ Γ•∆′1

Γ•∆1,∆2
τ
→ Γ•∆′1,∆2

[TPar]

Γ•∆,s : T ∗
τ
→ Γ•∆,s : end[TLoop1] Γ•∆,s : T ∗

τ
→ Γ•∆,s : T ;T ∗[TLoop2]

Figure 3: Labelled transitions for specifications

of a value on s, and the silent step. We will use the set fc(α) of channels of a label α, defined
as fc(uns) = fc(uis) = {u}, fc(sv) = fc(sv) = {s}, and fc(τ) = ∅. For α = sv or α = sv, we write
obj(α) to denote v.

Intuitively, the rules of Figure 3 dictate how a single role behaves in a session s and are
instrumental for type checking processes as well as for defining the runtime behaviour of speci-
fications (c.f. Figure 5). Rules [TReq] and [TAcc] allow a specification to initiate a new session
by projecting (on role 0 and i, resp.) the global type associated to name u in Γ. By [TSend],
if types are respected, a specification can send any value on one of the names in a branch of an
internal choice. Dually, [TRec] accounts for the reception of a value. Note that values occur only
on the label of the transitions and are not instantiated in the local types. Rule [TSeq] is trivial.
Rule [TPar] allows part of a specification to make a transition. Finally, an iterative local type
can either stop by rule [TLoop1] or arbitrarily repeat itself by rule [TLoop2].

3 Systems
Our systems communicate values specified by expressions having the following syntax:

e ::= x | v | e1 op e2 ` ::= [e1, . . . ,en] | e1..e2

An expression e is either a variable, or a value, or the composition of expressions (we assume
that expressions are implicitly sorted and do not include names). Lists [e1, . . . ,en] and numerical
ranges e1..e2 are used for iteration; in the former case, all the items of a list have the same sort,
in the latter case, both expressions are integers and the value of e1 is smaller or equal than the
value of e2. The empty list is denoted as ε and the operations hd(`) and tl(`) respectively return
the head and tail of ` (defined as usual).

The set of variables occurring in e (resp. `) are denoted by var(e) (resp., var(`)) and it is
defined by:

var(x) = {x} var(v) = ∅ var(e1 op e2) = var(e1)∪var(e2)
var([e1, . . . ,en]) =

⋃n
i=1 var(ei) var(e1..e2) = var(e1)∪var(e2)

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 25 Public

The syntax of processes and systems is given below and it relies on queues of basic values M
and input-guarded non-deterministic sequential process N, respectively defined as

M ::= ∅
∣∣∣ v.M N ::=

∑
i∈I

yi(xi); Pi

where i , j ∈ I =⇒ yi , y j; we define 0 4=
∑

i∈∅ yi(xi); Pi.
The syntax of systems S and processes P is

P,Q ::= ui(y).P
∣∣∣ un(y).P

∣∣∣ N
∣∣∣ se

∣∣∣ if e : P else Q
| P; P

∣∣∣ for x in ` : P
∣∣∣ do N until b

S ::= P
∣∣∣ (νs)S

∣∣∣ S | S
∣∣∣ s : M

All constructions but loops are straightforward. In for x in ` : P, the body P is executed for
each element in `, while do N until b repeats N until a signal on b is received. Intuitively, the
former construct is executed by the (unique) role that decides when to exit the iteration while the
latter construct is used by the ’passive’ roles in the loop (see § 2.2 and § 6). Given a process P,
fv(P) denotes the set of all variables appearing outside the scope of input prefixes in P. Also,
we extend var() to systems in the obvious way. The free session names of S , written fc(S), are
defined as:

fc(
∑

i∈I yi(xi); Pi) =
⋃

i∈I({yi}∪fc(Pi))
fc(se) = fc(s : M) = {s}
fc(if e : P else Q) = fc(P)∪fc(Q)
fc(for x ∈ ` in P :) = fc(do P until b) = fc(P)
fc(P; Q) = fc(P)∪fc(Q)
fc(un(y).P) = fc(ui(y).P) = {u}∪fc(P) \y
fc((νs)S) = fc(S) \ s
fc(S | S ′) = fc(S)∪fc(S ′)

A system S is closed when fc(S) = ∅ and it is initial when S does not contain runtime constructs,
namely new session (νs)S ′ and queues s : M. Formally, S is initial iff for each s and S ′, if
S ≡ (νs)S ′ then s < fc(S ′).

Definition 4 (Structural congruence). The structural congruence ≡ is the least congruence over
systems closed with respect to α-conversion, such that | and + are associative, commutative
and have 0 as identity, ; is associative and has 0 as identity, and the following axioms hold:

(νs)0 ≡ 0 (νs)(νs′)S ≡ (νs′)(νs)S end∗ f ≡ end

(νs)(S | S ′) ≡ S | (νs)S ′ when s < fc(S)

The operational semantics of systems is in Figure 4. We use a store σ to record the values
assigned to variables. We write e ↓ σ for the result of evaluating e when var(e) ⊆ dom(σ) (we
assume e ↓ σ undefined if var(e) * dom(σ)), and σ[x 7→ v] for the store obtained by updating x
with v in σ. For simplicity, the store is global. Labels are obtained by extending the grammar (4)

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 25 Public

(page 9) with the production α ::= e ` α where e is a boolean expression used in conditional tran-
sitions 〈S ,σ〉

e`α
−−−→ 〈S ′,σ′〉 representing the fact that 〈 ,σ〉 has a α-transition to 〈S ′,σ′〉 provided

that e ↓ σ actually holds. Hereafter we may write α instead of true ` α and e∧ e′ ` α instead of
e ` (e′ ` α). We comment on the rules in Figure 4.

s < fc(P)

〈un(y).P,σ〉
uns
−−→ 〈P{y/s},σ〉

[SReq]
s < fc(P)

〈ui(y).P,σ〉
uis
−−→ 〈P{y/s},σ〉

[SAcc]

〈s(x).P + N,σ〉
sv
−−→ 〈P,σ[x 7→ v]〉[SRec]

e ↓ σ = v

〈se,σ〉
sv
−−→ 〈0,σ〉

[SSend]

e ↓ σ = true 〈P,σ〉
e′`α
−−−→ 〈P′,σ′〉

〈if e : P else Q,σ〉
e∧e′`α
−−−−−→ 〈P′,σ′〉

[SThen]
e ↓ σ = false 〈Q,σ〉

e′`α
−−−→ 〈Q′,σ′〉

〈if e : P else Q,σ〉
¬e∧e′`α
−−−−−−→ 〈Q′,σ′〉

[SElse]

` ↓ σ = ε

〈for x in ` : P,σ〉
τ
−→ 〈0,σ〉

[SFor1]
¬` ↓ σ = ε 〈P,σ[x 7→ hd(` ↓ σ)]〉

e`α
−−−→ 〈P′,σ′〉

〈for x in ` : P,σ〉
e`α
−−−→ 〈P′;for x in tl(`) : P,σ′〉

[SFor2]

〈do P until b,σ〉
b
−→ 〈0,σ〉[SLoop1]

〈P,σ〉
e`α
−−−→ 〈P′,σ′〉 α , b

〈do P until b,σ〉
e`α
−−−→ 〈P′;do P until b,σ′〉

[SLoop2]

〈P,σ〉
e`α
−−−→ 〈P′,σ′〉

〈P; Q,σ〉
e`α
−−−→ 〈P′; Q,σ′〉

[SSeq]
P ≡ P′ 〈P′,σ〉

e`α
−−−→ 〈Q′,σ′〉 Q′ ≡ Q

〈P,σ〉
e`α
−−−→ 〈Q,σ′〉

[SStruct]

s < fc(Pi) Qi = Pi{yi/s} for i = 0, . . . ,n

〈un(y0).P0 | u1(y1).P1 | . . . | un(yn).Pn,σ〉
τ
−→ 〈(νs)(Q0 | . . . | Qn | s : ∅),σ〉

[SInit]

〈S 1,σ〉
e`α
−−−→ 〈S ′1,σ

′〉 var(S 1)∩var(S 2) = ∅

〈S 1 | S 2,σ〉
e`α
−−−→ 〈S ′1 | S 2,σ

′〉
[SPar]

〈P,σ〉
e`sv
−−−→ 〈P′,σ′〉

〈P | s : M,σ〉
e`τ
−−→ 〈P′ | s : M ·v,σ′〉

[SCom1]

〈P,σ〉
e`sv
−−−→ 〈P′,σ′〉

〈P | s : v ·M,σ〉
e`τ
−−→ 〈P′ | s : M,σ′〉

[SCom2]
〈S ,σ〉

e`α
−−−→ 〈S ′,σ′〉 s < fc(α)

〈(νs)S ,σ〉
e`α
−−−→ 〈(νs)S ′,σ′〉

[SNews]

Figure 4: Labelled transitions for processes (top) and systems (bottom)

Rules [SReq] and [SAcc] are for requesting and accepting new sessions; in the continuations,
they substitute y with the session names s of the newly created session. Rule [SRec] is for
receiving messages in an early style approach (variables are assigned when firing input prefixes);
note that the store is updated by recording that x is assigned v. Rules [SSend] is for sending
the result of evaluating an expression in the current store. Rules [SThen] and [SElse] handle
‘if’ statements as expected; their only peculiarity is that the guard is recorded on the label of
the transition: this is instrumental for the correspondence between systems and their types (c.f.
§ 7.1). The remaining rules are standard but for session initialisation. Rule [SInit] allows n
roles to synchronise with un(y0).P0; in the continuation of each role i, the bound names yi is
replaced with a tuple of freshly chosen session names for which the corresponding queues are

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 25 Public

created. Such queues are used to exchange values as prescribed by rules [SCom1] and [SCom2].
Rule [SInit] requires the synchronisation of all roles. Since processes are single-threaded, this
is only possible when each process plays exactly one role in that session.

Note that we use σ to extend the scope of names bound by input prefixes to processes fol-
lowing ; as in Example 3.

Example 3. Let N = s(x); P+ s′(x); P′. The scope of x in N; Q includes Q and from the semantics
in Figure 4 we can infer

〈s(x); P + s′(x); P′,σ〉
sv
−−→ 〈P,σ[x 7→ v]〉

〈N; Q | s : v ·M,σ〉
τ
−→ 〈P; Q | s : M,σ[x 7→ v]〉

by rules [SRec] and [SCom2]. �

4 Runtime Types
Local types are extended to model the runtime queues in systems. As in [15], this is formalised
with message contexts and runtime types. A message contextM takes the form s1!v1; · · · ; sn!vn[]
with n ≥ 0, that is a (possibly empty) sequence of outputs followed by a hole []. A runtime type
is either a “type in context”, that is a termM[T], or a message contextM. We quotient message
contexts with

s1!v1; s2!v2;M ≈ s2!v2; s1!v1;M if s1 , s2

to allow the swapping of messages in different channels to account for asynchrony. We extend
environments so to map session names s to runtime local types of roles in s; we write ∆,s :
M[T]@p to specify that (1) the runtime type of p isM[T] and (2) that for any s :M′[T ′]@q in
∆ we have q , p.

The semantics of runtime types is obtained by extending the rules of Figure 3 with those
in Figure 5. Intuitively, runtime specifications allow roles to asynchronously interact through
queues. Rule [TQueue] takes a message out of a queue. Rules [TCom1] and [TCom2] exploit
the semantics of local types in order to establish how runtime specifications send and receives
messages; in fact, the transition in their premises are derived with the rules in Figure 3. In rule
[TCom1] the local type T@p sends a message to its message context in session s. In rule [TCom2]
a local type T@q receives a message from another local type within session s. Rule [TInit]
initiates a new session adding to ∆ the map from the new session s to the projections of the global
type assigned by Γ.

5 Whole-Spectrum Realisation
We give a trace semantics for global types [7, 9]. We use annotated traces that distinguish manda-
tory from optional actions. An annotated trace is a sequence of input or output actions (decorated
with the name or the role performing them; in symbols 〈p, s!U〉 and 〈p, s?U〉), some of which can

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 25 Public

Γ•∆,s : s!v;M@p
sv
→ Γ•∆,s :M@p [TQueue]

Γ• s : T
sv
→ Γ• s : T ′

Γ•∆,s :M[T]@p
τ
→ Γ•∆,s : s!v;M[T ′]@p

[TCom1]

Γ• s : T
sv
→ Γ• s : T ′

Γ• s : s!v;M1@p, M2[T]@q
τ
→ Γ• s :M1@p, M2[T ′]@q

[TCom2]

u ∈ dom(Γ) Γ(u) ≡ G(s) 4= G P(G) = {p1, . . . ,pn}

Γ•∆
τ
→ Γ•∆,s : (G�p1)@p1, . . . ,s : (G�pn)@pn

[TInit]

Figure 5: Additional labelled transitions (to those of Figure 3) for runtime specifications

ε ∈ R(end)
[RGEnd]

〈p, s!U〉〈q, s?U〉 ∈ R(p→ q : s 〈U〉)
[RGComm]

r ∈ R(G1)

r ∈ R(G1 +G2)
[RGCh1]

r ∈ R(G2)

r ∈ R(G1 +G2)
[RGCh2]

r1 ∈ R(G1) r2 ∈ R(G2)

r1r2 ∈ R(G1 | G2)
[RGPar]

r1 ∈ R(G)

r1 ∈ R(G∗)
[RG∗1]

r1 ∈ R(G∗) r2 ∈ R(G)

[r1]r2 ∈ R(G∗)
[RG∗2]

r ∈ R(G∗) rdy(G) = {p} P(G) = {p,p1, . . . ,pn}

r〈p, f (p1)!1〉 . . . 〈p, f (pn)!1〉〈p1, f (p1)?1〉 . . . 〈pn, f (pn)?1〉 ∈ R(G∗
f
)
[RGIter]

Figure 6: Runs of a global type (where 1 is the empty type)

be optional. We write [r] to denote the optional sequence r. Hereafter, a trace implicitly denotes
the equivalence class of all traces obtained by permuting causally independent actions.2

Definition 5 (Runs of a global type). Given a global type term G, the set R(G) denotes the runs
allowed by G and is defined as the least set closed under the rules in Figure 6.

The first four rules are straightforward. Rule [RGPar] takes the sequential execution of the
branches as the representative trace of all the interleavings. Rules [RG∗1] and [RG∗2] unfold
an iterative type. Note that R(G∗) = {r1, [r1]r2, [[r1]r2]r3, . . .} with ri ∈ R(G). Therefore, the
mandatory sequences in R(G∗) corresponds exactly to those in R(G). Rule [RGIter] adds to
the unfolding of the iterative type the events associated to its termination: (i) the ready role p
sends the termination signal to any other role by using the dedicated channels specified by f
(i.e., 〈p, f (p1)!1〉 . . . 〈, f (pn)!1〉), and (ii) the waiting roles receive the termination message (i.e.,
f (p1)?1〉 . . . 〈pn, f (pn)?1〉). As for parallel, we just consider one of the possible interleavings for
the receive events.

We define the candidate implementation of a global type.

2We consider an asynchronous communication model à la Lamport [16].

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 25 Public

〈I
ι,u
G
,σ〉

e`τ
−−→ 〈I

ι′,u
G
,σ′〉 〈ι(pi),σ〉

e′`α
−−−→ 〈ι′(pi),σ′〉 fc(α)∩y , ∅ r ∈ R(〈Iι

′,u
G
,σ〉) obj(α) : U

〈pi,α{obj(α)/U}〉r ∈ R(〈Iι,u
G
,σ〉)

[RRIn]

〈I
ι,u
G
,σ〉

e`α
−−−→ 〈I

ι′,u
G
,σ′〉 u < fc(α) 〈ι(pi),σ〉

e′`β
−−−→ 〈ι′(pi),σ′〉 fc(β)∩y = ∅ r ∈ R(〈Iι

′,u
G
,σ〉)

r ∈ R(〈Iι,u
G
,σ〉)

[RRExt]

〈I
ι,u
G
,σ〉9

ε ∈ R(〈Iι,u
G
,σ〉)

[RREnd]

Figure 7: Runs of realisations

Definition 6 (Realisation). Let G(y) 4= G be a global type with P(G) = {p1, . . . ,pn} , ι be a map
assigning a process to each p ∈ P(G), and u be a name used to initiate a session for G. A ι-
realisation of G is a system Iι,u

G
such that either: (i) Iι,u

G
≡ ι(p1) | . . . | ι(pn) and y∩fc(ι(pi)) = ∅;

or (ii) Iι,u
G
≡ νy(ι(p1) | . . . | ι(pn) | y : M).

A realisation is a system with n processes, each of them implementing one of the roles in
the global type. Definition 6 distinguishes two different cases. Configuration (i) stands for a
system in which the session that implements G has not been initiated. To simplify the following
definitions we require roles not to use the channels defined by the global type before initiating
the corresponding session (i.e., y∩ fc(ι(pi)) = ∅). This is not a limitation since channel names
can always be renamed in a global type to avoid clashes, e.g., G(z) 4= G{y/z}. Case (ii) is a system
that has already initiated the session implementing G. Again for simplicity, we assume that the
system and the global type use the same session channels y.

Definition 7 (Runs of realisations). Let Iι,u
G

be a realisation of G(y) 4= G and σ a store. The sets
of runs of Iι,u

G
over σ is the least set R(〈Iι,u

G
,σ〉) closed with respect to the rules in Figure 7. We

write R(Iι,u
G

) for R(〈Iι,u
G
,∅〉). The runs of a sets of realisations I is R(I) = ∪I∈IR(I).

The rules in Figure 7 are defined by analysing the enabled transitions of Iι,u
G

. Rule [RRIn]
corresponds to the case in which the system reduces because some role ι(pi) in the realisation
sends or receives a message over a session channel (i.e., α is either sv or sv with s ∈ y). We

write 〈ι(pi),σ〉
e′`α
−−−→ 〈ι′(pi),σ′〉 meaning that ι′ = ι[pi 7→ P] with P the continuation of ι(pi) after

executing e′ ` α. Since the action α performed by ι(pi) involves a session channel of the global
type, an event α associated to the role pi is added to the trace. Note that the actual value of the
message α is substituted by its type, i.e., α{obj(α)/U} in place of α.

Rule [RRExt] takes into account computations that do not involve session channels, i.e., an
internal transition τ in a role, a communication over a channel not in y, or a session initiation.
This rule allows a process to freely initiate sessions over channels different from u (i.e., sessions
that do not corresponds to the global type G). On the contrary, when a role attempts to initiate

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 25 Public

a session over u, rule [RRExt] requires all roles in the realisation to initiate the session (this
behaviour is imposed by premise u < fc(α)). We assume that any role in the realisation will
execute exactly one action over the channel u which also matches the role assigned by ι. Nesting
sessions are handled by assuming that all sessions are created over different channels that have
the same type. This is just a technical simplification analogous to the possibility of having
annotations to indicate the particular instance of the session under analysis. Rule [RREnd] is
straightforward.

Whole-spectrum realisation is characterised as a relation on annotated traces. The following
rules define the operator l, which is used to compare annotated traces.

[r]l ε rl r′r
rl r′

[r]l r′

rl r′

[r]l [r′]

r1l r′1 r2l r′2

r1r2l r′1r′2

Basically, rl r′ means that r′ matches all mandatory actions of r and all optional actions in r′

are also optional in r. Let R1 and R2 be two sets of annotated traces, we write R1 b R2 if r ∈ R1
implies ∃r′ ∈ R2 such that rl r′.

Definition 8 (Whole-spectrum realisation). A set I of realisations covers a global type G iffR(G)b
R(I). A process P is a whole-spectrum realisation of pi ∈ P(G) when there exists a set I of
realisations that covers G s.t. Iι,u

G
∈ I implies Iι,u

G
= ι(p0) | . . . | ι(pn) and ι(pi) = P.

A whole-spectrum realisation of a role pi is a process P such that any expected behaviour
of the global type can be obtained by putting P into a proper context. For iteration types, the
comparison of annotated traces implies that the implementation has to be able to perform the
body of the iteration at least once but possibly many times.

Remark 1. A set covering a global type G can exhibit more behaviour than the runs of G. Nev-
ertheless, we use whole-spectrum realisations with the usual soundness requirement (defined in
§ 7.1) to characterise valid realisations.

6 Typing rules
Systems are typed by judgements of the form

C Γ ` S . ∆ > Γ′

that stipulates that S is typed as ∆ and yields Γ′ under Γ and C. Environments Γ and ∆ are as in
§ 2.3. C is a context assumption, that is a logical formula derivable by the grammar

C ::= e
∣∣∣ ¬C ∣∣∣ C∧C where e is of type bool

that identifies the assumptions on variables taken by processes in S . The map Γ′ extends Γ with
the sorts for the variables bound in S . This is needed to correctly type P; Q where in fact a free
variable of Q could be bound in P.

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 25 Public

Γ(u)≡G(y) C Γ ` P . ∆,y : G(y)�0 > Γ′

C Γ ` un(y).P . ∆ > Γ′
[VReq]

Γ(u)≡G(y) C Γ ` P . ∆,y : G(y)� i > Γ′

C Γ ` ui(y).P . ∆ > Γ′
[VAcc]

P =
∑

i∈I yi(xi); Pi ∀i ∈ I : (yi ∈ y)
∀i ∈ I : (C Γ, xi : Ui ` Pi . ∆,y : Ti > Γi) Γ′ =

⋂
i∈I Γi fv(P)∪fc(P) ⊆ dom(Γ′)

C Γ ` P . ∆,y :
∑
i∈I

yi?Ui;Ti > Γ′
[VRec]

Γ(e)=U y ∈ y

C Γ ` ye . y : y!U > Γ
[VSend]

Γ(e)=bool C∧ e 6` ⊥ C∧¬e ` ⊥ C∧ e Γ ` P . ∆ > Γ′

C Γ ` if e : P else Q . ∆ > Γ′
[VIf]

Γ(e)=bool C∧ e ` ⊥ C∧¬e 6` ⊥ C∧¬e Γ ` Q . ∆ > Γ′

C Γ ` if e : P else Q . ∆ > Γ′
[VElse]

∆(s) = end ∀s ∈ dom(()∆)

C Γ ` 0 . ∆ > Γ
[VEnd]

Γ(e)=bool C∧ e 6` ⊥ C∧¬e 6` ⊥
C∧ e Γ ` P . ∆1 > Γ1 C∧¬e Γ ` Q . ∆2 > Γ2

C Γ ` if e : P else Q . ∆1 ./ ∆2 > Γ1∩Γ2
[VCond]

Γ(`)=[U] C ` ` , ε C∧ x ∈ ` Γ, x : U ` P . y : T > Γ′

C Γ ` for x in ` : P . y : T ∗ > Γ′
[VFor1]

C ` ` = ε

C Γ ` for x in ` : P . y : end > Γ′
[VFor2]

C Γ ` N . y : T > Γ′

C Γ ` do N until b . y : T ∗;b? > Γ′
[VLoop]

C Γ ` P1 . ∆1 > Γ1 C Γ1 ` P2 . ∆1 > Γ2

C Γ ` P1; P2 . ∆1;∆2 > Γ2
[VSeq]

Figure 8: Typing rules for processes

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 25 Public

(∆1 ./ ∆2)(s) =


∆1(s) if s ∈ dom(∆1) \dom(∆2)
∆2(s) if s ∈ dom(∆2) \dom(∆1)
∆1(s) ./ ∆2(s) if s ∈ dom(∆1)∩dom(∆2)

T1 ./ T2 =


T1⊕T2 if T1 = y1!U1;T ′1 , T2 = y2!U2;T ′2 , y1 , y2

y!U;T ′1 ./ T
′
2 if T1 = y!U;T ′1 , T2 = y!U;T ′2

⊥ otherwise

Figure 9: Combination of compatible types ∆1 ./ ∆2; note that ∆ ./ ∆ = ∆ and dom(∆1 ./ ∆2) =

dom(∆1)∪dom(∆2)

We first consider the typing rules for processes in Figure 8. Rule [VReq] types session re-
quests of the form un(y).P; its premise checks that P can be typed by extending ∆ with the
mapping from session names y to the projection of the global type Γ(u) on role 0. Dually, rule
[VAcc] types the acceptance of a session request as role i.

Rule [VRec] types an external choice P =
∑

i∈I yi(xi); Pi and its premise checks that each
branch Pi can be typed against the respective continuation of the type, once Γ is updated with the
bound variable xi. The resulting Γ′ =

⋂
i∈I Γi is defined so that Γ′(x) = U iff Γi(x) = U for all i ∈ I

and Γ′(u) = G iff Γi(u) = G for all i ∈ I (note that dom(Γ′) = ∩i∈Idom(Γi∈I)); this ensures that the
continuation of P, if any, does not use variables defined only in some of the branches of P, as
these variable may be vacuous when the other branches are executed. Finally, if fv(P)∪fc(P) *
dom(Γ′) then [VRec] cannot be applied and the validation fails.

Rule [VSend] types the send process with a send type in the corresponding session (i.e., y ∈ y).
Rules [VIf] and [VElse] handle the cases in which the guard of the conditional statement is

either a tautology or a contradiction. Rule [VCond] stands for the cases in which both branches
can be selected by fixing a proper context assumption (i.e., both C∧e and C∧¬e are consistent).
Note that the context assumption C is augmented with the condition e (resp. ¬e) for typing the
‘then’-branch (resp. ‘else’-branch). The resulting type is ∆1 ./ ∆2 defined in Figure 9. Notice
that the first clause of T1 ./ T2 composes the two branches as an internal choice of the actions
they perform. We remark that ./ is defined only when ∆1 and ∆2 are compatible, namely iff for
all s1 ∈ dom(∆1),s2 ∈ dom(∆2), either s1∩ s2 = ∅ or s1 = s2.

Rule [VFor1] assigns the type T ∗ to a for loop when its body P has type T under the context
assumption C extended with x ∈ `, and the environment Γ extended with x : U. Rule [VFor2] is
for empty lists. By rule [VLoop], the type of a loop is T ∗;b? when its body P has type T and b
is the channel used to receive the termination signal. Notice that the environments of the rules
[VFor1] and [VLoop] include only one session (i.e., y : T ∗ and y : T ∗;b?, respectively), hence
the body can only perform actions within a single session. Iterations involving messages over
multiple sessions could not be checked compositionally since the conformance of a process to a
local type would not be sufficient to ensure the correct coordination of a ‘for’-iteration with the
corresponding ‘loop’-iterations.

Rule [VSeq] checks sequential composition. Here ∆1;∆2 is the pointwise sequential com-
position of ∆1 and ∆2, i.e., (∆1;∆2)(s) = T1;T2 where Ti = ∆i(s) if s ∈ dom(∆i) and Ti = end

otherwise, for i = 1,2. Note that P2 is typed under the environment Γ1, which contains the names

18

PIRSES-GA-2011-295261 / MEALS Page 19 of 25 Public

bound by the input prefixes of P1. Rule [VEnd] types idle processes with a ∆ that maps each
session s to the end type.

The typing rules for systems extend those for processes and are borrowed from [15]. We
relegate them to Appendix A.

7 Properties of the type system

7.1 Soundness
The typing rules in § 6 ensure the semantic conformance of processes with the behaviour pre-
scribed by their types. Here, we define conformance in terms of conditional weak simulation
that relates states and specifications. Our definition is standard, except for input actions, for
which specifications have to simulate only inputs of messages with the expected type. Namely,
systems are not considered responsible when receiving ill-typed messages. Define

α
=⇒ =

τ
→
∗ α
→.

Hereafter, Γ•∆
s

=⇒ stands for Γ•∆
sv

=⇒ Γ•∆′, for some ∆′, v′.

Definition 9 (Conditional simulation). A relation R between states and specifications is a (weak)
conditional simulation iff for any (〈S ,σ〉,Γ•∆) ∈ R, if 〈S ,σ〉

e`α
−−−→ 〈S ′,σ′〉 then

1. if α = sv then Γ •∆
s

=⇒ and if Γ •∆
sv

=⇒ then there is Γ •∆′ such that Γ •∆
sv

=⇒ Γ•∆′

and (〈S ′,σ′〉,Γ•∆′) ∈ R

2. otherwise, Γ•∆
α

=⇒ Γ•∆′ and (〈S ′,σ′〉,Γ•∆′) ∈ R

We write 〈S ,σ〉- Γ•∆ if there exists a conditional weak simulationR such that (〈S ,σ〉,Γ•∆) ∈R.

By (1), only inputs of S with the expected type have to be matched by Γ•∆ (recall rule [TRec]
in Figure 3), while it is no longer expected to conform to the specification after an ill-typed input
(i.e., not allowed by Γ•∆).

Definition 10 establishes consistency for stores in terms of preservation of variables’ sorts.

Definition 10 (Consistent store). Given an environment Γ, a context assumption C, and a state
〈S ,σ〉 with var(S) ⊆ dom(σ), store σ is consistent for S wrt Γ and C iff ∀x ∈ dom(σ), σ(x) : Γ(x),
and C ↓ σ = true.

Theorem 1 (Subject reduction). Assume that

C Γ ` S . ∆ > Γ′ and 〈S ,σ〉
e`α
−−−→ 〈S ′,σ′〉

with σ consistent for S wrt Γ and C. Then

1. if α = sv then Γ •∆
s

=⇒ and if Γ •∆
sv

=⇒ then there is Γ •∆′ such that Γ •∆
sv

=⇒ Γ•∆′

with v : U and C∧ e Γ, x : U ` S ′ . ∆′ > Γ′′ for some x and some Γ′′ ⊇ Γ′

2. otherwise Γ•∆
α

=⇒ Γ•∆′ and C∧ e Γ ` S ′ . ∆′ > Γ′′ for some Γ′′ ⊇ Γ′.

19

PIRSES-GA-2011-295261 / MEALS Page 20 of 25 Public

r ∈ Rs(∆,s :M[Tk]@p, M′[T′k]@q) k ∈ J

〈p, sk!Uk〉〈q, sk?Uk〉r ∈ Rs(∆,s :M′[sk!Uk;T′k]@p, M[
∑
j∈J

s j?U j;T j]@q)
[RTCom]

r ∈ Rs(∆) s , r

r ∈ Rs(∆,r : T)
[RTPar]

r ∈ Rs(∆)

r ∈ Rs(∆,s : end@p)
[RTEnd1] ε ∈ Rs(∅)[RTEnd2]

r ∈ Rs(∆,s : Ti;T j@p)

r ∈ Rs(∆,s : T∗i ;T j@p)
[RTIt1]

rr′ ∈ Rs(∆,s : Ti;T∗i ;T j@p) r′ ∈ Rs(∆s : Ti;T j@p)

[r]r′ ∈ Rs(∆,s : T∗i ;T j@p)
[RTIt2]

r ∈ Rs(∆,s : s j!U j;T j@p) j ∈ I

r ∈ Rs(∆,s :
⊕

i∈I

si!Ui;Ti@p)
[RTCh]

Figure 10: Runs of Runtime Local Types.

Proof. By induction on the proof of the judgement. �

Corollary 1 (Soundness). If C Γ ` S . ∆ > Γ′ then 〈S ,σ〉 - Γ•∆ for all σ consistent store
for S wrt Γ and C.

Proof. Soundness follows from showing that

R = {(〈S ,σ〉,Γ•∆)
∣∣∣ C Γ ` S . ∆ > Γ′

and σ is a consistent store for S wrt Γ and C} is a conditional weak simulation, which

is straightforward from Theorem 1. �

7.2 Whole-spectrum realisation by typing
We show that well-typed processes are whole-spectrum realisations (Definition 8). First, we
introduce the notion of traces of session environments (as defined in § 2.3).

Definition 11 (Runs of runtime types). Given an environment ∆, the set Rs(∆) denotes the traces
of events over the channels in s generated by ∆, and its inductively defined by the rules in Fig-
ure 10.

Rule [RTCom] builds the traces for two communicating types. Rules [RTIt1] and [RTIt2]
unfold the traces of an iterative type. Note that the mandatory actions of traces associated to
recursive types are those requiring at least one execution of the iteration body, while additional
executions are optional. Remaining rules are self-explanatory.

The next two results show that the denotational semantics coincides with the operational rules
given in Figures 3 and 5.

Lemma 1. Γ•∆
τ

=⇒ Γ•∆′ (with a communication over sk), then there exists r ∈ Rs(∆) such that
r = 〈p, sk!Uk〉〈q, sk?Uk〉r′ with r′ ∈ Rs(∆′).

Lemma 2. Let r ∈ Rs(∆) then either (i) Γ•∆(s)9 or (ii) Γ•∆
τ

=⇒ Γ•∆′ (by a communication
over sk), r = 〈p, sk!Uk〉〈q, sk?Uk〉r′, and r′ ∈ Rs(∆′).

20

PIRSES-GA-2011-295261 / MEALS Page 21 of 25 Public

Above results follow by induction on the derivation of, respectively, Γ •∆
τ

=⇒ Γ •∆′ and
r ∈ Rs(∆).

We now extend the definition of coverage for local types.

Definition 12. A map ∆ covers a global type G(s) if R(G(s)) b Rs(∆).

The next result ensures that any well-formed global type is covered by the set of its projec-
tions.

Theorem 2. Given a global type G(s) then the environment ∆ = {s : (G(s)�p)@p}p∈P(G(s)) covers
G(s).

Proof. It follows by induction on the derivation of r ∈ R(G). When last applied rule is [RGCh1]
or [RGCh2] we use an auxiliary result stating that a projection of a well-formed global choice
can only execute the guard corresponding to the branch chosen by the selector. For iteration, we
show that the annotated traces are in one to one correspondence. �

We now show that any well-typed realisation covers its specification.

Theorem 3. Let G(s) 4= G be a global type and Iι,u
G

a realisation such that true Γ,u : G(s) `
ι(p) . ∆,s : G(s)�p > Γ′ for all p ∈ P(G). Then,

Rs({s : (G(s)�p)@p}p∈P(G)) b R(Iι,u
G

)

Proof. By induction on the derivation of r ∈Rs({s : (G(s)�p)@p}p∈P(G)). Interesting cases are: (i)
internal choice, but in this case the typing rules for conditional processes ensure that all branches
of the internal choice can be selected; and (ii) iteration, where we show that each annotated trace
of the type is mimicked by a bounded unfolding of the corresponding iterative process. �

8 Conclusion and related work
We introduced the notion of whole-spectrum realisation according to which the deterministic
implementation of a role of a choreography cannot persistently avoid the execution of a branch
of an internal choice specified by that choreography. Although whole-spectrum realisation is
defined as a relation between the execution traces of a global type and those of its candidate
implementations, it can be checked by using multiparty session types. Technically, we show that
(i) the sets of the projections of a global type G preserves all the traces in G (Theorem 2); and
(ii) any trace of a local type can be mimicked by a well-typed implementation, if interacting in a
proper context (Theorem 3). In addition, the soundness of our type system (Corollary 1) ensures
that well-typed realisations behave as prescribed by the choreography.

Existing theories on contracts and behavioural types [1, 4, 6, 8, 15] feature subtyping in which
a subtype may add (i.e., more external choices) and/or remove behaviour (i.e., less internal
choices). We do not consider subtyping because the liberal elimination of internal choices pre-
vents complete realisations. Hence, our type system is more restrictive than, e.g., [15]. Never-
theless, it may enjoy the same safety and progress properties (details are omitted due to space
limitation).

21

PIRSES-GA-2011-295261 / MEALS Page 22 of 25 Public

Our treatment of choices is similar to the abstraction relation in [5], where valid refinements
of specifications are characterised by a simulation-based relation that preserves choices. The
formal study of whether our type system preserves the abstraction relation in [5] is left as a
future work. To some extend our proposal is related to the fair subtyping approach in [19], where
refinement is studied under the fairness assumption. This approach differs from ours since fair
subtyping differs from usual subtyping only when considering infinite computations. Reversely,
whole-spectrum realisation differs from usual realisation also when considering finite processes.

The static verification of whole-spectrum realisation requires a more restrictive form of re-
cursion than the one in [1, 15], where the number of iterations is limited. This restriction is on the
lines of [7] that also considers finite traces. The extension of our theory with a more general form
of iteration is scope for future work. We argue that this is attainable using annotations [2, 10, 21]
to detect loop termination by typing.

Bibliography
[1] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.

Global progress in dynamically interleaved multiparty sessions. In CONCUR, LNCS 5201.
Springer, 2008.

[2] L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR, LNCS 6269, 2010.

[3] L. Bocchi, H. Melgratti, and E. Tuosto. Choice-preserving multiparty session types.
http://www.cs.le.ac.uk/people/lb148/WSR.html.

[4] M. Bravetti and G. Zavattaro. A theory of contracts for strong service compliance. MSCS,
19(3):601–638, 2009.

[5] M. G. Buscemi and H. C. Melgratti. Abstract processes in orchestration languages. In
ESOP, LNCS 5502. Springer, 2009.

[6] L. Caires and H. T. Vieira. Conversation types. In ESOP, LNCS 5502. Springer, 2009.

[7] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-party
session. LMCS, 8(1), 2012.

[8] G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, LNCS
5710, 2009.

[9] T.-C. Chen and K. Honda. Specifying stateful asynchronous properties for distributed pro-
grams. In CONCUR, LNCS 7454, 2012.

[10] Y. Deng and D. Sangiorgi. Ensuring termination by typability. Inf. Comput., 204(7), 2006.

[11] P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL. ACM, 2011.

22

PIRSES-GA-2011-295261 / MEALS Page 23 of 25 Public

[12] M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and session types: An overview. In
WS-FM, LNCS 6194, pages 1–28, 2009.

[13] S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191–225, 2005.

[14] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In ESOP, volume 1381 of LNCS, pages
122–138. Springer, 1998.

[15] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In POPL.
ACM, 2008.

[16] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–564, July 1978.

[17] J. Lange and E. Tuosto. Synthesising choreographies from local session types. In CON-
CUR, LNCS 7454, 2012.

[18] N. Lohmann and K. Wolf. Decidability results for choreography realization. In ICSOC,
LNCS 7084. Springer, 2011.

[19] L. Padovani. Fair subtyping for multi-party session types. In COORDINATION, LNCS
6721. Springer, 2011.

[20] J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service choreographies. In
WS-FM, LNCS 4937, pages 1–16. Springer, 2007.

[21] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus. In LICS.
IEEE Computer Society, 2001.

23

PIRSES-GA-2011-295261 / MEALS Page 24 of 25 Public

A Typing rules for systems
The typing rules for systems in Figure 11 extend those for processes, they are borrowed from [15],
and use non-singleton assignments as defined in § 2. Rule [VPar] for parallel composition uses
the composition of mappings given below. If ∆1 and ∆2 are compatible, their composition is

(∆2 ◦∆2)(s) =


∆1(s) if s ∈ dom(∆1) \dom(∆2)
∆2(s) if s ∈ dom(∆2) \dom(∆1)
∆1(s)◦∆2(s) if s ∈ dom(∆1)∩dom(∆2)

where, letting R1 ◦R2 =M[R2] if R1 is a message context M, and R1 ◦R2 undefined otherwise,
we stipulate that

{Rp@p}p∈I ◦ {R
′
q@q}q∈J = {Rp@p◦R′p@p}p∈I∩J

∪{Rp@p}i∈I\J ∪{Rq@q}q∈J\I

if Rp ◦R′p is defined for all p ∈ I∩ J and it is undefined otherwise. Note that dom(∆) = dom(∆1)∪
dom(∆2).

Rule [VNews] uses an annotation u to extend, in the premise, ∆ with the correct mapping for
session s, namely the projections of Γ(u).

Rules [VQueue] and [VEmpty] are for queues.

C Γ ` S 1 . ∆1 > Γ1 C Γ ` S 2 . ∆2 > Γ2 ∆1 and ∆2 compatible

C Γ ` S 1 | S 2 . ∆1 ◦∆2 > Γ1,Γ2

[VPar]

C Γ ` S . ∆,s : {Tp@p} > Γ1 Γ(u)≡G(s) and G�p = Tp

C Γ ` (νsu)S . ∆ > Γ1

[VNews]

C Γ ` si : M . ∆,s :M[·]@ p > Γ1

C Γ ` si : v ·M . ∆,s : si!v;M[·]@ p > Γ1

[VQueue]

C Γ ` s : ∅ . s : {[·]@p}p∈I > Γ1 [VEmpty]

Figure 11: Typing rules for systems

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

24

PIRSES-GA-2011-295261 / MEALS Page 25 of 25 Public

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

25

