
PIRSES-GA-2011-295261 /MEALS
November 16, 2015

Page 1 of 16

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 4.1 / 2

Title of Deliverable: Towards Fully Observable Non-deterministic Planning as
Assumption-based Automatic Synthesis

Contractual Date of Delivery to the CEC: 30-Sep-2015
Actual Date of Delivery to the CEC: 30-Sep-2015
Organisation name of lead contractor for this deliverable: ULEIC
Author(s): Nicolás D’Ippolito, Sebastian Sardina
Participants(s): UBA
Work package contributing to the deliverable: WP4
Nature: R
Dissemination Level: Public
Total number of pages: 16
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Whereas previous work on non-deterministic planning has focused on characterizing (and computing) “loopy” but
“closed” plans, we look here at the kind of environments that these plans are to be executed in. In particular, we provide
a logical characterization of the standard “fairness” assumption used, and show that strong cyclic plans are correct
solution concepts for fair environments. We argue then that such logical characterization allows us to recast non-
deterministic planning as a reactive synthesis task, and show that for a special case, recent efficient synthesis techniques
can be applied.

Note:

This deliverable is based on material that has been published in IJCAI 2015.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 16 Public

Contents
1 Introduction 3

2 Preliminaries 4
2.1 Fully Observable Non–Deterministic Planning 4
2.2 Labelled Transition Systems . 5
2.3 Temporal Logics . 5

3 Strong-cyclic Plans and Fair Environments 6

4 FOND Planning via Reactive Synthesis 9

5 Conclusions 13

Bibliography 13

MEALS Partner Abbreviations 16

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 16 Public

1 Introduction
In this paper, we relate advanced forms of planning to the general long-standing Computer Sci-
ence problem of automatic synthesis [20, 1, 25]: the problem of automatically building an ex-
ecutable piece of code from (high-level) user intent. Despite planning and synthesis not being
areas too far from each other, the connection between the two worlds have not been much ex-
plored. We are not in fact the first in noticing that such a relation exists, in the planning commu-
nity others have pointed it out; see [23]. Still, as no (complete) formalization has been presented,
the relation is only informally analyzed. We concentrate in this work on fully observable non-
deterministic (FOND) planning, a type of planning that has recently attracted much attention
and which aims to accommodate events outside the control of the agent [6]. In FOND planning,
actions are non-deterministic, in that their execution yields one of a set of possible effects, and
this is Nature’s choice. Once the effect has ensued, however, the agent is able to observe it.

Strong cyclic plans—those that re-try until success is obtained—have arguably become the
de-facto solution concept for FOND planning. [6] provided its first characterization in CTL, as
those plans for which “in any of its executions, it is always the case that the goal is always
reachable.” This was later refined in [23, 3] to disregard what happens after goal achievement.
Then, with the advancement of planning and model checking technologies, several promising
techniques and systems have emerged for solving FOND planning problems, such as PRP [21],
NDP [19], and FIP [12], MBP [3], and GRENDEL [27]. The first three are built on top of classical
planners, whereas the last two perform fix-point reasoning via model-checking type techniques.
Nonetheless, the point is that they all amount to specialized—clever though often involved—
algorithms for constructing “loopy” but “closed” plans.

In this work, we revisit what planning under non-deterministic actions is with the aim of
framing it as a special case of controller synthesis [25]. The study of both novel controller syn-
thesis and planning techniques could lead to interesting developments in the planning community
by taking advantages of the expressiveness and guarantees provided by the controller synthesis
approaches. Moreover, whereas control synthesis was deemed computationally impossible in
the past, recent approaches (e.g., [2, 9]) have shown that for some quite expressive specifica-
tions, the task is amenable for computation. In turn, planning problem specifications can inform
meaningful specifications—for goals and assumptions—to the reactive synthesis field.

It turns out that to make such link evident, one needs to formalize the assumptions on the
environments in which strong cyclic plans are guaranteed to eventually achieve their goals. Sur-
prisingly, this aspect has merely been discussed at an informal level, by calling for “fair” en-
vironments, that is, those in which “all actions’ outcomes will ensue infinitely often, if tried
infinitely often.” To settle that formally, we provide a logical characterization of the environ-
ment which complements that of “good” plans found in [23]. We show, with an example, that a
naive interpretation of the fairness assumption does not yield the expected results, and provide
a characterization that accounts for “failure independence.” We prove that strong cyclic plans
are indeed sound and complete solution concepts under such characterization. Finally, we ar-
gue that, by using the characterization developed, reactive synthesis [25] can be directly used to
solve FOND planning tasks, and show that, for the special case in which actions have “intended
effects,” existing effective synthesis techniques can be exploited.

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 16 Public

2 Preliminaries

2.1 Fully Observable Non–Deterministic Planning
We mostly follow the characterisation of non-deterministic planning given in [30], as it provides
a more formal framework than others to work on. However, such account is indeed equivalent to
the usual “oneof ” clauses in PDDL based characterisations [14].

A fully observable non-deterministic (FOND) planning problem is a tupleP = 〈P,O, sI , φgoal〉

consisting of a set of Boolean state propositions P (atoms), an initial state sI , a goal φgoal as a
conjunction of literals (i.e., atoms or negated atoms), and an operator set O (see below). We use
l to denote the complement of literal l.

A state s is a consistent set (or conjunction) of literals such that |s| = |P|—every atom is
either true or false. We use S to denote the set of all states of task P.

An operator is a pair o = 〈Preo,Eff o〉, where Preo is a condition describing the preconditions
of operator o, and Eff o = e1 | · · · | en the (non-deterministic) effects of o, where each ei is a
(deterministic effect) condition and n ≥ 1. The intended meaning is that one of the ei events
ensue non-deterministically, by the environment’s choice. Operator o is executable on a state
s if s |= Preo. The successor states resulting from executing operator o in state s is defined as
next(o, s) = ~Eff o�s, where:

~e1 | · · · | en�s =

n⋃
i=1

{(s \ {l | ei |= l}) ∪ {l | ei |= l}}.

In general, ~Eff o�s yields a set of states (one per effect of o); if o is deterministic (i.e., Eff o = e),
then |~Eff o�s| = 1. A policy (or conditional plan) is a function π : S 7→ 2O mapping states s ∈ S
onto the set of executable operators π(s) such that if o ∈ π(s), then s |= Preo. The universal policy
for a FOND problem P is π̂(s) = {o | o ∈ O, s |= Preo}. A policy π executed from state s defines
a set of possible executions Λπ(s) made up of executions λ = s0o0s1 · · · sioisi+1 · · · , where s0 = s,
oi ∈ π(si), si |= Preoi , and si+1 ∈ next(oi, si), for all i ≥ 0. The set of states relevant to a policy
π from state s is defined as S π(s) =

⋃
λ∈Λπ(s){si | si ∈ λ} (we abuse notation and write s ∈ λ to

say that execution λ mentions state s). A policy π is closed iff
⋃

o∈π(si) next(o, si) ⊆ S π(sI) for all
states si ∈ S π(sI), that is, π always returns an action for every non-goal state it reaches. In turn,
a state s is reachable by a policy π from state s′ if there is a chance that following π leads the
agent to s; formally, there exists λ ∈ S π(s′) such that s ∈ λ.

When it comes to FOND planning, the usual solution concept in the literature is that of strong
cyclic plans.

Definition 1 (Strong Cyclic Plan [3]). A strong cyclic plan is a closed policy such that a goal
state is reachable from every reachable state using the policy.

Strong policies are a special case of strong cyclic policies, for which all executions are finite
and acyclic: they solve the planning problem in a bounded number of steps. We close by noting
that non-deterministic planning with full observability is EXPTIME-complete [29].

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 16 Public

2.2 Labelled Transition Systems
Labelled Transition Systems (LTS) [17] are operational models that describe behaviour in terms
of the occurrence of actions and their effect on the system’s state. LTSs are widely used in
many domains, particularly, as description language for event-based controllers and controller
synthesis.

Definition 2 (Labelled Transition Systems). A labelled transition system (LTS) is a tuple E =

(S , A,∆, s0), where S is a finite set of states, A is its communicating alphabet, ∆ ⊆ (S × A× S) is
a transition relation, and s0 ∈ S is the initial state. We use ∆(s) = {` | (s, `, s′) ∈ ∆} to denote the
set of enabled actions in state s. A sequence t = `0`1 · · · is a trace in E if there exists a sequence
s0`0s1`1 · · · such that (si, `i, si+1) ∈ ∆ for all i ≥ 0.

The parallel composition of two LTS Ei=(S i, Ai,∆i, ei0), with i ∈ {1, 2}, is defined as the LTS
E1‖E2 = (S 1×S 2, A1∪A2,∆, (e10, e20)) obtained from the synchronous product of E1 and E2, and
encodes the concurrent execution of E1 and E2 by interleaving non-shared actions but forcing
synchronisation on shared actions [16].

2.3 Temporal Logics
Temporal logics are logic formalisms tailored for statements and reasoning which involve the
notion of order in time. They allow the formal specification of behavioral properties of sys-
tems [26] and are the basis for model checking and synthesis. Some widely known and used
such logics are CTL* and its fragments CTL and LTL [11, 4]. In particular, CTL has been proved
to be a convenient framework for describing the notion of strong cyclic plans in a precise and
concise manner. The syntax of CTL* is defined with the following grammar:

Ψ ::= p | Ψ1 ∧ Ψ1 | ¬Ψ | Aϕ | Eϕ;
ϕ ::= Ψ | ϕ1 ∧ ϕ1 | ¬ϕ | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2 | ϕ1Wϕ2,

where p ranges over the set of propositions. Formulas of the form Ψ are called state formulas,
whereas those of the form ϕ are said to be path formulas. Formula AΨ (EΨ) states that all
executions (some execution) from the current state satisfy property Ψ. Then, path formulas Xϕ,
Fϕ, and Gϕ state that ϕ is true in the next state of the path, eventually in the path, or always along
the path, resp. Finally, ϕ1Uϕ2 says that ϕ1 holds along the path until ϕ2 becomes true and ϕ2 is
eventually true; ϕ1Wϕ2 is its weak version where ϕ2 is not required to eventually come true in
the path. Common combinations of path and state quantifiers allow us to say things like all or
some next states satisfy ϕ (AXϕ and EXϕ), and ϕ holds in all or some executions (AGϕ or EGϕ).

The meaning of such CTL* formulas is given over the states and paths of a transition system,
with a branching-time interpretation of time. Concretely, a CTL* transition system over a set of
propositions P, also called Kripke structure, is a tuple K = 〈W,R, P〉, where:

• W ⊆ 2P is the set of states of K ; and

• R ⊆ W ×W is the transition relation of K such that for every w ∈ W, there exists w′ ∈ W
such that R(w,w′). When R(w1,w2) holds, it means that state w2 is a possible successor of
state w1.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 16 Public

A run in K from state w0 is an infinite sequence π = w0w1w2 · · · such that R(wi,wi+1), for
all i ≥ 0. Given a state formula Ψ and a state w ∈ W, we can define whether Ψ holds true in
structure K at state w, denoted K ,w |= Ψ. Finally, LTL is the fragment obtained from CTL* by
withholding the A and E quantifiers and assuming universal path quantification. CTL, in turn, is
the CTL* fragment obtained by requiring that each temporal path quantifiers (e.g., X, F, etc.) be
under the immediate scope of an A or E quantifier.

A variant of LTL used in the Software Engineering context (from where we will import certain
results) is FLTL (fluent-LTL) [15], which is more tailored towards reasoning about fluents via
automata-like structures with emphasis on transitions’ labels rather than states’ labels. A fluent
f = 〈If,Tf, initf〉 is defined by sets of disjoint initiating and terminating actions If and Tf from a
universal set of actions Act, resp., and an initial value initf.

Given a set of fluents, the truth of an FLTL temporal formula is defined relative to an infinite
trace t = a0a1 · · · over the universal set of actions Act. If t is an infinite trace, the satisfaction
of an FLTL formula ϕ at position i, denoted t, i |= ϕ, is standard and omitted. However, we
just point out that since FLTL traces focus on action/events (i.e., transitions labels in an LTS),
the truth of a fluent f at a certain prefix ti of trace t = a0a1 · · · is defined as: t, i |= f if and
only if one of the following conditions holds: (i) initf ∧ (∀ j.0 ≤ j ≤ i → a j < Tf); and
(ii) ∃ j.(j ≤ i∧ a j∈ I f)∧ (∀k ∈ N. j < k ≤ i→ ak < Tf). We say that ϕ holds in t, denoted t |= ϕ, if
t, 0 |= ϕ. Finally, a FLTL formula ϕ holds in an LTS E (denoted E |= ϕ) iff t, 0 |= ϕ, for all infinite
traces t of E.

3 Strong-cyclic Plans and Fair Environments
In this section, we revisit the semantics of FOND planning, with special focus on the “environ-
ment” where plans are to be executed. In particular, whereas the notion of strong cyclic plans
have been vastly studied and formally defined, the type of environments in which such plans will
succeed are often discussed at an informal level.

The first precise analysis of what a solution is for FOND planning was given by [5]. There,
the authors formally defined strong cyclic plans through a CTL formula on their executions. To
capture all executions of a policy, they defined what is basically the projection of the underlying
state model for a planning task onto the policy.

Definition 3 ((P, π)-structure). Let P = 〈P,O, sI , φg〉 be a FOND planning problem over the set
of propositions P and π a policy over P. The induced structure of (P, π) is a Kripke structure
Kπ
P

= 〈W,R, P〉, where:

• W = {〈s, o〉 | s ∈ 2P, o ∈ O, s |= Preo}. Intuitively, 〈s, o〉 represents the execution of
operator o in state s;

• R(〈s, o〉, 〈s′, o′〉) iff o ∈ π(s) and s′ ∈ next(o, s).

Structure Kπ
P

represents all evolutions of policy π when executed in planning domain P. It is
straightforward to define a structure representing all possible executions of the planning domain,
by considering the universal policy.

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 16 Public

Definition 4 (P-structure). The structure induced by a FOND planning problem P is defined as
the Kripke structure KP = K π̂

P
, where π̂ stands for the universal policy.

So, [5] defined a policy π as a strong cyclic solution for a planning problemP iffKπ
P
, 〈sI , oI〉 |=

AGEFφgoal, for all oI ∈ π(sI). In words, starting from the initial state, whatever actions we choose
to execute (from the policty) and whatever their outcomes are, we always (AG) have a way of
reaching the goal (EFφgoal).

Because goals are achievement goals in planning, what happens after the goal is achieved is
irrelevant. Hence, [5]’s definition was then further refined as follows:

Definition 5 ([23]). A policy π is a strong cyclic plan solution for a FOND planning problem P
iff Kπ

P
, 〈sI , oI〉 |= A(EFφgoalWφgoal), for all oI ∈ π(sI).

In words, in all possible executions of the policy, the goal is always eventually reachable, at
least until the goal is indeed reached. Observe that this definition precisely captures the notion
of closeness and goal-reachable (as in Definition 1).

The availability of a precise notion for strong-cyclic plans has facilitated the development of
various techniques capable of synthesising such type of plans. Planning systems like MBP [3],
PRP [21], FIP [12], and GRENDEL [27] all search for policies that are closed and goal-reachable.

Nevertheless, besides understanding what a strong-cyclic plan amounts to, we argue here
that it is also important to understand and formalize the contexts under which these type of plans
will indeed achieve the objectives, namely, bringing about the goal. This has not received much
attention and has mostly been discussed informally.

Clearly, under non-determinism, there is in principle the possibility of never achieving the
goal, as “strong cyclic solutions can produce executions that loop forever” (without ever reaching
the goal) [3]. However, the common understanding in the literature is that strong cyclic plans
are adequate solutions under the assumption that the underlying environment described by the
planning domain is ‘‘fair.” Unlike strong cyclic plans, which have been formally characterized
(see above), this fairness assumption is always stated at an informal level. We shall provide a
precise characterization of such fairness in LTL and show that strong cyclic plans are sound and
complete plan types for fair domains.

A usual (informal) understanding is that fair domains are those for which “if an action is
executed infinitely many times, every non-deterministic outcome will occur infinitely often.” For-
mally, this can be stated as the following strong-fairness LTL constraint (on the induced structure
KP):

Φ
fair
P

def
=

∧
o∈O,e∈Eff o

(GFo→ GFe).

Note that while strong cylic plans have been characterized in CTL (Definition 5), Φ
fair
P

above is an
LTL formula not expressible in CTL. While simple, [9] argued, in the context of reactive synthesis
for Software Engineering, that such strong-fairness assumptions are not enough to guarantee
success of controllers that are meant to “re-try.” Consider the following counter example.

Example 1. Imagine the problem of opening a door that has some operational defects, by insert-
ing the key and then turning the knob. However, both actions may fail non-deterministically and

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 16 Public

not achieve their objectives. When that happens, the agent has to take the key out (which can
only be done with the knob turned) and start all over again. Thus, consider planning problem
Psafe = 〈P,O, sI , φgoal〉, where:

• P = {open, kIn, kStuck, turned}.

• O includes the operators:

– insert = 〈¬kIn, kIn | kIn ∧ kStuck〉.

– turn=〈kIn ∧ ¬turned, open ∧ turned | turned〉.

– remove=〈turned,¬kIn∧¬kStuck∧¬open∧¬turned〉.

• sI = {¬open,¬kIn,¬kStuck,¬turned}.

• φgoal = open ∧ ¬kStuck.

Take next the following (partial) policy π: (i) if s |= ¬kIn, then perform insert; (ii) if
s |= ¬turned ∧ kIn, then perform turn; and (iii) if s |= turned, then perform remove.

It is not hard to see that π is a strong cyclic solution: it continuously tries to first insert and
use the key, and then turn the knob and remove the key, until success is achieved.

Now, the formula Φ
fair
Psafe

, as defined above, implies that if the agent tries to use the key in-
finitely often, then she will succeed infinitely often. Similarly, if the agent keeps turning the
knob, then she will keep succeeding getting the door open. It turns out, though, that:

Kπ
Psafe

, 〈sI , insert〉 6|= A[Φfair
Psafe
→ F(open ∧ ¬kStuck)].

That is, there is an execution of π in P in which all outcomes of insert and turn arise infinitely
often, but it is always the case that either the door is closed or the key stuck. In fact, con-
sider the following states ofKπ

Psafe
: (i) w0 = 〈sI , insert〉; (ii) w1 = 〈{kIn, kStuck}, turn〉; (iii) w2 =

〈{kIn, turned}, remove〉; and (iv) w3 = 〈{kIn}, turn〉; (v) w4 = 〈{kIn, open, kStuck, turned}, remove〉.
Then, run λ = (w0w1w4w0w3w2)ω does satisfy the assumption formula Φ

fair
Psafe

, but it never reaches
the goal. Intuitively, the failure of the action turn is not independent of failure of previous action
insert—their failures are “synchronized.”

The example above shows that the failures and successes of two non-deterministic actions can
be “coordinated” in a way that will preclude goal achievability, despite the fact that all outcomes
of both actions ensue infinitely often.

To rule out coordinated outcomes [9] provided the stronger notion of t-strong fair environ-
ments, but their framework assumes that it is known which action outcomes are “good” (and
which ones are considered “failures”). Still, the intuition there is to have action-outcome fairness
in every state, as captured by the following definition.

Definition 6 (State Strong Fairness; t-strong fair). Let P be a planning problem and KP =

〈W,R, P〉 its corresponding Kripke structure. The state strong, or simply t-strong, fairness con-
straint is defined as the following LTL formula:

γ
sfair
P

def
=

∧
{〈s,o,e〉| 〈s,o〉∈W,e∈Eff o}

(GF(s ∧ o)→ GF~e�s).

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 16 Public

A run of λ of KP is t-strong fair if λ |= γ
sfair
P

.

In words, γsfair
P

states that if an operator is executed infinitely often in the same state, then all
its effects ought to arise infinitely often. This LTL constraint formalizes [3]’s claim that unfair
executions are those where “some actions are executed infinitely often in given states, but some
of its outcomes never occur,” and corresponds to the semantically expressed requirement used in
various FOND planning works (e.g., [22, 28, 13]).

Returning to our example above, the run λ does not satisfy γsfair
Psafe

, andKπ
P
|= A[γsfair

Psafe
→ Fφgoal]

holds.
We now have all the machinery to state the main contribution of this section, namely, linking

state strong fairness with [23]’s account of strong cyclic plans (see Definition 5). First we show
that all such plans do achieve the goal in state strong fair environments.

Theorem 1. Let π be a strong cyclic plan for a FOND planning problem P. Then, Kπ
P
, 〈sI , oI〉 |=

A[γsfair
P
→ F(φgoal)], for all (initial) operators oI ∈ π(sI).

This theorem provides a “soundness” result for state strong fair environments. More impor-
tantly and less obvious, if a plan guarantees the goal in a state strong fair environment, then it
has to be strong cyclic.

Theorem 2. Let π be a policy and P a FOND problem such that Kπ
P
, 〈sI , oI〉 |= A[γsfair

P
→

F(φgoal)], for all (initial) operators oI ∈ π(sI). Then, π is a strong cyclic plan.

The above two theorems say that state strong fairness is a complete characterization of the
type of environment for which strong cyclic plans are successful. We note that, together, the
above theorems are closely related to Theorem 2 in [22], though ours crystallize the assumption-
solution relationship directly within Traverso et al.’s FOND planning foundational framework.
Having a precise characterization of what adequate environments are opens the door for applying
(reactive) synthesis techniques to solve FOND problems. That is the topic of the next section.

4 FOND Planning via Reactive Synthesis
Reactive synthesis or controller synthesis studies techniques that given a model of the assumed
behaviour of the environment (E) and a system goal (G), produces an operational behaviour
model for a component M that when, executed in an environment consistent with the assump-
tions, results in a system that is guaranteed to satisfy the goal, namely, E‖M |= G.

Arguably, the application of controller synthesis as means for solving planning problems has
been discouraged due to the high complexity of the general approach. Indeed, controller synthe-
sis is, in general, computationally expensive: synthesising for LTL goals is 2EXPTIME complete
and known techniques have resisted practical implementations due to complementation [25, 18].
However, recent advances (e.g., [2, 9]) may, under appropriate assumptions, provide efficient
solutions to planning problems. The fact is that restricting the form of the specification system

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 16 Public

goal allows for more effective solutions and implementable systems. For instance, goal specifi-
cations consisting uniquely of safety requirements can be solved in polynomial time, and so can
particular, yet expressive, subsets of liveness properties such as GR(1) [24].

As stated in Section 3, FOND strong cyclic plans are guaranteed to achieve the goals in t-
strong fair environments. Following [2] and relying on Theorems 3 and 4, one can solve a FOND
planning task P with goal φgoal by checking LTL realizability of specification formula

ϕP
def
= ϕ1

P ∧ [ϕ2
P → (γsfair

P
→ Fφgoal)],

where ϕ1
P

and ϕ2
P

are simple (safety) LTL formulas encoding structure KP.1 Unfortunately, ϕP
results in an expression that does not allow for efficient synthesis techniques, as it does not fall
into known efficient LTL fragments like GR(1). Hence, in general, there is still an efficiency
challenge when solving FOND planning via controller synthesis.

In some cases, however, it is possible to reduce a planning problem to an equivalent efficient
controller synthesis one. For example, [7] does so for standard conditional planning (i.e., plan-
ning for strong solutions). Here, we discuss a special such case for FOND planning, namely,
when every action of a non-deterministic planning problem can be annotated with its “expected”
or “intended” effect—that is, actions have a clear fail/success semantics. For instance, in the ex-
ample in Section 3, the expected effect of turning the knob is to successfully open the door. All
other effects can be considered failures. Arguably, many meaningful FOND planning problems
come with a clear success/failure semantics of actions.

In what follows, we show how efficient reactive synthesis techniques developed in the area of
Software Engineering can be imported to solve this type of planning problems. Specifically, we
rely on [9]’s polynomial approach to building LTS controllers for control problems with explicit
description of failures against GR(1)-like specifications. Failures are defined by introducing
try-response sets that relate the attempt to perform a controlled action and the corresponding
environment’s reaction. Technically, a try-response triple is a tuple t = 〈a, suca, faila〉 where a
and suca are actions in the environment model representing an action and its intended result,
respectively, and faila is a set of actions representing failures of a’s execution. In planning terms,
a try would be an operator, while the responses would its effects. A key aspect of the approach
is the Strong Independent Fairness (SIF) condition, which provides restrictions on how failures
behave [9, Def. 4.3]. Intuitively, SIF requires a windows of opportunity (“gaps”) in which all
expected effects are executed without any failures. It turns out that the SIF assumption allows to
reduce the problem of having gaps with no failures to one in which failures are assumed to occur
finitely.

When interpreting failures as operator’s effects, most of the required restrictions for try-
response triples are inherently guaranteed (e.g., re-tries cannot occur before a response), except
for one restriction that needs to be lifted. While [9] assumes single action representation for
failures and successes, here we need failures to be a set of actions—the set of non-intended
effects. However, since their approach reduces to solving a control problem where failures occur
only finitely often, having multiple failures for the same try action does not affect key fact that

1It is possible to, almost directly, transform KP into a game structure G as used in [2], and then extract ϕ1
P

and
ϕ2
P

from G. For lack of space, we omit this here.

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 16 Public

effective controllers (re)try actions knowing that success will eventually occur. For lack of space
we omit the technical details of such generalization to set of failures.

Next, we formally define try-response sets for a given LTS restricting attention to the require-
ments described above.

Definition 7 (Try-Response). Let E = (S , A,∆, s0) be an LTS and Ac ⊆ A (the set of controllable
actions). Set T is a try-response set for E if:

1. (a, suca, faila) ∈ T iff a ∈ Ac, suca ∈ A \ Ac, and faila = {fail1
a, . . . , failk

a} ⊆ A \ Ac for some
k ≥ 1.

2. For all ta = (a, suca, faila), tb = (b, sucb, failb) ∈ T , if a = b then ta = tb.

3. E |= G[X(
∨

1≤i≤|faila | faili
a ∨ suca)↔ a], for all a ∈ Ac

4. For all s ∈ S and trya ∈ Ac, faila is enabled from s iff suca is enabled from s.

We note that this definition is a special case of that in [9], tailored to the fact that outcomes
ensue immediately after operators’ executions. In their work, they also need to deal with delayed
failures/successes.

Now, the specific control problem we are interested in is defined with an LTS environment
model, a GR(1)-like specification, a set of controllable actions, and a try-response set.

Definition 8 (Recurrent Success LTS Control). A recurrent success LTS control (RSGR) problem
is a tuple E = 〈E, Ac, ϕ,T 〉 where E is an LTS, Ac is a set of controllable actions, ϕ is a GR(1)
FLTL formula, and T is a try-response set for E.

A solution for E is an LTS M with controlled actions Ac such that E only disables controllable
actions, E‖M is deadlock free, and every trace π in M‖E is such that π |= ϕ.

That is, a solution to an RSGR control problem is an LTS controller that, in parallel compo-
sition with the environment model, meets the system specification goal. Thanks to the assumed
failure semantics, such controller can be computed in polynomial time via a reduction to a GR(1)
synthesis task [9].

So, let us next show how to reduce a FOND planning problem with intended effects to an
RSGR control problem.

Definition 9 (FOND to RSGR). Let P = 〈P,O, sI , φgoal〉 be a a FOND planning problem, such
that each operator o ∈ O is defined as o = 〈Preo,Eff o, Into〉 where Into ∈ Eff o stands for the
intended effect of operator o. The corresponding RSGR problem EP = 〈E, Ac, ϕ,T 〉 is defined as
follows (here Eff (O) = {e | o ∈ O, e ∈ Eff o} is all the effects of O):

• Ac = O;

• T = {(o, Into, Eo) | o ∈ O and Eo = Eff o \ Into}; and

• ϕ = F(
∧

l∈φgoal
fl), where:

fl = 〈{e ∈ Eff (O) | e |= l}, {e ∈ Eff (O) | e |= l},⊥〉;

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 16 Public

• E = (2P ∪ (2P × O),Eff (O) ∪ O,∆, sI) is an LTS with:

∆ = {(s, o, (s, o)) | o ∈ O, s |= Preo} ∪

{((s, o), eo, s′) | eo ∈ Eff o, s
′ ∈ ~eo�s}.

A trace of E is an interleaving sequence of operators and effects (from where one can re-
construct the fluents that hold true at any point). Observe that a controller for an RSGR control
problem only restricts controllable actions (in our case, planning operators). Also, as we deal
with reachability goals, it does not require additional memory: effectively, it is a subgraph of the
environment model. This last property enables us to produce a strong cyclic policy from it.

Definition 10 (LTS to Policy). Given a planning problem P = 〈P,O, sI , φgoal〉, and an LTS M =

(S , A,∆, s0) solution for the RSGR control problem EP obtained from P as described above, we
construct M’s associated policy πM as follows: for all s ∈ 2P: o ∈ πM(s) iff o ∈ ∆(s).

So, the next result states that the induced policy from a solution to the corresponding RSGR
control problem is indeed a strong cyclic solution for the planning task of concern.

Theorem 3 (Soundness). Let P be a planning problem with goal φgoal, M be an LTS solution
to the RSGR control problem EP, and πM the policy obtained from M. Then, KπM

P
, 〈sI , oI〉 |=

A(EFφgoalWφgoal), for all oI ∈ πM(sI).

Proof. Suppose KπM
P
, 〈sI , oI〉 6|= A(EFφgoalWφgoal). Hence, there is a state s in KπM

P
such that

every execution λ in KπM
P

that visits s (i.e., s ∈ λ) is such that λ 6|= Fφgoal. By construction, s also
belongs to M. Further, all traces in M that visit s must also avoid the goal—i.e., never satisfy the
FLTL formula (

∧
l∈L(φgoal) fl). In particular, every trace t satisfying SIF condition that visits s will

not satisfy the goal (i.e. t 6|= F(
∧

l∈L(φgoal) fl)), which contradicts our hypothesis. �

A direct consequence of Theorems 1 and 3 is that Kπ
P
|= A[γsfair

P
→ Fφgoal]. Secondly, if the

FOND problem has a solution that is based on the operators’ intended effects, then it is accounted
in the solution to the corresponding RSGR problem. Intuitively, a policy is intention-based if it
can reach the goal relying (eventually) only on the intended effects of operators—i.e., it achieves
the goal “under no failures.”

Definition 11 (Intention-Based Policy). Let P be a FOND planning problem with goal φgoal and
operators of the form o = 〈Preo,Eff o, Into〉, where Into ∈ Eff o stands for the intended effect of o.
A strong cyclic policy π for P is intention-based iff for all wI ∈ {sI} × π(sI):

Kπ
P,wI |= A

[
F
(∧

s∈S ,o∈O

G(s ∧ o)→ ~Into�s
)
→ Fφgoal

]
.

Theorem 4 (Completeness). Let P be a problem, and EP its corresponding RSGR control prob-
lem. If an intention-based strong cyclic policy π for P exists, then there exists a solution M for
EP such that π ⊆ πM.

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 16 Public

Proof. We construct an LTS M from policy π and show that M is a solution to EP. Let M =

(S , A,∆M, s0) be an LTS defined as follows: s0 = sI; S = 2P∪ (2P ×O); A = {e | O, e ∈ Eff o} ∪O;
and ∆ = {(s, o, (s, o)) | o = π(s)} ∪ {((s, o), eo, s′) | eo ∈ Eff o, s

′ ∈ ~eo�s}. Now, the proof amounts
to proving that for all traces t of M‖E, if t is SIF, then t |= F(

∧
l∈φgoal

fl). Since t is SIF, we
know that t exhibits long enough gaps showing all intended effects of operators and no failures.
Consider the prefix ti of t that includes the first such a gap. There exists an execution λti of policy
π corresponding to prefix ti, which is “intended base” and hence achieves the goal. Therefore,
prefix ti also achieves the goal specification and t |= F(

∧
l∈φgoal

fl) applies. �

Now, observe that [9] proved that solving a RSGR control problem can be done polynomially,
by reducing it to a GR(1) synthesis task [2]. Since the encoding of a FOND problem into a
RSGR control one (Definition 9) is exponential, we get that we can use reactive synthesis to
obtain intended-based strong cyclic solution in exponential time (which is the complexity of
conditional planning). In addition, unlike standard solutions via specialized FOND algorithms,
the policy is “maximal,” in that it accounts for every initial state for which a solution exists.

5 Conclusions
In this paper we formally studied the kind of environments in which strong cyclic plans are ad-
equate, thus complementing the existing formal characterization of such plans in CTL and con-
tributing to bridging the gap between automated planning and reactive synthesis. We showed that
an adequate fairness assumption should encode the independence of different non-deterministic
steps, and provided a characterization of such environments in CTL*/LTL. We argued that doing
so allows for direct specification of the FOND planning task into a reactive synthesis one. While
the general synthesis task is not amenable for efficient computation, we showed a special case
of FOND problems—those in which actions have intended effects—-for which low complexity
techniques are available.

We believe that making the connection between planning and controller synthesis more ev-
ident can benefit both areas. Automated planning can exploit recent powerful techniques—like
synthesis of GR(1) or safety specifications—and open for more general planning settings. As
pointed out in [8], one could be interested in planning under “selective” and/or “conditional”
fairness assumptions (e.g., the dice is fair unless an action has “loaded” it), something that spe-
cialized planners cannot handle. Indeed, the special case of actions with intended effects is one
such case. For reactive synthesis, planning settings can provide concrete applications and inform
what types of system goal specifications are meaningful and worth studying.

In future work, we plan to investigate other solution concepts for non-deterministic planning.
In particular, we are interested in fault-tolerant planning [10].

Bibliography
[1] Martı́n Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable specifications

of reactive systems. In Proc. of the International Colloquium on Automata, Languages and

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 16 Public

Programming (ICALP), pages 1–17, 1989.

[2] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis
of reactive(1) designs. Journal of Computer and System Sciences, 78(3):911–938, 2012.

[3] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Artificial Intelligence, 147(1-2):35–84,
2003.

[4] Edmund Clarke and E. Emerson. Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. In Dexter Kozen, editor, Logics of Programs, vol-
ume 131 of Lecture Notes in Computer Science (LNCS), chapter 5, pages 52–71. Springer,
Berlin/Heidelberg, 1982.

[5] Marco Daniele, Paolo Traverso, and Moshe Y. Vardi. Strong cyclic planning revisited. In
Proc. of the European Conference on Planning (ECP), pages 35–48, 1999.

[6] M. Daniele, P. Traverso, and M. Vardi. Strong cyclic planning revisited. Recent Advances in
AI Planning, pages 35–48, 2000.

[7] Giuseppe De Giacomo, Fabio Patrizi, Paolo Felli, and Sebastian Sardina. Two-player game
structures for generalized planning and agent composition. In Proc. of the National Confer-
ence on Artificial Intelligence (AAAI), pages 297–302, 2010.

[8] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardina. Generalized planning with
loops under strong fairness constraints. In Proc. of the Int. Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pages 351–361, 2010.

[9] Nicolás D’Ippolito, Vı́ctor A. Braberman, Nir Piterman, and Sebastián Uchitel. Synthesis of
live behaviour models for fallible domains. In Proceedings of the International Conference
on Software Engineering, pages 211–220, 2011.

[10] Carmel Domshlak. Fault tolerant planning: Complexity and compilation. In Proc. of the
International Conference on Automated Planning and Scheduling (ICAPS), 2013.

[11] E. Allen Emerson and Joseph Y. Halpern. Journal of the ACM, 33(1):151–178, January
1986.

[12] Jicheng Fu, Vincent Ng, Farokh Bastani, and I-Ling Yen. Simple and fast strong cyclic
planning for fully-observable non-deterministic planning problems. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 1949–1954, 2011.

[13] Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers, 2013.

[14] Alfonso Gerevini, Blai Bonet, and Bob Givan, editors. Booklet of 4th International Plan-
ning Competition, Lake District, UK, 2006.

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 16 Public

[15] Dimitra Giannakopoulou and Jeff Magee. Fluent model checking for event-based systems.
SIGSOFT Softw. Eng. Notes, 28(5):257–266, September 2003.

[16] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

[17] Robert M. Keller. Formal verification of parallel programs. Communications of the ACM,
19:371–384, 1976.

[18] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless compositional synthesis. In
Proc. of the International Conference on Computer Aided Verification (CAV), pages 31–44,
2006.

[19] U. Kuter, S. Nau, D., E. Reisner, and P. Goldman, R. Using classical planners to solve
nondeterministic planning problems. In Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 190–197, 2008.

[20] Zohar Manna and R. Waldinger. How to clear a block: A theory of plans. Journal of
Automed Reasoning, 4(3):343–377, 1987.

[21] Christian Muise, Sheila A. McIlraith, and J. Christopher Beck. Improved non-deterministic
planning by exploiting state relevance. In Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 172–180, 2012.

[22] Fabio Patrizi, Nir Lipovetzky, and Hector Geffner. Fair LTL synthesis for non-deterministic
systems using strong cyclic planners. In Proc. of the International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2013.

[23] Marco Pistore and Paolo Traverso. Planning as model checking for extended goals in non-
deterministic domains. In Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 479–486, 2001.

[24] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In Proc.
of the International Conference on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI), volume 3855 of Lecture Notes in Computer Science (LNCS), pages 364–380.
Springer, 2006.

[25] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
179–190, 1989.

[26] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science (SFCS), pages 46–57, 1977.

[27] Miguel Ramirez and Sebastian Sardina. Directed fixed-point regression-based planning for
non-deterministic domains. In Proc. of the International Conference on Automated Planning
and Scheduling (ICAPS), pages 235–243, 2014.

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 16 Public

[28] Miguel Ramirez, Nitin Yadav, and Sebastian Sardina. Behavior composition as fully ob-
servable non-deterministic planning. In Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 180–188, 2013.

[29] Jussi Rintanen. Complexity of planning with partial observability. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pages 345–354, 2004.

[30] Jussi Rintanen. Regression for classical and nondeterministic planning. In Proc. of the
European Conference in Artificial Intelligence (ECAI), pages 568–572, 2008.

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

16

