
PIRSES-GA-2011-295261 /MEALS
September 22, 2015

Page 1 of 58

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 5.2 / 3

Title of Deliverable: Less is More: Estimating Probabilistic Rewards over Partial
System Explorations

Contractual Date of Delivery to the CEC: 30-Sep-2015
Actual Date of Delivery to the CEC: 30-Sep-2015
Organisation name of lead contractor for this deliverable: IMP
Author(s): Esteban Pavese, Sebastian Uchitel,

Víctor Braberman
Participants(s): UBA, IMP
Work package contributing to the deliverable: WP5
Nature: R
Dissemination Level: Public
Total number of pages: 58
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Model-based reliability estimation of systems can provide useful insights early in the development process. However,
computational complexity of estimating metrics such as mean time to first failure (MTTF), turnaround time (TAT), or
other domain-based quantitative measures can be prohibitive both in time, space and precision. In this paper we present
an alternative to exhaustive model exploration–as in probabilistic model checking–and partial random exploration–as
in statistical model checking. Our hypothesis is that a (carefully crafted) partial systematic exploration of a system
model can provide better bounds for these quantitative model metrics at lower computation cost. We present a novel
automated technique for metric estimation that combines simulation, invariant inference and probabilistic model check-
ing. Simulation produces a probabilistically relevant set of traces from which a state invariant is inferred. The invariant
characterises a partial model which is then exhaustively explored using probabilistic model checking. We report on
experiments that suggest that metric estimation using this technique (for both fully probabilistic models and those ex-
hibiting non-determinism) can be more effective than (full model) probabilistic and statistical model checking especially
for system models where the events of interest are rare.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 /MEALS Page 2 of 58 Public

Contents
1 Introduction 3

2 Background 5
2.1 Probabilistic modelling . 5
2.2 Expressing properties over probabilistic models 7

2.2.1 pCTL Syntax and Semantics . 7

3 Approach 9
3.1 Partial Explorations . 10
3.2 Automatic Submodel Generation . 12

4 Validation 17
4.1 Methodology . 18
4.2 Case Studies . 20
4.3 Experimental Results . 23

5 Discussion and Related Work 49

6 Conclusions and Further Work 53

Bibliography 54

MEALS Partner Abbreviations 57

2

PIRSES-GA-2011-295261 /MEALS Page 3 of 58 Public

1 Introduction
Model-based automated verification for assessing quantitative metrics of systems, such as system
reliability, aims to provide insights early in the development process that can significantly reduce
not only development costs, but also costs associated with deploying faulty systems. However,
traditional metrics such as mean time to first failure (MTTF) or availability times require mod-
els that support describing probabilistic, non-deterministic and timed behaviour. Unfortunately,
models that succeed at effectively conveying all of this information are complex enough that
estimating such metrics can be prohibitive in time, space and/or precision.

Model checking is emerging as an effective system verification method. In particular, quanti-
tative guarantees such as those employed for reliability assurance, can be computed for complex
models using the techniques developed in the area known as probabilistic model checking [46, 4].
These techniques take probabilistic models as inputs (such as Markov Chains or Segala Au-
tomata) and can assess quantitative properties through exhaustive exploration of the model state
space and subsequent numerical analysis.

Applicability of probabilistic model checking for reliability assessment of complex models
is threatened by the size of the model. Although state space reduction techniques exist [28,
9], they may still fail to prevent state explosion to a manageable extent on complex enough
models. Further, even in the event that the entire state space can be explored in its totality, its size
typically impedes exact numerical calculation (e.g. Gaussian elimination) of reliability metrics.
To overcome this limitation, iterative methods (such as Jacobi or Gauss-Seidel) that approximate
metrics need to be used. However, these methods do not always have convergence guarantees,
and when they do converge they may do so slowly; as much as to become intractable. The latter
problem is heightened in the case of metrics related to rare events (e.g. reliability estimation for
models where the probability of failure in a fixed period lies below 10−5). In this case, since the
execution budget time for the iterative methods is not infinite, exhausting this budget can lead to
iterations being cut short far from the actual value of the metric being estimated. In other words,
this early termination causes probabilistic model checking techniques to report on results that
may not be exact, but rather only an approximation of the actual result. Good news for reliability
assessment is that these approximations are a lower bound on the actual value. However, the
distance between this actual value and the lower bound obtained is in general unknown.

In summary, although probabilistic model checking may seem to promise exact calculation
of quantitative reliability properties, state space explosion and application of numerical methods
can be computationally prohibitive or result in poor approximations. Despite these limitations,
probabilistic model checking can provide bounds with 100% confidence for reliability metrics
even though the distance of these bounds to the real value cannot be known in general.

Numerical analysis and, to some extent, state explosion can be avoided using statistical tech-
niques. These techniques are based on applying statistical inference over a finite set of sample
executions extracted from the model. Variations of these approaches are usually referred to with
the umbrella term of Monte Carlo estimations. When using these techniques to estimate quan-
titative metrics, the actual population mean X is approximated through an estimator such as the
sample mean X [31]. Of course, such estimation is subject to statistical error and thus it is cru-
cial to understand how far and with what likelihood the estimator deviates from the actual mean.

3

PIRSES-GA-2011-295261 /MEALS Page 4 of 58 Public

This contrasts with probabilistic model checking, which does not suffer from such statistical
imprecision.

The deviations from the actual value that result from the specific samples used while per-
forming Monte Carlo based estimations is usually conveyed in terms of statistical errors and
confidence intervals. Bounds for statistical error and confidence intervals can be computed,
based partly on the number of samples being analysed. Although significant progress for fast
generation of random walks over models has been made [33, 37], sample generation can be very
costly time-wise even for analyses with modest guarantee requirements, simply due to the sheer
number of samples required [41].

The number of samples required is not the only limiting factor for these approaches: sample-
based reliability estimations must also take into account the length of samples. Sample length can
be particularly problematic, since sampled executions must reach a state satisfying a—usually
unlikely—property (e.g. a failure) in order to allow computing an estimator. This may turn
sample generation for high-reliability systems intractable.

In summary, statistical techniques can provide approximations with measurable confidence
intervals and error bounds. However, in the presence of models with rare events, the required
number and length of samples may make such techniques intractable, and attempts to reduce
either sample size or length might result in weakened (or downright lost) statistical guarantees
over results.

In this report we present an alternative to exhaustive model exploration—as in probabilistic
model checking—and partial random exploration—as in statistical model checking—which may
counter some of the limitations of existing model-based reliability verification techniques. Our
hypothesis, inspired on the Pareto principle, is that a (carefully crafted) partial systematic ex-
ploration of system models can be effectively analysed to provide good bounds on quantitative
metrics with lower computation cost. More specifically, probabilistic model checking of a sub-
model of the system can bound the value of these metrics for the complete model, and do so in a
cost-effective manner. Furthermore, it can produce better approximations, given equal time and
memory budgets, than those that both probabilistic and statistical model checking can achieve.

We hypothesise that there is a potential gain in identifying a small, but probabilistically sig-
nificant, portion of the state space, considering all other states as failures and performing proba-
bilistic model checking on the resulting submodel. The intuition is that, in contrast to full-model
probabilistic model checking, performing a probabilistic check on only a portion of the full
model allows for faster iterations of the numerical analysis methods. Consequently, more itera-
tions can be performed within the same time budget and, for slowly converging models, a better
approximation may be achieved.

More specifically, in this report we present a novel automated technique for quantitative met-
ric estimation that combines simulation, invariant inference and probabilistic model checking.
We use model simulation to produce a set of traces that represent likely behaviour of the full
model. These traces are used to infer an invariant that describes the state space explored during
the simulation. A submodel, which restricts the states by not allowing those that do not satisfy
this invariant, is constructed and the value of the desired metric is computed over this partial
model using a probabilistic model checker.

The technique we propose obtains lower bounds to the actual values of the desired metrics

4

PIRSES-GA-2011-295261 /MEALS Page 5 of 58 Public

with 100% confidence (as full-model probabilistic model checking and in contrast to statistical
model checking). In a more technical note, our technique provides a lower bound on the expec-
tation of a random variable. This random variable is modelled as a reward structure over suitable
probabilistic models.

Preliminary evidence shows that the lower bounds achieved (for a fixed budget of time and
memory) are higher than those obtained by full model probabilistic and stochastic model check-
ing, especially for models where the probability of reaching the interesting property is low given
a fixed time. High bounds are of special interest in reliability, as they allow to argue a reliabil-
ity case even in the absence of the exact values. Furthermore, automated invariant generation
seems to perform reasonably well against domain-expert provided invariants, and have the added
advantage of being useful when such expert-provided invariants are unavailable.

The remainder of this report, which builds and expands our previous work [35], is organized
as follows. In section 2 we provide background on probabilistic systems modelling, verifica-
tion and metrics such as reliability. In Section 3 we describe our approach to metric estimation.
Section 4 provides case studies illustrating the approach and comparing results to existing tech-
niques. In Section 5 we present a discussion of our results and of related work. Finally we offer
our conclusions and discuss future work in Section 6.

2 Background
Quantitative estimation of system metrics has largely focused on reliability estimation, employ-
ing measures such as mean time to first failure, mean time between failures, turnaround time,
time to reset and many others [31, 32], some of which will be explored in Section 4. Never-
theless, as we shall discuss further in this report, the techniques we propose can be applied in a
straightforward manner to several of these metrics. Recall however that the approximations we
obtain are lower bounds on the actual expected value. Therefore, care must be taken in the in-
terpretation of this bound depending on the metric being evaluated. For example, having a lower
bound on mean time to failure is useful for arguing reliability; if the lower bound surpasses the
expected lifetime of the system, reliability can be argued successfully. But for metrics such as
cost where the aim is in minimisation, assuring a lower bound on its expected value may not be
as useful.

In order to calculate these desired measures, practitioners base their efforts on some model
that captures the quantitative behaviour of the system. Often, these behaviours are not unique and
the choice between them is probabilistic in nature. This stochastic failure behaviour is usually
modelled through formalisms based on Markov chains.

2.1 Probabilistic modelling
There exist several formalisms derived from Markov chains for modelling the probabilistic be-
haviour of systems and their components. Segala’s Simple Automata (SSA) [42] are one such
formalism that—besides allowing for probabilistic behaviour—also allows for the modelling of

5

PIRSES-GA-2011-295261 /MEALS Page 6 of 58 Public

non-deterministic behaviour. The introduction of non-deterministic transitions permits the mod-
elling of underspecified choice, that is, the option of selecting between several possible actions,
but for which the actual probability may not be actually known. Alternatively, it may be the case
that the component is known to make these choices with several different probabilities, which
may be known to be selected from a set of possible probabilistic distributions. However, the
mechanism by which a distribution is chosen from this set may be left underspecified. In this
case, the distribution choice is made non-deterministically.

Definition 1 (Segala Simple Automaton [42]). A Segala Simple Automaton (SSA) is a tuple
⟨S , s0, A,R⟩where S ⊆ V → C is a finite set of states, defined by mapping a finite set of variables
V to values on a finite subset of Z, C.

Let D(S) stand for the set of all possible discrete distributions on sample set S . s0 ∈ S is
the initial state. A is a finite set of action labels. The finite relation R ⊆ S × (A ∪ {τ}) ×D(S) is
the transition relation where the transition target is defined by a distribution on target states. In
particular, R must be such that for every s ∈ S there exists at least one a ∈ A ∪ {τ} and µ ∈ D(S)
such that (s, a, µ) ∈ R.

In the previous definition, τ stands for a distinguished action, internal to the component being
modelled. In a particular case, the relation R of an SSA M may be such that, for every state s ∈ S ,
there exists only one tuple of the form (s, a, µ) ∈ R. In such a case, there are actually no non-
deterministic choices; for every state there is exactly one possible transition distribution. Segala
Simple Automata that show this absence of non-determinism are known by the name of Discrete
Time Markov Chains (DTMC) [42]. As DTMC and SSA definitions are therefore quite similar,
our work will be based on SSA. However, we shall make some observations that may apply only
to one formalism or the other. In the case that it is necessary to distinguish between both, we will
make such distinction clear and explicit.

As with other automata-based formalisms, complex SSA can be built compositionally using
parallel composition on model components that run asynchronously but synchronise on shared
actions [42].

Definition 2 (Execution traces). Given a Segala Simple Automaton M = ⟨S , s0, A,R⟩, an execu-
tion trace on M is a non-empty and possibly infinite sequence π = s0

p0−→ s1
p1−→ s2 . . ., such that

for all i, si ∈ S and there exists some (si, a, µ) ∈ R such that µ(si+1) = pi > 0.

As additional notation, we will note the existence of a finite execution trace π from s0 to sn

by s0
π−→ sn. We will denote the infinite set of all possible traces through M as Π(M), and the set

of finite traces as Π∗(M). Finally, given an execution trace π and i ≤ length(π), we will note πs
i

to refer to the i-th visited state, and πa
i to refer to the i-th chosen action.

Because of the presence of non-determinism in Segala Simple Automata, the behaviour of an
SSA is not uniquely governed by the probabilistic distributions on the transitions. There is a need
for an additional mechanism that can resolve these non-deterministic choices. To characterise
these choices, we introduce the notion of a scheduler or adversary.

Definition 3 (Scheduler [42]). A scheduler for a Segala Simple Automaton M = ⟨S , s0, A,R⟩
(also called an adversary) is a total function S M : Π∗(M) → R, such that if S (π) = (a, µ) it must

6

PIRSES-GA-2011-295261 /MEALS Page 7 of 58 Public

be that (last(α), a, µ) ∈ R. The notation S ched(M) refers to the set of all possible schedulers for
the SSA M; while S (α)a and S (α)µ refer to the scheduled action and distribution, respectively,
by the scheduler function evaluated over the partial trace α.

In other words, a scheduler is a function that decides, at every step during the execution of
a SSA, and depending on the current execution history, the next distribution to be employed
for determining the next state. It is worth noting that, as a scheduler resolves non-determinism,
the coupling of a SSA with a scheduler effectively results in a fully probabilistic process, that
is, a DTMC. In this report we will focus on schedulers that are deterministic (they are functions
returning a single transition) and non-Markovian (they depend on execution history). Other types
of schedulers exist [42], and we will discuss their relationship with our work further in the report.

Definition 4 (Trace probability). Given a Simple Segala Automaton M = ⟨S , s0, A,R⟩ and a finite
execution trace π on M, the probability induced by π under governance of a scheduler σ is given
by Pr(π,σ,M) =

∏
0≤i≤length(π) scheduled(σ, s0 . . . si, pi, si+1) ∗ pi, where length(π) is the number

of transitions in π and scheduled denotes the function

scheduled(σ,α, p, s′) =
{

1 if σ(α) = µ and µ(s′) = p
0 otherwise

2.2 Expressing properties over probabilistic models
In order to express and analyse properties over these probabilistic models, these automata are
coupled with modal logics whose formulae express said properties. For the specific case of
probabilistic models, the temporal logic pCTL [1] has been introduced as an extension of the
well known temporal logic CTL. Essentially, pCTL replaces path quantifiers present in CTL
with probabilistic quantification bounds on the related path formulae.

2.2.1 pCTL Syntax and Semantics

pCTL formulae are built from state and path formulae, just as is the case with CTL. Let AP be a
finite set of atomic propositions. If φ stands for a state formula, and ψ for a path formula, then
pCTL formulae are built as follows

φ→ true | a ∈ AP | ¬φ | φ ∧ φ | P∼pψ
ψ→ Xφ | φUφ | φU≤kφ

In the above, ∼∈ {<,≤,=,≥, >} and p ∈ R, p ∈ [0, 1] Given a probabilistic model M and a
mapping of states to atomic propositions V : S → 2AP defining the subset of atomic propositions
that are valid for each state, we can define the satisfiability of pCTL formulae for a state s ∈ S
and an execution trace α ∈ Π(M). Note that since the probabilistic model M is a Simple Segala
Automaton, a scheduler σ ∈ S ched(M) is needed to resolve non-determinism. σ is not necessary
in case we are dealing with DTMCs; or else it can be defined trivially as choosing the only

7

PIRSES-GA-2011-295261 /MEALS Page 8 of 58 Public

distribution available to it.

s,σ |= true ⇔ true
s,σ |= a ⇔ a ∈ V(s)

s,σ |= ¬φ ⇔ ¬(s,σ |= φ)
s,σ |= φ1 ∧ φ2 ⇔ (s,σ |= φ1) ∧ (s,σ |= φ2)

s,σ |= P∼pψ ⇔ ∑
α∈ψsat µ(Cα,σ, P) ∼ p

where α ∈ ψsat iff α,σ |= ψ
and for every other α′ ∈ ψsat

neither α ≤ α′ nor α′ ≤ α.
α,σ |= Xφ ⇔ αs

1,σ |= φ
α,σ |= φ1U≤kφ2 ⇔ ∃0 ≤ i ≤ k · αs

i ,σ |= φ2∧
∀0 ≤ j < iαs

j,σ |= φ1

α |= φ1Uφ2 ⇔ ∃0 ≤ k · α,σ |= φ1U≤kφ2

Informally, given a path formula φ, a typical pCTL state formula takes the form of a classic
CTL state formula, but where path quantifiers have been replaced by the probabilistic operator
P∼p. Thus, a state formula P≤pφ (resp. P≥pφ), is true at a given state of the system if its possible
evolutions from that state, driven by the σ scheduler, satisfy the formula φ with probability at
most (resp. at least) p.

In the case of probabilistic verification of pCTL properties of Simple Segala Automata, it is
usually more interesting to learn about how the property stands when the SSA is subject to the
best and worst possible schedulers, that is, those that convey the extrema probabilities, i.e. the
minimum and maximum possible probabilities. Algorithms exist that can answer these questions
effectively [5] for the class of non-Markovian, deterministic schedulers that we deal with in this
report.

In addition to pCTL property specification, reward structures are used to convey some sense
of value to traces from probabilistic models, that can then be weighed by their corresponding
probability. For example, a transition reward structure that assigns a value of 1 to each transition
is a standard way of defining overall time steps cost for the traces of a model. This provides a
good way to model discrete time, and reliability measures such as mean time to failure can be
easily interpreted over this notion of time.

The value of a reward is a random variable itself, as the accumulation of rewards over traces
will depend on the probability of the transitions taken. By weighing the values of this mod-
elling of time over the (possibly infinite) set of traces and their probabilities, we can obtain the
expectation –or bounds to this expectation– of running time for an arbitrary execution.

Definition 5 (Reward Structures [36]). Given a probabilistic model M = ⟨S , s0, A,R⟩, a transition
reward structure is a function ρ : S × A × S → R≥0.

Given a trace π of a probabilistic model M, and a reward structure ρ over M, the path-reward
of π is the sum of the reward of each of its transitions. We will extend this notation and note ρ(π)
to refer to the path-reward of π based on reward structure ρ. It is important to note that a reward
structure assigns a non-negative reward value to transitions. Therefore, if we were to take any
prefix πpre f ix of a trace π, the path-reward of πpre f ix will necessarily be at most that of π.

8

PIRSES-GA-2011-295261 /MEALS Page 9 of 58 Public

We will note ΠS end (M) (where S end is a set of states) to refer to the possibly infinite set of all
execution traces of M, but where they have been pruned so that the last state of each trace is one
of those in S end, and no other state in S end exists in the trace before the end. Note that ΠS end (M)
may contain traces of infinite length (i.e., those that never reach a state in S end and therefore
have not been pruned). This definition will allow us to define the value of a reward structure for
reachability properties.

Definition 6 (Reachability reward values [36]). Let M = ⟨S , s0, A,R⟩ be a probabilistic model,
S reach ⊆ S be a set of states from M, σ a scheduler for M and ρ a reward structure over
M. The reachability reward value for S reach under the conditions above is a random variable
Xreach(S reach,M,σ) onR≥0∪{+∞} such that the probability p of Xreach = k is defined as Pr(σ, Xreach =

k) =
∑
π∈ΠS reach (M),ρ(π)=x Pr(π,σ,M)

In the definition above, Xreach is a random variable denoting the reward value for a random
execution trace until it reaches a state in S reach. As such, it may be of interest to know its expected
or mean value, that is, the expected value taking into account every possible execution trace. We
will note this expected value as Xreach. Note that S reach may contain states for which there is a
non-zero probability that they won’t be reached at all. In such a case, it will happen that ΠS reach

will contain some infinite paths. More so, these infinite paths may themselves accumulate infinite
reward. In such cases, the mean Xreach is defined to be∞.

Even though we restrict ourselves to reachability rewards, this more than suffices for our
intended verification setting. For example, consider the mean time to failure metric. In order
to be able to calculate this metric, we first need to be able to describe what a failure means
in our system. In other words, we need to identify which system states model a failure, or an
irrecoverable situation. In the setting of this work, these states would comprise the interesting
S reach set. Calculating the mean reachability reward value to this S reach set effectively calculates
the mean time to failure of the system.

3 Approach
This section formally defines an approach to computing bounds to reward values of probabilistic
system models. The approach is based on calculating the reward values for only a partial system-
atic exploration of the model’s state space. We first define what is meant by a partial exploration
and show that the mean reward computed over these partial explorations is indeed a lower bound
to the mean reward computed over the entire system model. We then show how some partial ex-
plorations can be specified declaratively through invariant properties that drive the exploration,
discussing at length the details of the procedure. Finally, we show how these invariant-driven par-
tial explorations can be obtained automatically from any given model, without need for human
intervention. In the next section we will show, via some case studies, that given a fixed budget
of time and memory, analyses performed over automatically inferred invariant-driven partial ex-
plorations perform at least as well as, and sometimes outperforms, partial explorations driven by
manual specification.

9

PIRSES-GA-2011-295261 /MEALS Page 10 of 58 Public

3.1 Partial Explorations
We refer to a partial exploration of a system model as a submodel. Intuitively, a submodel of
a probabilistic process M is a model that retains a subset of the states and transitions of M and
in which all other states in M have been abstracted away into a new λ trap state. Moreover,
the retained states include the initial state, and all other retained states are reachable from this
initial state. Formally, a submodel of a probabilistic model is defined as follows, where supp(µ)
denotes the support set of the distribution µ, that is, the set of values xi for which µ(xi) > 0:

Definition 7 (Submodel). Given a probabilistic model M = ⟨S , s0, A,R⟩, a submodel of M is
another probabilistic model M′ = ⟨S ′ ∪ {λ}, s0, A,R′⟩ such that S ′ ⊆ S , s0 ∈ S ′, and R′ ⊆
(S ′ ∪ {λ}) × (A ∪ {τ}) ×D(S ′ ∪ {λ}) is such that for all a ∈ A

1. for each (λ, a, µR′) ∈ R′, it must be the case that supp(µR′) = {λ} and a = τ;

2. for all s ∈ S ′, for all a ∈ A ∪ {τ}, it must be that ∃µR′ ∈ D(S ′ ∪ {λ}) such that (s, a, µR′) ∈
R′ ⇐⇒ ∃µR ∈ D(S) such that (s, a, µR) ∈ R;

3. for all s1, s2 ∈ S ′ and for all a ∈ A ∪ {τ} it must be that ∃µR′ ∈ D(S ′ ∪ {λ}) such that
(s1, a, µR′) ∈ R′∧ s2 ∈ supp(µR′)⇒ ∃µR ∈ D(S) such that (s1, a, µR) ∈ R∧µR(s2) = µR′(s2);

4. for all s1 ∈ S ′ such that s1 ! λ, and for all a ∈ A ∪ {τ} it must be that ∃µR′ ∈ D(S ′ ∪
{λ}) such that (s1, a, µR′) ∈ R′ ⇒ ∃µR ∈ D(S) such that (s1, a, µR) ∈ R · µR′(λ) = 1 −∑

s2∈supp(µR′)\{λ} µR(s2).

Clause 1 states that transitions originating on the λ state all lead back to the same λ state, and
that they do so through the model’s internal action τ. Clause 2 states that action transitions on
the submodel are drawn from the original model ones, that is, if an action transition is possible
at a given state in the submodel, that action must have been possible from the same state in
the whole model. Clause 3 similarly states that the probabilities on these transitions are also
preserved (save for those that have been redirected to the λ) state. Finally, Clause 4 states that the
probability assigned to transitions leading to the λ state coincides with the remaining probability
after transitioning to states that were preserved in the submodel.

There is a close relationship between the schedulers that can be defined for a given model
M and those that can be defined on its submodels M′. Intuitively, any scheduler σ for M is still
a valid scheduler for M′, although with some changes. In particular, transitions that over the
original model traverse to states that do not exist in the submodel are instead rerouted to the λ
state. The following definition captures these changes.

Definition 8 (Restricted scheduler). Let M = ⟨S , s0, A,R⟩ be a probabilistic model, and M′ =
⟨S ′, s0, A,R′⟩ one of its submodels. Let σ be a scheduler for M. Also, let α ∈ Π∗(M′) which
implies that either α ∈ Π∗(M) or last(α) = λ. The restriction of scheduler σ to M′ is another
scheduler σ′ for M′ such that

• if last(α) = λ then σ′(α) = (τ, µ) where µ is such that supp(µ) = {λ}.

• if last(α) ! λ and σ(α) = (a, µ) and (a, µ) ∈ R′(last(α)), then σ′(α) = (a, µ).

10

PIRSES-GA-2011-295261 /MEALS Page 11 of 58 Public

• if last(α) ! λ and σ(α) = (a, µ) and (a, µ) " R′(last(α)) then it must be the case that,
because of Definition 7, there must exist (a, µ′) ∈ R′(last(α)) such that

– (supp(µ′) \ {λ}) ⊆ supp(µ);
– for each s′ in supp(µ) ∩ supp(µ′) it holds that µ(s′) = µ′(s′);
– λ ∈ supp(µ′) and is such that µ′(λ) captures the remaining probability.

In such cases, σ′(α) = (a, µ′).

We also say that σ′ is the scheduler σ restricted to M′.

It is also easy to see that any scheduler for a submodel can be extended to a scheduler that is
valid for the complete model—in fact, it can be extended to possibly many schedulers. In other
words, every valid scheduler for a submodel is a restriction of one or more schedulers of the
complete model.

Submodels are key to our approach since they conservatively approximate the value of re-
ward structures for reachability properties. That is, given a reward structure ρ for a model M
and a scheduler σ, the mean reward value of ρ under σ for M until reaching some state in
a distinguished set S reach ⊆ S is always greater or equal to the mean reward value of any of
its submodels M′, under the same scheduler restricted to M′, until reaching a state in the set
S ′reach = (S reach ∩ S ′) ∪ {λ}.
Theorem 1. (Submodels bound reward values). Let M = ⟨S , s0, A,R⟩ and M′ = ⟨S ′, s0, A,R′⟩ be
two probabilistic models with state spaces S and S ′ and such that M′ is a submodel of M. Let
S reach ⊆ S be a set of states representing the interesting events and σ a scheduler for M. Also,
let σ′ be the restriction of σ to M. Then Xreach(S ′reach,M′,σ′) ≤ Xreach(S reach,M,σ).

Proof. Note that, for every trace in the complete model, it either exists completely in the sub-
model, or the submodel contains only a prefix that is extended by the λ state. Since reward
structures are based on transitions, every trace in the full model accumulates at least as much
reward to each of the interesting states (possibly∞) as the corresponding trace (or prefix) in the
submodel. Hence these prefixes contribute to Xreach(S ′reach,M′,σ′) at most what their extensions
in M contribute to Xreach(S reach,M,σ).

Alternatively, if the submodel allows a trace that never reaches either λ or one of the target
states in S ′ ∩ S reach, then this trace also exists in the complete model. In such a case, both
Xreach(S reach,M,σ) = Xreach(S ′reach,M′,σ′) = ∞. !

The above result entails that if computing the value of a reward structure for a system model is
intractable, it can be conservatively approximated on any of its submodels. In the case of Segala
Simple Automata, because of the presence of non-determinism, it is interesting to examine the
case for the extrema schedulers. The following corollary captures the bounding relation for these
extreme values.

Corollary 1. Let the probabilistic model M as defined in the previous theorem, and its submodel
M′, be SSAs. Let σmin and σmax be two schedulers for M such that, for any other scheduler σ for
M

11

PIRSES-GA-2011-295261 /MEALS Page 12 of 58 Public

• Xreach(S reach,M,σmin) ≤ Xreach(S reach,M,σ); and

• Xreach(S reach,M,σmax) ≥ Xreach(S reach,M,σ).

In turn, let σ′min and σ′max be schedulers for M′ such that for other schedulers σ′ for M′ it holds
that

• Xreach(S ′reach,M′,σ
′
min) ≤ Xreach(S ′reach,M′,σ′); and

• Xreach(S ′reach,M′,σ′max) ≥ Xreach(S ′reach,M′,σ).

Under these conditions, it holds that Xreach(S ′reach,M′,σ
′
min) ≤ Xreach(S reach,M,σmin) and also that

Xreach(S ′reach,M′,σ′max) ≤ Xreach(S reach,M,σmax).

Proof. The proof stems directly from the proof of Theorem 1. The case for σmax is straight-
forward. Suppose that Xreach(S ′reach,M′,σ′max) > Xreach(S reach,M,σmax). Recall that, because of
the definition of restricted schedulers, it must be the case that every trace generated by σ′ in M′
either exists as it is in M, or else it diverts to λ at the end. In any case, traces in M′ cannot
accumulate more reward in M′ than they would accumulate in M, therefore such a situation is
not possible.

By the same argument, let σ′ be the scheduler obtained by restricting σmin to M′. By the pre-
vious theorem, it must happen that Xreach(S ′reach,M′,σ′) ≤ Xreach(S reach,M,σmin). Since σ′min, by
definition, yields a lower reward, it must be that Xreach(S ′reach,M′,σ

′
min) ≤ Xreach(S reach,M,σmin).

!

In a similar manner as Theorem 1, this result indicates that estimations for the minimum and
maximum rewards over a submodel yield lower bounds for the actual minimum and maximum
rewards, respectively, for the whole model.

Key questions are which submodels are cost-effective (i.e. provide good approximations at
reasonable computation cost) and how to find them. Another important question to address is
whether effective submodels provide reasonable approximations in general. In the next sub-
section we discuss one particular way of driving the generation of submodels that results in
cost-effective reward computation. Later, in Section 4 we will argue that the submodels obtained
through our approach are effective at estimating bounds for reward values.

3.2 Automatic Submodel Generation
Although any submodel will provide a lower bound for the value of a given reward structure,
the key to a tractable reward estimation technique is to identify a submodel for which its reward
value can be computed within a reasonable time budget, and for which the resulting bound is
a useful approximation to the actual reward value of the full model. In particular, we have
already established in previous work [34] that not every submodel is good for estimating the
average value of these reward structures. For example, in that work we have already shown that
submodels obtained as the result of a depth-first search exploration are generally very bad at
providing good reward estimates. Conversely, we have shown that submodels obtained through

12

PIRSES-GA-2011-295261 /MEALS Page 13 of 58 Public

s0
s4

s1

s3
s2

s5

s8
s6

s7
0.25

0.5

0.2

0.05

0.05

0.05

0.9

1.0

0.05

0.95

0.5

0.5

0.05

0.45

0.5

1.0

0.3

0.25

0.45
1.0

s13

s11s10
s12

s9
1.0

0.15

0.8

0.2

1.0

1.0

0.85

Figure 1: Example partial exploration of a state space

breadth-first search explorations outperform DFS ones in general. Nevertheless, they still do not
provide good estimates in general either. In other words, not all submodels are created equal;
two submodels similar in size can obtain wildly different estimates.

Regrettably, and independently of the fact that the reward value for the full model is unknown,
the problem of computing an exact solution (i.e. obtaining the “best” submodel for reward com-
putation) is intractable [22]. In this section we discuss a heuristic for automatically constructing
submodels that can provide better bounds for reliability at lower computation cost than both full
model checking and Monte Carlo approaches.

Our approach adopts a heuristic based on the reasoning that the submodel construction strat-
egy should aim to identify a portion of the model that is probabilistically dense, that is, a small
submodel for which the probability of reaching the λ trap state in a given fixed time is low.
Such models will contain probabilistically likely loops that delay the traces from reaching the
submodel boundary, hence contributing to a higher bound for the reward being estimated.

The problem of finding the most probabilistically dense submodel is NP-hard [22]. Our
approach attempts to approximate such a submodel through bounded simulation. Hence, the
basis of our approach involves the simulation of several traces over the full model. The resulting
set of finite traces, if sufficiently large and consisting of sufficiently long traces, is likely to
cover a good part of a probabilistically dense submodel. These traces form the basis for building
our submodels. The smallest submodel that includes the set of states and transitions covered
by the simulated traces can be constructed easily by simply adding any non-visited transitions
between any two visited states, abstracting all non-visited states into the λ trap state, and adding
transitions to the λ state for whichever state has transitions that were neither explored nor added
in the first step. Figure 1 shows such a construction, where solid lines represent transitions that
were covered by the simulated traces, while dotted lines are transitions in the model that were
not covered. States outside the boundary have not been covered, and would be abstracted away
into the λ state of the submodel.

However, submodels built through such a procedure are likely to have relatively short traces
that escape the submodel (see path s0, s2, s10, . . . in the figure). These short traces contribute a
relatively high probability of escaping the submodel (in general, the shorter the prefix, the larger

13

PIRSES-GA-2011-295261 /MEALS Page 14 of 58 Public

the probability of the set of traces that extend from it), reducing the bound estimated by the sub-
model. Note that, in our example, s10 falls back within the boundary to s6 with high probability.
If we were to include this state into our submodel, and according to the submodel completion
procedure outlined before, the result would be that the bound estimated by the submodel would
be raised. This is consistent with our experimentation in [34]. In that work, we observed that
submodels generated with a breadth-first search strategy tend to approximate reliability measures
better, as they delay the chance of escaping traces until the lowermost levels of the breadth-first
exploration.

In the approach that we detail in this present work, rather than adopting a syntactic notion of
breadth first traversal for extending the submodel determined by a simulation of the full model,
we take a more semantic approach based on the attributes of states visited during the simulation.
We compute state invariants based on the states visited during the simulation and then add to the
submodel any states that satisfy the invariant, as well as the transitions between them. In this
way, we expect to add behaviour that, although not exactly equivalent to what was simulated,
represents variations in terms of symmetries, race conditions, and independent events [2], and
contributes significantly to the probabilistic weight of the submodel.

We now formally define our submodel construction method. We start with the notion of
invariant of a set of traces.

Definition 9 (Invariant). Given a probabilistic process M = ⟨S , s0, A,R⟩, and a set of finite
execution traces T obtained from said model, an invariant of M through T is a state predicate ψ
on the variables of M such that for every execution trace t = s0

p0−→ s1
p1−→ s2 . . . sn ∈ T , it holds

that ∀0 ≤ i ≤ n, si |= ψ.

An invariant then induces a unique submodel as follows:

Definition 10 (Invariant-driven submodel). Let M = ⟨S , s0, A,R⟩ be a probabilistic model and
ψ a state invariant; an invariant-driven submodel induced by ψ is a submodel M′ = ⟨S ′ ∪
{λ}, s0, A′,R′⟩ of M such that

a) each state s′ ∈ S ′ is such that s′ |= ψ;

b) for each s′1 ∈ S ′, s′1 ! s0, s0
π−→ s′1; and finally

c) for all states s′2 ∈ S \ S ′ such that there exist s′1 ∈ S , (s′1, a, µR) ∈ R with µR(s′2) > 0, it is the
case that M, s′2 |! ψ.

In other words, if a state s′2 not in the submodel is directly reachable from a state s′1 in the
submodel, it must be the case that s′2 violates ψ. The submodel is thus maximally connected
from the initial state through the invariant ψ.

Our approach places a focus on maximising the automation of the estimation process. There-
fore, we aim at automatically obtaining invariants. To this end, we produce probabilistically
driven walks over the full system model, bounded in length, while we record the states (i.e.
variable valuations) traversed. We use the tool Daikon [14], an invariant inference engine, to

14

PIRSES-GA-2011-295261 /MEALS Page 15 of 58 Public

a

a

a

a

a

b

bb

b

a

b

b

0.01

0.99

0.25
0.15

0.60

0.80

0.20

0.35

0.65 0.10

0.90

b

a

a

a

a

a

b

b

b

b

a

b

b

0.01

0.99

0.25
0.15

0.60

0.80

0.20

0.35

0.65

0.10

0.90

τ

0.50

0.50

b 0.50 0.50

...

Determinisation Simulation

Invariant inferenceInvariant-driven verification

Measure
estimation

...

...

...

...

Figure 2: Workflow for partial exploration analysis

obtain predicates that hold over all traversed states. These invariant predicates, in turn, are used
to synthesise an observer automaton that can drive the generation of a submodel via its parallel
composition with the system model.

It is important to note that for working with Segala Simple Automata it is necessary to resolve
non-deterministic transitions during the probabilistically driven walk generation. In this report,
we have chosen to replace non-deterministic transitions with an equiprobable distribution that
chooses between the possible target distributions. The correctness of our approach is not ham-
pered by this choice, as in fact any method of resolving non-determinism would serve our needs
– any non-determinism resolution approach yields a valid submodel. In turn, reward calculations
over these submodels yield correct bounds. However, it is left to be studied if this is the best
way to resolve non-determinism. That is, whether a different determinisation scheme exists that
produces a DTMC that, when analysed for determining reliability bounds, obtains better bounds
or does so with less computational effort. We discuss on this decision and possible alternatives
in Section 5.

The first step of our approach is then to perform simulation over an equiprobably deter-
minised version of the original SSA.

Definition 11 (Equiprobably Determinised Segala Simple Automaton). Let M = ⟨S , s0, A,R⟩
be a Segala Simple Automaton. The equiprobably determinised Segala Simple Automaton of
M is a DTMC Mdet = ⟨S det, s0, A, Rdet⟩ constructed in such a way that S ⊆ S det, and for every
(s, a, µ) ∈ R:

• If (s, a, µ) is the only transition for s in M, add the transition to Rdet;

• otherwise, take all (s, ai, µi). Add i states ts
1, . . . , t

s
i to S det. Add a transition (s, τ, µ) to

Rdet where µ(ts
j) = 1/i for each of those added states, and 0 everywhere else. Finally, add

transitions (ts
i , ai, µi) to Rdet for each of the added states.

15

PIRSES-GA-2011-295261 /MEALS Page 16 of 58 Public

p=0
q=0

p=1
q=0

p=1
q=1

p=3
q=1

p=2
q=1

p=1
q=2

p=2
q=0

p=2
q=2

p=4
q=0

p=3
q=2

p=4
q=2

p=2
q=4

0.60

0.15
0.25

1.00

0.50
0.50 0.70

0.30

0.25

0.75
0.50

0.15 0.35

0.70

0.05

0.25

1.00

0.70

0.30

1.00

(a) Model to be explored

p=0
q=0

p=1
q=0

p=1
q=1

p=3
q=1

p=2
q=1

p=1
q=2

p=2
q=0

p=2
q=2

p=4
q=0

p=3
q=2

p=4
q=2

p=2
q=4

0.60

0.15
0.25

1.00

0.50
0.50 0.70

0.30

0.25

0.75
0.50

0.15 0.35

0.70

0.05

0.25

1.00

0.70

0.30

1.00

(b) Simulation traversal

p=0
q=0

p=1
q=0

p=1
q=1

p=3
q=1

p=2
q=1

p=1
q=2

p=2
q=0

p=2
q=2

p=4
q=0

p=3
q=2

p=4
q=2

p=2
q=4

0.60

0.15
0.25

1.00

0.50
0.50 0.70

0.30

0.25

0.75
0.50

0.15 0.35

0.70

0.05

0.25

1.00

0.70

0.30

1.00

(c) Invariant-driven submodel

Figure 3: Stages to obtain an invariant-driven submodel

16

PIRSES-GA-2011-295261 /MEALS Page 17 of 58 Public

Once the invariant is inferred through the simulations, it is used to generate the partial sub-
model of the original SSA. Figure 2 depicts the workflow of this approach while in Figure 3 we
show the intermediate stages of the submodel generation.

The first step in Figure 2 is model determinisation. Applying determinisation to the original
model yields another one where some intermediate states have been added to account for the
replacement of non-deterministic transitions for probabilistic ones (these added states appear
shaded in the second model of Figure 2). The second part of the workflow consists of simulation,
invariant inference and obtaining a submodel.

The stages through which we accomplish this goal are detailed in Figure 3. We start out with
the simple model shown in Figure 3a where the states are identified by two integer variables p
and q. We have omitted action labels in this case to aid readability of the example. The first step
of the approach is to perform a set of length-bounded simulations of the model. For the sake of
this small example, we have obtained two simulation traces, the first shown in a blue dotted line,
while the second one is shown with solid red transitions.

The result of this simulation phase is that we have witnessed those states and transitions
contained in the C-shaped area delimited by the dotted line. From these states, we infer the
invariant that describes them all, which turns out to be p ≤ 3 ∧ q ≤ 2. Note that there other
states that satisfy this invariant (shown greyed out in Figure 3b) but that were not traversed by
the simulations. However, our notion of invariant-based submodel includes some of these states.
The submodel resulting from the invariant p ≤ 3 ∧ q ≤ 2 is shown in Figure 3c. Note that the
state (p = 3, q = 1) does satisfy the invariant, yet it is not included in the submodel. The reason
for the exclusion of this state is that the only way to reach it from the initial state is through states
that do not satisfy the invariant and therefore cannot be part of the submodel.

Note that the addition of states (p = 1, q = 1) and (p = 2, q = 1) to the submodel has resulted
in several loops being incorporated into the submodel. These loops were partially explored by the
simulation, but not fully captured by them. There is a big gain in including loops such as these
within our submodels, since the addition of these few states results in an increase of the proba-
bility of the behaviours that lie within this submodel. For example, if we analyse the submodel
consisting only of the states explored by the simulations, we find that for this very simple ex-
ample, the average number of transitions necessary for a trace to escape the submodel is 3.0133.
However, if we consider the final submodel, the expected number of transitions necessary to
escape quickly climbs to 6.9500, that is, more than double the previous time.

Finally, once the submodel has been obtained, we perform a full probabilistic verification
over this submodel. As we explained earlier, this yields correct bounds to the rewards of interest.

4 Validation
In this section we set out to answer three questions in order to validate our approach.

Q1: can our approach, when compared to model checking over full explorations, produce
better bounds, in less time, for the reward values of system models? Here we also answer related
questions: first, whether submodels obtained through our approach perform better than similarly-
sized submodels obtained through other approaches such as predetermined exploration criteria

17

PIRSES-GA-2011-295261 /MEALS Page 18 of 58 Public

(e.g., BFS or DFS); and second, whether the bounds we obtain are good, especially in the cases
where we can actually obtain the real reward value, and therefore we can contrast our estimated
bounds to the actual value.

Q2: can our approach, when compared to Monte Carlo approaches, produce better bounds, in
less time, for the reward values of system models? Can the Monte Carlo approach benefit from
our partial exploration techniques, that is, do Monte Carlo approaches perform better over partial
explorations?

Q3: how do the reward value estimations for submodels compare when these submodels are
generated from automatically inferred invariants as in our approach against manually generated
ones?

Q1 and Q2 aim at comparing our proposal with established approaches to estimation of re-
ward values, to evaluate if our approach can complement existing techniques. The cases where
the interesting states to be reached are rare events are of special interest, and we will discuss these
at length. Q3 aims at assessing the added value of automatic techniques for obtaining submod-
els, against the cost of gaining a deep understanding of the model to be verified and developing
a good submodel manually.

4.1 Methodology
We analysed three different systems from the literature, and properties that can be expressed in
terms of reward values. These systems are especially amenable to be specified in either DTMC
or SSA form, depending on their reliance on non-determinism. In the following sections we
provide a description of each of these systems.

For each case study, we built probabilistic system models accordingly, in order to describe
behaviour. We modelled the properties of interest as state formulae, and defined appropriate
reachability reward structures. We used the same input for all reward estimation techniques.

We put our approach to the test for all case studies for several automatically generated in-
variants varying the number and length of traces used for invariant inference. We used Daikon
v4.6.4 [14] configured to produce invariants that are conjunctions of terms of the form x ∼ y,
where x and y are either variables in the model, or integer constants, and ∼∈ {<,≤,=,≥>}. The
invariants we obtained were used to automatically build an observer automaton O, that monitors
the validity of the invariant. This observer, when composed with the system model M, syn-
chronises with all actions and forces transitioning into the λ trap state whenever the destination
state of the intended transition would result in an invariant violation. Because of this manner
of construction, the resulting subsystem is guaranteed to be a submodel of the original system
model.

For Q1 we used a modified version of PRISM v4.0.3 [20] to perform probabilistic model
checking to estimate the reward values for both the full state space and for its invariant-driven
submodels. Modifications allow for batch trace generation on a format understandable by Daikon
(used for invariant inference) and time and memory-use tracking (used for generating intermedi-
ate reward results and for timing out when time budget is up). Intermediate reward results were
generated for visualising convergence rates. PRISM was deployed on an 8x Core Intel Xeon
CPU @1.60 GHz with 8 GB RAM.

18

PIRSES-GA-2011-295261 /MEALS Page 19 of 58 Public

As was noted before, probabilistic verification and calculation of rewards entails solving a
linear equation system as well as the model exploration. PRISM provides different numerical
methods for this equation solving phase. We compared reward value computation of the full
and partial explorations for the Jacobi, Gauss-Seidel and Power iterative methods, as well as
several optimisations over the Jacobi and Gauss-Seidel methods. Due to space limitations, we
only report on results obtained with the backwards variation of the Gauss-Seidel method (BGS),
which proved to be the most effective method for full model probabilistic model checking in
terms of bounds obtained for time budget, making it the best competitor against our technique.
This is consistent with the fact that BGS and other relaxation based iterative methods consistently
outperform other methods such as Jacobi or Power iterations [48, 23].

PRISM runs were considered complete when any of the following criteria held: either a) the
absolute difference between results of successive iterations of the numerical method was less
than 0.01 (relative differences are not an adequate stopping criteria because of slow convergence,
which causes iterative methods to cut too early). Alternatively, b) running time reached 24
hours; or c) available memory, which was limited to 1 GB for each run as they were deployed
concurrently, was exhausted. Note that the time measured includes only the execution of the
numerical methods. This allows for convergence analysis and favours full-model exploration as
the time spent on construction of the model state space is not considered. In the case of the bigger
models, this construction takes as much as 6 hours of execution time. We comment on execution
time for submodel generation later in the Experimental Results subsection.

For Q2 Monte Carlo simulations were generated using the same version of PRISM and the
same hardware as Q1. However, note that while our approach produces lower bounds to actual
reward values with 100% confidence but for which precision (percentual difference between the
estimation and the actual value) is unbounded, Monte Carlo produces estimations with vary-
ing degrees of confidence but for which precision can be bounded. Consequently, we aimed at
performing Monte Carlo-based estimations for a range of confidence and precision values.

A critical precondition for applying Monte Carlo approaches is that all randomly generated
traces must eventually reach the target states, and enough traces must be generated in order to
guarantee estimations with a fixed precision and confidence. Setting a trace length horizon for
the simulator to ensure all traces reach their target is typically done based on a rough estimation
of the actual reward value, or an estimate of the underlying probability distribution [43]. This
seemingly circular procedure can, however, work in practice. In our particular setting, we used
the estimations obtained in Q1 as the basis for setting this horizon for each case study. The
reason for choosing such an estimate are twofold: first, the actual rewards are guaranteed to be
at least as much; and second, we will already have a measure of how much effort is needed to
arrive at such an estimation. We will see that even under this setting, Monte Carlo approaches
require excessive effort to arrive to similar results.

In addition to comparing probabilistic model checking of submodels against Monte Carlo
simulations of the complete model, we compared probabilistic model checking against Monte
Carlo simulations over the same submodels. In other words, starting from the hypothesis that
submodel generation does provide an added value, we wanted to further establish which approach
was best for the second phase of the analysis; that is, whether probabilistic model checking or
Monte Carlo evaluations should be employed.

19

PIRSES-GA-2011-295261 /MEALS Page 20 of 58 Public

Finally, Q3 uses the same setup and reward estimation approach based on inferred invariants
as in Q1. The key difference is in the method for submodel generation. Manually produced
invariants for submodel generation were put forth before any of the experiments were performed.
Therefore, the manually proposed invariants were not tainted by knowledge gained from the
automatic approach. The main heuristic for coming up with the invariants was analysing the
model and identifying necessary (and more likely) conditions for reaching the target states.

The cost of manually generating an invariant is not simple to estimate. However, coming
up with invariants that are useful for a partial exploration does demand from the user a deep
understanding of the model under analysis. This is in general not trivial. In the context of this
work, the cost of manually generating invariants, although non-trivial, was mitigated by the fact
that the authors are familiar with the models under analysis. Eliminating this author bias would
require further validation, possibly involving a well-designed user study. Such a study falls
outside the scope of this report and remains future work.

4.2 Case Studies
Tandem Queueing Network

The first case study is a tandem queueing network, based on [19]. Queueing systems have been
extensively studied in queueing theory, and analytical solutions for some variants exist. However,
due to the complexity of this particular model and its different queueing modes, general analytical
queueing models are not easily applicable. Generating an ad-hoc analytical formulation would
require extensive expertise and time, and it would not be easily adaptable to modifications in the
design of the queueing system; even if these modifications are smaller ones.

The system consists of two process queues C and M of given (and in this particular case
equal) capacities. Clients queue processes for execution in the first queue while it is not full.
This first queue may either route a process to the second queue after a probabilistically chosen
time elapses, or it might choose to deal with the request itself. The behaviour of this first queue is
governed by two different phases. The difference between the phases is given by the probability
with which it will choose to route its requests to the second queue or deal with them directly.
The second queue has no other queue on which to unload its processes. Therefore, all it can
do is service its requests, and it does so after a probabilistically chosen time elapses. A failure
is observed when both queues are full, as at this time, clients cannot do anything but wait until
some requests have been serviced and there is room in the first queue for another process.

In our specific scenario devised for experimentation in this report, the capacity of the queues
is fixed at 1200 each. Clients are less inclined (i.e., they take more time in average) to enqueue
processes as the free capacity of the queues decreases.

The reliability metric that we wish to estimate is the the mean time to failure (MTTF) of
the system. Mean time to first failure is a widely accepted metric for reliability. This metric
represents for how much time a client can expect to operate a system until it experiences its first
failure. In this case, the failure is represented by the moment where a client cannot push any
more tasks in the queues, and the first queue cannot offload any more work to the second. That
is, a failure is met when both queues are full.

20

PIRSES-GA-2011-295261 /MEALS Page 21 of 58 Public

Consequently, the reward structure ρ we choose to model assigns the value 1 to every timing
transition. It is generally accepted to employ execution time rather than calendar time for MTTF
estimations [31]. While calendar time measures real time in terms of hours, weeks, etc., execu-
tion time is the time actually spent in system execution. This distinction is important for reactive
systems which may have long idle times.

In our model, the state predicate that captures failure is cliC = 1200 ∧ cliM = 1200, and
computing the mean time to failure amounts to calculating the expectation of the accumulated
reward before reaching a state satisfying this predicate.

Bounded Retransmission Protocol

The second case study [11] models a robust communication protocol that attempts to ensure
delivery of data, the bounded retransmission protocol (BRP) [17].

BRP is a variant of the alternating bit protocol, which allows for a bounded number of re-
transmissions of a given chunk (i.e., a part of a file). The protocol consists of a sender, a receiver,
and two lossy channels, used for data and acknowledgements respectively. The sender transmits
a file composed of a number of chunks, by way of frames. Each frame contains the chunk itself
and three bits. The first bit indicates whether the chunk is the first one; the second one if it is the
last chunk; and the third bit is the alternating one, used for avoiding data duplication.

The sender waits for acknowledgement of each frame sent. The sender may timeout if ei-
ther the frame or the corresponding acknowledgement are dropped which could be caused, for
example, by either the frame or the corresponding acknowledgement being dropped. When this
happens, the sender resends the frame and does so repeatedly up to a specified retry limit. If the
limit is reached and the transmission is terminated, the sender may be able to establish that the
file was not sent (if some chunks were left unsent) or it may not know the outcome (if the last
frame was sent but no acknowledgement was received). In any case, the sender may send a new
file, resetting the retry count. A maximum of 256 retransmissions are attempted per file before
the sender gives up and aborts transmission of the file, regardless of the size of the file being
sent, Once a file is sent successfully or its transmission fails, the system waits for another file to
be sent.

Protocol clients send files one at a time. Each of these files is of a different size (in number
of chunks). This size may be different for each file, varying between just a few and 1500 chunks.
We developed two probabilistic models for this problem, and analysed them separately. First, we
assumed complete knowledge about the distribution of the sizes of the file being sent. Therefore,
the choice of file size was modelled probabilistically, yielding a DTMC as system model, where
exceedingly large or small files are modelled to be less likely to be sent than those of average
size. In the second model we developed, we introduced uncertainty regarding this knowledge,
and kept the size choice non-deterministic, representing this absence of information. Under this
modelling choice, the second case yielded an SSA rather than a DTMC.

In this case, we also wish to estimate the mean time to the first failure, where failure is
defined as the sender failing to send a complete file (incomplete) or not being able to establish
if a file was sent successfully (unknown). Consequently, the state predicate describing failures is
incomplete∨ unknown. The definition of time for this case study aims at establishing how many

21

PIRSES-GA-2011-295261 /MEALS Page 22 of 58 Public

data packets can be expected to be sent successfully before failure. For the DTMC model we
obtained the mean number of packets being sent before experiencing failure, while for the SSA
model we obtained both the minimum and maximum mean number of packets, which represent
the worst case and best case scenarios respectively.

IEEE 802.11 Wireless LAN.

The third case study depicts the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
mechanism of the IEEE 802.11 protocol [21]. The protocol uses a randomised exponential back-
off rule to minimise the likelihood of transmission collision. That is, whenever a collision was
averted by a component sensing the busy carrier when trying to send data over busy media, the
component is backed off (it needs to wait until trying to resend) for a time. This time is chosen
randomly from a specified range of possible delays, and successive failures cause this range to
increase exponentially. The goal of the protocol is to divide, as equally as possible, the access to
the channel between all participants that may collide.

The model used depicts a two-way handshake mechanism of the IEEE 802.11 medium ac-
cess control scheme, operating in a fixed network topology. The probabilistic model itself was
extracted verbatim from [18]. This model exhibits both stochastic behaviour (for example, in
the randomised backoff procedure, that allows up to seven exponential backoff levels) and non-
deterministic behaviour (for example, in modelling the interleaving of actions between the two
independent emitter stations). Therefore, the model is an SSA.

In this case, the protocol is probabilistically guaranteed to never fail, that is, both stations
will eventually be able to send their packets. However, it is interesting to know for how long they
will have to wait, in average, to achieve this objective. Turnaround time is a measure for both
reliability of systems, as it may include time necessary for error correction or recovery, as well
as a measure for performance. In general, the turnaround time for a process refers to the time
that elapses between it starting its task until it finishes or provides some result. The starting and
finishing times may be arbitrarily defined (for example, start time may be either the moment the
process takes control of execution, or rather the moment it is sent a request). In general, we may
refer to turnaround as the time it takes a process to produce the required results after it is started.

In this case, we are interested in estimating the turnaround time for two stations to be able
to successfully send their packets and advance to their done state, while avoiding potential colli-
sions. As such, the state predicate that describes this final state is station1 = done ∧ station2 =
done. Note that, unlike the previous case study, both stations managing to send their messages is
not a rare event at all if the protocol works correctly. However, the sheer size of the model does
hamper direct estimation.

Network virus infection

In this case, we analyse the behaviour of a virus infection on a computer network. This case
study is based on [27, 12] but is heavily expanded as we will detail further on.

The network is a cubic grid of nodes, as opposed to the original case study in [27] which was
based on a plane grid; a cubic grid allows more virus paths as well as customising the model to

22

PIRSES-GA-2011-295261 /MEALS Page 23 of 58 Public

223

333

323

313

332

322

312

331

321

311

233

213

232

222

212

231

221

211

133

123

113

132

122

112

131

121

111

Figure 4: A 3 × 3 × 3 network cube. On the lower right the infected node 111, the target node is
333 in the upper left.

sizes that quickly grow to be intractable. The size of the network is given by N, the number of
nodes in any given edge of the cube. Each node is connected to the nodes at its left, right, up
and down, as well as to those behind and in front of it. Nodes in the outer faces may have less
connections. Figure 4 depicts a 3 × 3 × 3 cubic grid.

We model the behaviour of a virus infection on a firewalled, self-healing network. In this
setting, once a node is infected, it tries to propagate to its neighbouring nodes. In order to
succeed, it needs to first defeat the node’s firewall, and then attempt infection once the firewall is
down. The network is self-healing, as healthy nodes will try to repair its infected neighbours.

The scheduling between these actions is completely non-deterministic. On the other hand,
we built a probabilistic model of the environment that describes the probabilities of success when
trying to break a firewall, infect a vulnerable node, or repair an infected node.

In each case we start with a healthy network, save for one of the corner nodes, which starts
infected. The properties of interest we analyse in this case are the expected minimum time to
total infection of the network, and the expected minimum time to infection of the node at the
opposite corner of the initially infected one.

4.3 Experimental Results
We now present the experimental results obtained for the three research questions presented
above. Table 1 provides a quick overview and comparison of all results given all the different
techniques employed, as follows

• Full is a model checking effort over the full model. We always report on bounds on rewards
obtained, if any. Bounds on probabilities are only reported if convergence was attained.

• Partial denotes our approach, ignoring simulation times. Since we also perform a model
checking step, we omit probabilities that did not converge in time.

23

PIRSES-GA-2011-295261 /MEALS Page 24 of 58 Public

Table 1: Summary of (best) results for each technique and case study. TO denotes timeout at 24
hours. N/A denotes results that could not be obtained before timeout or were erroneous due to
technique shortcomings.

Tandem Queue (mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown 4.2 × 105 TO 7 × 107 TO N/A TO 5.5 × 107 TO
Fully probabilistic BRP (mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown OOM TO 2.5 × 107 TO N/A TO 1.69 × 107 TO
Non-deterministic BRP (minimum mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown OOM TO 5.6 × 106 TO N/A TO 9999 126.25 s
Non-deterministic BRP (maximum mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown OOM TO 9.8 × 106 TO N/A TO 9965.87 46.26 s
WLAN (minimum mean turnaround time)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

1725.00 1725.00 628.00 s 1725.00 0.98 s N/A N/A 1665.63 490.05 s
WLAN (maximum mean turnaround time)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

4301.65 4301.65 54149 s 4300.67* 2 s* N/A N/A 3846.17 1085.87 s
Constrained Virus (minimum mean time to total infection)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

5200.00 OOM TO 500.54 2771 s N/A N/A 999.32 414 s
Constrained Virus (minimum mean time to corner infection)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

1200.00 OOM TO 599.54 1452 s N/A N/A 999.32 1242 s

• Monte Carlo denotes the statistical estimation based on trace simulation.

• Manual describes the best result obtained by any of the manual invariants posed for the
case study.

When possible, we also report on the actual reward values. This was either obtained analyti-
cally or through a full model check that converged, as described in each case study section.

For each experimental case, we highlight the best performer, taking into account both the
quality of the result obtained as the time taken to arrive to this result. In the case of ties, or very
close results with very disparaging running times, we opted to report the fastest performer as the
best result. We mark these cases with an asterisk.

Question 1

When comparing probabilistic model checking of both full and partial models we are interested
in considering the relationship between the inferred invariant, the size of the resulting submodel,
and the value of the reward estimation obtained from it. We are also interested in gaining insight

24

PIRSES-GA-2011-295261 /MEALS Page 25 of 58 Public

 0 5000 10000 15000 20000 25000 30000 35000 0
 10000

 20000
 30000

 40000
 50000

 60000
 70000

 80000
 90000

 100000

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Estimated MTTF
(operational time)

Tandem Queue MTTF estimation

Submodel size
(states)

Verification time
(seconds)

Estimated MTTF
(operational time)

Figure 5: Results of analysis of Tandem Queue for different sized submodels, Backwards Gauss-
Seidel method.

on combinations of trace length and number of traces that are likely to yield the best overall
result.

Tandem Queue analyses For the Tandem Queue case study the estimated mean time to failure,
calculated using probabilistic model checking, in 24 hours over the full model was 4.20 × 105.
This full model comprises ∼ 1.5×107 states. Regarding computations over submodels, we report
on MTTF estimation (Figure 5), submodel sizes (Figure 6) and invariants obtained (Table 2)
for various settings of sample size and individual trace length. We report here on a subset of
the values obtained, however non-reported data is in-line with the trends shown. Note that our
best MTTF estimation is about 7 × 107, a full two orders of magnitude larger than what could
be estimated through full model checking. Even if this is not the actual MTTF, this jump in
estimation quality could make a difference in establishing a case for reliability assurance of the
system.

The first figure shows, for different automatically generated sized submodels, the estimated
MTTF (shown over a logarithmic scale for convenience) along with how much time it took for
the calculation to finish. Executions that finished before the 24 hour timeout are flattened on the
MTTF axis at the time the result was reached. It is noteworthy that none of the automatically
obtained submodels is larger than 35000 states, comprising roughly 0.25% of the states of the
complete model. Despite having explored only such a small percentage of the full model, the
obtained lower bound for MTTF is quite large in some cases, possibly sufficient to argue for high
system reliability – MTTF is at least in the order of 1.0 × 107. Although very small submodels

25

PIRSES-GA-2011-295261 /MEALS Page 26 of 58 Public

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Submodel size
(states)

Tandem Queue submodel sizes

Sample size
(number of traces)

Trace length

Submodel size
(states)

 0
 5000
 10000
 15000
 20000
 25000
 30000
 35000

Figure 6: Tandem Queue submodels sizes for different sample size and trace length parameters.

do not provide good bounds, larger submodel MTTF estimations increase dramatically, quickly
rising to the 7×107 maximum MTTF witnessed, which is a full two orders of magnitude beyond
the estimation for the full model.

An important question is whether good submodels can be obtained in a consistent fashion
by parameterising trace quantity and length parameters of the simulation phase. As we have
seen above, the size of the submodels is an initial indicator that the estimation procedure will
result in good bounds. Figure 6 shows that such submodels can be obtained automatically in
a consistent way for this example. Focusing on the upper-right corner of the figure, it can be
seen that choosing values for trace length and sample size in that region consistently results in
appropriate submodels.

The charts in Figure 7 expand on this. Figure 7a shows submodel sizes for different parame-
ters, in a way similar to Figure 6. Figure 7b shows the estimated bounds for said parameters. It
can easily be seen that submodel size and estimations correlate.

It can be observed that experiments with trace length below 3000 do not consistently produce
rich enough models that yield good MTTF estimates. Unsurprisingly, small sample sets are also
inconsistent in their results. However, once the sample set size parameter is set to at least 6000
samples, the submodels produced consistently yield large MTTF estimates. In summary, for
this case study a minimum of 6000 samples of traces at least 4000 steps long are necessary for
consistent results. Furthermore, increasing these parameters does not yield clear advantage in
terms of the final MTTF estimation. Both figures also show that results become more stable as
these parameters are increased.

State space size alone is not the only important factor when evaluating the effectiveness of

26

PIRSES-GA-2011-295261 /MEALS Page 27 of 58 Public

Table 2: Selection of Tandem Queue submodel sizes and invariants for different parameter con-
figurations.

Traces Length States Invariant
10000 1 14 cliC = cliM ∧ cliC ≤ 0 ∧ state ≤ 2 ∧ cliC ≤ state
10000 501 12690 cliC ≤ 73 ∧ cliM ≤ 15 ∧ state ≤ 9
5000 1000 14134 cliC ≤ 69 ∧ cliM ≤ 18 ∧ state ≤ 9

10000 1000 16086 cliC ≤ 83 ∧ cliM ≤ 17 ∧ state ≤ 9
5000 2000 23388 cliC ≤ 100 ∧ cliM ≤ 21 ∧ state ≤ 9

10000 2000 22486 cliC ≤ 92 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 3000 20932 cliC ≤ 98 ∧ cliM ≤ 19 ∧ state ≤ 9

10000 3000 25228 cliC ≤ 108 ∧ cliM ≤ 21 ∧ state ≤ 9
5000 4000 24538 cliC ≤ 105 ∧ cliM ≤ 21 ∧ state ≤ 9

10000 4000 24882 cliC ≤ 94 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 5000 26424 cliC ≤ 104 ∧ cliM ≤ 23 ∧ state ≤ 9

10000 5000 23686 cliC ≤ 97 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 6000 26182 cliC ≤ 99 ∧ cliM ≤ 24 ∧ state ≤ 9

10000 6000 31902 cliC ≤ 121 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 7000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9

10000 7000 30674 cliC ≤ 121 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 8000 23910 cliC ≤ 107 ∧ cliM ≤ 20 ∧ state ≤ 9

10000 8000 29424 cliC ≤ 116 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 9000 29924 cliC ≤ 118 ∧ cliM ≤ 23 ∧ state ≤ 9

10000 9000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 10000 27174 cliC ≤ 107 ∧ cliM ≤ 23 ∧ state ≤ 9

10000 10000 27460 cliC ≤ 100 ∧ cliM ≤ 25 ∧ state ≤ 9

the approach. For a given size expressed in number of states, many submodels of that size exist,
and not all of them may be effective. Preliminary work [34] has shown that submodels obtained
through depth first search (DFS) explorations yield very poor results, as they allow short traces
to escape the submodel to the λ state. Although breadth first search (BFS) obtains higher MTTF
lower bounds than DFS when used as a submodel generator, it performs poorly against our
approach, as the state space that it explores is not as relevant. For example, our approach using
10000 traces 10000 states long (one of the best performers) obtains a 27460 state sized submodel,
which is characterised by the invariant cliC ≤ 100∧ cliM ≤ 25∧ state ≤ 9. Consider a similarly
sized BFS generated submodel of 28000 states. The Tandem Queue model allows four different
actions (push, fwd, svc1,svc2). Conservatively assuming at most two actions enabled at each
state, an equal sized BFS submodel would explore at most ⌈log2(27460)⌉ = 15 levels deep. Such
a submodel would only allow for very limited behaviour. If each transition level generated a new
state, queues of no more than 15 elements could be generated by such a submodel. Of course,
it is not always the case that a new state is generated. In fact, a BFS exploration that allows for
50 elements per queue results in a 32000 state submodel. The MTTF obtained through such a

27

PIRSES-GA-2011-295261 /MEALS Page 28 of 58 Public

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

Tandem Queue submodel sizes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

(a) Submodel sizes by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

Tandem Queue MTTF by parameter combination

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

(b) Estimations by parameters

Figure 7: Tandem queue submodel sizes and estimations for different parameters

submodel is ∼ 70000, very far from the results we obtain.
Regarding potential overhead of trace generation and invariant inference, memory consump-

tion is negligible with respect to representing the state space of the full model, as only one rela-
tively short trace needs to be kept in memory at a time. Time-wise, analysis of 10000 traces of
length 10000 took less than an hour. Accounting for this hour in the verification time budget, the
submodel that yielded the highest MTTF lower bound would have achieved a result of ∼ 6 × 107

in 23 hours, still a large increase against the estimation obtained via full model verification.
Although not intended to be shown to developers, we report on some of the automatically

inferred invariants in Table 2. The discovered invariants deal with bounding the size of both
queues, while the variable state encodes whether the queues are full or not, and the phase the
system is in at the time. It is noteworthy that although it is intuitive that an invariant should
bound the queue sizes, it is unlikely that a human would come up with the particular bounding
values used.

Bounded Retransmission Protocol - fully probabilistic model version For the BRP case
study in its fully probabilistic variation, similar results were obtained and are shown in Figures 8
and 9, and Table 3.

In contrast to the prior case study, we were unable to obtain the MTTF for the full model
due to state explosion that exhausted available memory. However, observations prior to running
out of memory showed that the full model contains at least 30 million states, which means that
the submodels we analysed represent at most 2% of the size of the full model, still a very low
percentage. Furthermore, the highest MTTF bounds were obtained for submodels with a size
starting from 400000 states (less than 1.33% of the full model), which turned out to yield an
MTTF in the order of 2.5 × 107. This result is most significant, because of the impossibility of
estimating MTTF for the full model.

Note that for submodels whose size is around the 400000 and 500000 states mark, there are
both estimations that provide very good bounds and those that yield not so useful ones. Interest-

28

PIRSES-GA-2011-295261 /MEALS Page 29 of 58 Public

 0
 100000

 200000
 300000

 400000
 500000

 600000 0
 10000

 20000
 30000

 40000
 50000

 60000
 70000

 80000
 90000

 100000

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Estimated MTTF
(packages sent)

BRP MTTF estimation

Submodel size
(states)

Verification time
(seconds)

Estimated MTTF
(packages sent)

Figure 8: Results of analysis of BRP (probabilistic file size choice) for different sized submodels,
Backwards Gauss-Seidel method.

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

 0

 100000

 200000

 300000

 400000

 500000

 600000

Submodel size
(states)

BRP submodel sizes

Sample size
(number of traces)

Trace length

Submodel size
(states)

 0

 100000

 200000

 300000

 400000

 500000

 600000

Figure 9: BRP submodels (probabilistic file size choice) sizes for different sample size and trace
length parameters.

29

PIRSES-GA-2011-295261 /MEALS Page 30 of 58 Public

Table 3: Selection of BRP submodel (probabilistic file size choice) sizes and invariants for dif-
ferent parameter configurations.

Traces Length States Invariant

10000 1 35

srep = nrtr ∧ srep = f ileS ize ∧ srep = r ∧ srep =
rrep ∧ srep = k ∧ srep = l ∧ bs = s_ab ∧ bs =

f s ∧ bs = ls ∧ bs = f r ∧ bs = lr ∧ bs = br ∧ bs =
r_ab ∧ bs = recv ∧ s ≤ 7 ∧ srep ≤ 0 ∧ i ≤ 1 ∧ s ≥

srep ∧ s ≥ i ∧ srep ≤ i

10000 501 66282

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤
84 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥
l ∧ srep ≤ f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥
r∧ f ileS ize ≥ rrep∧ f ileS ize ≥ k∧ f ileS ize ≥ l∧r ≥ l

10000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤
833 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥
l ∧ srep ≤ f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤
rrep ∧ nrtr ≤ f ileS ize ∧ f ileS ize ≥ r ∧ f ileS ize ≥

rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤
1500∧ r ≤ 4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k ∧ s ≥
l ∧ srep ≤ f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤

rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥
r∧ f ileS ize ≥ rrep∧ f ileS ize ≥ k∧ f ileS ize ≥ l∧r ≥ l

ingly enough, those that do not perform well arise from submodels obtained through invariants
inferred from sample sets where generated traces were shorter than 7000 states long, while sets
of longer traces perform very well. This shows that appropriate trace length, as well as sample
size, is critical to the final MTTF estimation. As before, a similarly sized submodel obtained
through BFS does not provide such higher MTTF lower bounds. One of our best performers,
at 10000 traces 10000 states long, produces a submodel 392786 states in size which (with eight
BRP actions and conservatively assuming three enabled at any time) results in a BFS submodel
of depth ⌈log3(392786)⌉ = 12, which models very few frames being sent. In fact, a BFS-like
submodel that allows only for 5 frames to be sent per file comprises ∼ 400000 states and yields
an MTTF of only 40.

The charts in Figure 7 expand on this. Figure 7a shows submodel sizes for different parame-
ters, in a way similar to Figure 6. Figure 7b shows the estimated bounds for said parameters. It
can easily be seen that submodel size and estimations correlate.

Figures 9 and 10 depict information related to the possibility of obtaining useful submodels,
in a manner similar as we did for the Tandem Queue case study. It can be seen that it is quite easy
to obtain such submodels, without many restrictions on experiment configuration. Again, there is
a correlation between submodel size and estimation quality. However, model size is not as good

30

PIRSES-GA-2011-295261 /MEALS Page 31 of 58 Public

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

BRP submodel sizes

 0

 100000

 200000

 300000

 400000

 500000

 600000

(a) Submodel sizes by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

BRP MTTF by parameter combination

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

(b) Estimations by parameters

Figure 10: BRP submodel sizes and estimations for different parameters

an indicator in this case, since submodels obtained through simulations of lengths 7000 and 9000
are similar in size, but the resulting estimations are much better in the latter, even with as little as
2000 samples. Further increases of these parameters yield larger and slightly better-performing
models, and this increase is much smoother (hence predictable) than is the case for the Tandem
Queue submodels.

As in the other case study, trace generation and invariant inference incurs an overhead. In this
case, since the model is more complex, this analysis can take up to 2 additional hours. Reducing
the verification time by these 2 hours, the estimated MTTF would have been still large, about
2 × 107. Recall that this overhead was not included in measured time to allow graphs to show
convergence speed of numerical analysis.

As before, we show for reference some of the inferred invariants. The variables f ileS ize, i
and nrtr describe the size of the file being sent, how many frames have been sent for that file,
and the number of retries attempted, respectively. Other variables such as sab, rab, bs and f s
encode the bit alternation in the protocol. The invariants obtained establish relationships between
variables that seem unrelated, making them quite unintuitive even for a domain expert.

Bounded Retransmission Protocol - non-deterministic model version As we explained be-
fore, we also developed a version of the BRP model that leaves the file size choice to a non-
deterministic process. Recall that introducing non-determinism into a model requires a scheduler
function to solve this non-determinism, and that we focus on those that yield the minimum and
maximum probabilities or reward values. Therefore we turned our attention to finding out the
minimum and maximum possible mean times to failure. We performed the same verifications as
for the DTMC model, but effectively twice, as we require both extreme values. As was the case
for the DTMC model, we were unable to obtain an estimation for the MTTF for the full model
via probabilistic model checking, because of memory being exhausted due to state explosion.
After the 24 hours of allotted time elapsed for each extreme value estimation, the results yielded
a model comprising nearly 29 million states, while the reward estimation set a minimum MTTF

31

PIRSES-GA-2011-295261 /MEALS Page 32 of 58 Public

Table 4: Selection of BRP submodel (non-deterministic file size choice) MTTF evaluation results
for different simulation parameter configurations.

Simulation for invariant inference and submodel
generation Model checking

Traces Length States Min. MTTF Time Max. MTTF Time
7000 7000 362818 7012.95 416.03s 5189082.31 TO
7000 8000 486334 8009.98 310.63s 4131821.02 TO
7000 9000 392786 3562408.74 TO 6057239.73 TO
7000 10000 392786 3520812.45 TO 3836886.45 TO
8000 7000 467078 7012.98 311.74s 2696445.38 TO
8000 8000 377758 8009.93 283.59s 3436473.71 TO
8000 9000 393127 3228676.48 TO 4189020.09 TO
8000 10000 392786 3957488.92 TO 3985846.34 TO
9000 7000 363159 7012.98 166.43s 6672088.97 TO
9000 8000 377758 8009.93 284.88s 3988798.52 TO
9000 9000 392786 3099149.50 TO 3081547.39 TO
9000 10000 392786 3173533.40 TO 3414618.29 TO

10000 3000 276133 3007.00 63.38s 5779075.77 TO
10000 7000 362818 7012.95 192.54s 4006598.92 TO
10000 8000 486334 8009.98 344.00s 2910151.56 TO
10000 9000 393127 3979433.22 TO 4069637.98 TO
10000 10000 506672 3199985.39 TO 3149986.63 TO

value of 60297 and, surprisingly, a maximum MTTF of 50819. This discrepancy of the maxi-
mum estimation being actually less than the minimum one can be explained as an unintended
consequence of the numerical verification procedure. The verification algorithm for extreme
probabilities involves solving an optimisation problem for each extreme value. In the case of
the minimum time to failure, the optimisation converges much faster. Indeed, the minimisation
procedure actually performed about 20% more iterations than its maximisation counterpart, a
factor that can explain this discrepancy.

After failing to obtain an exact value for the MTTF extreme values, we turned our attention
to the estimation over partial explorations. We report on these experiments in Table 4, which
summarises the results obtained while estimating the minimum and maximum MTTF.

It is interesting to note several things about these results. First, the submodels analysed
represent, similarly to the fully probabilistic case, at most 2% of the size of the full model, a
very low percentage. It also quickly becomes evident that there is a strange phenomenon taking
place with the estimation of the minimum rewards. Almost all results are polarised either on
the 3.25 × 106 - 4.0 × 106 range; or either in the 7000 - 8000 range. Further, the length of
traces simulated is critical, particularly in the case of estimating the minimum MTTF. Note that
simulating traces less than 9000 actions long, results in the smaller estimations for minimum
MTTF. This seems to have its correlation with the invariants that were inferred in each case,
depicted in Table 5. Note that, in the invariants obtained with traces less than 9000 steps long,
the variable i is restricted to no more than 1333. Recall that i indicates the number of packets

32

PIRSES-GA-2011-295261 /MEALS Page 33 of 58 Public

Table 5: Selection of BRP submodel (non-deterministic file size choice) sizes and invariants for
different parameter configurations.

Traces Length Invariant

8000 8000

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥

r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

8000 10000

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥

r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

9000 8000

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥

r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

9000 10000

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥

r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 8000

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥

r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 10000

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧ srep ≤

i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ f ileS ize ≥
r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

of the file that have already been set. These invariants show that, for the traces analysed, some
times the maximum file size (1500) was chosen, but never completely sent. For our approach,
such situations would lie in the unknown set of the state space, and thus conservatively evaluated
as failing states. However, invariants obtained for longer traces do allow i to reach its maximum
of 1500, which explains the dramatic increase of the estimations. Even more, increasing the
simulation length to 10000 actions does pay off in some cases, although the increase is not
nearly as dramatic.

In the case of the maximum MTTF estimation, all submodels behave more or less uniformly.
Although there are of course differences, even the worst results are still much better than those
obtained by full model evaluation. In fact, when compared with the result obtained for full model
estimation, it can clearly be seen that estimation over submodels pays off – the maximum MTTF
estimated for submodels is, in all cases, at least 50 times as much than those obtained for the full
model.

33

PIRSES-GA-2011-295261 /MEALS Page 34 of 58 Public

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

BRP (non-deterministic) submodel sizes

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

(a) Submodel sizes by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

BRP (non deterministic) minimum MTTF by parameter combination

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

(b) Minimum estimations by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

BRP (non deterministic) maximum MTTF by parameter combination

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(c) Maximum estimations by parameters

Figure 11: BRP (non deterministic) submodel sizes and estimations for different parameters

34

PIRSES-GA-2011-295261 /MEALS Page 35 of 58 Public

Figure 11 illustrates these results in a manner similar to the previous case studies. Note
that while there are two different charts for minimum and maximum MTTF estimations, the
submodels remain the same in both cases.

There is a final point that needs to be noted. As we discussed earlier, the submodels obtained
by analysing shorter simulations are not very good for minimum MTTF estimation. However,
they are the best performers for estimating maximum MTTF. This is a consequence of the state
space being smaller, as this allows for more numerical iterations in the same time budget. An-
other important factor is that choosing a smaller file size allows for a larger Mean Time to Failure.
This is because when transmitting a smaller file, the chance that the protocol will deplete its al-
lowed retries is smaller than with a bigger file, simply because it has less chances to fail. This
contrasts with the minimum MTTF calculation, which becomes larger just as bigger files are
allowed in the model.

WLAN collision avoidance protocol Finally, we turn our attention to the analysis of the
WLAN collision protocol model. In this case study, we are interested in estimating the turnaround
time (TAT) for both emitting stations to complete sending their intended data. That is, we wish
to know the mean time from the moment the first station intends to send data until both of them
have successfully sent their data, including all necessary backoff time.

For this case study we also attempted to produce an estimate for the full model. Contrasting
with the previous case studies, the event under analysis is not a rare event at all. On the contrary,
it is desirable that in every instance both stations are able to send their data in a reasonable time.
During this analysis, we obtained a full model comprising about 75 million states. The minimum
TAT was estimated at 1725 after executing for just 10 minutes, while the maximum one was
calculated to be 4301.65, after 15 hours into the verification process execution. Turnaround time
is measured in microseconds (µs).

Again, we compared this performance with our approach, with the results obtained depicted
in Tables 6 and 7.

In this case, the results are much easier to interpret. First, note the TAT estimations them-
selves from Table 6. The minimum turnaround time estimated is the same for all submodels
evaluated and coincides with that obtained through the full model evaluation. In the case of the
maximum turnaround estimation, they are not all the same, but they are all around the same
value, and differ in no more than 2% from the actual value estimated through full model evalu-
ation. However, the verification times that were necessary for estimating these results are what
are most significant. For every submodel, both for the minimum TAT estimation as for the max-
imum, all reward estimations finished in less than 10 seconds, with most of those estimations
taking much less time. This marks a stark contrast with the time needed for the full model verifi-
cation: minimum TAT estimation required no more than 1 second in all cases (except one where
it required 4.5 seconds) while full model estimation required 10 minutes. In the case of maximum
reward estimation, doing so for the full model required 15 hours, while partial model estimations
were mostly completed within 1.5 seconds, except in one case where it required a time short of
8 seconds. Further, the estimated maximum turnaround times are very close to the actual value,
deviating at most a 0.02% from the actual value, and most estimations staying within 0.005% of

35

PIRSES-GA-2011-295261 /MEALS Page 36 of 58 Public

Table 6: Selection of WLAN submodel TAT evaluation results for different simulation parameter
configurations.

Simulation for invariant inference and submodel
generation Model checking

Traces Length States Min. TAT Time Max. TAT Time
500 100 117976 1725.00 0.72s 4213.90 1.15s
500 150 117976 1725.00 0.74s 4213.90 1.28s
500 200 118252 1725.00 0.76s 4278.24 1.16s
500 250 118252 1725.00 0.80s 4278.24 1.24s

1000 100 117976 1725.00 0.80s 4213.90 1.33s
1000 150 118252 1725.00 0.73s 4278.24 1.12s
1000 200 118232 1725.00 0.74s 4278.24 1.12s
1000 250 118252 1725.00 0.71s 4278.24 1.21s
1500 100 118104 1725.00 0.69s 4246.08 1.07s
1500 150 118252 1725.00 0.75s 4278.23 1.14s
1500 200 118252 1725.00 0.78s 4278.23 1.19s
1500 250 472809 1725.00 4.47s 4286.21 7.87s
2000 100 118240 1725.00 0.70s 4247.08 1.18s
2000 150 118252 1725.00 0.71s 4278.23 1.11s
2000 200 118252 1725.00 0.70s 4278.23 1.11s
2000 250 118232 1725.00 0.94s 4278.24 1.34s

Table 7: Selected WLAN inferred invariants for different parameter configurations.

Traces Length Invariant

1000 100
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 < s2 ∧ bc1 ≥ slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 150
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 200
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 250
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 100
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ bc1 ≥ slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 150
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 200
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 250
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 3 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >
slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

2000 100
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 150
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 200
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 250
col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backo f f 1 ≤ 31 ∧ bc1 ≤ 2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤

1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

36

PIRSES-GA-2011-295261 /MEALS Page 37 of 58 Public

this actual result.
The size of the submodels evaluated is also striking. In all cases, this size is about 0.15% to

0.50% of the size of the whole model. This seems to suggest that the full model has a very large
portion of behaviour that is largely irrelevant in regards to their actual contribution to the system’s
TAT. In fact, it is easy to see from Table 7 that although the waiting slots (slot1 and slot2) can
be increased to as much as 128 different slots, the simulations only observed waiting times up to
4 of these slots. Since the slot is chosen equiprobably within the same backoff level, this seems
to suggest that only the first two backoff levels were taken on all of the simulated executions. In
other words, it was never necessary to increase the backoff to more than this second level.

As in the previous case study, the choice of parameters for the number of traces to simulate
and the length of the simulated paths also plays a role. However, this is not as clear-cut as in the
previous case. Note that the size of the submodels evaluated seems to lie either near the 120000
state mark except for one that lies near the 460000 state mark, yielding a partial state space that is
roughly 4 times as large as the others. This also explains the discrepancy on the estimation times.
When the larger submodel was analysed, the estimation took nearly 7 times as much time as the
other estimations. The estimated values, however, were not much better than the ones estimated
over smaller partial state spaces. They all yielded an estimate equal to the actual value in the
case of the minimum turnaround time. In the case of the maximum turnaround time, estimations
over the larger partial state space did produce a value that is closer to the actual value than the
other estimations, but this difference is only marginal.

We may, however, find an explanation for such a disparity in the invariants inferred–see
Table 7. In the cases where a bigger submodel was generated, it turns out that the second sender
station was allowed to take the slot number 3 in some of the executions, while in the smaller
ones it never did. Since the choice of slot is uniform, and whenever the slot 2 is available the
slot 3 also is, we can only conclude that these differences are only a coincidental artefact of the
stochasticity of the sampling procedure.

Virus Infection Finally, we study the network virus infection scenario. As we described ear-
lier, this network has a cubic grid topology. For these experiments we chose to set the number N
of nodes per edge to be 3; that is, the network is comprised of a total of 27 nodes. This is more
than enough to quickly deplete all available memory before reaching a full state space. The total
potential state space is 327 ∼ 7 × 1012 states. The actual reachable states are less. For example, a
state where every node has its firewall down is unreachable (there should be at least one infected
node responsible for having broken the firewall of the last node). However, the reachable states
are still enough to make a complete analysis infeasible.

This is a similar situation to that of the BRP case study, so we focus on partial explorations
only. We will show, however, that in this case we have a way of computing the values of interest
in an analytical manner.

We start out with a non-deterministic model of the network, since we do not know which
distribution (if any) governs the races between the different nodes. At any given point any of the
nodes can choose to perform its action. However, the internal behaviour of each node is modelled
probabilistically.

37

PIRSES-GA-2011-295261 /MEALS Page 38 of 58 Public

According to the behaviour we modelled, the nodes are quite resistant to attack. An infected
node has a 0.01 chance to break a neighbour’s firewall. Once this firewall is down, it has a further
0.01 chance to infect it. A healthy node is much more efficient and has a 0.98 chance of repair
success. However, all nodes are agnostic respect the status of their neighbours. This means
that an infected node may attempt to reinfect an already infected node, and a healthy node may
attempt to repair a non-infected one.

The first property of interest is the minimum expected time to total infection of the network.
The maximum expected time is uninteresting, as it is infinite: a scheduler may choose to alter-
natively infect a node, and once it is infected, have a neighbour repair it, and do so indefinitely.
Therefore, there exist valid schedulers that avoid attaining total infection. Following the same
reasoning, we also wish to calculate the minimum expected time to propagating infection from
one corner of the cubic grid to the opposite corner, without requiring full infection

Even though we cannot perform a complete model check over the whole system, we can
calculate the values of the interesting properties in an analytical manner.

For the first property, the fastest way to achieve total infection is to infect each of the remain-
ing 26 nodes, without allowing for any recovery from the healthy nodes. Recall that infection
of a node implies first lowering its firewall. Since the probability of breaking the firewall and
infecting a vulnerable node is the same (0.01), the previous analysis amounts to studying a Neg-
ative Binomial distribution with parameter 0.99. In order to witness total infection, we need to
see 52 (26 firewall breaks + 26 infections) failure events. Therefore the expected time to total
infection is 52/0.01 = 5200.

The case for corner infection is similar. We can calculate the mean time to corner infection,
since the worst scheduler is the one that takes the fastest vector of infection from one corner to
another. This involves infecting just 6 nodes to reach the opposite corner. The expected time to
corner infection follows the same distribution as before. Following this known distribution, it
turns out that the expected time to infection of the opposite corner is 1200.

Partial exploration approach results As we did with the other case studies, we put our ap-
proach to the test. Although we managed to obtain correct results, in this case the values obtained
turned out to lie far from the actual values. Using our standard simulation parameters of simulat-
ing 1000-10000 traces of 1000-10000 steps each, we always obtained submodels for which the
bound to mean time of both total infection and corner infection was ∼ 200.

These results are a consequence of the simulated traces not capturing enough of the system’s
behaviour. This is caused, in turn, by the strongly non-deterministic nature of the model. It hap-
pens that, at any given point in simulation, there exist several possible actions to take. Namely,
since each node is unaware of its neighbours status, each node can try to break or infect its neigh-
bours (if itself is infected), or repair it (if it is not infected). At each point, there are in excess
of 27 choices possible, each with a simulation probability of 1/27 = 0.03737. This makes it ex-
tremely unlikely that a simulation will even infect 2 nodes. In fact, the probability of a simulation
immediately infecting two nodes is (0.03737 × 0.01)4 = 1.95 × 10−14. Even taking into account
that a simulation can take up to 10000 steps, the probability still remains extremely small. This
results in submodels that describe very little behaviour. However, the results are still correct,

38

PIRSES-GA-2011-295261 /MEALS Page 39 of 58 Public

 200

 400

 600

 800

 1000

 2000 4000 6000 8000 10000

Tr
ac

e
le

ng
th

Sample size
(number of traces)

Virus submodel sizes

OOM OOM

OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

Figure 12: Sizes of submodels of the Virus infection model for different simulation parameters.
OOM denotes submodels that exceeded available memory.

although arguably not as useful as in the other cases. In any case, recall that obtaining results
based on a full exploration is infeasible and, as we will see later, Monte Carlo approaches do not
help either.

In order to be able to perform a more meaningful analysis, we modelled a second version
of the virus infection where we restricted some behaviour. This second model introduces two
changes. First, the nodes do not perform repair operations. Therefore, once a node is infected,
it stays infected. Second, nodes are aware of their neighbours status. As a result, infected nodes
do not try to break broken neighbours, and do not try to infect infected neighbours. These two
changes significantly constrain the model, and reduce both the number of reachable states as well
as available transitions. Interestingly enough, the analytical results for the extreme case still hold
the same values, as the analysis is still valid under this constrained model.

From initial experimentation it was clear that running simulations as long as those we per-
formed for the previous case studies yielded submodels that were still large enough to be infea-
sible to analyse. Therefore, we reduced the length of simulations for this case study. The results
we present in this section were obtained by performing simulations where the number of traces
varied between 1000 and 10000 (stepping size by 1000), and the traces were between 100 and
1000 steps long (stepping size 100). Even with this model simplification and simulation param-
eters adjustment, we also ran into cases where memory was not enough to hold the submodel.
Figure 12 shows these results.

As a result we only report results on those submodels that we could analyse. Figures 13
and 14 show the bounds on minimum expected time to total and corner infection, respectively,

39

PIRSES-GA-2011-295261 /MEALS Page 40 of 58 Public

Table 8: Selection of virus infection submodel sizes and invariants for different parameter con-
figurations.

Traces Length States Invariant

1000 100 7728

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 = s232 ∧ s123 =
s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 =

s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 1 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤
1 ∧ s211 ≤ 2∧ s212 ≤ 2∧ s221 ≤ 1∧ s311 ≤ 1∧ s111 ≥ s112 ∧ s111 > s113 ∧ s111 ≥ s121 ∧ s111 > s122 ∧ s111 >

s123 ∧ true ∧ s111 > s131 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 > s221 ∧ s111 > s311 ∧ s112 ≥ s113 ∧ s112 ≥
s122 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤

s211 ∧ s123 ≤ s212 ∧ s123 ≤ s221 ∧ s123 ≤ s311 ∧ s211 ≥ s311

5000 100 17378

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 = s232 ∧ s123 =
s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 = s323 ∧ s123 = s331 ∧ s123 =

s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤
1 ∧ s211 ≤ 2∧ s212 ≤ 2∧ s221 ≤ 2∧ s311 ≤ 1∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 > s122 ∧ s111 >

s123 ∧ true ∧ s111 > s131 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥ s221 ∧ s111 > s311 ∧ s112 ≥ s113 ∧ s112 ≥
s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥ s123 ∧ s123 ≤ s131 ∧ s123 ≤ s211 ∧ s123 ≤

s212 ∧ s123 ≤ s221 ∧ s123 ≤ s311 ∧ s211 ≥ s311

1000 400 3128661

s133 = s223 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤
2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 1 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤

0 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 1 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s231 ≤ 1 ∧ s232 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤ 1 ∧ s321 ≤
1 ∧ s322 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 > s123 ∧ s111 ≥ s131 ∧ s111 ≥
s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 >

s231∧ s111 > s232∧ s111 ≥ s311∧ s111 > s312∧ s111 > s321∧ s111 > s322∧ s112 ≥ s113∧ s112 ≥ s133∧ s112 ≥
s232 ∧ s112 ≥ s322 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s232 ∧ s121 ≥ s322 ∧ s122 ≥
s133 ∧ s122 ≥ s232 ∧ s122 ≥ s322 ∧ s123 ≥ s133 ∧ s123 ≥ s322 ∧ s131 ≥ s133 ∧ s131 ≥ s322 ∧ s132 ≥
s133 ∧ s132 ≥ s232 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤
s231 ∧ s133 ≤ s232 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥ s231 ∧ s211 ≥

s311 ∧ s211 ≥ s321 ∧ s211 ≥ s322 ∧ s212 ≥ s213 ∧ s212 ≥ s312 ∧ s221 ≥ s232 ∧ s222 ≥ s232 ∧ s222 ≥ s322

4000 400 13385277

s223 = s232 ∧ s223 = s233 ∧ s223 = s313 ∧ s223 = s322 ∧ s223 = s323 ∧ s223 = s331 ∧ s223 = s332 ∧ s223 =
s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤

2 ∧ s133 ≤ 1 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s223 ≤ 0 ∧ s231 ≤ 2 ∧ s311 ≤ 2 ∧ s312 ≤
2 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥

s132 ∧ s111 > s133 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 >
s223 ∧ true ∧ s111 ≥ s231 ∧ s111 ≥ s311 ∧ s111 ≥ s312 ∧ s111 > s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥

s223∧ s113 ≥ s223∧ s121 ≥ s131∧ s121 ≥ s133∧ s121 ≥ s223∧ s122 ≥ s133∧ s122 ≥ s223∧ s123 ≥ s133∧ s123 ≥
s223∧ s131 ≥ s133∧ s131 ≥ s223∧ s132 ≥ s223∧ s133 ≤ s211∧ s133 ≥ s223∧ s211 ≥ s223∧ s211 ≥ s311∧ s212 ≥

s223 ∧ s213 ≥ s223 ∧ s221 ≥ s223 ∧ s222 ≥ s223 ∧ s223 ≤ s231 ∧ s223 ≤ s311 ∧ s223 ≤ s312 ∧ s223 ≤ s321

1000 500 10495696

s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤
2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤

0 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s223 ≤ 1 ∧ s231 ≤ 1 ∧ s311 ≤ 2 ∧ s312 ≤ 2 ∧ s321 ≤
1 ∧ s322 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥
s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 >

s223∧ s111 > s231∧ s111 ≥ s311∧ s111 ≥ s312∧ s111 > s321∧ s111 > s322∧ s112 ≥ s113∧ s112 ≥ s133∧ s112 ≥
s213∧ s112 ≥ s223∧ s113 ≥ s133∧ s113 ≥ s223∧ s121 ≥ s131∧ s121 ≥ s133∧ s121 ≥ s223∧ s121 ≥ s322∧ s122 ≥
s133∧ s122 ≥ s223∧ s123 ≥ s133∧ s123 ≥ s223∧ s131 ≥ s133∧ s132 ≥ s133∧ s133 ≤ s211∧ s133 ≤ s212∧ s133 ≤

s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s223 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤
s321 ∧ s133 ≤ s322 ∧ s211 ≥ s311 ∧ s211 ≥ s322 ∧ s212 ≥ s223 ∧ s212 ≥ s322 ∧ s213 ≥ s223 ∧ s312 ≥ s322

2000 500 21603820

s133 = s232 ∧ s133 = s233 ∧ s133 = s322 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 = s333 ∧ s111 ≤
2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤

0 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s223 ≤ 1 ∧ s231 ≤ 2 ∧ s311 ≤ 2 ∧ s312 ≤ 2 ∧ s313 ≤
1 ∧ s321 ≤ 2 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥
s132 ∧ s111 > s133 ∧ true ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 >

s223∧ s111 ≥ s231∧ s111 ≥ s311∧ s111 ≥ s312∧ s111 > s313∧ s111 ≥ s321∧ s112 ≥ s113∧ s112 ≥ s133∧ s112 ≥
s223∧ s112 ≥ s313∧ s113 ≥ s133∧ s113 ≥ s313∧ s121 ≥ s131∧ s121 ≥ s133∧ s121 ≥ s223∧ s121 ≥ s313∧ s122 ≥
s133∧ s122 ≥ s223∧ s123 ≥ s133∧ s131 ≥ s133∧ s132 ≥ s133∧ s133 ≤ s211∧ s133 ≤ s212∧ s133 ≤ s213∧ s133 ≤

s221 ∧ s133 ≤ s222 ∧ s133 ≤ s223 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s313 ∧ s133 ≤
s321 ∧ s211 ≥ s223 ∧ s211 ≥ s311 ∧ s211 ≥ s312 ∧ s211 ≥ s313 ∧ s213 ≥ s313 ∧ s221 ≥ s223 ∧ s222 ≥ s223

along with the time taken to arrive to those results. The results are still not close to the actual
values, but are much more informative than in the more relaxed case.

Perhaps a yet more interesting result from these graphs is that the obtained values are exactly
the same both for the total infection property as well as the corner infection, although verification
times are higher for the total infection case due to the added complexity of the formula that
describes this total infection. This suggests that the bound is being calculated to the point of
reaching the trap state rather than the actual infection states. This is confirmed by the invariants
obtained, that effectively prune the infection states out of the partial state space. Table 8 shows a
subset of the invariants for the submodels where partial verification was feasible.

Summary of results What all case studies and experiments indicate is that, through careful
partial exploration of the model, we can obtain bounds for reward estimation with very low

40

PIRSES-GA-2011-295261 /MEALS Page 41 of 58 Public

 0

 200

 400

 600

 800

 1000

10
00

,1
00

10
00

,2
00

10
00

,3
00

10
00

,4
00

10
00

,5
00

20
00

,1
00

20
00

,2
00

20
00

,3
00

20
00

,5
00

30
00

,1
00

30
00

,2
00

30
00

,3
00

30
00

,4
00

40
00

,1
00

40
00

,2
00

40
00

,3
00

40
00

,4
00

50
00

,1
00

50
00

,2
00

50
00

,3
00

60
00

,1
00

60
00

,2
00

70
00

,1
00

70
00

,2
00

70
00

,3
00

80
00

,1
00

80
00

,2
00

80
00

,3
00

90
00

,1
00

90
00

,2
00

10
00

0,
10

0

10
00

0,
20

0

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
in

im
um

 m
ea

n
tim

e
to

 c
or

ne
r i

nf
ec

tio
n

es
tim

at
io

n

Ve
rif

ic
at

io
n

tim
e

(s
)

Sample size (Traces, Length)

Minimum mean time to corner infection estimation
Verification time (s)

Figure 13: Minimum mean time to total infection. Bounds calculated on submodels obtained
through combinations of traces and trace lengths.

 0

 200

 400

 600

 800

 1000

10
00

,1
00

10
00

,2
00

10
00

,3
00

10
00

,4
00

10
00

,5
00

20
00

,1
00

20
00

,2
00

20
00

,3
00

20
00

,5
00

30
00

,1
00

30
00

,2
00

30
00

,3
00

30
00

,4
00

40
00

,1
00

40
00

,2
00

40
00

,3
00

40
00

,4
00

50
00

,1
00

50
00

,2
00

50
00

,3
00

60
00

,1
00

60
00

,2
00

70
00

,1
00

70
00

,2
00

70
00

,3
00

80
00

,1
00

80
00

,2
00

80
00

,3
00

90
00

,1
00

90
00

,2
00

10
00

0,
10

0

10
00

0,
20

0

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
in

im
um

 m
ea

n
tim

e
to

 c
or

ne
r i

nf
ec

tio
n

es
tim

at
io

n

Ve
rif

ic
at

io
n

tim
e

(s
)

Sample size (Traces, Length)

Minimum mean time to corner infection estimation
Verification time (s)

Figure 14: Minimum mean time to corner infection. Bounds calculated on submodels obtained
through combinations of traces and trace lengths.

41

PIRSES-GA-2011-295261 /MEALS Page 42 of 58 Public

percentages (< 1.5%) of the actual state space explored, and that these bounds are more useful
than those obtained through an analysis of the complete state space. Further, submodels that yield
these results also converge very quickly (much before the 24 hour timeout) to good estimation
results. While the estimation does constantly improve during the rest of the 24 hours, it does so
at a slower pace. This is good news, as even with the trace analysis, good results can still be
attained under the same time budget. From these results it follows that, for these case studies,
effort into estimating reward values through automatically obtained submodels through model
invariants of the full model pays off.

It must be noted that it is possible that the actual value of the reward being estimated is
much larger than any of those obtained. Of course, we are always limited by the fact that the
actual reward value cannot be calculated, neither with partial nor full models. It can be argued,
though, that it is often the case that the exact value is not needed as such; rather, satisfying a
minimum threshold value is a sufficient guarantee for the reliability measure being analysed.
Hence, methods which provide higher lower bounds faster are useful.

It is also interesting to note that the efficiency of our proposed approach does not seem to
depend on whether the states tested for reachability are actually reachable in the submodels or
not. For example, in both the Tandem Queue and BRP cases, the inferred invariants preclude the
failure states from appearing in the submodels. However, in the case of the WLAN protocol the
interesting state which describes the protocol success (and for which we aim at calculating its
turnaround time) is not cut out from the submodels by the invariant, so states that do satisfy the
property exist in the submodels (although it is possible that not all states that satisfy the property
are in the submodel).

We also found evidence that the degree of non-deterministic behaviour present in the model
plays a role on the quality of the estimations as well. This is a consequence of the simula-
tion phase, as non-determinism is simulated via an equiprobable distribution. The result of this
non-determinism resolution is that non-deterministic behaviour will tend to be explored in a flat
manner, not unlike a BFS exploration. The end result is that complex, deep behaviour is not
witnessed as frequently, which yields models that are poor in describing rich behaviour.

Question 2

Contrasting to the previous experimentation that aimed to compare our approach with probabilis-
tic model checking, Q2 aims to establish a comparison with Monte Carlo techniques. Experi-
mentation to answer this question is not straightforward due to the problem of generating suffi-
cient failing simulations to ensure given precision and confidence parameters. We first aimed at
performing a straightforward statistical analysis of the model. A first experiment was designed
requiring a result precision of 99%. As is standard for statistical analyses, we also required a
95% confidence.

A straightforward calculation of the necessary sample size based on the Chernoff bound [8]
determines that a total of ∼ 60000 samples are necessary, which does not seem excessive. How-
ever recall that each sample must eventually reach a state where the property can be determined
to be true or false. For systems where witnessing this behaviour is rare, this means that samples
may be extremely long. Through trial and error, and based on the bounds obtained in Q1, we

42

PIRSES-GA-2011-295261 /MEALS Page 43 of 58 Public

tried to determine the minimum length for samples to consistently reach failure states. For the
Tandem Queue full model—for which its MTTF was already estimated to be at least 7 × 107—
even samples as long as 4 × 108 do not consistently reach the failure state where the queues are
both full. Considering that generating a sample of such length takes 15 minutes, generation of
the full 60000 traces required leads to a 2 year period for sample generation. A similar situation
is found upon analysis of the BRP model.

Relaxing the precision requirement to 95% reduces the sample generation cost to 1 month.
Further relaxation to 90% still requires a week of execution. In fact, if we were to set a 24 hour
budget for sample generation, the precision obtained would be of just 70%. That is, the MTTF
estimate would be up to ±30% away from the true MTTF value with a 95% guarantee. Note that
this is a very conservative estimate as it is unlikely that all traces of length 4 × 108 generated in
the 24 hour period will consistency reach failure states, and possibly much lengthier traces will
be needed.

To overcome this limitation of standard Monte Carlo verification, we tried carrying out a
variation of Wald’s sequential testing [33]. This procedure generates samples while at the same
time it determines whether more samples are necessary or not. As a result of this online esti-
mation, it might require less samples than those mandated by the Chernoff bound, although it
cannot be stated beforehand how many samples will be needed exactly. This optimization does
not eliminate the need for samples to reach property-determining states, so sample length re-
mains a problem. We attempted to perform this analysis truncating generated samples at length
4 × 108 and treating them as failing samples once they reached this threshold. This is a similar
strategy as the one used in our approach (anything beyond the submodel is a failure). However,
this procedure yielded no results after 24 hours of execution, indicating that the sequential testing
still needed more evidence in order to produce a reasonable estimate.

Furthering this strategy of over-approximation of failures in Monte Carlo verification, we
generated samples over the submodels with highest MTTF obtained in Q1 rather than over the
full model. However, the problem of producing samples that consistently fail persisted, failing
to provide an estimate for MTTF in the budgeted time. These results suggest that Monte Carlo
approaches may be unsuitable to answer reliability questions in systems with high MTTF (i.e.,
rare failures).

Monte Carlo analysis of non-rare events The WLAN and Virus infection case studies, as
opposed to the previous ones, do not depict rare events. As we have already seen, the expected
times to the interesting properties are short enough that they should be attainable by a reasonable
simulation. However, both of these models are non-deterministic, and we will see in this section
that this characteristic introduces a second problem for Monte Carlo approaches.

As a way to illustrate this problem, we first set out to estimate the minimum and maximum
turnaround times for the WLAN collision avoidance protocol. Recall that we already analysed
this model completely and found these times to be 1725 and 4301.65 for the minimum and
maximum cases respectively. In the previous section, we already established that 60000 sam-
ples would be necessary for a robust estimation. Since we know that the maximum expected
turnaround time is ∼ 4300, we set the trace horizon to 10000 in order to have a reasonable con-

43

PIRSES-GA-2011-295261 /MEALS Page 44 of 58 Public

fidence that every trace would hit the success state (i.e., one where both stations have sent their
data successfully).

The obtained results are disconcerting, however. In both cases, the estimation procedure was
efficient, as it only required 80 seconds of execution in both cases. The reason for this fast sample
generation is that not only is the bound low, but the required property is reached on an average
of 25 steps as well. This is because, unlike the other case studies, the reward structure for the
WLAN case assigns a reward of at least 50 to transitions. Because of these reasons, most samples
are very short and are generated very quickly.

The estimations themselves are the problem in this case. For the minimum turnaround es-
timation, we obtained a time of 2729.45 ± 0.1929 with 95% confidence. Surprisingly enough,
the estimation for the maximum turnaround is extremely similar: 2731.06 ± 0.1915 with 95%
confidence. Not only are both results the same, they are equally incorrect.

The estimation analysis for the Virus infection case does not fare better. We have already
noted that we could calculate the minimum time to complete infection and the minimum time to
infection of the opposite corner network node in an analytical way. We already calculated these
expected times to be 5200 and 1200 respectively. Additionally, we know that the maximum
expected time is actually infinite. This makes the setting of a trace horizon as difficult as in the
Tandem Queue and BRP cases. In fact, experimentation showed that traces as long as 107 steps
long do not consistently reach the target state. This situation renders the estimation analysis as
infeasible as in the BRP and Tandem Queue cases.

On the other hand, since the minimum bounds are low enough, we set out to use them as
bounds for a bounded probability analysis. We performed Monte Carlo estimations of the proba-
bility of reaching total infection before the expected 5200 steps, and the probability of infecting
the opposite node before the 1200 steps expected in that case. The actual values can be easily
obtained by analysing the negative binomial distribution.

The results for these analyses are included in Table 9. Again, it can easily be seen that these
results cannot be correct.

These (incorrect) results can be easily explained, however. Unfortunately, Monte Carlo ap-
proaches are not very good at dealing with non-determinism [18]. Statistical simulation ap-
proaches are based on the fact that each simulated sample can be unequivocally quantified with
its probability of being witnessed. This is not true once non-determinism is introduced into the
model, since the non-deterministic choices cannot be quantified. We have attempted to quantify
these choices in a way equivalent to that of our partial exploration approach, that is, considering
non-deterministic choices as equiprobable. This, however, introduces a bias that is difficult in
general to remove at the moment of performing the actual estimation.

This uniform choice explains why both minimum and maximum estimations resulted in the
same values. Since the neither the best nor the worst schedulers are uniform in their choice, these
extreme behaviours are not witnessed, and therefore cannot be estimated. The second problem
is that turning a non-deterministic choice into a probabilistic one introduces a bias that cannot be
estimated itself. As a result, estimation results when non-determinism is present are meaningless.

Surprisingly, this uniformity also explains why the Monte Carlo approach yielded a result
close to the actual one in the case of total virus infection, but not in the case of corner infection. In
the case of total infection, since every node needs to be infected, every non-deterministic choice

44

PIRSES-GA-2011-295261 /MEALS Page 45 of 58 Public

Table 9: Monte Carlo estimations for the WLAN collision avoidance protocol and Virus infection
systems.

Property Known value Time to estimation Estimation
WLAN minimum

turnaround 1725.00 81.67 sec. 2729.45 ± 0.1929

WLAN maximum
turnaround 4301.65 80.22 sec. 2731.06 ± 0.1915

Max. prob. of total
network infection
before 5200 steps

0.51872 20 hours 0.00 ± 0.00

Max. prob. of corner
infection before 1200

steps
0.53898 4 hours 0.00 ± 0.00

Max. prob. of total
network infection
before 5200 steps

(constrained model)

0.51872 693.34 sec. 0.54200 ± 9.8 × 10−4

Max. prob. of corner
infection before 1200

steps (constrained
model)

0.53898 166.23 sec. 0.00 ± 0.00

45

PIRSES-GA-2011-295261 /MEALS Page 46 of 58 Public

needs to be taken. Since the Monte Carlo simulations are more or less uniform in resolving
non-determinism, they turn out to actually be selected, and therefore provide a result close to the
true one. However, in the case of corner infection, only non-deterministic options that lead to
advance towards the corner have to be selected. This is not the case for uniform non-determinism
resolution, and therefore the (wrongly) estimated probability is 0.

Question 3

In this section, we compare the results obtained while answering Q1 with the results a practitioner
might obtain by specifying invariants herself, based on her knowledge of the model. Prior to
experimenting on automatically generated invariants, we analysed the models and came up with
at least one invariant for each one. These invariants were selected based on our understanding
that their negation is a necessary condition for reaching failure states.

For the Tandem Queue case study, we established the invariant to be that the total number
of enqueued processes globally in both queues is less than c, and ran experiments for different
values of c ranging up to the total capacity of the queueing system (2 ×C). A failure entails that
the invariant does not hold for c < 2 × C, and that for c = 2 × C the resulting invariant-driven
submodel is exactly the whole model. In our experiments we found that there exist multiple c
values for which the invariant resulted in a significantly higher MTTF than the MTTF estimated
for the full model.

In Table 10 results are presented for various invariant-driven submodel parameter values
together with estimated MTTF and computation time using the BGS method.

From the table it follows that the best MTTF is obtained for the submodel which considers
up to 120 processes queued (MTTF > 5.5 ∗ 107).

In the case of the Bounded Retransmission Protocol case study, a parametric invariant chosen
was that the number of retries performed while transmitting a single file was less than maxretries.
We ran experiments for different values of maxretries ranging up to the true maximum number
of retries (256). A failure entails that the invariant does not hold for maxretries < 256. For
retries = maxretries the resulting invariant-driven submodel is the whole model.

Again, we show a selection of submodels, ranging from the very small upwards to almost the
complete model. Results for these experiments are depicted in Table 10. Estimation results are
even more significant than for the previous case study considering that analysis of the full model
with 256 retries was not possible within the memory budget. However, the trend indicates that
augmenting the number of retries considered does not yield better MTTF and in fact, a very low
number of retries gives a much higher MTTF.

Although the WLAN collision avoidance protocol could be verified in its totality, we never-
theless ventured an invariant that we thought would be useful in reducing the state space. It turns
out in this case that our proposed invariant is much simpler than those inferred by the automatic
approach, as our initial belief was that bounding the time a sending station is forced to backoff,
the model would be reduced. This interpretation, however, turned out to be erroneous. In fact,
regardless of how many times a sending station found a collision, the backoff time is chosen
uniformly over the whole possible range. The results we obtained by applying these invariants
are presented in Table 11. Note that even restricting the backoff time to just one value (zero) does

46

PIRSES-GA-2011-295261 /MEALS Page 47 of 58 Public

Table 10: Experimental results for tandem queue (2 × 1200 processes) and BRP (256 retries)
mean times failure times.

c Size BGS
MTTF Time

20 2398 st
0.83·103 68.75 s6560 tr

40 8778 st
1.12·104 82.72 s24280 tr

60 19158 st
1.25·105 276.69 s53200 tr

80 33538 st
1.36·106 64.06 m93320 tr

100 51918 st
1.49·107 17.93 h144640 tr

120 74298 st
5.50·107 TO207160 tr

140 100678 st
4.63·107 TO280880 tr

160 131058 st
3.17·107 TO365800 tr

180 165438 st
2.31·107 TO461920 tr

200 203818 st
1.66·107 TO569240 tr

900 4067118 st
8.41·105 TO11381440 tr

1600 11219198 st
4.20·105 TO31407194 tr

2400 14362898 st
4.20·105 TO40213194 tr

retries Size BGS
MTTF Time

1 366915 st
1.50·106 21.06 h489574 tr

2 480460 st
1.69·107 TO646758 tr

5 821095 st
1.08·107 TO1118310 tr

10 1388820 st
6.29·106 TO1904230 tr

50 5930620 st
1.39·106 TO8191590 tr

150 17285120 st
4.86·105 TO23909990 tr

250 28639620 st
2.73·105 TO39628390 tr

256 N/A st N/A OOMN/A tr

not really reduce the size of the model. Although for smaller values of this bound the verification
time is reduced drastically, these execution times are still much larger than those that result from
the automatically inferred invariants. Further, the turnaround times obtained, both minimum and
maximum, are very poor contrasted with those that resulted from the automatic approach.

Finally, we turn our attention to the Virus infection model. The manually stated invariants in
this case deal with limiting the number of infected nodes that can coexist at once. We first applied
these invariants to the original, unconstrained model. As was the case with the results obtained
with our approach, these manually inferred invariants can’t restrict the model size enough. Set-
ting the limit to just two infected nodes, we quickly obtained a bound to minimum mean time to

47

PIRSES-GA-2011-295261 /MEALS Page 48 of 58 Public

Table 11: Selection of WLAN submodel TAT evaluation results for different manual invariants.

backoff1 and backoff2 bounding Model checking
Max. backoff time States Min. TAT Time Max. TAT Time

0 59185713 465.97 109.36s 1201.71 176.88s
5 64160812 559.68 206.37s 1273.44 224.98s

10 68239697 686.78 304.47s 1460.94 286.30s
15 71431132 901.65 440.29s 1764.45 364.90s
20 73735117 1157.81 614.94s 2244.19 435.67s
25 75151652 1392.19 641.49s 2922.23 781.37s
30 75680737 1665.63 490.05s 3846.17 1085.87s

Table 12: Experimental results for mean times to total infection with manual invariants.

infected Size Min. time to infection
Value Time

1 74 st 199.88 ∼ 0.00 s222 tr

2 1269 st 399.69 0.07 s5233 tr

3 19181 st 599.55 0.64 s99607 tr

4 351990 st 799.43 17.88 s2215026 tr

5 6035220 st 999.32 414.1444517828 tr

≥ 6 N/A st N/A OOMN/A tr

failure of ∼ 200, the same value obtained with our approach. However, raising this limit to three
infected nodes makes analysis infeasible.

Consequently, we applied these same manual invariants to the constrained infection model.
The results of these analyses are pictured in Tables 12 and 13.

In this case, it can be seen that these manually posed invariants perform slightly better than
the automatically inferred ones. More specifically, increasing the limit of infected nodes by one
results in model size increases that do not grow as dramatically as in the case of growing the
number of traces and their length in the automatic approach. This allows for better submodels to
be obtained and therefore better bounds, up to 5 infected nodes. On the other hand, the obtained
bounds on times to failure and probabilities are still far from the actual values.

Summary of manual invariants analyses In the cases where the manual invariants did suc-
ceed, it is interesting to note that for relatively small submodels (e.g. c = 80 on the Tandem
Queue case study, and maxretries < 2 for BRP) the estimated MTTF is much higher than the

48

PIRSES-GA-2011-295261 /MEALS Page 49 of 58 Public

Table 13: Experimental results for mean times to corner infection with manual invariants.

infected Size Min. time to infection
Value Time

1 74 st 199.88 ∼ 0.00 s222 tr

2 1269 st 399.68 0.07 s5233 tr

3 19181 st 599.55 2.79 s99607 tr

4 351990 st 799.43 51.71 s2215026 tr

5 6035220 st 999.32 1241.86 s44517828 tr

≥ 6 N/A st N/A OOMN/A tr

MTTF computed over the complete model. Still, while the manual invariant approach did pro-
vide useful bounds, it turns out that the best MTTF values generated by the automatic approach
obtains slightly higher bounds for the same time budget. For the Tandem Queue study, the best
automatically estimated MTTF is of ∼ 7 × 107 against ∼ 5.5 × 107. For the BRP case study the
best automatic estimation is ∼ 2.5 × 107 versus ∼ 1.69 × 107 when manual intervention is ap-
plied. The case of the Virus infection model is atypical, as the manually posed invariants slightly
outperformed the automatically inferred ones.

An initial interpretation of the results would suggest that, except for the WLAN case study,
automatically inferred invariants do not have an added advantage over manually suggested ones.
However, there is an added cost in understanding a protocol model and being able to suggest
which factors are the most relevant in increasing a model size or in making numerical computa-
tion infeasible. This cost is in general not trivial, and requires a thorough understanding of the
modelling formalisms as well as the verification procedures under the hood. These are not, a
priori, traits that every engineer can be reasonably expected to have.

5 Discussion and Related Work
In this report, we have presented a fully automated technique for reward estimation of system
models. Experimental results have shown that this approach may provide more useful estima-
tions than both standard probabilistic model checking and Monte Carlo verification, at a fraction
of the cost required by such techniques. We have also observed that these results are especially
notorious when the properties under analysis are probabilistically rare. However, some param-
eters exist that need to be set for the approach to work. First, there is the matter of the size of
the simulation set and the length of the simulated traces; and second, in the case where non-
determinism is present in the model under analysis, a strategy is necessary for solving these

49

PIRSES-GA-2011-295261 /MEALS Page 50 of 58 Public

non-deterministic choices during the simulation phase.
Regarding the size of the simulation set and its traces, good news is that our experimentation

has shown that, at least for the examples studied, very good results can be obtained through a
relatively small set of short traces. Although the elaboration of guidelines on how to set the
number and length of traces is beyond the scope of this report, results show that there may
be a broad combination of parameter values for which high estimation results are obtained in
reasonable time. Further, overshooting these parameters does not have a dramatic impact in the
resulting submodel size, so erring in the side of caution and choosing larger parameters does not
seem to be a cause for concern.

It is important to note that exploration of an appropriate parameter space can be done concur-
rently, taking as the final reward estimation the highest of the bounds obtained. Such an approach
would leverage on the fact that, as can be seen from Figures 5 and 8, the estimation of results
over partial explorations quickly converges to a value, while it refines this value over the rest of
the alloted time. Note from these Figures that an initial good estimation can be obtained in less
than an hour. Future work is focused on taking advantage of this fact to estimate good trace and
trace length parameters. This approach would call for an initial spawning of several concurrent
estimation processes, each with a different valuation for trace and trace length generation. Given
the initial estimation, we can quickly compare which parameter combinations outperform the
others. These parameters could then be further refined and compared, and then settling with the
best parameters obtained after a given set-up time has elapsed. This approach could also be en-
hanced with heuristic searches that look for the best parameter combination. All of this requires
additional experimentation and remains future work.

Note that this set-up time can also be set low enough to still be much less than the time
required to build the full model. We also recall that full model probabilistic checking cannot
exploit concurrent computation in such a way. Monte Carlo verification can be applied concur-
rently. However, as we have seen in our experimentation in this section, the number of traces
and their length are so large that massive parallelisation would be required to diminish its im-
pact. This significant time cost for sample generation would not be outweighed by concurrent
execution. Further experimentation is needed to address this point.

As was previously mentioned, most probabilistic model checkers [24, 20, 44, 49, 45] provide
functionality that may either reduce the time required to obtain results, or reduce the memory
footprint required for verification, such as symmetry reductions [26], lumping [13] and several
numerical methods. All these optimizations are orthogonal to the model checking procedure
itself. Our work relies on probabilistic model checking and the experiments were run on PRISM,
which implements some of these optimizations.

In those settings where exhaustive probabilistic model checking of models is intractable due
to required memory size or verification time, statistical simulation has proven to be an effective
technique. As was mentioned in section 4, an important issue with simulation approaches is
that they tend to work well mostly in the case that the specified properties are bounded in time,
i.e. when these properties can be written in the form ψU≤Tρ for a fixed T . This is so because
estimation of the random variable Xφ by means of a sample of traces σi requires that the question
of whether M,σi |= φ or not be answered in a definite way for each trace σi in the sample set.
If the formula φ is temporally bounded, then termination is guaranteed when evaluating its truth

50

PIRSES-GA-2011-295261 /MEALS Page 51 of 58 Public

for the traces, but for temporally unbounded formulae such termination is threatened. In such
cases, generating traces within acceptable length bounds that answer the property definitively
can be very unlikely. To address this problem biased sampling [43, 37, 29, 3] has been studied.
However, bias to sampling must be done manually resulting in an impact on the analysis results
that cannot be quantified in general. The result obtained by our approach is guaranteed to be a
true bound to the reward values being sought after.

Recent work by Younes et. al. [50] proposes two novel Monte Carlo approaches that do not
rely on biased sampling. However, one of them may require an inordinate number of samples
to produce results; while the other relies on reachability analysis, which requires the full model
to be constructed, relinquishing one of the key advantages of Monte Carlo model checking over
probabilistic model checking. The work in [16] also presents a bounded statistical approach for
checking unbounded properties that does not need the full model to be constructed. However,
the bound on the necessary trace length is excessively large, as traces may be as long as the
total number of states in the model. Other works [25] acknowledge the problem of generating
traces exhibiting the failure (or guaranteeing its absence). This approach relies on extreme value
theory to produce results. Unfortunately, extreme values techniques still require a good number
of actual samples exhibiting the property, as these techniques require the inference of a fitting
distribution. Having too few samples to work with usually results in fitting distributions that are
actually different than the one being analysed [10].

As noted, an additional point for analysis lies in the solving of non-deterministic choices
during simulation. Several works have attempted to solve this problem, especially in the con-
text of generating simulations for Monte Carlo estimation. In these cases, it is critical that the
simulation of non-deterministic transitions is performed in such a way that there is no bias in
the generation (or alternatively, in such a way that this bias can be controlled and quantified), as
doing so otherwise would introduce errors in the final estimation. In [18] the authors leverage
on the fact that, usually, verification is performed while looking for the worst and best cases. In
that sense, only the two schedulers that induce the best and worst results are of interest, and the
authors propose a self-adjusting simulation algorithm that converges to these extremes.

In [6], rather than focusing on the problem of biasing scheduler selection, the authors aim at
detecting whether non-determinism can be ignored safely. As the authors point out, it is often
the case that non-deterministic choices are actually behaviour-equivalent. By detecting these
situations via partial order methods, it can be used to identify situations where non-determinism
can be ignored while keeping only one of the possible choices when performing simulation.

In our present work, we have opted to resolve non-determinism by simply assuming an
equiprobable distribution over the possible non-deterministic choices at a given state. How-
ever, it must be noted that, in the context of our work, any method of resolving non-determinism
would have been acceptable, as we always produce a lower bound to the actual reward value,
regardless of the procedure used for simulation. This is not to say that any non-determinism
resolution method will produce the same outcome, as different choices may lead to different in-
variants. Although the results presented in this report are promising, it still remains to be seen if
different approaches to the initial simulation might produce even better results. In particular, the
choice of simulating via equiprobable distribution of non-deterministic transitions is a double-
edged sword. On the one hand, by establishing a balanced choice, it maximises the chance of

51

PIRSES-GA-2011-295261 /MEALS Page 52 of 58 Public

exploring most of the non-deterministic alternatives so that verification of all of them is carried
out at a later step. But, on the other hand, some of this explored behaviour might possibly be irrel-
evant when calculating the maximum (or minimum) rewards, as the best and/or worst schedulers
might never take some of the explored non-deterministic transitions. In this sense, adapting the
approach of [18] to the simulation step of our framework might prove to be beneficial. Although
that proposed approach is geared towards model checking of probabilistic properties rather than
reward calculations, it may be adapted to our needs. It is worth noting, however, that such an
approach would need to carry out two simulation steps as opposed to one. This is because the
approach in [18] aims at simulating executions that resemble those of the extreme scheduler that
is of interest, which may be either the one providing the minimum value, or the maximum, but
not both at the same time. In that sense, if we are interested in calculating both extreme values,
we would need different simulation sets, one for each extreme.

The analysis of system behaviour that exhibits rare yet relevant events (e.g. failures) is the
subject of focused study within the simulation community as well. A technique that is usu-
ally used in conjunction with stochastic processes that have rare events is that of importance
sampling [40]. Roughly speaking, the idea of importance sampling is to replace the original
process’s distribution for another more likely to generate the (originally) rare event during the
sample generation. The distribution replacement is chosen so that results from analyses for the
new distribution can be translated back to results valid for the original distribution. Although
this is a promising approach, finding suitable replacement distributions is a complex and ad-hoc
task for which further research and expertise is necessary, as different system models possibly
require different sampling distributions. Further, special care is required when proposing im-
portance sampling distributions. In fact, it is possible to choose a replacement distribution such
that it makes the simulation process more costly and requiring even more samples than the orig-
inal one. In practice, choosing optimal replacement distributions is extremely difficult and not
suitable for a general, complex process model.

Another promising simulation technique that also focuses on rare events is that of sample
splitting [40, 39], most notably the RESTART implementation [47] which, roughly, rather than
starting each simulation from the initial state, it does so from a state s visited in a previous sim-
ulation and from which reaching a rare event is more likely. The likelihood of reaching state s
from the initial state is taken into account for producing the final analysis results. Key to the
application of these techniques is making appropriate decisions on where to restart simulations.
These decisions demand deep understanding of both the model and the underlying splitting tech-
nique, as naïve splitting may not help the verification effort. Worse, it could even hamper the
effort if the splits are not done in such a way that they are incrementally closer to fulfilling the
rare event. Another interesting approach is that of [38], which is geared toward simulating rare
events, although restricted to Stochastic Petri Nets.

Finally, common to both the Monte Carlo approach and the simulation techniques discussed
is the fact that they are inherently statistical results. As such, there is always a non-zero probabil-
ity that the results obtained are completely off the mark. Further reducing this error probability
may require excessive amount of additional traces to be sampled in order to obtain the guarantee.
Our technique, though conservative in the bounds it obtains, is definitive in its answers.

The work we present in this report is concerned with the verification of systems that are

52

PIRSES-GA-2011-295261 /MEALS Page 53 of 58 Public

specified through the use of automata-like languages. We believe our approach can be extended
in order to analyse source code as well. In this regard, there have been promising advances
similar to our work. For example in [15, 7], symbolic execution is used to analyse the source
code, and that information is used to direct a sampling approach towards interesting portions of
the source code. The setting for this work is different and complementary, though, as it focuses on
non-reactive, non-probabilistic software (by quantifying the usage profile of program variables);
and the inference of conditions for reaching a given portion of the code. Further, this approach
requires the solution space to be built and available for analysis; we argue that this, in our setting,
is prohibitive in size.

On a related note, [30] has tackled the problem of synthesising appropriate schedulers for at-
taining a desired probability, a goal that is closely related to finding the extrema probabilities in
the presence of non-determinism. Approaches such as this could benefit our technique by resolv-
ing non-determinism in a way that later directs verification to the more extreme (and interesting)
values.

6 Conclusions and Further Work
In this report we have proposed an approach to estimating mean reward values for probabilistic
system models. The approach is a novel combination of simulation, invariant inference and
probabilistic model checking. We report on experiments that suggest that reward estimation
using this technique can be more effective than (full model) probabilistic and statistical model
checking for system models. This increase in effectiveness is most evident in the case of models
where the properties under analysis are rare events, or else are unbounded in time. In addition,
our estimation approach also supports non-determinism besides probabilistic behaviour.

We believe the notion of reliability analysis over partial yet systematic explorations offers an
alternative to, and hence complements, exhaustive model exploration–as in probabilistic model
checking–and partial random exploration–as in statistical model checking.

The experimental results presented in this report are promising. Our experiments show
that, for system models extracted from reliability and probabilistic verification literature, lower
bounds can be obtained with little effort compared to full model verification. More specifically,
we have shown that we can obtain reliability values that allow for strong dependability argu-
ments, while only performing an exploration of at most 5% of the projected total state space of
the system. These savings also translate into verification time as well, and the additional effort
required for inferring submodels remains a good trade-off taking into account the quality of the
obtained results.

The obtained results are more striking when the behaviours under analysis are rare events,
and they have not been witnessed in the (already small) submodel being explored. However,
experiments have also shown that our technique is effective even in the case of systems where
the behaviour of interest is not rare, and even when some of the states exhibiting this behaviour
are present in the obtained submodels. This evidence provides encouragement towards arguing
for generalisation of results.

We also believe that further experimentation is required to achieve a better understanding of

53

PIRSES-GA-2011-295261 /MEALS Page 54 of 58 Public

the influence of parameter choices in the process. In particular, an area that calls for future work
is looking for a better understanding of the relationship between the simulated set of traces (both
its size as the trace length) and the submodels that result from them, as well as the estimations that
can be expected from them. This understanding should lead to heuristics for setting appropriate
values to these parameters in order to achieve more cost-effective submodels.

Bibliography
[1] A. Aziz, V. Singhal, F. Balarin, R.K. Brayton, and A. Sangiovanni-Vincentelli. It Usually

Works: The Temporal Logic of Stochastic Systems. Lecture Notes in Computer Science,
pages 155–155, 1995.

[2] C. Baier and J.P. Katoen. Principles of model checking. MIT press, 2008.

[3] S. Basu, A. Ghosh, and R. He. Approximate model checking of PCTL involving unbounded
path properties. ICFEM’09, pages 326–346, 2009.

[4] A. Bianco and L. De Alfaro. Model checking of probabilistic and nondeterministic systems.
In Foundations of Software Technology and Theoretical Computer Science, pages 499–513.
Springer, 1995.

[5] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
Proc. Foundations of Software Technology and Theoretical Computer Science, 1026:499–
513, 1995.

[6] J. Bogdoll, L.M. Ferrer Fioriti, A. Hartmanns, and H. Hermanns. Partial order methods for
statistical model checking and simulation. In FMOODS/FORTE, pages 59–74, 2011.

[7] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Păsăreanu, and Willem
Visser. Compositional solution space quantification for probabilistic software analysis. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 123–132, New York, NY, USA, 2014. ACM.

[8] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics, 23(4):493–507, 1952.

[9] Edmund M Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State space reduction
using partial order techniques. International Journal on Software Tools for Technology
Transfer, 2(3):279–287, 1999.

[10] S. Coles. An Introduction to Statistical Modelling of Extreme Values. Springer Series in
Statistics. Springer, 2001.

[11] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of probabilistic
systems by successive refinements. In PAPM/PROBMIV, volume 2165 of LNCS, pages
39–56. Springer, 2001.

54

PIRSES-GA-2011-295261 /MEALS Page 55 of 58 Public

[12] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, and Mieke Massink. Towards a
logic for performance and mobility. Electronic Notes in Theoretical Computer Science,
153(2):161–175, 2006.

[13] T. Dean and R. Givan. Model minimization in Markov decision processes. In Proceedings
of the National Conference on Artificial Intelligence, pages 106–111, 1997.

[14] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Sci. Comput. Program., 69(1-3):35–45, December 2007.

[15] Antonio Filieri, Corina S. Pasareanu, and Willem Visser. Reliability analysis in symbolic
pathfinder. In 35th International Conference on Software Engineering, ICSE ’13, San Fran-
cisco, CA, USA, May 18-26, 2013, pages 622–631, 2013.

[16] Ru He, Paul Jennings, Samik Basu, Arka P Ghosh, and Huaiqing Wu. A bounded statis-
tical approach for model checking of unbounded until properties. In Proceedings of the
IEEE/ACM international conference on Automated software engineering, pages 225–234.
ACM, 2010.

[17] L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link protocol. In Proc.
International Workshop on Types for Proofs and Programs (TYPES’93), volume 806 of
LNCS. Springer, 1994.

[18] D. Henriques, J. Martins, P. Zuliani, A. Platzer, and E. Clarke. Statistical model checking
for markov decision processes. In QEST, pages 84–93, 2012.

[19] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision diagrams to
represent and analyse continuous time Markov chains. In Proc. NSMC’99, pages 188–207.
Prensas Universitarias de Zaragoza, 1999.

[20] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic
verification of probabilistic systems. In TACAS’06 Proceedings, volume 3920, pages 441–
444. Springer, 2006.

[21] Institute of Electrical and Electronic Engineers. IEEE Standard for Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, 1997.

[22] L.H. Jamieson and B.C. Dean. Weighted alliances in graphs. Congressus Numerantium,
187:76, 2007.

[23] IB Kalambi. A comparison of three iterative methods for the solution of linear equations.
Journal of Applied Sciences and Environmental Management, 12(4), 2008.

[24] Joost-Pieter Katoen, Ivan S Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N
Jansen. The ins and outs of the probabilistic model checker mrmc. Performance evaluation,
68(2):90–104, 2011.

55

PIRSES-GA-2011-295261 /MEALS Page 56 of 58 Public

[25] L.M. Kaufman, B.W. Johnson, and J.B. Dugan. Coverage estimation using statistics of
the extremes for when testing reveals no failures. IEEE Transactions on Computers, pages
3–12, 2002.

[26] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model
checking. In Computer Aided Verification, pages 234–248. Springer, 2006.

[27] Marta Kwiatkowska, Gethin Norman, David Parker, and Maria Grazia Vigliotti. Probabilis-
tic mobile ambients. Theoretical Computer Science, 410(12):1272–1303, 2009.

[28] Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient verifica-
tion of real-time systems: compact data structure and state-space reduction. In Real-Time
Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 14–24. IEEE, 1997.

[29] R. Lassaigne and S. Peyronnet. Probabilistic verification and approximation. ENTCS,
143:101–114, 2006.

[30] Kasper Luckow, Corina S. Păsăreanu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and approximate probabilistic symbolic execution for nondeterministic pro-
grams. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 575–586, New York, NY, USA, 2014. ACM.

[31] Michael R. Lyu. Handbook of software reliability engineering. McGraw-Hill, Inc., Hight-
stown, NJ, USA, 1996.

[32] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction,
Application. Software Engineering and Technology. McGraw-Hill, 1987.

[33] V. Nimal. Statistical approaches for probabilistic model checking. M.Sc. Dissertation,
Oxford University Computing Laboratory, 2010.

[34] Esteban Pavese, Víctor Braberman, and Sebastian Uchitel. My model checker died!: how
well did it do? In QUOVADIS/ICSE’10, pages 33–40. ACM, 2010.

[35] Esteban Pavese, Víctor Braberman, and Sebastian Uchitel. Automated reliability estimation
over partial systematic explorations. In Proceedings of the 2013 International Conference
on Software Engineering, pages 602–611. IEEE Press, 2013.

[36] Muhammad A Qureshi and William H Sanders. A new methodology for calculating distri-
butions of reward accumulated during a finite interval. In Fault Tolerant Computing, 1996.,
Proceedings of Annual Symposium on, pages 116–125. IEEE, 1996.

[37] D. Rabih and N. Pekergin. Statistical model checking using perfect simulation. In Proc.
ATVA’09, pages 120–134. Springer-Verlag, 2009.

56

PIRSES-GA-2011-295261 /MEALS Page 57 of 58 Public

[38] Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner Scheinhardt, and Boudewijn Haverkort.
Automated rare event simulation for stochastic petri nets. In Kaustubh Joshi, Markus
Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio, editors, Quantitative Evaluation of
Systems, volume 8054 of Lecture Notes in Computer Science, pages 372–388. Springer
Berlin Heidelberg, 2013.

[39] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag New York,
2005.

[40] R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo method (Series in Prob-
ability and Statistics), volume 707. Wiley, 2008.

[41] Shlomo S Sawilowsky. You think you?ve got trivials? Journal of Modern Applied Statisti-
cal Methods, 2(1):21, 2003.

[42] R. Segala. Modelling and verification of randomized distributed real time systems. PhD
thesis, Massachusetts Institute of Technology, 1995.

[43] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems.
In Proc. CAV’05, pages 266–280. Springer, 2005.

[44] K. Sen, M. Viswanathan, and G. Agha. VESTA: A statistical model-checker and analyzer
for probabilistic systems. In QEST’05, pages 251–252. IEEE, 2005.

[45] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible verification under
fairness. volume 5643 of Lecture Notes in Computer Science, pages 709–714. Springer,
2009.

[46] M. Vardi. Automatic verification of probabilistic concurrent finite state programs. In SFCS
1985, pages 327–338. IEEE, October 1985.

[47] Manuel Villén-Altamirano and José Villén-Altamirano. RESTART: a straightforward
method for fast simulation of rare events. In Proc. WSC’94, pages 282–289, San Diego,
USA, 1994.

[48] Zbigniew I. Woźnicki. On performance of {SOR} method for solving nonsymmetric linear
systems. Journal of Computational and Applied Mathematics, 137(1):145 – 176, 2001.

[49] H. Younes. Ymer: A statistical model checker. In Computer Aided Verification, pages
171–179. Springer, 2005.

[50] H. Younes, E. Clarke, and P. Zuliani. Statistical verification of probabilistic properties with
unbounded until. Formal Methods: Foundations and Applications, pages 144–160, 2011.

57

PIRSES-GA-2011-295261 /MEALS Page 58 of 58 Public

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Río Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

58

