
PIRSES-GA-2011-295261 / MEALS
March 28, 2013

Page 1 of 39

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 3.4 / 1

Title of Deliverable: Dissecting Unlinkability

Contractual Date of Delivery to the CEC: 1-Apr-2013
Actual Date of Delivery to the CEC: 15-Mar-2013
Organisation name of lead contractor for this deliverable: INR
Author(s): Mayla Brusó, Konstantinos Chatzikokolakis

Sandro Etalle, Jerry den Hartog
Participants(s): INR,TUE,UNC,UBA
Work package contributing to the deliverable: WP3
Nature: R
Dissemination Level: Public
Total number of pages: 39
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Unlinkability is a privacy property of crucial importance for several types of systems, such as RFID or voting systems.
Informally, unlinkability states that, given two events/items in a system, an attacker is not able to infer whether they are
related to each other.
However, in the literature we find several definitions for this notion, which are apparently unrelated and shows a poten-
tially problematic lack of agreement.
This paper sheds new light on unlinkability by comparing different definitions from the literature and showing that in
many practical situations they actually coincide. It does so by (a) expressing in a unifying framework four different
existing definitions of unlinkability (a weak and three strong ones) (b) demonstrating how these definitions are different
yet related to each other and to their dual notion of “inseparability” and (c) identifying conditions under which all these
definitions become equivalent. We argue that these conditions are reasonable to expect in identification systems, and
we prove that they hold for a generic class of protocols. Finally, we use our framework to define the stronger notions of
forward and backward privacy.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 39 Public

Contents
1 Introduction 3

2 Preliminaries 5

3 A trace-based model 6

4 Unlinkability definitions 7
4.1 Kripke structure . 8
4.2 Weak Unlinkability . 9
4.3 Strong Unlinkability . 9
4.4 Game-based definitions of privacy . 10
4.5 Inseparability . 14
4.6 RFID systems: protocols where the properties do not coincide 15

5 Conditions under which the properties coincide 17
5.1 Conditions . 17

5.1.1 Condition Unbounded number of agents. 17
5.1.2 Condition Renaming. 17
5.1.3 Condition Swapping. 18
5.1.4 Conditions: Extension I and II. 19

5.2 Equivalence results . 20

6 RFID systems: single-step protocols 24
6.1 Modelling single-step protocols . 25
6.2 Instantiating our trace model . 25

7 Relations with forward and backward privacy 32

8 Related work 34

9 Conclusions and future work 35

10 Tables and figures 36

Bibliography 36

MEALS Partner Abbreviations 39

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 39 Public

1 Introduction
Unlinkability is a privacy property which holds when an attacker cannot identify the link be-
tween two or more items in a system. For instance, one may expect that a protocol for online
purchases prevents a seller from linking a customer to his/her browsing history (e.g. purchases at
other shops); similarly, an e-voting protocol should prevent anybody from linking the vote to the
identity of the voter. These examples show that unlinkability is fundamental for the development
of new protocols in the context of e-commerce applications or identification systems.

In particular, Radio Frequency Identification (RFID) are systems where the unlinkability
property is extremely relevant. RFID systems are a wireless technology for automatic identifi-
cation consisting of a set of tags, readers and a backend. Tags are typically simple battery-less
devices consisting of a tiny chip and an antenna offering very limited resources. Readers, on
the other hand, have standard computational resources and communicate with tags wirelessly.
Readers are connected to a backend system, where all the data required for the identification of
tags are stored. An identification protocol allows tags to authenticate to a backend exchanging
information through a reader.

The wireless nature of RFID makes access to tags extremely easy. Nowadays they are com-
monly used in supply chain management as a replacement for barcodes and are starting to make
their way into the consumer realm: it is not uncommon to find RFID chips in clothes (often with
a label “remove after purchase”, although this suggestion is rarely followed). As time passes,
people will increasingly often carry RFID tags around with them.

As one may expect, one of the main issues raised by the widespread use of RFID is that of
privacy. Consumers already rose against famous brands like Benetton because they tried to in-
troduce EPC (RFID replacement for barcodes) in some of their products. Also, consumer groups
started a campaign against Gillette, for using RFID tags in razor blades to track their products.
Clearly, a breach in these systems might lead to the disclosure of private data. The problem is
that anyone in the neighbourhood of a tag may access it wirelessly, and the resource limitation
of RFID tags makes it difficult to use full-fledged cryptographic algorithms (implementing e.g.
two-way authentication). The ease of access paves the way to misuse: an attacker could exploit
tags to follow the movements of people or goods. To do so, the attacker does not even need to
break anonymity (i.e. to obtain the tag identity): a tag sending in plain text the expiry date of a
product does not reveal its identification number but does allow a certain degree of tracking.

Privacy concerns such as those just mentioned lead to the definition of the concept of un-
linkability (sometimes called untraceability or simply privacy). In the case of RFID systems,
unlinkability [18, 22, 4, 5, 23, 8, 29] is satisfied if an attacker is not able to distinguish between
tags; that is, she is not able to tell whether the tag she communicates with in a certain session
is one of the tags she communicated with in a previous session. In the RFID literature, un-
linkability is usually defined in terms of games in a computational setting [10, 18, 22, 4, 23].
More recently, several works focused on unlinkability properties for RFID systems in a symbolic
setting [27, 28, 2, 3, 7]. Van Deursen et al. [27] propose a definition of untraceability in a trace-
based model. Arapinis et al. [2, 3] formalize protocols in the applied pi-calculus and define weak
and strong unlinkability in terms of trace equivalence and observational equivalence respectively.
Finally, [7] proposes definitions of unlinkability and forward privacy in the applied pi-calculus,

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 39 Public

inspired by the unlinkability games of the computational setting.
As most definitions are different in model and strength, there is clearly no agreement in the

literature on the concept of unlinkability. The goal of this paper is to create a better understanding
of this notion by comparing the strength of different definitions and determining whether the
differences have a practical impact on real world systems. Technically, our contribution is:

1. First, we express four trace-based definitions of unlinkability from the literature in a unify-
ing model, stated in terms of attacker’s knowledge using epistemic logic. We start with the
one of weak unlinkability from [27, 3]. By strengthening this definition in a natural way,
we obtain the definition of strong unlinkability from [3]. Then, we express two game-based
definitions, which have been used mostly in the computational [10, 18, 4, 21] but also in the
formal setting [7]. Furthermore, we investigate inseparability, a notion dual to unlinkabil-
ity, which requires that the attacker cannot infer that two messages are not linked. We give
a weak and a strong variant, in correspondence to the respective unlinkability properties.
We give examples to show that these notions are actually different.

2. Second, we identify a set of conditions and demonstrate that, when these conditions hold,
all the above forms of unlinkability and inseparability coincide. We argue that these con-
ditions are common to most of the identification systems, such as RFID systems.

3. Third, we prove that these conditions are indeed satisfied by a generic class of simple iden-
tification protocols from [7]. As corollary of this and the previous result, we conclude that
weak unlinkability, for this family of protocols, provides much stronger privacy guarantees
than it seems at first sight.

4. Last, starting from the definitions of unlinkability, we define the notions of forward and
backward privacy, which assume a stronger attacker able to disclose all the secret informa-
tion of an agent.

These results help us to understand the essence of these privacy properties. Working in an abstract
setting, we can concentrate on their inherent nature – the inability to distinguish certain traces –
without dealing with the complications of a concrete model. As a result, the definitions and the
conditions under which they coincide become intuitive, while the results can be transferred to a
concrete trace model as we do in Section 6.

Plan of the paper. Section 2 briefly introduces epistemic logic. Section 3 presents our ab-
stract trace model. Section 4 states several definitions of privacy using epistemic logic and gives
simple examples showing that these properties do not coincide in general. Section 5 presents
several conditions and shows that, whenever they hold, all the privacy properties coincide. Sec-
tion 6 presents the class of RFID single-step protocols and shows that for these protocols all the
conditions stated in the previous section hold. Section 7 shows the definitions of forward and
backward privacy as special cases of unlinkability Section 8 lists the related work. Section 9
provides conclusions.

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 39 Public

2 Preliminaries
In this section we briefly introduce epistemic logic with public announcements, a logic modelling
agent knowledge, that we later use to formalize privacy properties. Only the basic concepts are
stated here, we refer the reader to [19] for more details.

Let P be a set of propositional constants (atoms). The set L(P) of epistemic formulas ϕ, φ,
. . . over A is given by:

ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Kϕ | [ϕ]ψ

with p ∈ P . The first four formulas are standard and represent an atom, the notation for not, and
and or respectively. The formula Kϕ means “the attacker knows ϕ”. Note that epistemic logic
typically involves multiple agents, withKi denoting the knowledge of agent i. For simplicity, we
only consider a single agent, namely the global attacker. Finally, [ϕ]ψ means “after ϕ is revealed,
ψ holds”.

The semantics is given in terms of Kripke structures. A Kripke structureM is a tuple (S, f,∼
) where:

• S is a set of possible states;

• f : S → 2P is a function assigning to each state a set of atoms that hold in that state;

• ∼ is an equivalence relation on S for the attacker.

Intuitively, s1 ∼ s2 means that from the attacker’s point of view, the two states are indistinguish-
able. The semantics of the logic is given by:

• M, s � p iff p ∈ f(s);

• M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ;

• M, s � ϕ ∨ ψ iff M, s � ϕ or M, s � ψ;

• M, s � ¬ϕ iff s 2 ϕ;

• M, s � Kϕ iff s′ � ϕ for all the states s′ such that s′ ∼ s.

M, s � ϕ means that M satisfies ϕ at state s; we simply write s � ϕ when M is clear from the
context. The interesting case is the knowledge formula Kϕ: the attacker knows ϕ at state s iff ϕ
is satisfied in all the states that are indistinguishable from s from the attacker’s point of view.

Finally, let M |ϕ be a Kripke structure obtained from M by restricting it to states that satisfy
ϕ, i.e. having state space S ′ = {s ∈ S |M, s � ϕ}. We define

• M, s � [ϕ]ψ iff (M, s � ϕ implies M |ϕ, s � ψ)

Intuitively, revealing [ϕ] in a state where ϕ holds, restricts the model to a smaller one where ϕ
always holds. [ϕ]ψ is true if ψ holds in the restricted model.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 39 Public

3 A trace-based model
In this section we present our model, which will be the basis for formalizing several privacy
properties using epistemic logic in Section 4.

In a system, agents exchange messages according to a protocol with a specific purpose. Most
communication takes place over an insecure channel, so an attacker is able to intercept and forge
messages. In order to capture one or more protocol runs in our model, we introduce the concept
of transactions. A transaction starts when the attacker gains access to an agent and lasts until the
attacker loses this access. During the transaction the attacker can passively eavesdrop the com-
munications or actively modify and forge messages. We allow the attacker to execute an arbitrary
number of protocol sessions within a transaction, while knowing that the agent participating in
the transaction does not change. However, when a new transaction starts, the agent involved can
be either the same as before, or a different one, and the attacker’s goal is to distinguish these two
cases.

The attacker’s intentions are captured by the concept of a strategy. For example, the attacker
might passively eavesdrop the session of the first agent she sees, then build a message from that
agent output and send it to a second agent, then interact with a third agent and so on. This strategy
involves three transactions, and defines the messages sent to the agents in each transaction. On
the other hand, the attacker does not control which agent will be involved in each transaction.
Different agents will clearly lead to different executions producing different messages.

In our model, an attacker strategy, together with a mapping of transactions to agent identities,
completely defines one of the possible executions of the system. Abstracting from the protocol
details, we consider traces composed of strategies and agent mappings, and we define privacy
properties based on the attacker’s ability to distinguish these traces.

Definition 1. A system is a tuple (A,Σ,T,∼) where:

• A = {a1, a2, . . .} is a (possibly infinite) set of agents; we assume an ordered set of trans-
actions {p1, p2, . . .}, and we denote by Πn = {p1, . . . , pn} → A the set of assignments of
n transactions to agents;

• Σ is a set of strategies; each strategy σ ∈ Σ has a length |σ|; we denote the set of transac-
tions involved in the strategy by Domσ = {p1, . . . , p|σ|};

• T = {(π, σ) | σ ∈ Σ, π ∈ Π|σ|} is the set of traces; each trace τ ∈ T is a tuple (π, σ) where
σ ∈ Σ is a strategy and π ∈ Π|σ| is a mapping of transactions involved in σ to agents;

• ∼ is an equivalence relation on T such that (π1, σ1) ∼ (π2, σ2)⇒ σ1 = σ2.

Intuitively, Σ is the set of all strategies that the attacker can employ. A trace τ ∈ T is a
complete execution of the system, and is determined by a strategy σ (chosen by the attacker),
and a mapping π (which the attacker does not control) that defines which agent participates in
each transaction. In our model, a protocol is an abstract object that describes the behaviour of
the agents in a system. Each protocol generates the set T of all the possible traces that can
be obtained under any attacker strategy σ ∈ Σ. The relation ∼ is crucial for defining privacy

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 39 Public

properties. Consider a trace τ1 = (π1, σ), produced when the attacker chooses the strategy σ
and interacts with the agents in π1, and a trace τ2 = (π2, σ) produced by the same strategy when
different agents are involved. If τ1 ∼ τ2, it means that when using the strategy σ, the attacker
cannot tell which of the agents she was interacting with.

We sometimes use πτ to emphasize that it belongs to the trace τ . For a trace τ = (π, σ),
we write Domτ for Dom(σ), |τ | for |σ| and Aτ , Aπ for the image of π (i.e. the set of agents
involved in the trace). For a mapping π ∈ Πn we define |π| = n and we denote Π = ∪n≥1Πn.
Since transactions are ordered, we write mappings as sequences of agents, e.g. π = (a4, a1, a2)
assigns agent a4 to the first transaction, a1 to the second and a2 to the third ones.

We extend ∼ to mappings as follows:

π ∼ π′ iff |π| = |π′| and (π, σ) ∼ (π′, σ) ∀σ ∈ Σ s.t. |σ| = |π|

Note that we keep our model abstract and do not explicitly define the messages in the proto-
col, the exact strategies Σ and the relation ∼. We assume that these are produced by a concrete
protocol model (such as the one given in Section 6).

RFID systems. We use RFID systems as a case study of a real-world system where unlinka-
bility is crucial. An RFID system consists of a number of tags and readers. A reader can com-
municate wirelessly with a tag in its proximity in order to identify it. An attacker can interact
with a tag, although she does not know its identity (otherwise unlinkability would not possibly
hold). A transaction happens when the attacker has access to a tag. For example, the attacker
sees a tag at the entrance of a building at 12:00 and can interact with it. The attacker can query
the tag many times at each transaction, and she can be sure that the same tag responds every
time. When she loses proximity to the tag, this transaction ends. Then, at the same or some other
location, the attacker sees once again a tag and can interact with it in a different transaction. Note
that transactions play a similar role to the “interfaces” of [7], used to point out that the attacker
knows she is continuously communicating with the same tag. For simplicity, we assume that all
interactions happen between tags and the attacker (honest sessions are also allowed, since the
attacker can forward messages between agents).

Our model can be instantiated into a concrete protocol model, such as those of [27, 3]. For
example, when using the model of [3] based on the applied pi-calculus, a strategy corresponds to
a context modelling the attacker, τ is the trace produced by the corresponding process, and ∼ is
static equivalence between traces. This “instantiation” of our model is used in Section 6 to show
that a class of protocols, expressed in the model of [3], satisfies a set of conditions expressed in
our abstract model.

4 Unlinkability definitions
In this section we express several definitions of unlinkability from the literature in our trace-
based model. Each definition is given in an intuitive form using epistemic logic, and also in a
direct form in terms of trace equivalence. First, we state the definition of weak unlinkability from

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 39 Public

[27, 3]. This definition requires that for every pair of transactions (p, p′) the attacker cannot know
whether they are linked. Then we move on to strong unlinkability for which there are several
definitions in the literature. We first express the one of [3], requiring that every trace is equivalent
to one without any linked messages (i.e. the attacker cannot even know about the existence of a
link). Then, we focus on game-based definitions of unlinkability, which appear in the literature
mostly in the computational [10, 18, 4, 21], but also in the formal setting [7]. Such definitions set
up a game between an attacker and a challenger, in which the former tries to distinguish between
situations created by the latter. We express two such definitions in our model, corresponding
to different types of games, in terms of equivalence of the traces provided by the challenger or
chosen by the attacker. Then, we give our definition of game-based unlinkability which captures
both types of game. Note that our purpose is not a technical comparison between the compu-
tational and formal models. Instead, we are interested in the idea behind each definition, so
we first express the computational definitions in our trace-based model, and then we compare
them to the rest of the definitions within this formal model. Finally, we introduce the concept
of inseparability, a dual notion to unlinkability, requiring that the attacker cannot infer whether
transactions are not linked to each other. Although inseparability has not been previously studied
in the literature, it arises naturally from the definitions of weak and strong unlinkability, thus we
believe that investigating its relationship to the unlinkability definitions is of interest. Table 10
gathers all the resulting epistemic notions (Definition 4 is not reported because it does not have
an epistemic counterpart, but it is equivalent to (c.) and (d.)).

4.1 Kripke structure
To express the various notions of unlinkability using epistemic logic, the first step is to define a
Kripke structure M , starting from the system described in Section 3.

We recall that T is the set of all traces of our system and ∼ is an equivalence relation on T,
representing the fact that an adversary cannot distinguish between those executions. An equiv-
alence between executions is a fundamental concept underlying all definitions of unlinkability
in the literature. In formal models, such an equivalence has been expressed either in terms of
process equivalence (e.g. observational or trace equivalence in the applied pi calculus [3, 7]) or
using the concept of “reinterpretation” [27]. In computational models, the equivalence is stated
in terms of the inability of the adversary to distinguish the two cases in the corresponding game.

More concretely, starting from a system (A,Σ,T,∼) we build a Kripke structure M =
(T, f,∼). We assume that the set A contains at least two agents. The set of states is T and
the indistinguishability relation of the attacker ∼ is provided directly by the system. Moreover
the set of atomic propositions P and the assignment function f : T→ P are built as follows:

P = Π ∪ {link(p, p′) | p, p′ ∈ Domτ , p 6= p′, τ ∈ T}
f((π, σ)) = {π} ∪ {link(p, p′) | π(p) = π(p′)}

We use two types of propositions: π ∈ Π simply denotes that the mapping of the trace is π;
link(p, p′) denotes that the transactions p, p′ are linked, and it is true in a trace τ = (π, σ) iff
both transactions are mapped to the same agent in that trace. Note that the proposition link(p, p′)
holds only if p 6= p′; thus, we implicitly assume p 6= p′ in all the epistemic definitions.

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 39 Public

4.2 Weak Unlinkability
The first definition is the one of weak unlinkability of van Deursen et al. [27] and Arapinis et
al. [3]. Although presented in different models, the two definitions are similar in nature. They
require that, given a trace where two messages are linked (sent by the same agent) an equivalent
trace must exist where the corresponding messages are not linked. This can be expressed in an
intuitive way using epistemic logic:

Definition 2 (Weak unlinkability). A protocol generating the set of traces T guarantees weak
unlinkability iff

∀τ ∈ T, p, p′ ∈ Domτ : τ � ¬K(link(p, p′))

This definition states that a protocol is weakly unlinkable when the attacker does not know
whether any two given transactions are linked to each other. This implies that for all traces τ
and all pairs of distinct transactions, there must exist an equivalent trace τ ′ ∼ τ in which the
corresponding transactions are mapped to two different agents. So the above definition can be
written as:

∀τ ∈ T, p, p′ ∈ Domτ : ∃τ ′ ∈ T, τ ′ ∼ τ : τ ′ � ¬link(p, p′)

(note that if τ � ¬link(p, p′) then we can simply take τ ′ = τ). This formulation of unlinkability
corresponds exactly to the ones of [27, 3].

The weakness of this definition lies in the quantification. In particular, the attacker might still
be able to infer that a transaction is linked to some other one in the trace, without being able to
tell which one, as illustrated in the example below.
Example 1. Let T be the set of traces generated by a given protocol. Let τ1 = (π1, σ) and
τ2 = (π2, σ) be two equivalent traces in T such that:

• π1 = (a1, a1, a2);

• π2 = (a1, a2, a1).

Assume that the equivalence classes of equivalence are {{τ1, τ2},T \ {τ1, τ2}}, i.e. the attacker
can distinguish τ1, τ2 from other transactions in the system. We assume that the protocol gener-
ating T guarantees weak unlinkability. In fact, each pair of linked transactions in τ1 is unlinked
in τ2 and vice versa. Still, the attacker knows that p1 is linked to either p2 or p3 in the trace τ1 (or
τ2); formally, τ1 � K(link(p1, p2) ∨ link(p1, p3)).

4.3 Strong Unlinkability
Arapinis et al. [3] define also a strong version of unlinkability by requiring that a system is
equivalent to one where each agent executes a single protocol session. Their definition, in a
simplified form and without entering into the details of the applied pi calculus, requires that:

!T ≈ !Ts where (1)
T = νm. init. !main

Ts = νm. init. main

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 39 Public

where T represents an agent carrying out an initialization phase (init) and then an unbounded
number (denoted by !) of protocol sessions (main), while Ts is an agent executing a single
session. ≈ denotes observational equivalence in [3], while we use trace equivalence here since it
is directly expressable in our model.

To capture this definition in our framework, we not only require that the attacker is not able
to infer the link between two given transactions, but also the existence of linked transactions. We
define:

anyLink(τ) =
∨
p∈Domτ

∨
p′∈Domτ link(p, p′)

Intuitively, anyLink(τ) holds for a trace if there exists at least one linked transaction. We can
now define strong unlinkability as:

Definition 3 (Strong unlinkability). We say that a protocol generating the set of traces T guar-
antees strong unlinkability iff

∀τ ∈ T : τ � ¬K(anyLink(τ))

Strong unlinkability holds when the attacker does not know whether there is a link in a trace
at all. For this to hold, each trace must be equivalent to one where no transaction is linked,
namely:

∀τ ∈ T : ∃τ ′ ∈ T, τ ′ ∼ τ : ∀p, p′ ∈ Domτ : τ ′ � ¬link(p, p′)

This formulation corresponds exactly to (1) since τ ′ is a trace that can be produced by the process
!Ts, where no agent executes more than one transaction.

4.4 Game-based definitions of privacy
We now turn our attention to the game-based definitions of privacy. In these definitions, privacy
is defined as the result of a game between an attacker (whose goal is to distinguish between the
actions of different agents) and a challenger.
In this section we refer to two different types of game-based definition of privacy: the first is
related to the definition given by Ohkubo et al. [22], variations of which can be found also in
[10, 18, 4, 23], while the second corresponds to the definition given by [10, 21]. We believe that
most of the game-based definitions of privacy given in the literature fall under one of these two
types.
Here we demonstrate that in our model, these two classes of definitions are equivalent to each
other and to a third simpler definition of game-base unlinkability based on trace equivalence.
Since the challenge involves two agents in the first type of game and three agents in the second
one, we name the corresponding properties two-agents game unlinkability and three-agents game
unlinkability, respectively.
Both types of games consist of three phases. In the game of the first type, during the first phase,
the attacker is allowed to interact with all the agents of the system. In the second phase, the
attacker is asked to select two agents a, a′. Then, the challenger selects an agent x ∈ {a, a′},
and gives x back to the attacker for interactions, hiding its identity. The attacker is still allowed
to interact with all agents in the system, including a and a′. During the final phase, the attacker

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 39 Public

responds to the challenge and wins the game if she can infer whether x is a or a′ with non-
negligible probability.
In order to express this definition in our framework, we need to introduce some notation:

• πx is a partial mapping from transactions to agents, where some transactions are mapped
to a variable x. This represents the situation in which the attacker knows the identities of
the agents involved in all the transactions of a trace, but the ones mapped into x.

• Πx denotes the set of all partial mappings.

• πa is a complete mapping obtained from πx by mapping to an agent a all transactions
previously mapped to the variable x.

In our model, we formalize the unlinkability game by requiring that the attacker cannot infer
whether she is given a mapping πa or πa′ , where a and a′ correspond to the agents selected by
the challenger during the second phase of the game. Formally, we say that a protocol generating
the set of traces T guarantees two-agents game unlinkability iff

∀τ ∈ T, a, a′ ∈ A, πx ∈ Πx : τ � [πa ∨ πa′]¬K(πa) (2)

Note that, although the only forbidden knowledge concerns πa, (2) is in fact equivalent to τ �
[πa ∨ πa′]¬K(πa′), thus the attacker is not allowed to know πa′ either. For two-agents game
unlinkability to hold, the two mappings πa and πa′ should be equivalent under all strategies, thus
we can equivalently express (2) as:

∀a, a′ ∈ A, πx ∈ Πx : πa ∼ πa′

We now turn our attention to the second type of game. This variation can be mostly found
in the computational setting [10, 21]; however, in [7], a similar definition is given in a formal
model. As for the previous game, during the first phase the attacker is allowed to interact with all
the agents. Then, she selects three agents a, a1, a2 to be challenged on. In some of the referenced
works the choice of the agents participating in the challenge is left unspecified. We follow the
strongest approach of giving this choice to the attacker. The challenger gives to the attacker
access to two agents x, y. The challenger can either set x = y = a or x = a1, y = a2. In the last
phase, the attacker wins the game if she can infer whether x and y are linked.
Again, we need to introduce some notation:

• πx,y is a partial mapping from transactions to agents, where some transactions are mapped
to a variable x and some others to a variable y. This represents the situation in which
the attacker knows the identities of the agents involved in all the transactions but the ones
mapped into x and y.

• Πx,y denotes the set of all the partial mappings.

• πa,b is a complete mapping obtained from πx,y by mapping to an agent a all transactions
previously mapped to the variable x and an agent b to the variable y.

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 39 Public

We require that the attacker cannot infer whether she is given a mapping πa,a or πa1,a2 . Formally,
we say that a protocol generating the set of traces T guarantees three-agents game unlinkability
iff

∀τ ∈ T, a, a1, a2 ∈ A, πx,y ∈ Πx,y : τ � [πa,a ∨ πa1,a2]¬K(πa,a) (3)

In terms of equivalence of traces, (3) can be restated as follows:

∀τ ∈ T, a, a1, a2 ∈ A, πx,y ∈ Πx,y : πa,a ∼ πa1,a2

It is easy to see that both two-agents game unlinkability and three-agents game unlinkability
requires all the mappings to be equivalent. Therefore we give a definition of game-based unlink-
ability which unifies the two notions given above:

Definition 4 (Game-based unlinkability). We say that a protocol generating the set of traces T
guarantees game-based unlinkability iff

∀π, π′ ∈ Π, |π| = |π′| : π ∼ π′ (4)

Each of the referenced works uses a variant of either (2) or (3), while [10] mentions both, re-
ferring to two-agents game unlinkability as untraceability and to three-agents game unlinkability
as unlinkability, but does not explore the relation between the two. Instead, we can demonstrate
that both definitions reduce to Definition 4:

Theorem 1. A protocol satisfies game-based unlinkability if and only if it satisfies two-agents
game unlinkability, which it does if and only if it satisfies three-agents game unlinkability.

From now on we will only use the definition of game-based unlinkability. However, by
Theorem 1, all the results that involve game-based unlinkability in the following hold also for
two-agents game unlinkability and three-agents game unlinkability.

Proof. First, we prove that both two-agents game unlinkability and three-agents game unlinka-
bility imply game-based unlinkability, which corresponds to proving that all the traces are equiv-
alent to each other. To show this, we demonstrate that, for any given length n, all the traces are
equivalent to the trace executed entirely by a single agent.

• Two-agents game unlinkability. For each trace τ , we need to consider its mapping πτ =
(πτ (1), . . . , πτ (n)). We define i as the first mapping index such that πτ (1) 6= πτ (i) and we
choose πx such that all the occurrences of the agent πτ (i) in the mapping πτ are replaced
by x. Then we set a = πτ (1) and a′ = πτ (i). By (2), the original trace τ is equivalent to
a trace τ ′ that has the same mapping except for the occurrences of agent πτ (i), which are
replaced by a mapping to agent πτ (1). The trace τ ′ has now one less agent in its mapping
with respect to τ . If we repeat the same reasoning on τ ′ until the number of agents of the
resulting trace is 1, we can conclude that τ is equivalent to the trace executed by a single
agent by transitivity.
For example, consider a trace with mapping πτ = (a1, a2, a3, a2). The first agent dif-
ferent from a1 is a2 on the transaction i = 2, thus we replace all the occurrences of

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 39 Public

a2 by x, obtaining πx = (a1, x, a3, x). By (2), we have that πa1 ∼ πa2 = πτ , i.e.
(a1, a1, a3, a1) ∼ (a1, a2, a3, a2). Then, we choose π′x = (a1, a1, x, a1), and by (2) we
have that π′a1

∼ π′a3
, i.e. (a1, a1, a1, a1) ∼ (a1, a1, a3, a1). By transitivity, we can conclude

that the original mapping πτ is equivalent to π′a1
, which is executed by a single agent,

namely πτ = (a1, a2, a3, a2) ∼ (a1, a1, a1, a1) = π′a1
.

• Three-agents game unlinkability. For each trace τ , we consider its mapping πτ = (πτ (1), . . . , πτ (n))
and we define i as the first mapping index such that πτ (1) 6= πτ (i). Then, we choose πx,y
such that πτ (1) is replaced by x and all the occurrences of the agent πτ (i) by y. Then we
set a = a′ = πτ (1) and a′′ = πτ (i). By 3, the original trace τ is equivalent to a trace τ ′

that has the same mapping except for the occurrences of agent πτ (i), which are replaced
by a mapping to agent πτ (1). Again, this method must be applied until the resulting trace
is run by a single agent, which, by transitivity, is equivalent to τ .

We can conclude that when (2) or (3) hold, then all the traces are equivalent, therefore also
Definition 4 holds.
Now we need to prove that Definition 4 in turn implies two-agents game unlinkability and three-
agents game unlinkability. This implication trivially holds, since they both require specific pairs
of mappings to be equivalent while Definition 4 already implies the equivalence of any pair of
mappings.

Finally, as one may expect, we can show that strong unlinkability and game-based unlinka-
bility are both stronger than weak unlinkability:

Theorem 2. Strong unlinkability and game-based unlinkability imply both weak unlinkability.

Proof. First, we prove that strong unlinkability implies weak unlinkability, namely that:

∀τ ∈ T : τ � ¬K(anyLink(τ))⇒ ∀τ ∈ T, p, p′ ∈ Domτ : τ � ¬K(link(p, p′))

This is a tautology in the epistemic logic, as shown below. Note that in the proof we use the
following property of K (Prop. K) in its contrapositive form:

∨
iK(Pi) ⇒ K

∨
i(Pi) (this is a

tautology for any predicate Pi).
For all τ ∈ T we have:

τ � ¬K(anyLink(τ))
≡ [Def. anyLink(τ)] τ � ¬K

∨
p

∨
p′ link(p, p′)

⇒ [Prop. K] τ � ¬
∨
pK

∨
p′ link(p, p′)

≡ ∀p ∈ Domτ : τ � ¬K
∨
p′ link(p, p′)

⇒ [Prop. K] ∀p ∈ Domτ : τ � ¬
∨
p′ K(link(p, p′))

≡ ∀p, p′ ∈ Domτ : τ � ¬K(link(p, p′))

Therefore strong unlinkability implies weak unlinkability.
Second, we want to prove that game-based unlinkability implies weak unlinkability. This follows
directly from the definition of game-based unlinkability which trivially implies the equivalence
of any trace, thus also weak unlinkability.

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 39 Public

In section 4.6 it is shown that weak unlinkability actually differs from all the strong defini-
tions of unlinkability, and that strong unlinkability is incomparable to game-based unlinkability.

4.5 Inseparability
In some situations we want to hide the existence of unlinked transactions instead of linked ones.
For instance, an attacker might be interested in changes in the system rather than in tracking
agents. Examples where this might be useful to the attacker are easily found in access control
systems. For example, consider a high security location protected by a guard who authenticates
himself using an RFID tag. Since the guard is the same every day, all the authentication mes-
sages are obviously linked, therefore this information is useless to the attacker. However, the
attacker might want to be alerted when a new guard appears. The definitions of weak and strong
unlinkability impose no condition when two messages are unlinked, so they offer no protection in
this case. To model similar situations, we need to introduce the concept of inseparability which
requires that the attacker does not know that two specific transactions are not linked.

Definition 5 (Weak inseparability). We say that a protocol generating the set of traces T guaran-
tees weak inseparability iff

∀τ ∈ T, p, p′ ∈ Domτ : τ � ¬K(unlink(p, p′)) (5)

where unlink(p, p′) = ¬link(p, p′).

The definition states that the attacker should not be able to infer whether any two given
transactions are not linked. Thus, if there is a pair of unlinked transactions in the trace τ then
there must exists an equivalent trace where the same transactions are linked to each other. Then,
(5) corresponds to:

∀τ ∈ T, p, p′ ∈ Domτ : τ � unlink(p, p′)⇒ ∃τ ′ ∈ T, τ ′ ∼ τ : τ ′ � link(p, p′)

Similarly to the case of weak unlinkability, this definition does not capture the situation in which
the attacker is able to infer the existence of two unlinked transactions. This brings us to the
definition of a stronger notion of inseparability.

Definition 6 (Strong inseparability). A protocol generating the set of traces T guarantees strong
inseparability iff

∀τ ∈ T : τ � ¬K(anyUnlink(τ))

where anyUnlink(τ) =
∨
p

∨
p′ 6=p unlink(p, p′)

Note that, similarly to unlinkability, also the definitions of inseparability can be stated in a
direct way in terms of trace equivalence.
As expected, strong inseparability is stronger than weak inseparability. On the other hand, some-
what surprisingly, game-based unlinkability turns out to be stronger than strong inseparability,
although game-based unlinkability is incomparable to strong unlinkability, which is incompa-
rable to strong inseparability. The reason is that game-based unlinkability implies that all the

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 39 Public

traces are equivalent to each other, thus also to the one run by a single agent, as required by
strong inseparability. Game-based unlinkability does not explicitly talk about linked or unlinked
messages, therefore it offers both “unlinkability” and “inseparability” guarantees.

Theorem 3. Game-based unlinkability implies strong inseparability, which implies weak insep-
arability.

Proof. The first part of the theorem states that the game-based definition of strong unlinkability
implies strong inseparability. This follows directly by Theorem 1. In fact, strong inseparability
holds when all the traces are equivalent to a trace executed by one agent. Game-based unlinka-
bility holds when all the possible traces are equivalent; in particular, they must be equivalent to
the traces executed by one agent, and this corresponds exactly to the definition of strong insepa-
rability.
For the second part of the theorem, the steps showing that strong inseparability implies weak
inseparability are the same as those for unlinkability.

The above properties are in general different. In the following section we provide examples
that illustrate the differences between those properties and later we investigate conditions under
which some or all of the properties become equivalent.

4.6 RFID systems: protocols where the properties do not coincide
In this section we list some examples of RFID protocols that guarantee only some of the proper-
ties described in Section 4. The examples are constructed and do not correspond to real protocols.
Indeed, the differences between the properties arise from features of the examples that are un-
likely to be present in realistic protocols. In the next section, we will identify some conditions
under which weak and strong properties become equivalent. The examples are variations of the
OSK protocol for RFID systems [22], which guarantees strong unlinkability [7]. In the original
protocol, each tag is initialized with a unique secret. During each session, the tag outputs h(x)
and updates its current state with g(x), where h and g are two distinct hash functions, and x its
current state. Note that a full understanding of the protocol is not required in order to follow the
examples.

Example 2 (System with a bounded number of tags). Consider a system with a bounded number
of tags. If the attacker observes a number of sessions greater than the number of tags, she knows
that there exist some linked sessions, although she is not able to point to any specific message,
i.e. weak unlinkability holds, but strong unlinkability does not. Note that the definition of strong
unlinkability from [3] in terms of the process equivalence (1) implicitly assumes the existence
of an unbounded number of tags. Still, all the traces of equal length produced by the OSK
protocol are equivalent, therefore game-based unlinkability holds. Strong inseparability also
holds, because the restriction on the number of tags does not affect the equivalence of all the
possible traces to the one completely linked, which exists for any length in this system.

Example 3 (System with several “types” of tags). Consider a system in which there are two
types of tags, Type1 and Type2, that the attacker can distinguish, for example because tags

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 39 Public

with different technical characteristics are used. Weak inseparability and strong inseparability
are violated: when two transactions of different types are observed, the attacker knows that the
transactions cannot come from the same tag. Game-based unlinkability is also violated, because
the adversary can trivially distinguish some traces from others (e.g. one completely linked from
one executed by tags of different type). On the other hand, strong unlinkability still holds: the
adversary cannot know the existence of any linked transactions since all transactions of the same
type could come from different tags. Together with the previous example, this shows that strong
unlinkability and the game-based definitions are incomparable.

However, if the number of tags of Type2 is bounded, we have a situation similar to the previ-
ous example (although the total number of tags might still be unbounded). Strong unlinkability
is violated if the number of protocol sessions belonging to tags of Type2 in the trace is greater
than the number of tags of Type2, but weak unlinkability still holds.

Example 4 (Protocol outputs depending on past sessions I). Consider a variation of the OSK
protocol where the reader does some observable action (a “beep”) when the session it is executing
is linked to a previous session, but only if at least two tags appeared in the past sessions of the
trace. This protocol satisfies weak unlinkability: the beep does not allow the attacker to point
to any two specific sessions and tell that they are linked. Despite this, the attacker knows that
the session that made the reader beep must be linked to a past session of the trace. Consider
the observation that provides more knowledge to the attacker, namely the one where the reader
beeps at the third session. The beep tells him that the third session is either linked to the first
or the second one, violating strong unlinkability. Since not all mappings are equivalent to each
other due to the observable action, game-based unlinkability is also violated. Finally, weak
inseparability and strong inseparability are violated too, because the trace which causes the reader
to beep at the third session tells the attacker that the first two sessions are not linked.

Example 5 (Protocol outputs depending on past sessions II). Consider a variation of the OSK
protocol where the reader beeps when the third tag of a trace first appears. This example is
similar to the previous one, but it leads to the definition of a different condition in the next
section. The protocol satisfies weak unlinkability, but violates strong unlinkability: if the reader
beeps after four or more sessions, there must exist a link in the previous sessions. Game-based
unlinkability is also violated, since different traces lead to different observations. Finally, it
breaks weak inseparability and strong inseparability, since a beep during the third session means
that the first three sessions are not linked.

Example 6 (Protocol outputs depending on past sessions III). Consider a variation of the OSK
protocol where the reader beeps when it sees at least two tags and one link. With respect to
unlinkability, the protocol behaves similarly to the previous ones: it satisfies weak unlinkability
but violates strong unlinkability and game-based unlinkability. With respect to inseparability,
strong inseparability is violated, because a beep means that at least two tags were involved in
that trace. However, the attacker cannot point to two sessions and claim that they are unlinked;
therefore, weak inseparability still holds.

Table 2 summarizes the relationship between the properties and lists the references to the
corresponding examples and theorems.

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 39 Public

5 Conditions under which the properties coincide
In Section 4 we gave three definitions of unlinkability as well as two of inseparability, and we
showed examples where these definitions do not coincide. However, these examples have fea-
tures that are unlikely to be found in practice. In this section we identify a (large) class of
protocols C and we demonstrate for these protocols that all the notions of unlinkability and in-
separability are equivalent to each other: if a protocol in C satisfies any of them, then it satisfies
all of them. The class C is given by all the protocols satisfying the five conditions that we iden-
tify in the next section, where we also argue that most RFID protocols actually satisfy them, at
least in their abstract form. We also show that the class of single-step protocols is contained in
C.

5.1 Conditions
5.1.1 Condition Unbounded number of agents.

As we showed in Example 2, a system with a bounded number of agents cannot satisfy strong un-
linkability, since observing a greater number of transactions reveals that at least two transactions
are linked. Thus, protocols in C contain an unbounded number of agents.

Definition 7 (Unbounded number of agents). We say that a protocol has an unbounded number
of agents iff

∀n > 0 ∃τ ∈ T : |Aτ | = n

Clearly, an unbounded number of agents cannot exist in a real identification system. However,
such systems are usually needed to identify a wide number of agents, therefore an attacker cannot
usually communicate with all the agents in a limited amount of time. Moreover, the attacker does
not usually know the number of agents in the system at all. This is why, at an abstract level, this
condition is often assumed in the literature.

5.1.2 Condition Renaming.

As shown in Example 3, having multiple distinguishable types of agents can be problematic.
For instance, observing two transactions of different type clearly violates inseparability, as we
can conclude that the transactions are not linked. However, in real systems agents are usually
identical in functionality, differing only in the secret key used for their identification. Indeed,
agents usually identify themselves to a system by means of similar or identical devices, e.g.
RFID tags or desktop computers. As a result, we can expect that replacing all transactions of an
agent with a new one (not participating in other transactions) will not have a visible effect, since
the two agents are identical except for their secret information. We capture this by the following
condition:

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 39 Public

Definition 8 (Renaming). Let π be a mapping, a ∈ Aπ and a′ /∈ Aπ. The renaming of a to a′ in
π, denoted by π[a′/a], is a mapping such that

π[a′/a](p) =

{
a′ if π(p) = a

π(p) otherwise

We say that a protocol satisfies the condition Renaming iff π ∼ π[a′/a] for all mappings π and
agents a′ /∈ Aπ.

In other words, for protocols satisfying the condition Renaming, the only thing that matters
is the positions in which an agent appears in the trace, and not the exact identity of the agent.
For example, the mappings (a3, a1, a2, a1, a1) and (a3, a4, a2, a4, a4) should be equivalent (i.e.
produce equivalent traces under all strategies σ) since they are identical, except for the renaming
of a1 to a4.

In the rest of the paper, we assume that this condition holds and we write all mappings in a
normalized form, sorting the agents by their order of appearance: the first agent is always a1, the
next agent different from a1 will be a2 and so on. For example, we write (a1, a1, a2, a3, a1, a2)
instead of (a5, a5, a3, a1, a5, a3) since these mappings are assumed to be equivalent. The main
advantage of this normalization is that the number of possible traces is always finite for any given
length (even when the number of agents is infinite).

5.1.3 Condition Swapping.

Consider π1 = (. . . , a1, a2, . . .) and π2 = (. . . , a3, a4, . . .), two mappings where the k-th and
k + 1-st transactions involve different agents (which could appear elsewhere in the mapping).
Now assume that π1 ∼ π2, that is no attacker strategy can distinguish these mappings, and
consider the mappings π′1 = (. . . , a2, a1, . . .) and π′2 = (. . . , a4, a3, . . .) that differ from π1 and
π2 only for the k-th and k + 1-st agents, which have been swapped. We require that different
agents act in an independent way and the execution of the one should not affect the execution
of the other. The transactions of a1, a3 should not depend on whether a2, a4 were previously
executed or not and vice versa. Thus, π′1 and π′2 should also be indistinguishable. Formally, we
require the following condition:

Definition 9 (Swapping). Let π be a mapping. The swapping of π at position k < |π|, denoted
by swk(π) is a new mapping such that:

swk(π)(pi) =

π(pk+1) if pi = pk

π(pk) if pi = pk+1

π(pi) otherwise

We say that a protocol satisfies the condition Swapping iff

π ∼ π′ ⇒ swk(π) ∼ swk(π
′)

for all π, π′, k such that π(pk) 6= π(pk+1) and π′(pk) 6= π′(pk+1).

18

PIRSES-GA-2011-295261 / MEALS Page 19 of 39 Public

In practice, the condition Swapping simply implies that the agents are independent of each
other. As a consequence, the order of appearance of agents does not affect the knowledge of the
attacker.

Note that this condition is violated in the Example 4. Consider a passive attacker that
eavesdrops three legitimate sessions; we use “ ” and “beep” for “reader does nothing” and
“reader beeps” respectively. The mappings (a1, a1, a2) and (a1, a2, a3) produce the same ob-
servations (, ,). However, by swapping the second and third transactions, we obtain the map-
pings (a1, a2, a1) and (a1, a2, a3), which produce different observations: (, , beep) and (, ,).
Clearly, the problem here is that the execution of one agent depends on the previous executions
of other agents. Note that (a1, a2, a3) does not change because it is written in canonical form.
(a1, a2, a3) and (a1, a3, a2) are equivalent due to the condition Renaming.

With regard to RFID systems, note that the condition Swapping defined above has no relation
to the swapping attack of [17]. In fact, while in the attack of [17] some messages of two ses-
sions are swapped in order to swap their labels, the condition swapping assumes that two entire
sessions are swapped in the trace.

5.1.4 Conditions: Extension I and II.

We now introduce two last conditions. The first states that two equivalent mappings should
preserve their equivalence when extended with a new transaction mapped to a fresh agent, i.e.
not appearing in the original mapping. Similarly to the swapping rule, the underlying idea is
that the execution of an agent should not depend on the previous executions of other agents.
Therefore, adding a new agent should not make two traces distinguishable, if they could not be
distinguished before. This is formally stated in the following condition.

Definition 10 (Extension I). Let π be a mapping. The extension of π with a new agent a /∈ Aπ,
denoted by extn(π), is a mapping of length |π|+ 1 such that

extn(π)(pi) =

{
π(pi) i ≤ |π|
a i = |π|+ 1

We say that a protocol satisfies the condition Extension I if

π ∼ π′ ⇒ extn(π) ∼ extn(π′)

for all mappings π, π′.

Note that this condition is violated by the protocol in the Example 5. Consider a passive at-
tacker that eavesdrops three legitimate sessions: if the attacker observes no beep, she knows that
they could come from the mappings (a1, a1, a1), (a1, a1, a2), (a1, a2, a1) or (a1, a2, a2); if we add
a new tag to all the mappings, the equivalence is not preserved since the mapping (a1, a1, a1, a2)
does not make the reader beep, while (a1, a1, a2, a3), (a1, a2, a1, a3) and (a1, a2, a2, a3) do, thus
the condition Extension I does not hold.

19

PIRSES-GA-2011-295261 / MEALS Page 20 of 39 Public

The second extension condition works as follows: consider two equivalent mappings π1, π2
of length n. We extend these mappings with a new transaction pn+1, which is mapped to the
last agent appearing in each mapping. Intuitively, since the attacker had access to these agents
during the pn-th transaction, and she could not distinguish the two mappings, she does not gain
any new knowledge by querying the same agents in the new transactions. The idea is that what
the attacker can do in the transaction pn+1 to disclose information could already be done in pn in
the original mapping. Thus, we require the following condition.

Definition 11 (Extension II). Let π be a mapping. The extension of π with the last appearing
agent, denoted by extl(π) is a mapping of length |π|+ 1 such that

extl(π)(pi) =

{
π(pi) i ≤ |π|
π(p|π|) i = |π|+ 1

We say that a protocol satisfies the condition Extension II if

π ∼ π′ ⇒ extl(π) ∼ extl(π′)

for all mappings π, π′.

This condition is violated by the protocol in the Example 6. In fact, the traces with mappings
(a1, a1) and (a1, a2) are not distinguishable; instead, their extensions producing the mappings
(a1, a1, a1) and (a1, a2, a2) are distinguishable because the first trace produces no beep while the
second beeps.

5.2 Equivalence results
In this section we state the main results of this paper. Namely, we demonstrate that under the
conditions stated in the previous section, all the definitions of unlinkability coincide. Moreover,
we prove that, under a smaller set of conditions, the definitions of inseparability coincide as well
as all the strong definitions (of both unlinkability and inseparability).

Theorem 4 (Unification of unlinkability). If a protocol guarantees all the following conditions:

• Unbounded number of agents

• Renaming

• Swapping

• Extension I and II

then all the unlinkability properties (weak unlinkability, strong unlinkability, game-based unlink-
ability) coincide.

20

PIRSES-GA-2011-295261 / MEALS Page 21 of 39 Public

The intuition is that, under these conditions, all the definitions require all the mappings of the
same length to be equivalent under all the possible attacker strategies. In particular, this implies
that all the traces are equivalent to one where all the transactions are not linked, which implies
both weak unlinkability and strong unlinkability.

Proof. We first prove that weak unlinkability implies the game-based notion of strong unlinka-
bility. In particular, we need to show that weak unlinkability together with the conditions imply
that all the traces in T are equivalent under any attacker strategy σ ∈ Σ, namely:

∀(τ, τ ′) ∈ T : πτ ∼ πτ ′

The proof is by induction on the number of transactions n and is split in two parts: one for sys-
tems with two agents only and the other for systems with more than two agents.

Case with two agents
Base case. For n = 1 we only have a single trace (under the condition Renaming) so there
is nothing to prove. For the case n = 2 we have two possible mappings π = (a1, a1) and
π′ = (a1, a2). By weak unlinkability, under any attacker strategy the traces with mapping π must
be equivalent to traces where the link is broken, i.e. with mapping π′. Thus all the mappings are
equivalent.
Inductive case. We have to show that all the mappings of length n (> 2) are equivalent. The
induction hypothesis gives that all mappings with length n − 1 are equivalent. We divide the
mappings of length n over three sets that contain mappings equivalent to all the other mappings
in that set. We use π−i to denote the sequence of the first n− i agents in a trace.

EE Mappings ending in two transactions executed by the same agent (π−2, x, x). They are
equivalent to each other according to the induction assumption plus condition Extension
II.

DE1 Mappings of the form (π−3, x, y, x) with x 6= y. Any two mappings in this set can be
obtained from mappings in EE by swapping at position n − 2 (when possible). So they
are equivalent by the Swapping condition and (EE) (note that we write EE and DE1for the
sets and (EE) and (DE1) for the corresponding equivalence properties).

DE2 Mappings of the form (π−3, x, x, y) with x 6= y. Any two mappings in this set can be
obtained from mappings in DE1 by swapping at position n− 1. So they are equivalent by
the condition Swapping and (DE1).

As there are only two agents in the system, these sets together cover all traces.
Note that any trace in EE has the last two transitions linked. By weak unlinkability, each

mapping must be equivalent to a mapping in which these two transactions are not linked, i.e. a
mapping not in EE. Similarly for DE1 at the last and third last and DE2 at the second last and
third last positions. Therefore in each set there is a mapping that is related to a mapping outside
the set, and thus in one of the other two sets. As we have only three sets and equivalence is
transitive this is sufficient to conclude that all mappings are equivalent.

Case with more than two agents

21

PIRSES-GA-2011-295261 / MEALS Page 22 of 39 Public

Base cases. The base cases are the followings:

• n = 1, 2: With at most two transactions there are at most two agents involved. The proof
remains the same as in the case with two agents.

• n = 3: There are five possible mappings: (a1, a1, a1), (a1, a1, a2), (a1, a2, a1), (a1, a2, a2),
(a1, a2, a3). We have to show that they are all equivalent:

– The condition Extension I applied on the case n = 2 gives (a1, a1, a2) ∼ (a1, a2, a3).

– The condition Swapping applied on the last two positions of these two traces gives
(a1, a2, a1) ∼ (a1, a2, a3) (note that swapping has no effect on (a1, a2, a3) due to
the renaming to the canonical form). If we apply the condition again to now swap
the first two positions we obtain: (a1, a2, a2) ∼ (a1, a2, a3) (note the renaming from
(a2, a1, a1) to canonical form (a1, a2, a2)).

– (a1, a1, a1) must be equivalent to one of the other four (equivalent) mappings by weak
unlinkability.

Inductive case. For the inductive case we have to show that all the mappings with length n are
equivalent. We use ami for a sequence of m times the agent ai. The induction hypothesis is that
all equal-length mappings with length up to n− 1 are equivalent. We give four sets of mappings
that are all equivalent to (a n

1) and thus to each other.

EE Mappings ending in two transactions with the same agent (π−2, x, x). They are equiva-
lent to each other (including (a n

1)) according to the induction assumption plus condition
Extension II.

FR Mappings ending in a transactions with a fresh agent (π−1, y), y 6∈ π−1. They are
equivalent to each other according to the induction assumption plus condition Exten-
sion I. They are equivalent to (a n

1) because: (an−41 , a1, a1, a2, a2) ∼ (an−41 , a2, a3, a1, a1)
by (EE) so, by using the condition Swapping twice to move the second last transaction
to position n − 4 and twice more to move the last transaction to place n − 3, we get:
(an−41 , a2, a2, a1, a1) ∼ (an−41 , a1, a1, a2, a3) with the former in EE and the latter in FR.

ST Mappings of the form (ak1, a2, a
l
1) (k+ l = n− 1) are equivalent to (a n

1). This is clear for
l ≥ 2 by (EE) and for l = 0 by (FR). For l = 1 consider: (an−21 , a1, a2) ∼ (an−21 , a2, a3)
(by (FR)). By using the condition Swapping on position n−1 we get also (an−21 , a2, a1) ∼
(an−21 , a2, a3) (note that swapping has no effect on the latter mapping due to the use of
normal forms by renaming), with the former in ST and the latter in FR.

SW Swaps of mappings equivalent to (a n
1). If a mapping π is equivalent to (a n

1) then we
have π ∼ (ak−11 , a2, a

n−k
1) by (ST) so also swk(π) ∼ (a k

1 , a2, a
n−k−1
1) by the condition

Swapping. But then swk(π) ∼ (a n
1) by (ST).

These sets contain all traces; any trace that is not in FR is of the form (π1, x, π2, x) with x 6∈ π2
which we obtain from (π1, π2, x, x) in (EE) by swapping π2 times. Therefore we can conclude
that all the mappings are equivalent, therefore game-based unlinkability holds. Note that there is
no need to use the unbounded number of agents condition for the game-based definition.

22

PIRSES-GA-2011-295261 / MEALS Page 23 of 39 Public

Now we have to prove that weak unlinkability implies strong unlinkability under the condi-
tions. From the previous proof, we know that the conditions, with the exception of the unbounded
number of agents condition, are sufficient to prove that all the traces generated by a given proto-
col are equivalent under any attacker strategy. The existence of an unbounded number of agents
implies that among the equivalent traces there is always the one where all the transactions are
not linked, which is the requirement for strong unlinkability to hold.

Theorem 5 (Unification of inseparability). If a protocol guarantees the following conditions:

• Renaming

• Extension II

then it satisfies weak inseparability iff it satisfies strong inseparability.

Again, under these conditions, both properties require all mappings of the same length to be
equivalent; in particular they are equivalent to one where all the transactions are linked.

Proof. We want to prove that, under the above conditions, whenever a protocol guarantees weak
inseparability it also guarantees strong inseparability. Therefore, in our trace-based model we
need to prove that all the traces with the same length generated by a protocol are equivalent. The
proof is by induction on the number of sessions (n).

Base case. (n = 2) We have to prove that all the traces in T such that |πτ | = 2 are equivalent
under any attacker strategy σ. The only possible mappings are π = (a1, a1) and π′ = (a1, a2).
They are trivially equivalent by weak inseparability. Therefore, all the traces are equivalent for
n = 2.

Inductive case. (n > 2) By inductive hypothesis all the traces τ ∈ T such that |πτ | ≤ n− 1
are equivalent under any attacker strategy σ. Therefore, by the condition Extension II, we have
that all the traces τ ∈ T such that |πτ | = n and πτ (pn−1) = πτ (pn) are equivalent under any
attacker strategy σ. By weak inseparability, the remaining traces τ ∈ T such that |πτ | = n
and πτ (tn−1) 6= πτ (pn) must be equivalent to a trace where the last two transactions are linked,
namely to the ones of the previous case. Therefore, by transitivity of ∼ we can conclude that all
the traces such that |πτ | = n are equivalent.

The previous theorems compare properties of each family (unlinkability or inseparability).
We now show that unlinkability and inseparability also coincide under certain conditions.

Theorem 6 (Unification of strong properties). If a protocol guarantees the following conditions:

• Unbounded number of agents

• Renaming

then all the strong properties (strong unlinkability, game-based unlinkability, strong inseparabil-
ity) coincide.

23

PIRSES-GA-2011-295261 / MEALS Page 24 of 39 Public

It is worth noting that this result uses weaker assumptions than the previous ones; indeed, the
conditions Swapping and Extension I and II are not needed. An unbounded number of agents
is required to guarantee the existence of the traces where all transactions are mapped to differ-
ent agents (for strong unlinkability), while the condition Renaming implies that agents are not
observationally different (for strong inseparability and game-based unlinkability). Example 3
(with two distinguishable types of tags) shows that a protocol, without the condition Renaming,
can satisfy strong unlinkability while violating game-based unlinkability and strong insepara-
bility. On the other hand, Example 2 shows that, without the unbounded number of agents, a
protocol can violate strong unlinkability while satisfying game-based unlinkability and strong
inseparability.

Finally, we can state the result we were aiming at.

Corollary 1. If a protocol guarantees all the following conditions:

• Unbounded number of agents

• Renaming

• Swapping

• Extension I and II

then all the forms of unlinkability and inseparability coincide.

This result shows that all the privacy definitions of Section 4 coincide under a set of condi-
tions.

6 RFID systems: single-step protocols
In Section 5 we showed that, under some conditions, all the unlinkability and inseparability
definitions coincide. In this section, we show that these conditions are indeed satisfied by a
generic class of “single-step” protocols [7]. To this end, we express such protocols in the applied
pi calculus, using the model of [3], which defines an instantiation of our model, i.e. it provides a
concrete set of traces and an equivalence relation between them.

Single-step protocols consist of a single message from a tag to a reader. A protocol of this
class is shown in Figure 1. Each tag is initialized with an internal state S0, which contains a
secret s that is unique to that tag (e.g. a nonce or private key). At each run of the protocol, the
tag computes a function O(S), where S is its current state, and outputs the result to the reader.
This message should contain sufficient information for the reader to identify the tag. Then, the
tag computes a second function U(S) and updates its current state with the result. Although the
protocol is restricted to a single message, O and U can be arbitrary, using any cryptographic
operation (provided that it can be modelled by an equational theory in the applied pi calculus).

As discussed in [7], two well-known protocols from the literature, namely the OSK protocol
[22] and the basic hash protocol of [30], fall in this class.

24

PIRSES-GA-2011-295261 / MEALS Page 25 of 39 Public

6.1 Modelling single-step protocols
We model single-step protocols in the applied pi calculus [1], a language for describing concur-
rent processes and their interaction. It extends the pi calculus [20] adding the possibility to model
cryptographic primitives using a signature and an equational theory. A detailed description of the
calculus is available in [1]; here, we only assume a basic understanding of the calculus, technical
details are only needed to follow the proofs.

Tags are modelled as processes in the calculus, using a public channel c to communicate with
the reader. The main challenge comes from the fact that tags are stateful. To model their state,
we use an internal channel w. The content of the state is available to the tag by a sub-process
w〈S〉 running in parallel to it, so the tag can read the state by an input on w. Therefore, a tag
execution can be modelled in the applied pi calculus as follows:

TagExec
∆
= c(). w(x). νρ̃. c〈O(x)〉. w〈U(x)〉

The tag is first triggered by an input on the public channel c (but without reading a value,
which is denoted by the use of “ ” instead of a variable). Then, it reads the current state x by an
input on w and outputs O(x) on a public channel. νρ̃ denotes the possibility of generating fresh
nonces for the output. Finally, the tag outputs U(x) on w, updating its state with the new value.

A complete tag starts with an initial state S0, containing the tag secret s, and can execute an
unbounded number of sessions.

Tag
∆
= νs.νw.(w〈S0〉 | !TagExec)

Note that the secret is private to the tag, thus we use a freshly generated name s. We also restrict
w so that only the tag can access its state.

Finally, the complete system P consists of an unbounded number of tags: P ∆
= !Tag. Note

that the reader in single-step protocols is passive: it only triggers the tag. Since c is public, the
tag can be triggered by any external process, so we can simply omit the reader altogether.

6.2 Instantiating our trace model
The system P can perform labelled transitions, according to the semantics of the applied pi
calculus. We denote by α

=⇒ a sequence of internal transitions, followed by the visible transition
α, followed again by internal transitions. A trace is a sequence

tr = P
α1=⇒ P1

α2=⇒ P2
α3=⇒ . . .

αq
=⇒ Pq

Two traces are equivalent, denoted by tr1 ∼tr tr2 if they contain the same transitions, and all the
intermediate processes are statically equivalent according to the definition of [1], which states
that the processes provide the attacker with the same static knowledge. We refer to [3] for the
formal definition of ∼tr.

To instantiate our trace model, we need do define a set of agents A, a set of strategies Σ such
that a strategy σ together with a mapping π give rise to a trace τ = (π, σ), and an equivalence
relation ∼ between traces.

25

PIRSES-GA-2011-295261 / MEALS Page 26 of 39 Public

The agents A = {ai|i ∈ N} correspond to the tags of the system. Note that in the applied pi
calculus model, we use replication to denote an unbounded number of tags. We identify the tags
by their secret s, which is restricted inside the replication, thus it is unique for each tag. When ai
is spawned we denote its secret by si.

Since tags in single-step protocols have no input, the only thing that the attacker can decide
is how many transactions she will run, and how many protocol executions she will trigger in
each transaction. Thus, a strategy σ is a sequence σ = (σ1, . . . , σk) such that k is the number
of transactions the attacker performs, and σi the number of executions that she triggers in the
transaction i. A mapping π determines which tag will participate in each transaction, for example
π(p2) = a3 means that a3 is the tag involved in the second transaction p2.

Given a strategy σ and a mapping π, we can define a unique trace tr(π, σ) starting from P . In
this trace, the tag π(p1) is first spawned and runs σ1 executions. Then, the tag π(p2) is spawned
(unless π(p1) = π(p2), meaning that it had already been spawned) and runs σ2 executions, and
so on. Finally, we define trace equivalence as follows:

(π, σ) ∼ (π, σ′) iff tr(π, σ) ∼tr tr(π, σ′)

Now that we have a concrete trace model for single-step protocols, we can show that they
satisfy all the conditions of Section 5.1.

Theorem 7. Single-step protocols satisfy all the following conditions:

• Unbounded number of agents

• Renaming

• Swapping

• Extension I and II

Therefore all the unlinkability and inseparability properties coincide.

Proof. A single-step protocol in the concrete model provides traces of the form:

P
c(−)
=⇒ A1,1

νx1,1.c〈x1,1〉
=⇒ A′1,1

. . .
c(−)
=⇒ Ai,j

νxi,j .c〈xi,j〉
=⇒ A′i,j

. . .
c(−)
=⇒ An,σn

νxn,σn .c〈xn,σn 〉=⇒ A′n,σn

where:

• the indexes (i, j) are used to indicate the i-th transaction at the j-th query;

• Ai,j corresponds to the process obtained after triggering the tag during the specific session
(i, j);

26

PIRSES-GA-2011-295261 / MEALS Page 27 of 39 Public

• A′i,j corresponds to the process obtained after the tag has sent out the output in the session
(i, j);

• xi,j is the variable that contains the term sent over the network.

We have to prove that single-step protocols guarantee all the conditions of Section 5.1.

First we define our notation and some lemmas used later on in the proofs of the conditions.
We use Φπ,σ(k) to denote the frame produced by a trace (π, σ) at the k-th transaction:

Φπ,σ(k) =
∏σk

i=1νρ̃.{O(UI(k,i)(sπk))/xk,i}

where I(k, i) = i− 1 +
∑

j<k
πj=πk

σi is the number of sessions executed before the i-th session of

the k-th transaction by the agent πk.
We use πl and σl as shorts for swl(π) and swl(σ) respectively, denoting that the l-th agent and
the l-th strategy have been swapped with the l + 1-st respectively.
From now on, we will consider single-step protocols as modelled in Section 6.

The first lemma simplifies the concept of trace equivalence, so that to prove trace equivalence
it suffices to prove that the traces can produce the same inputs and outputs and that the final
processes are statically equivalent.

Lemma 1. Consider two processes A and B in canonical form that process the same sequences
of inputs and outputs. If every last pair of processes produced by the traces that A and B can
generate are statically equivalent, then the corresponding traces are equivalent.

Proof. Consider two traces τA and τB, generated by the processes A and B such that

τA = A
α1=⇒ A1

α2=⇒ . . .
αn−1
=⇒ An−1

αn=⇒ An

τB = B
α1=⇒ B1

α2=⇒ . . .
αn−1
=⇒ Bn−1

αn=⇒ Bn

Each transition can only augment a frame, namely it can only add variables, but it cannot destroy
them or change their content. In practice, φ(Ai) always has all the variables in φ(Ai−1) and
possibly more. Clearly, all the terms bounded to the variables in φ(Ai−1) do not contain any of
the new variables present in the frame φ(Ai). We want to prove that if the frames φ(An) and
φ(Bn) are equivalent then the traces τA and τB are equivalent, namely that also the processes
obtained in the previous steps are statically equivalent:

∀i : φ(Ai) ≈s φ(Bi)

The processes A and B have the following form:

νs̃.(!P1, . . . , !Pp)

where s̃ is the sequence of all the names restricted in !P1, . . . , !Pp and the subprocesses Pi repre-
sent the type of agent in the system.

27

PIRSES-GA-2011-295261 / MEALS Page 28 of 39 Public

The traces τA and τB generate a sequence of n frames. Each of the α transitions either produce a
new substitution or does not change the frames. When the frames do not change from the i−1-st
to the i-th transition, it is trivial to show that the i − 1-st transition produced a pair of statically
equivalent frames, since the i-th pair is statically equivalent by inductive hypothesis. Thus, for
the sake of simplicity, in the rest of the proof we only consider the transitions that produce a
substitution. Therefore, the n-th frames correspond to:

φ(An) = νs̃.{{T1/x1}, . . . , {Tn/xn}}

φ(Bn) = νs̃.{{T ′1/x1}, . . . , {T
′
n/xn}}

where Ti and T ′i indicate the terms produced by the i-th transitions of the traces τA and τB.
By hypothesis, the processes An and Bn are statically equivalent, namely φ(An) ≈s φ(Bn). We
prove by induction on the number of transitions i ≤ n that all the frames are statically equivalent.
By inductive hypothesis, we know that:

φ(Ai) ≈s φ(Bi)

This can be written as:

νs̃.(ϕAi−1
| {Ti/xi}) ≈s νs̃.(ϕBi−1

| {T ′i/xi})

where ϕAi−1
and ϕBi−1

contains all the substitutions generated until the i − 1-st transition and
ñ contains all the restricted names, including possible names generated by the i-th transition.
Static equivalence is closed under the application of closing evaluation contexts, therefore we
can restrict the variable xi to obtain the following equivalent frames:

νxi.νs̃.(ϕAi−1
| {Ti/xi}) ≈s νxi.νñ.(ϕBi−1

| {T ′i/xi})

Since the variable xi is not used in ϕAi−1
nor in ϕBi−1

, we can move its restriction, obtaining two
structurally equivalent frames:

νs̃.(ϕAi−1
| νxi.{Ti/xi}) ≈s νñ.(ϕBi−1

| νxi.{T
′
i/xi})

By structural equivalence νxi.{Ti/xi} = νxi.{T
′
i/xi} = 0; also, the parallel composition of a

process with the 0 process is structurally equivalent to the process, therefore we have:

νs̃.(ϕAi−1
) ≈s νñ.(ϕBi−1

)

Which corresponds exactly to:
φ(Ai−1) ≈s φ(Bi−1)

Thus, we can conclude that all the pairs of processes in τA and τB are statically equivalent.

Lemma 2. Let

φA = νρ̃.{ϕ1,
M1/x1 , . . . ,

Mm/xm ,
N1/xm+1 , . . . ,

Nn/xm+n , ϕ2}
φB = νρ̃.{ϕ′1,M

′
1/x1 , . . . ,

M ′m/xm ,
N ′1/xm+1 , . . . ,

N ′n/ym+n , ϕ
′
2}

28

PIRSES-GA-2011-295261 / MEALS Page 29 of 39 Public

be frames in canonical form such that φA ≈s φB, and Θ a substitution function such that:

Θ(xi) =

{
x((i+m−1)mod(n+m))+1 1 ≤ i ≤ n+m

xi otherwise

If φ′A = φAΘ and φ′B = φBΘ then φ′A ≈s φ′B.

Proof. By hypothesis we know that

dom(φA) = dom(φB) ∧ ∀M,N : (M = N)φA iff (M = N)φB

and we want to prove that

dom(φ′A) = dom(φ′B) ∧ ∀M,N : (M = N)φ′A iff (M = N)φ′B

The domains coincide since Θ preserves the variable names. From the hypothesis we know that

∀M,N : MφA = NφA iff MφB = NφB

Consider now the frame φ′A = φAΘ and the terms M,N . Since MΘ and NΘ are also terms and
φA ≈s φB then by hypothesis it holds that

∀M,N : MΘφA = NΘφA iff MΘφB = NΘφB

But ΘφA is φ′A and ΘφB is φ′B therefore we have that

∀M,N : Mφ′A = Nφ′A iff Mφ′B = Nφ′B

which corresponds to φ′A ≈s φ′B.

We are now ready to demonstrate that the conditions hold.

SSP: Condition Unbounded number of agents. We have to show that for each n it is possible
to create a trace with n transactions run by n different agents. This can simply be done by
spawning n copies of the agent process in the system P .

SSP: Condition Renaming. We have to show that π ∼ π[s′/s] for all possible mappings π
of traces in T and tags s ∈ Aπ and s′ /∈ Aπ. In the applied pi calculus it is always possible
to α-rename a name or a variable in a process without changing its semantics. Consider a trace
τ ∈ T where the final process has the following frame:

νs1.νsi.νs|Aπ |.νw̃.
∏n

k=1Φπ,σ(k)

If we α-rename all the occurrences of the secret si with s′i /∈ Aτ in the trace, then we obtain a
new frame which is statically equivalent to the original one:

νs1.νs
′
i.νs|Aπ |.νw̃.

∏n
k=1Φπ[s′/s],σ

(k)

29

PIRSES-GA-2011-295261 / MEALS Page 30 of 39 Public

SSP: Condition Swapping. We have to prove that, given two equivalent mappings πA and πB,
for all l such that πA(l) 6= πA(l + 1) and πB(l) 6= πB(l + 1) also the swapped mappings are
equivalent, i.e. πlA ∼ πlB. We only need to show that the traces lead to the same inputs and
outputs and the final frames produced by the swapped mappings are statically equivalent. Then,
we can use Lemma 1 to conclude the proof. Since the attacker strategy is common to both the
swapped traces, and it leads to the same inputs and outputs on the public channel c, the two
processes evolve in the same way. The static equivalence to prove is the following:

∀l ∈ {1, . . . , n− 1}, σ : νs̃.νw̃.
∏n

k=1ΦπlA,σ
(k) ≈s νs̃.νw̃.

∏n
k=1ΦπlB ,σ

(k)

Consider the frames ΦπlA,σ
(l) and ΦπlA,σ

(l + 1). Since single-step protocols have no input and
the tags swapped have a different internal secret, if we swap both the mappings and the attacker
strategies we obtain two frames that have the same terms assigned to different variables. Such
substitution of variable can be obtained by the application of the function Θ that renames the
variables (xl,1, . . . , xl,σl , xl+1,1, . . . , xl+1,σl+1

) into (xl+1,1, . . . , xl+1,σl+1
, xl,1, . . . , xl,σl). There-

fore we obtain that:
ΦπlA,σ

(l) = ΦπA,σl(l + 1)Θ (6)

ΦπlA,σ
(l + 1) = ΦπA,σl(l)Θ (7)

The same reasoning can be applied to the trace τB. Given that Θ is a substitution that preserve
the variable names and does not affect any term, we can apply it to πA and πB obtaining (by
Lemma 2):

∀l ∈{1, . . . , n− 1}, σ :

νs̃.νw̃.(
∏l−1

k=1ΦπA,σl(k) | ΦπA,σl(l) | ΦπA,σl(l + 1) |
∏n

k=l+2ΦπA,σl(k))Θ ≈s
νs̃.νw̃.(

∏l−1
k=1ΦπB ,σl(k) | ΦπB ,σl(l) | ΦπB ,σl(l + 1) |

∏n
k=l+2ΦπB ,σl(k))Θ

Since Θ does not affect the first l − 1 and the last n− l + 2 transactions, we have that:

∀l ∈ {1, . . . , n− 1}, σ :

νs̃.νw̃.(
∏l−1

k=1ΦπA,σl(k) | ΦπA,σl(l)Θ | ΦπA,σl(l + 1)Θ |
∏n

k=l+2ΦπA,σl(k)) ≈s
νs̃.νw̃.(

∏l−1
k=1ΦπB ,σl(k) | ΦπB ,σl(l)Θ | ΦπB ,σl(l + 1)Θ |

∏n
k=l+2ΦπB ,σl(k))

Given (6) and (7) and the fact that ∀l ∈ {1, . . . , n− 1}, i ∈ {1, . . . , n} \ {l, l + 1} : ΦπA,σl(i) =
ΦπlA,σ

(i) ∧ ΦπB ,σl(i) = ΦπlB ,σ
(i) we obtain:

∀l ∈ {1, . . . , n− 1}, σ :

νs̃.νw̃.(
∏l−1

k=1ΦπlA,σ
(k) | ΦπlA,σ

(l) | ΦπlA,σ
(l + 1) |

∏n
k=l+2ΦπlA,σ

(k)) ≈s
νs̃.νw̃.(

∏l−1
k=1ΦπlB ,σ

(k) | ΦπlB ,σ
(l) | ΦπlB ,σ

(l + 1) |
∏n

k=l+2ΦπlB ,σ
(k))

This can be written as:

∀l ∈ {1, . . . , n− 1}, σ : νs̃.νw̃.
∏n

k=1ΦπlA,σ
(k) ≈s νs̃.νw̃.

∏n
k=1ΦπlB ,σ

(k)

which is exactly πlA ∼ πlB. Therefore, we can conclude that the condition Swapping holds.

30

PIRSES-GA-2011-295261 / MEALS Page 31 of 39 Public

SSP: Condition Extension I. We have to show that two traces (πA, σ) and (πB, σ) in T pre-
serve the equivalence under any attacker strategy σ when we add a new transaction at the end of
the traces, which is executed by a new tag. Formally, we need to prove that

∀σ : νs̃.νw̃.(
∏n+1

k=1Φextn(πA),σ(k)) ≈s νs̃.νw̃.(
∏n+1

k=1Φextn(πB),σ(k))

The left hand side of the equivalence can be written as follows:

νs̃.νw̃.(
∏n

k=1ΦπA,σ(k) | Φextn(πA),σ(n+ 1))

since the first n mappings corresponds to the original ones.
We know that the last transaction, by hypothesis, belongs to a fresh new tag never appeared in the
first n transactions. This means that its secret and internal memory restricted by νs̃ and νw̃ do
not belong to

∏n
k=1ΦπA,σ(k), which contains restrictions that do not belong to Φextn(πA),σ(n+1).

Therefore, we can separate the restrictions obtaining an equivalent frame:

νs̃.νw̃.
∏n

k=1ΦπA,σ(k) | νs.νw.Φextn(πA),σ(n+ 1)

The same can be done for the right hand side of the equivalence.
We know by hypothesis that:

∀σ : νs̃.νw̃.(
∏n

k=1ΦπA,σ(k)) ≈s νs̃.νw̃.(
∏n

k=1ΦπB ,σ(k))

Moreover the frames νs.νw.Φextn(πA),σ(n+ 1) and νs.νw.Φextn(πB),σ(n+ 1) are identical under
any attacker strategy σ. Therefore, also the mappings extn(πA) and extn(πB), obtained by
parallel composition of these frames, are equivalent.

SSP: Condition Extension II. As in the previous proof, we have to show that if we add a new
transaction to two equivalent traces (πA, σ) and (πB, σ) in T, then their equivalence is preserved
under any attacker strategy σ. The difference is that now the last transaction does not belong to
a new tag but to the tag which executed the last transaction in the original traces. Formally, we
want to prove that if πA ∼ πB then also extl(πA) ∼ extl(πB).
Consider any pair of mappings extl(πA) and extl(πB) built up from the two equivalent mappings
πA and πB. For any possible attacker strategy σ applied to the mappings extl(πA) and extl(πB)
there always exists an attacker strategy σ′ such that:

• |σ′| = |σ| − 1

• σ′i =

{
σi i < |σ′|
σn + σn+1 i = |σ′|

such that (πA, σ
′) ∼ (πB, σ

′) by hypothesis. Since (πA, σ
′) and (πB, σ

′) produce the same
frames as (extl(πA), σ) and (extl(πB), σ) respectively, then it must be that also (extl(πA), σ) ∼
(extl(πB), σ) for any attacker strategy σ.

We can conclude that all the forms of unlinkability and inseparability defined in Section 4
coincide for the class of single-step protocols. As a consequence, if any of these properties is
proven to hold for a single-step protocol, by Theorem 7 all the unlinkability and inseparability
properties should be satisfied.

31

PIRSES-GA-2011-295261 / MEALS Page 32 of 39 Public

7 Relations with forward and backward privacy
In this section we discuss how our results on unlinkability can easily be adapted to define and
prove stronger privacy guarantees. We show that, assuming a stronger attacker and restricting
the analysis to specific parts of traces in the set generated by a protocol, it is possible to verify
the stronger goals of forward and backward privacy.

Forward and backward privacy are privacy definitions strongly related to the concept of un-
linkability. In cryptography, they are well-known under the names of forward and backward
security, respectively.

Both properties assume a stronger attacker with respect to the definition of unlinkability,
namely an attacker who is able to disclose all the secret information of an agent at a chosen time.
Forward privacy is achieved when the disclosure of an agent secret does not help the attacker
in linking the agent to any of its past sessions. Symmetrically, backward privacy states that an
attacker should not be able to link the agent secret to any future session. Clearly, with the coming
of mobile technology, these properties became fundamental for the location privacy of agents.
In fact, a protocol that guarantees forward or backward privacy prevents an attacker from tracing
back or forward all the steps of an agent. A first definition of forward privacy in the context of
RFID systems can be found in [22], while [14] first modelled backward privacy. Both papers
give definitions in terms of games, which consist of a challenge to the attacker who has to guess
if there exists a session (during the execution of the system) that belongs to the RFID tag whose
secret she disclosed.

Forward and backward privacy can be formalized in terms of traces in our model. Similarly
to unlinkability, backward and forward privacy are guaranteed if the attacker cannot tell whether
a specific transaction in a trace is linked. On the other hand, they involve a notion of time and
require stronger assumptions. First of all, we need to assume that the attacker strategy for a
certain transaction discloses the secret of the agent executing it, and we call that transaction
pd (i.e. the d-th transaction in a trace). Since the forward privacy analysis concerns only past
transactions, we check whether pd can be linked to transactions executed before it only. We
express this property in two different forms, namely a weak and a strong form inspired by the
corresponding definitions of unlinkability. Intuitively, weak forward privacy requires that the
attacker cannot link pd to a specific past transaction, while strong forward privacy holds when
the attacker cannot tell whether pd is linked to any previous transaction, meaning that she cannot
tell whether the agent who runs pd has ever executed a session in the past.

Definition 12 (Forward privacy). Consider a set of traces T. For each trace τ ∈ T, let pd be a
transaction such that its attacker strategy σ(pd) discloses π(pd) secret information.
We say that a protocol generating the set of traces T guarantees weak forward privacy iff

∀τ ∈ T, pd ∈ Domτ , i < d : τ � ¬Ka(link(pd, pi))

We say that a protocol generating the set of traces T guarantees strong forward privacy iff

∀τ ∈ T, pd ∈ Domτ : τ � ¬Ka

∨
pi∈Domτ

i<d
link(pd, pi)

32

PIRSES-GA-2011-295261 / MEALS Page 33 of 39 Public

Intuitively, these definitions imply that, if the agent whose secret has been disclosed executed
transactions before pd, there must exist a trace τ ′ in T such that τ ′ ∼ τ and the corresponding
transactions (or any previous transaction for strong forward privacy) are not linked to pd. It is
easy to prove that strong forward privacy implies weak forward privacy; it suffices to follow the
technique used in last three steps of the proof of Theorem 2.

Example 7. A well-known protocol that guarantees forward privacy is the OSK protocol [22] de-
scribed in Section 4.6. To prevent the attacker from linking a secret to sessions executed before its
disclosure, the protocol updates the secret after each execution. To prove that this protocol guar-
antees strong forward privacy in our model, we should show that each linked trace is equivalent
to a trace where the transactions involved are unlinked, as described in Definition 12. Consider,
for example, a trace τ = (π, σ) produced by the OSK protocol such that π = (a1, a1, a2). Let
d = 2, meaning that the attacker strategy causes the secret disclosure at the second transaction,
so that the attacker knows that it was executed by the agent a1. In practice, the attacker cannot
link the secret to the first transaction, because it is not possible to calculate the inverse function
h−1 of a1’s current secret. On the other hand, once the attacker obtains the secret, she is able to
trace it in the future, i.e. she knows that the third transaction is executed by a different agent,
thus the protocol does not guarantee backward privacy. In our model, all these results imply that
τ must be equivalent to a trace such that the second transaction is not linked to the first transac-
tion nor to the third one (the attacker can distinguish the second transaction from the third one).
Formally, we have that τ ∼ τ1 = ((a1, a2, a1), σ) or τ ∼ τ2 = ((a1, a2, a3), σ). This suffices to
have both forms of forward privacy. Note that, if h−1 exists then τ would only be equivalent to
itself, and the protocol would not guarantee forward privacy.

Symmetrically, backward privacy analysis checks whether the secret information is linked
to future transactions. As in all previous work on this property (e.g. [14, 12]), we need to
assume that, subsequently to pd, a synchronization session in a transaction ps (s > d) takes
place. A synchronization session is a session executed among honest parties only, meaning that
the attacker is not supposed to eavesdrop it. The synchronization session is needed to avoid the
traceability of the agent, whose secret knowledge is now shared with the attacker. The session
ignored by the attacker is needed to give the agent an opportunity to secretly update its internal
state. In our model, after the disclosing session pd, the attacker is able to link the transactions
belonging to the agent π(pd). We assume that she models her strategy to ignore a legitimate
session that belongs to π(pd) during the s-th transaction. Thus, backward privacy holds if the
attacker cannot tell if pd is linked to a specific transaction (weak form) or to any other transaction
(strong form) executed after ps.

Definition 13 (Backward privacy). Consider a set of traces T. For each trace τ ∈ T, let pd be
the transaction such that its attacker strategy σ(pd) discloses π(pd) secret information, and let ps
be the transaction such that s ∈ [d+ 1, . . . , |τ |], π(ps) = π(pd) and it executes a synchronization
session.
We say that a protocol generating the set of traces T guarantees weak backward privacy iff

∀τ ∈ T, pd ∈ Domτ , s > d, i > s : τ � ¬Ka(link(pd, pi))

33

PIRSES-GA-2011-295261 / MEALS Page 34 of 39 Public

We say that a protocol generating the set of traces T guarantees strong backward privacy iff

∀τ ∈ T, pd ∈ Domτ , s > d : τ � ¬Ka

∨
pi∈Domτ

i>s
link(pd, pi)

If some transactions are executed by the agent π(pd) after the restore session in ps in a trace
τ ∈ T, there must exist a trace τ ′ ∈ T such that τ ′ ∼ τ and the corresponding transactions
(or any future transaction for strong backward privacy) are executed by other agents. It is easy
to prove that strong backward privacy implies weak backward privacy; it suffices to follow the
technique used in last three steps of the proof of Theorem 2.

Example 8. Consider a variation of the OSK protocol that sends a random number in plain text
together with the hash of the secret, and then updates the secret by hashing it with the random
number. This protocol prevents the attacker from linking a secret to transactions executed after
the restore session, because the attacker, by missing a random number, would not be able to
calculate the next secret. To prove that this protocol guarantees strong backward privacy in our
model, we should show the equivalence of traces as described in Definition 13. Consider, for
example, a trace τ = (π, σ) produced by this protocol such that π = (a1, a2, a1, a1). Let d = 1,
meaning that the attacker strategy causes the secret disclosure at the first transaction, and s = 3,
namely the restore session happens at the third transaction. The attacker should not be able to
link the secret to the fourth transaction, because it is not possible to calculate the new secret
without the random number sent during the third transaction. In our model, this means that τ
must be equivalent to a trace such that the third transaction is not linked to the fourth transaction.
Thus, it must be that τ ∼ τ1 = ((a1, a2, a1, a2), σ) or τ ∼ τ2 = ((a1, a2, a1, a3), σ). This suffices
to have both forms of backward privacy.

These results complete our study of unlinkability, providing a full description of the condi-
tions that a protocol should guarantee in order to avoid any information disclosure, even when a
stronger attacker is assumed.

8 Related work
Our work makes direct use of several definitions of unlinkability from the literature. As explained
in detail in Section 4, we express the notion of weak unlinkability of [27, 3], strong unlinkability
of [2, 3], and game-based definitions of [10, 18, 22, 4, 23, 21]. While all these works have given
their own definitions of privacy properties in a very specific context, ours provides a more general
and abstract framework where all the other definitions can be captured.

Epistemic models have been used in the past to formalize privacy. Similarly to our work,
[15] gives general privacy definitions for a multiagent system using a modal logic of knowledge.
The paper considers different levels of strength for unlinkability, providing some probabilistic
definition as well. In [9], epistemic logic is used to give intuitive definitions of privacy in vot-
ing systems, with the applied pi calculus as the underlying model. Similarly, [11] proposes a
framework in which protocols are expressed in a process language while security properties in a
logic with both temporal and epistemic operators. The properties considered in the above works
are quite different than the unlinkability properties that we consider in this paper. Moreover, the

34

PIRSES-GA-2011-295261 / MEALS Page 35 of 39 Public

above works are involved with the mechanics of the corresponding formalisms, while we try to
completely abstract away from the concrete model, viewing a system as an abstract set of traces.

Several other definitions of unlinkability have also been studied in the literature. A logic
approach has been followed in [26], where an axiom system is defined to reason about anonymity,
and in [16] that expresses privacy properties using logic and models the system through other
formalisms, like CSP, combining two different techniques. As in our work, logic is used to define
in a natural way privacy properties, while having an abstract model applicable to any real system.
However, while our work focuses on unlinkability, [15] and [26] study anonymity, namely a
property that ensures that the identity of the agent which executes some action remains hidden
from other observers. [24] proposes a terminology for anonymity, unlinkability, unobservability
and pseudonimity. While it aims at clarifying terminology at an informal level, our work aims
instead at comparing definitions of unlinkability in a unifying formal model.

Finally, other papers introduce the notion of unlinkability using approaches based on informa-
tion theory. Examples are [13], [25], and [6] that give probabilistic descriptions of unlinkability,
quantifying the linkability of items in the system. Our work does not provide any probabilistic
definition, but this would be possible following the approach used in [15], that we leave as future
work.

9 Conclusions and future work
In this paper we studied the privacy notion of unlinkability. We captured several definitions
from the literature into a simple abstract model based on epistemic logic, obtaining natural and
intuitive definitions in terms of the attacker’s knowledge. We also identified inseparability, a
notion dual to unlinkability, in weak and strong forms. Moreover, we showed that these privacy
definitions are different in general, but do coincide in systems satisfying a set of conditions.
Finally, we proved that the conditions hold for a class of identification protocols.

As future work, we plan at investigating probabilistic descriptions of unlinkability. We also
plan at developing a more concrete model in the style of [11]. This work bridges the gap between
operational semantics and epistemic logic, offering a combined framework where it is possible
to easily model the behavior of a protocol in a process language with an operational semantics
and reason about properties expressed in a rich epistemic temporal logic. This would allow to
automatically verify privacy properties.

35

PIRSES-GA-2011-295261 / MEALS Page 36 of 39 Public

10 Tables and figures

Table 1: Epistemic definitions of unlinkability and inseparability

Property Epistemic formula For any trace τ the attacker cannot infer

a. Weak unlinkability ¬K(link(p, p′)) that two messages p, p′ are linked

b. Strong unlinkability ¬K(anyLink(τ)) the existence of linked messages

c. Two-agents game unlinkability [πa ∨ πa′]¬Kπa the mapping πa even when πa ∨ πa′ is revealed

d. Three-agents game unlinkability [πa,a ∨ πa1,a2]¬Kπa,a the mapping πa,a even when πa,a ∨ πa1,a2 is revealed

e. Weak inseparability ¬K(unlink(p, p′)) that two messages p, p′ are unlinked

f. Strong inseparability ¬K(anyUnlink(τ)) the existence of unlinked messages

Table 2: Negative relationship between properties

Relationship References

Weak unlinkability 6⇒ Strong unlinkability Examples 2,4,5,6

Weak unlinkability 6⇒ Game-based unlinkability Examples 3,4,5,6

Strong unlinkability 6⇐6⇒ Game-based unlinkability Examples 2,3

Weak inseparability 6⇒ Strong inseparability Example 6

Figure 1: A single-step protocol.

36

PIRSES-GA-2011-295261 / MEALS Page 37 of 39 Public

Bibliography
[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc.

of POPL, pages 104–115, 2001.

[2] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Untraceability in the applied pi-calculus.
In Proc. of ICITST, pages 1–6. IEEE, 2009.

[3] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and anonymity
using the applied pi calculus. In Proc. of CSF, pages 107–121. IEEE Computer Society,
2010.

[4] G. Avoine. Adversary model for radio frequency identification. Technical Report LASEC-
REPORT-2005-001, Swiss Federal Institute of Technology, Lausanne, Switzerland, 2005.

[5] G. Avoine. Cryptography in Radio Frequency Identification and Fair Exchange Protocols.
PhD thesis, EPFL, Lausanne, Switzerland, 2005.

[6] R. Berman, A. Fiat, and A. Ta-Shma. Provable unlinkability against traffic analysis. In
Proc. of Financial Cryptography, LNCS, pages 266–280. Springer, 2004.

[7] M. Brusó, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for rfid
systems. In Proc. of CSF, pages 75–88. IEEE Computer Society, 2010.

[8] M. Burmester, T. V. Le, and B. de Medeiros. Provably secure ubiquitous systems: Univer-
sally composable rfid authentication protocols. In Proc. of Securecomm, pages 1–9, 2006.

[9] R. Chadha, S. Delaune, and S. Kremer. Epistemic logic for the applied pi calculus. In Pro-
ceedings of IFIP, volume 5522 of LNCS, pages 182–197, Lisbon, Portugal, 2009. Springer.

[10] C. Chatmon, T. van Le, and M. Burmester. Secure anonymous RFID authentication pro-
tocols. Technical Report TR-060112, Florida State University, Tallahassee, Florida, USA,
2006.

[11] F. Dechesne, M. R. Mousavi, and S. Orzan. Operational and epistemic approaches to pro-
tocol analysis: Bridging the gap. In Proc. of LPAR, volume 4790 of LNCS, pages 226–241,
2007.

[12] T. Dimitriou. Rfid-dot: Rfid delegation and ownership transfer made simple. In Proc. of
4th International Conference on Security and Privacy in Communication Networks, pages
1–8. ACM, 2008.

[13] M. Franz, B. Meyer, and A. Pashalidis. Attacking unlinkability: The importance of context.
In Proc. of Privacy Enhancing Technologies, volume 4776 of LNCS, pages 1–16. Springer,
2007.

37

PIRSES-GA-2011-295261 / MEALS Page 38 of 39 Public

[14] F. D. Garcia and P. van Rossum. Modeling privacy for off-line rfid systems. In Proc. of
CARDIS, volume 6035 of LNCS, pages 194–208. Springer, 2010.

[15] J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in multiagent systems.
In Proc. of CSFW, pages 75–88. IEEE Computer Society, 2003.

[16] D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security, 12:3–36, 2004.

[17] A. Juels, P. F. Syverson, and D. V. Bailey. High-power proxies for enhancing rfid privacy
and utility. In Proc. of PET, volume 3856 of LNCS, pages 210–226. Springer, 2005.

[18] A. Juels and S. A. Weis. Defining strong privacy for rfid. In Proc. of PerCom Workshops,
pages 342–347. IEEE Computer Society, 2007.

[19] J.-J. C. Meyer and W. v. d. Hoek. Epistemic Logic for AI and Computer Science. Cambridge
University Press, New York, NY, USA, 2004.

[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts i and ii. I and
II. Information and Computation, 100:1–77, 1989.

[21] K. Nohl and D. Evans. Privacy through noise: a design space for private identification. In
Annual Computer Security Applications Conference (ACSAC 2009), 2009.

[22] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to “privacy-friendly”
tags. In Proc. of RFID Privacy Workshop, 2003.

[23] K. Ouafi and R. C.-W. Phan. Privacy of recent rfid authentication protocols. In Proc. of
ISPEC, volume 4991 of LNCS, pages 263–277. Springer, 2008.

[24] A. Pfitzmann and M. Kohntopp. Anonymity, unobservability, and pseudonymity - a pro-
posal for terminology. Designing Privacy Enhancing Technologies, page 19, 2001.

[25] S. Steinbrecher and S. Kopsell. Modelling unlinkability. In Proc. of Privacy Enhancing
Technologies, volume 2760 of LNCS, pages 32–47. Springer, 2003.

[26] P. F. Syverson and S. G. Stubblebine. Group principals and the formalization of anonymity.
In Proc. of World Congress on Formal Methods, volume 1708 of LNCS, pages 814–833,
1999.

[27] T. van Deursen, S. Mauw, and S. Radomirovic. Untraceability of rfid protocols. In Proc. of
WISTP, volume 5019 of LNCS, pages 1–15. Springer, 2008.

[28] T. van Deursen and S. Radomirovic. Algebraic attacks on rfid protocols. In Proc. of WISTP,
volume 5746 of LNCS, pages 38–51. Springer, 2009.

[29] S. Vaudenay. On privacy models for rfid. In Proc. of ASIACRYPT, volume 4833 of LNCS,
pages 68–87. Springer, 2007.

38

PIRSES-GA-2011-295261 / MEALS Page 39 of 39 Public

[30] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels. Security and privacy aspects of
low-cost RFID systems. In Proc. of SPC, volume 2802 of LNCS, pages 201–212. Springer,
2003.

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

39

