
PIRSES-GA-2011-295261 /MEALS
September 3, 2014

Page 1 of 18

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 5.1 / 2

Title of Deliverable: Revisiting Compatibility of Input-Output Modal Transition
Systems

Contractual Date of Delivery to the CEC: 1-Apr-2013
Actual Date of Delivery to the CEC: 15-Mar-2013
Organisation name of lead contractor for this deliverable: IMP
Author(s): Victor Braberman, Ivo Krka, Nicolás D’Ippolito,

Nenad Medvidović, Sebastián Uchitel
Participants(s): UBA, IMP
Work package contributing to the deliverable: WP5
Nature: R
Dissemination Level: Public
Total number of pages: 18
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Modern software systems are typically built of components that communicate through their external interfaces. The
external behavior of a component can be effectively described using finite state automata-based formalisms. Such
component models can then used for varied analyses. For example, interface automata, which model the behavior of
components in terms of component states and transitions between them, can be used to check whether the resulting
system is compatible. By contrast, partial-behavior modeling formalisms, such as modal transition systems, can be used
to capture and then verify properties of sets of prospective component implementations that satisfy an incomplete re-
quirements specification. In this document, we study how pairwise compatibility should be defined for partial-behavior
models. To this end, we describe the limitations of the existing compatibility definitions, propose a set of novel com-
patibility notions for modal interface automata, and propose efficient, correct, and complete compatibility checking
procedures.

Note:

This deliverable is based on presented at the Formal Methods Conference 2014.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 18 Public

Contents
1 Introduction 3

2 Background 4
2.1 Transition Systems . 4
2.2 Interface Compatibility . 7

3 Semantically Defining Compatibility 8
3.1 Conditional Compatibility . 9
3.2 Specification Compatibility . 9
3.3 Implementation Compatibility . 10
3.4 Strong Compatibility . 11

4 Checking IO MTS Compatibility 12
4.1 Least Restrictive Implementation . 13
4.2 Most Restrictive Implementation . 14
4.3 Compatibility Checking Procedure . 15

5 Conclusions 16

Bibliography 16

MEALS Partner Abbreviations 17

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 18 Public

1 Introduction
Modern software systems are typically built of components that communicate through their ex-
ternal interfaces. A component’s behavior can be specified using finite state automata formalisms
(e.g., Labeled Transition Systems [8] and Statecharts [7]). The basic formalism, Labeled Tran-
sition Systems (LTS), describes the behavior of a component in terms of component states and
labeled transitions between them. Interface Automata (IA) [1] extend LTS to model information
related to interface operation controllability —distinguishing between input, output, and internal
actions— and to check whether the interfaces of two components are semantically compatible.

Component’s behavior is often incrementally and iteratively refined and elaborated as the re-
quirements progressively become more complete. Partial-behavior modeling formalisms (e.g.,
Modal Transition Systems (MTS) [14]) distinguish between required behaviors, prohibited be-
haviors, and behaviors that are currently unknown as either required or prohibited. Hence, such
models can accurately capture the inherently partial system requirements and serve as a founda-
tion for iterative practices that involve eliciting new requirements that prohibit or require some of
the previously unknown behaviors [4,5,9,11,12,19–21]). Partial behavior models come equipped
with a notion of refinement which formalizes the process of incorporating new requirements into
the partial specification. For example, a partial-behavior model of a product under development
is refined by selecting or discarding a specific feature. The final result of the refinement pro-
cess is a model without unknown behavior (e.g., an interface automaton) that we refer to as an
implementation.

At the implementation level, two components, represented as IAs, are compatible if the output
actions of one component are not blocked by a lack of matching input actions in the other com-
ponent. To enable continuous interface compatibility checking when a specification is partial and
iteratively refined, several modal interface automata formalisms have been proposed [2, 13, 18].
Intuitively, determining the compatibility of partially specified components should characterize
“how compatible” those components’ implementations are [10]. For example, at one extreme,
any selection of implementations results in an error-free system (i.e., highly compatible partial
specifications). At the other extreme, only a very careful selection of implementations results in
an error-free system (i.e., conditionally compatible specifications). Therefore, the compatibility
of partial specifications directly affects how independently engineers can specify the require-
ments for the different subsystems and components.

While promising, the prior work on modal interface automata is limited in terms of the con-
sidered compatibility notions, as elaborated in our prior study [10]. In particular, the existing
work implicitly considers only the above two compatibility extremes: either all pairs of imple-
mentations are compatible vs. at least one pair of implementations is compatible. A richer and
finer-grained spectrum of compatibility notions is needed so that engineers can determine that
specific subsets of the modal interface automata implementations are compatible. In turn, such
richer compatibility notions would inform the subsequent specification refinement processes and
make them more flexible and loosely coupled. For example, consider the case when every imple-
mentation of one partially specified component has a compatible counterpart in the other compo-
nent’s set of possible implementations. The first component can then be refined independently,
followed by careful refinement of the other component (we refer to this case as Implementation

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 18 Public

Compatibility).
In this document, we revisit compatibility of Input-Output Modal Transition Systems (IO

MTS), i.e., MTS extended with input and output information. We define a range of IO MTS
compatibility notions semantically, based on the observation that IO MTS are used to express
sets of implementations. In contrast, previous work on such specifications provided only syntac-
tic definitions of compatibility. Our work lets an engineer determine whether some, all, or no
implementations from one component’s implementation set are compatible with some, all, or no
implementations from another component’s implementation set. Given that the implementation
sets may be infinite, for each compatibility notion we propose a correct and complete procedure
that, for two IO MTSs with a finite set of transitions, efficiently checks their compatibility by
checking the compatibility of specially constructed implementations. While we define compati-
bility in a pair-wise fashion, the definitions of compatibility can be trivially extended to N-way
relationships between the system components’ implementation sets.

The main contributions are: (1) general, semantics-based definitions of four compatibility
notions for IO MTS; (2) a discussion of the development processes that are enabled by each
compatibility notion; (3) novel concepts of the least constraining implementation and the most
constraining implementation of an IO MTS; and (4) a set of correct, complete, and efficient
procedures for checking compatibility of two IO MTS based on their least/most constraining
implementations.

The next section provides the foundations of our work. Section 3 defines a set of four novel
compatibility notions. Section 4 proposes a suite of procedures for checking IO MTS compatibil-
ity. Finally, Section 5 discusses the implications of the new compatibility notions and concludes
the paper.

2 Background
To understand how we modify the notions of compatibility for modal interface specifications, it
is necessary to first introduce the formalisms for specifying complete component interfaces and
partial component behaviors, and then to introduce how compatibility is currently defined for
such specifications.

2.1 Transition Systems
A labeled transition system [17] is an FSA-based formalism used to model required behavior of
a software component as a set of component states and labeled transitions between them. De
Alfaro’s interface automata (IA) [1] are an extension of LTS that distinguishes between input,
output, and internal actions. The distinction between these different types of actions enables
the detection of communication mismatches (i.e., incompatibilities) when the automata are com-
posed.

Definition 1 (IA). An interface automaton IA is a tuple (S , AI , AO, AH , ∆, s0), where S is a set of
states, AI , AO, AH are alphabets of input, output, and internal actions, ∆ ⊆ (S ×AI ∪AO∪AH ×S)
is the transition relation, and s0 is the initial state.

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 18 Public

1 2
dH

A
aI 1 2

aO

B

3
cO 3 1 2

dH

A||B
aH 3

Figure 1: Example interface automata and modal I/O automata for illustration of Compatibility.

We use the notation s
`ω
−→s′ for a required transition from s to s′ labeled with `, ω ∈ {I,O,H}

denotes input, output and internal transitions respectively. We may refer to states in an IA A
using dot notation, e.g. A.s1 refers to the state s1 of A.

Two IAs M and N are composable if they do not share any internal, input or output actions
(i.e., AH

M ∩AN = ∅, AI
M ∩AI

N = ∅, AO
M ∩AO

N = ∅ and AH
N ∩AM = ∅). Models A and B, in Figure 1,

are examples of composable IAs.
Interface automata have a composition operator [1]; for brevity, we only define the more

general composition of IO MTS. The composition of IAs M and N is defined as a restriction
on the synchronous product automaton M ⊗ N, which coincides with the composition of I/O
automata [16].

Definition 2. (Product) Given M =(S M, AI
M, AO

M, AH
M, ∆M, m0) and N =(S N , AI

N , AO
N , AH

N , ∆N ,
n0) composable interface automata, their product is the interface automaton M ⊗ N = 〈S M ×

S N ,AI
M⊗N ,A

O
M⊗N ,A

H
M⊗N ,∆M⊗N , (m0,n0)〉 where

AI
M⊗N = (AI

M ∪AO
N) \AM ∪AN

AO
M⊗N = (AO

M ∪AO
N) \ shared(M,N)

AH
M⊗N = (AH

M ∪AH
N)∪ shared(M,N)

The transition relation is defined as follows:

DeltaM⊗N = {((m,n), `, (m′,n))|(m, `,m′) ∈ ∆M ∧ ` < shared(M,N)}
∪ {((m,n), `, (m,n′))|(n, `,n′) ∈ ∆N ∧ ` < shared(M,N)}
∪ {((m,n), `, (m′,n′))|(m, `,m′) ∈ ∆M ∧ (m, `,m′) ∈ ∆M ∧ ` ∈ shared(M,N)}

Let shared(M,N) = AM ∩AN .

A condition for interface automata composition (||) is that an input event of one automaton
can only be an output event of another automaton. Furthermore, composing an input action in
one automaton with a matching output action in the other automaton produces an internal action
in the composition. For example, the interface automata A‖B in Figure 1 that represents the
composition of A and B has internal transition over a that is the result of A and B synchronizing
on a (A.s2

aI
−→A.s3 and B.s1

aO
−→B.s2).

In order to model uncertain aspects, or currently missing and underspecified aspects, of a
system’s behavior, Larsen and Thomsen proposed modal transition systems (MTS) [14]. MTS
generalizes LTS with maybe transitions that are currently neither explicitly required nor prohib-
ited, in addition to the required transitions found in LTS. The disjoint sets of required and maybe
transitions comprise a set of potential transitions. Intuitively, an MTS describes a set of possible
LTSs by describing an upper bound and a lower bound of allowed behaviors from every state.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 18 Public

Definition 3 (MTS). A modal transition system M is a tuple (S , A, ∆r, ∆p, s0), where S is the set
of states, A is the action alphabet, ∆r ⊆ S ×A×S is the required transition relation, ∆p ⊆ S ×A×S
is the potential transition relation, ∆r ⊆ ∆p, and s0 is the initial state.

As more information about the desired system behavior becomes available, some of the
maybe behavior in an MTS may become required, while other maybe behavior may become
prohibited. In this context, it is necessary to ensure that the revised partial models and the even-
tually obtained final model (referred to as an implementation) conform to the initially developed
partial model.

Definition 4. (Refinement) Let M = (S M,A,∆r
M,∆

p
M,m0) and N = (S N ,A,∆r

N , ∆
p
N ,n0) be two

MTSs. Relation R ⊆ S M ×S N is a refinement between M and N if the following holds for every
` ∈ A and every (s, t) ∈ R.

• If (m, `,m′) ∈ ∆r
M then there is n′ such that (n, `,n′) ∈ ∆r

N and (m′,n′) ∈ R.

• If (n, `,n′) ∈ ∆
p
N then there is m′ such that (m, `,m′) ∈ ∆

p
M and (m′,n′) ∈ R.

We say that N refines M if there is a refinement relation R between M and N such that (m0,n0) ∈R,
denoted M � N.

Intuitively, N refines M if every required transition of M exists in N and every possible
transition in N is possible also in M. An LTS can be viewed as an MTS where ∆p = ∆r. LTSs
that refine an MTS M are complete descriptions of the system behavior and are thus called
implementations of M, denoted Impls(M). An MTS N is a refinement of an MTS M iff the
implementation set of N is a subset of M’s implementations.

To model communication control in the presence of partially known requirements, formalisms
such as Modal I/O automata [2, 13], Modal Interfaces [18], and Modal Interface Automata [10]
have been proposed. In essence, these formalisms merge MTS and IA formalisms. Since MTS
is the most widely used partial-behavior formalism, we refer to this merge as an Input-Output
Modal Transition System (IO MTS). Intuitively, an IO MTS represents a set of IA implementa-
tions.
Definition 5 (Input-Output Modal Transition Systems). An input-output modal transition system
IO is a tuple (S , AI , AO, AH , ∆r, ∆p, s0), where S is a set of states, AI , AO, AH are alphabets
of input, output, and internal actions respectively, ∆r ⊆ S × (AI ∪ AO ∪ AH)× S is the required
transition relation, ∆p ⊆ S × (AI ∪AO∪AH)×S is the potential transition relation (∆r ⊆ ∆p), and
s0 is the initial state.

We refer to transitions in ∆p \∆r as “maybe” transitions to distinguish them from required
ones (those in ∆r). Maybe transitions are denoted by suffixing the transition label with “?” (e.g.,

s
`I?
−→s′). For a given IO MTS M we denote M.∆δα the set of transitions in ∆α over actions in δ,

for instance, M.∆r
I is the set of required transitions over internal actions of M.

For example, consider the IO MTS A from Figure 2. The maybe transition A.s1
aI?
−→A.s2

implies that a decision on whether a will be implemented or not in state A.s1 has not been made

yet. By contrast, the required transition B.s1
bH
−→B.s1 in the B IO MTS of Figure 2 implies that b

must be present in every implementation of B.

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 18 Public

2.2 Interface Compatibility
As stated above, the composition of interface automata may involve communication errors; the
definition of interface automata compatibility [1] implies that two automata are compatible if in
their composition errors can be avoided.

Definition 6 (IA Error State). Let IA1 and IA2 be interface automata. A state P.v = 〈IA1.s, IA2.t〉 in
the interface automaton P = IA1||IA2 is an error state iff for some l ∈ (IA1.AO∩ IA2.AI)∪ (IA1.AI∩

IA2.AO):

1. (∃IA1.s
`O
−→ IA1.s′)∧ (¬∃IA2.t

`I
−→ IA2.t′), or

2. (¬∃IA1.s
`I
−→ IA1.s′)∧ (∃IA2.t

`O
−→ IA2.t′).

We use Err(IA1, IA2) to denote the set of error states.

Definition 7 (IA Compatibility). Two interface automata IA1 and IA2 are compatible if they
are nonempty, composable, and there exists an IA E such that no state in Err(IA1, IA2)×E.s is
reachable in (IA1||IA2)||E.

The IA E in the above definition is referred to as a Legal Environment for (IA1||IA2).
Informally, a composite state is an error state when, for the composed component states,

an output transition in one automaton does not have a matching input transition in the other
automaton. Two IAs are considered compatible if their composition can operate error-free in
some environments (an environment is an external entity, represented as IA, that uses the system).
For example, the composite state (A‖B).s3 of A‖B from Figure 1 is an error state because B can
generate cO from state B.s2 in B, while A does not accept cI in state A.s3.

Larsen and Thomsen [13], as well as subsequent work by other authors [2, 18], attempt to
adapt the definition of compatibility from IA to IO MTS. To this end, they propose different
types of error states based on the potential mismatches of output transitions in one IO MTS and
input transition in the other IO MTS.

Definition 8 (IO MTS Potential Error State). A state (s1, s2) is a potential error state if there

exists ` ∈ AH
s1‖s2 such that (s1

`O?
−→ s′1 and s2 6 `I−→) or (s1 6 `I−→ and s2

`O?
−→ s′2).

Definition 9 (IO MTS Mandatory Error State). A state (s1, s2) is a mandatory error state if there

exists ` ∈ AH
s1‖s2 such that (s1

`O
−→ s′1 and s2 6 `I?−→) or (s1 6 `I?−→ and s2

`O
−→ s′2).

1 2
aO?bH?

B

lO?1 2
aI?

A

dH?cO?

1

A1

cO 1 2
aI

A2

dH 1 2
aO

B1

lO
1 2

aO

B2

Figure 2: Conditionally Compatible Models

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 18 Public

The potential error state implies that a composite state may become an IA error state if refined
in a particular manner – e.g., by implementing an output transition from s1 that is not enabled in
s2. In contrast, a mandatory error state implies that a composite state will be an IA error state if
it is reachable in the eventual implementation.

Based on the error state definitions, Larsen et al. [13] define two notions of compatibility
for IO MTS. The first definition states that two IO MTSs are compatible if a potential error
state is not reachable from the initial state via potential internal actions of the composition. This
implies that, no matter the refinement choices, an error-avoiding environment can be built. In
other words, all implementations of two compatible IO MTSs will be compatible (Independent
Implementability property in [13]).

Larsen’s second definition of compatibility states that two IO MTSs are compatible if a
mandatory error state is not reachable from the initial state via a set of required internal and
output actions of the composition. Under this notion, two compatible IO MTSs can be refined
into a pair of compatible implementations (within an appropriate environment). However, this
definition does not suggest how the refinement process may proceed, other than by treating the
system as a monolithic entity (i.e., every refinement of one IO MTS needs to be synchronized
and consistent with the refinements of the other IO MTS).

3 Semantically Defining Compatibility
The limitations of the existing IO MTS definitions, which we address in the remainder of this
document, are twofold. First, they define compatibility using the syntactic definitions of error
states although IO MTS are used to represent sets of implementations, and a more intuitive
way of defining IO MTS compatibility would be through compatibility of the possible pairs
of implementations. In turn, the syntactic definition may not be applicable more widely, to
any type of partial-behavior model. Second, these definitions were developed to solve specific
problems (e.g., determining whether there is a compatible product in a product line [13]), and
do not explore the full space of possible compatibility notions. We have developed compatibility
notions that consider how the implementation sets of the partial specifications relate in terms
of their compatibility (one-to-one, one-to-many, many-to-one, or many-to-many). Note that,
while we define compatibility notions in the context of IO MTS, they apply generally to partial-
behavior models thus serving as a potential common vocabulary for the research community.

The different compatibility notions induce a set of refinement processes they permit. We de-
fine these processes and depict them using box-and-line diagrams: A box represents a refinement
process that, given an IO MTS to refine among other inputs, produces an implementation of the
input IO MTS. The labels Ti inside the boxes denote the independent development teams respon-
sible for the particular process. The arrows denote the information flow between the refinement
processes, while the arrow labels specify the information being carried. For example, Figure 3
depicts a situation where two teams, T1 and T2, are refining a pair of partial specifications, A
and B. The incoming arrow to the refinement process, carried out through mutual effort of the
two teams (T1 + T2), indicates that the the teams need to constantly work in concert in order to
proceed with the refinement. The outputs IA and IB correspond to the implementations obtained

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 18 Public

R(x)
T1+T2

A,B IA, IB

Figure 3: Fully Coupled Refinement Process

by T1 + T2 after refining A and B.

3.1 Conditional Compatibility
The minimal requirement to consider two IO MTSs A and B compatible is to have at least one
compatible system implementation – i.e., a compatible pair (Ai,B j) of their implementations.
Otherwise, no matter which refinement choices are made on A and B, it is impossible to arrive
at an error-free system. This weakest compatibility notion has been discussed and syntactically
defined in the context of product lines [13], and we refer to it as Conditional Compatibility.

Definition 10 (Conditional Compatibility). Given A and B IO MTSs, we say that A and B are
Conditionally Compatible if there exist two implementations IA ∈ Impls(A) and IB ∈ Impls(B)
such that IA and IB are compatible.

In Figure 2, we depict two partial specifications with a compatible pair of implementations
(A2,B2). While refining A and B into more defined partial models, it is necessary to ensure
that the resulting partial specifications contain at least some compatible implementations. For
example, if A is refined into A1 then the only allowed intermediate refinements of B are those
that contain B1 in the implementation set, i.e., those that enable the output transition on a and
disable the output transition on l.

The above example suggests that the refinement choices made on the different specifications
need to be carefully synchronized: each intermediate refinement of component A needs to be
immediately communicated in order to proceed with legal refinement of the other component
B, and vice versa. This observation generalizes into a coupled refinement process depicted in
Figure 3, where the teams T1 and T2 are supposed to be in charge of refining the specifications
A and B, respectively. Although these are ideally separate teams, conditional compatibility of
partial specifications leads to their full coupling — every refinement choice on either A or B
strongly impacts the future legal refinements and needs to be carefully negotiated and planned.

3.2 Specification Compatibility
Conditionally compatible specifications entail the weakest requirement for IO MTS compatibility
that induces an undesirably highly coupled refinement process. Decreasing this coupling would
imply that at least one specification can be refined relatively independently. To this end, we
propose two novel, stronger compatibility notions — Specification Compatibility (described in
this section) and Implementation Compatibility (described in the next section).

Specification Compatibility, formalized below, relies on the existence of a subset of one com-
ponent’s implementations that are compatible with every implementation of the other compo-
nent’s partial specification.

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 18 Public

Definition 11 (Specification Compatibility). Given A and B two IO MTSs, we say that A and B
are Specification Compatible if there exist IA ∈ Impls(A) such that for all IB ∈ Impls(B) it holds
that IA and IB are compatible.

Consider the two Specification Compatible models A and B in Figure 4. The implementation
A1 of A is compatible with all implementations of B. Hence, as long as A is refined into one of
those implementations that are consistent with all implementations of B (e.g., A1), the system is
guaranteed to have no error states.

Thus, as depicted in Figure 5, Specification Compatibility induces a process in which the
specifications can be refined in parallel. In order to guarantee compatible implementations team
T1 requires the knowledge of the partial specification B, in addition to its own specification A.
By contrast, team T2 only requires the specification B and can refine B fully independently,
under the condition that team T1 respects the partial specification B as a contract that restricts
the allowed refinements.

3.3 Implementation Compatibility
As indicated above, Implementation Compatibility implies a less restrictive compatibility notion
than Conditional Compatibility that reduces the coupling between the allowed refinement pro-
cesses of two partial specifications. The relation between the compatibility sets in this case is
that every implementation of one IO MTS should have at least one matching pairing in the other
implementation set (for the Implementation Compatibility notion of partial-behavior models, the
set of matches need not overlap).

Definition 12 (Implementation Compatibility). Given A and B IO MTSs, we say that A and B
are Implementation Compatible if for all IA ∈ Impls(A), there exists an IB ∈ Impls(B) such that
IA and IB are compatible.

For the example depicted in Figure 6, each of the implementations A1–A3 of A appears in
the compatible set for at least one implementation of B. In particular, A1 is compatible with B3,

aI?
A

dH?bO?

aO

B
bH?

bH? aO

aI

A1 aO

B1
bH

bH aO

a
O

B2

Figure 4: Specification Compatible Models

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 18 Public

R(x)

R(x)

T1

T2

A

B

IA

IB

Figure 5: Specification Driven Refinement

A2 is compatible with B2, and A3 is compatible with B1. Under these conditions, it is guaran-
teed that whatever implementation of A is chosen, it is possible to find a matching compatible
implementation of B.

The implication of Implementation Compatibility is that the first specification, A, can be
freely refined without regard for the other specification, B, as long as an appropriate implemen-
tation of B is carefully selected afterward. The corresponding process is depicted in Figure 7: the
process is sequential as team T2 must wait until T1 releases an implementation of A. The differ-
ence compared to the process for Conditional Compatibility from Figure 7 is that team T1 can
freely select the refinement choices. These choices in principle stem from the new requirements
for component A, while having a guarantee that those new requirements will be consistent with
an eventual implementation of B. Hence, Implementation Compatibility is particularly desired
in the context of incremental refinement processes where the system is developed one feature at
a time (for a large system, a chain of Implementation Compatible IO MTSs would be built).

3.4 Strong Compatibility
The strongest notion of compatibility for a pair of partial specifications A and B is one in which
every pair (Ai,B j) of their implementations is compatible. Consider A and B IO MTSs in Fig-
ure 8. As A and B only differ on internal transitions and all their implementations enable the
transition on a it follows that A and B are Strong Compatible. This strict notion of compati-
bility has been used in prior work [2, 13, 18], where it was proposed as the primary notion of

cI

B

bH? aO

aO? lH?

aI
A2

cO

A1
cO

A3
aI

aI?

cO?

A

cI

B2 aO

cI
B3

B1
aO

Figure 6: Implementation Compatible Models

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 18 Public

R(x) R(x)A T1 T2

B

IA IB

Figure 7: Implementation Driven Refinement

compatibility. However, the motivation for our work was that such a notion is overly strict for
incrementally developed partial specifications.

Definition 13 (Strong Compatibility). Given A and B IO MTSs. We say that A and B IO MTSs
are Specification Compatible if for all IA ∈ Impls(A) and for all IB ∈ Impls(B), it holds that IA
and IB are compatible.

The direct consequence of having a pair of Strong Compatible specifications is that they can
be refined in a fully distributed manner, as depicted in Figure 9. Two teams T1 and T2 can
independently refine their respective specifications, while guaranteeing that the resulting system
will operate in an error-free manner. Although achieving Strong Compatibility is desirable due
to the consequent parallelism of the refinement process, its importance and prominence is likely
to be limited in practice. This is because partial-behavior models are expected to become Strong
Compatible only during late stages of the refinement process.

4 Checking IO MTS Compatibility
A direct way to check compatibility of two IO MTSs is to check compatibility of their imple-
mentations in a pairwise fashion. However, since the implementation sets may be infinite, this is
not feasible. Alternatively, it may be possible to syntactically define what constitutes an IO MTS
error state in a composition of two IO MTSs for the different compatibility notions. However, it
is unclear whether such definitions and the necessary checking procedures would exist in each
case.

The solution we propose is inspired by the concepts of pessimistic implementation and op-
timistic implementation of an MTS [20]. The pessimistic implementation is a lower bound of
an MTS’s behaviors (i.e., no other implementation exhibits less behavior), while the optimistic
implementation is an upper bound of an MTS’s behaviors (i.e., no other implementation exhibits
more behavior). We raise these concepts to IO MTS by defining the least restrictive implementa-
tion and the most restrictive implementation of an IO MTS (Sections 4.1 and 4.2). We then show
how these implementations can be used to check, correctly and completely, the compatibility of
IO MTS by simply checking the compatibility of their IA composition.

aI

A

dH?
aO

B

cH?

Figure 8: Strong Compatible Models

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 18 Public

R(x)

R(x)B

A
T1

T2

IA

IB

Figure 9: Fully Distributed Refinement.

4.1 Least Restrictive Implementation
A component’s IA specification describes (1) assumptions that the component makes regarding
other components’ capabilities (via output transitions), (2) assertions about how the component
progresses internally (via internal transitions), and (3) guarantees about the behavior accepted
by the component (via input transitions). An implementation set of an IO MTS describes IAs
that make a range of assumptions, assertions, and guarantees, depending on which refinement
choices were made to arrive at a particular implementation. In this context, the upper bound of
an IO MTS interface description would be an IA that makes minimal assumptions and assertions
about the output and internal behaviors, while providing maximal guarantees regarding the input
behaviors.

Definition 14 (Least Restrictive Implementation). IA LRI =(S , AI , AO, AH , ∆, s0) is the least
restrictive implementation of an IO MTS M=(S , AI , AO, AH , ∆r, ∆p, s0) with the relation LRI.∆
defined as the union of M.∆p

I , M.∆r
H , and M.∆r

O.

Informally, the least restrictive implementation of an IO MTS prohibits all the maybe output
and maybe internal behaviors of an IO MTS, thus making weaker assumptions and assertions
about those behaviors. Similarly, the least restrictive implementation requires all the maybe
input behaviors of an IO MTS. A desired “upper bound” property for the least restrictive im-
plementation is to be compatible with every environment that is compatible with at least one
implementation of the IO MTS.

Theorem 1 (Upper Bound of Compatibility). Let IA LRI =(S , AI , AO, AH , ∆, s0) is the least
restrictive implementation of an IO MTS M=(S , AI , AO, AH , ∆r, ∆p, s0). For each other IA I
that implements M, if IA E is a legal environment of I then E is also compatible with LRI.

By Contradiction. Let IA E be an IA that is compatible with M’s implementation I, but is not
compatible with LRI. This implies that there exists an error state 〈E.p,LRI.s〉 in which either (1)
E generates an output LRI cannot accept or (2) LRI generates an output that E cannot accept.
Note that LRI.s refines a corresponding IO MTS state M.s. If the composition E||I has a state
〈E.p, I.s′〉, where I.s′ refines M.s then 〈E.p, I.s′〉 would also be an error state because, by Def-
inition 14 and for I to be a correct refinement of M [6], I.s′ accepts at most as many inputs as
LRI, and I.s′ requires at least as many outputs (thus satisfying condition (1) or (2) above).

In case E||I does not have a state 〈E.p, I.s′〉 such that I.s′ refines M.s, consider a sequence of
LRI’s actions 〈l1, . . . , ln〉 that are traversed from 〈E.p0,LRI.s0〉 to 〈E.p,LRI.s〉. Now consider a
subsequence 〈l1, . . . , l j〉 which is supported by I. The next action l j+1 in the full sequence cannot

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 18 Public

be an output or internal action of I because: (a) in case l j+1 was required in the matching IO
MTS state M.s j, it would be present in both LRI and I to satisfy the refinement relation, and (b)
in case l j+1 was maybe in the matching IO MTS state M.s j, it would also be prohibited in LRI
per Definition 14. Hence, the action l j+1 has to be an input action. This, however, implies that
the composite state 〈E.p j, I.s′j〉 is an error state because, in the composite state 〈E.p j,LRI.s j〉, E
can generate the output l j+1, which is not accepted in I.s′j. � �

4.2 Most Restrictive Implementation
In contrast to the least restrictive implementation, the lower bound of an IO MTS interface de-
scription would be an IA that makes maximal assumptions and assertions about the output and
internal behaviors, with minimal guarantees on the input behaviors.
Definition 15 (Most Restrictive Implementation). IA MRI =(S , AI , AO, AH , ∆, s0) is the most
restrictive implementation of an IO MTS M=(S , AI , AO, AH , ∆r, ∆p, s0) with the relation MRI.∆
defined as the union of M.∆r

I , M.∆p
H , and M.∆p

O.
Informally, the most restrictive implementation of an IO MTS prohibits all the maybe input

behaviors of an IO MTS, thus accepting less output behaviors of external components. Similarly,
the most restrictive implementation requires all the maybe output and maybe internal behaviors
of an IO MTS, thus “forcing” the external components to accept more of its output behaviors.
A desired “lower bound” property for the most restrictive implementation is to be compatible
with an environment only if every other implementation of the IO MTS is compatible with that
environment.
Theorem 2 (Lower Bound of Compatibility). Let IA MRI =(S , AI , AO, AH , ∆, s0) be the most
restrictive implementation of an IO MTS M=(S , AI , AO, AH , ∆r, ∆p, s0). For each other IA I
that implements M, if IA E is a legal environment of MRI then E is also compatible with I.
By Contradiction. Let IA E be an IA that is compatible with MRI, but not with some other
implementation I of M. This implies that there exists an error state 〈E.p, I.s′〉 in which either
(1) E generates an output I cannot accept or (2) I generates an output that E cannot accept.
Note that I.s′ refines a corresponding IO MTS state M.s. If the composition E||MRI has a state
〈E.p,MRI.s〉, where MRI.s refines M.s then 〈E.p,MRI.s〉 would also be an error state because,
by Definition 15 and for I to be a correct refinement of M [6], MRI.s accepts at most as many
inputs as I.s′, and MRI.s requires at least as many outputs (thus satisfying condition (1) or (2)
above).

In case E||MRI does not have a state 〈E.p,MRI.s〉 such that MRI.s refines M.s, consider a
sequence of I’s actions 〈l1, . . . , ln〉 that are traversed from 〈E.p0, I.s0〉 to 〈E.p, I.s′〉. Now consider
a subsequence 〈l1, . . . , l j〉 which is supported by MRI. The next action l j+1 in the full sequence
cannot be an input action of MRI because: (a) in case l j+1 was required in the matching IO MTS
state M.s j, it would be present in both MRI and I to satisfy the refinement relation, and (b) in
case l j+1 was maybe in the matching IO MTS state M.s j, it would be prohibited in MRI per
Definition 15, thus creating an error state as E outputs l j+1 in that state. Hence, the action l j+1
has to be an output or internal action. However, since MRI requires each potential transition on
output and internal actions, l j+1 would, by construction, exist in MRI.s j. � �

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 18 Public

4.3 Compatibility Checking Procedure
The least restrictive and most restrictive implementations bound the space of compatible environ-
ments for IO MTS implementations. For example, to check whether all implementations of an IO
MTS are compatible with an IA, it is sufficient to check the compatibility of the most restrictive
implementation with the given IA. Such “bounding” implementations can be used to construct
general procedures for checking compatibility of two IO MTSs. For example, Conditional Com-
patibility requires that at least one pair of implementations of two IO MTSs is error-free. Hence,
the intuition is that, at a minimum, their least constraining implementations need to be compati-
ble. In the following definition, we specify how the least constraining implementations and the
most constraining implementations of two IO MTSs are used to check IO MTS compatibility.
We then prove that the checking procedure is correct and complete for Conditional Compatibility
and Specification Compatibility; proofs for other two notions are similar.

Theorem 3 (Checking IO MTS Compatibility). Let LRIM and LRIN be the least restrictive im-
plementations of IO MTS M and N, respectively, and MRIM and MRIN be their most restrictive
implementations. M and N are considered compatible iff:

1. Conditionally Compatibility: implementations LRIM and LRIN are compatible.
2. Specification Compatibility: implementations LRIM and MRIN are compatible.
3. Implementation Compatibility: implementations MRIM and LRIN are compatible.
4. Strong Compatibility: implementations MRIM and MRIN are compatible.

By Contradiction. To prove that analyzing compatibility of LRIM and LRIN is sufficient to check
Conditional Compatibility of two IO MTSs, we assume that two IO MTSs are not Conditionally
Compatible, and LRIM and LRIN are compatible. This is a contradiction as LRIM and LRIN
are compatible implementations of M and N, which then satisfy Definition 10 of Conditional
Compatibility. To prove that the compatibility of LRIM and LRIN is a necessary condition for two
IO MTSs to be Conditionally Compatible, we assume that the two IO MTSs are Conditionally
Compatible, and LRIM and LRIN are incompatible. In this case, according to Theorem 1, no other
implementation of M can be compatible with LRIN . Furthermore, Theorem 1 then implies that
no implementation of N can be compatible with an implementation of M. This finally implies
that M and N are not Conditionally Compatible, thus arriving at a contradiction.

To prove that analyzing compatibility of LRIM and MRIN is sufficient to check Specification
Compatibility of two IO MTSs, we assume that the two IO MTSs are not Specification Com-
patible, and LRIM and MRIN are compatible. However, this is a contradiction: according to
Theorem 1, if LRIM and MRIN are compatible then LRIM is compatible with every implementa-
tion of N, which makes M and N Specification Compatible. To prove that the compatibility of
LRIM and MRIN is a necessary condition for two IO MTSs to be Specification Compatible, we
assume that the two IO MTSs are Specification Compatible, and LRIM and MRIN are incompati-
ble. In this case, according to Theorem 2, no other implementation of M can be compatible with
MRIN , which contradicts the definition of Specification Compatibility (Definition 11). � �

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 18 Public

5 Conclusions
In this document, we revisited how compatibility should be defined for partial specifications
that characterize sets of potentially valid implementations. We aimed to arrive at a foundational
characterization which can be applied not only to IO MTS, but to partial-behavior models in
general (including, e.g., featured transition systems [3] and disjunctive MTS [15]). To this end,
we first defined four notions of partial-specification compatibility, where each notion establishes
a specific relation between the specifications’ implementation sets. Our definitions were specified
in semantic terms, as opposed to syntactic terms, thus being more intuitive as well as more
widely applicable to any model that represents a set of compliant implementations. To analyze
the immediate impact of the compatibility notions, we elaborated the development processes that
are allowed under the different compatibility notions, ranging from fully coupled to fully parallel
development. Additionally, we introduced the concepts of the least restrictive implementation
and the most restrictive implementation, which bound the space of compatible environments for
an IO MTS. These concepts were then used as the foundation of low-complexity procedures for
checking compatibility of two IO MTSs.

In our future work, we aim to further explore several new research avenues that are enabled
by our work. In particular, we plan to research what IA-style interface refinement (as opposed
to modal refinement) means in the context of IO MTS [10]. We also intend to explore whether
it is possible to automatically generate an IO MTS that characterizes the subset of implementa-
tions that are compliant with another IO MTS. Finally, we aim to investigate how the IO MTS
compatibility translates to development processes for systems with many components. In partic-
ular, extending pair-wise compatibility to N-way compatibility is technically simple. However
the combinatorial explosion of relations between partial component specifications may require
thinking of clustering them into subsystems for practical purposes. From a methodological point
of view, it may be useful to link the number of clusters to the number of independent devel-
opment teams, however, further research into practical ways of exploiting partial component
specifications in the context of multiple development teams is required.

Bibliography
[1] de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE (2001)

[2] Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-
ment, and the mio workbench. In: TACAS (2010)

[3] Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured transi-
tion systems: Foundations for verifying variability-intensive systems and their application
to LTL model checking 39(8) (2012)

[4] D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: The modal transition system
control problem. In: FM (2012)

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 18 Public

[5] Fischbein, D., D’Ippolito, N., Brunet, G., Chechik, M., Uchitel, S.: Weak Alphabet Merg-
ing of Partial Behaviour Models. ACM TOSEM 21(2) (2012)

[6] Fischbein, D., Uchitel, S.: On correct and complete strong merging of partial behaviour
models. In: FSE (2008)

[7] Harel, D.: Statecharts: A visual formalism for complex systems. Sci. of comp. prog. (1987)

[8] Keller, R.M.: Formal verification of parallel programs. Com. of the ACM (1976)

[9] Krka, I., Brun, Y., Edwards, G., Medvidovic, N.: Synthesizing Partial Component-level
Behavior Models from System Specifications. In: ESEC/FSE (2009)

[10] Krka, I., Medvidovic, N.: Revisiting modal interface automata. In: FORMSERA (2012)

[11] Krka, I., Medvidovic, N.: Distributing refinements of a system-level partial behavior model.
In: RE (2013)

[12] Krka, I., Medvidovic, N.: Component-aware triggered scenarios. In: WICSA (Submitted)

[13] Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and product
line theories. In: ESOP (2007)

[14] Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: LICS (1988)

[15] Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS (1990)

[16] Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms.
PODC ’87 (1987)

[17] Magee, J., Kramer, J.: Concurrency: State Models & Java Programs (2006)

[18] Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Modal
interfaces: unifying interface automata and modal specifications. In: EMSOFT (2009)

[19] Sibay, G.E., Braberman, V.A., Uchitel, S., Kramer, J.: Synthesising modal transition sys-
tems from triggered scenarios. IEEE TSE (2013)

[20] Sibay, G.E., Uchitel, S., Braberman, V.A., Kramer, J.: Distribution of modal transition
systems. In: FM (2012)

[21] Uchitel, S., Brunet, G., Chechik, M.: Synthesis of Partial Behavior Models from Properties
and Scenarios. IEEE TSE 35(3) (2009)

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 18 Public

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

18

