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1 Introduction

Classical languages like first-order and second-order logic have been investigated in detail, and
their model theory is well developed. Computationally though, they are lacking as their sat-
isfiability problem is undecidable [9, 25], and even their model checking problem is already
PSPACE-complete [8]. This has motivated a search for computationally well-behaved fragments.
For instance, early in the twentieth century, Lowenheim already gave a decision procedure for the
satisfiability of first-order sentences with only unary predicates [[17]]. Many familiar fragments of
first-order logic are defined by means of restrictions of the quantifier prefix of formulas in prenex
normal forms, and their (un)decidability has been carefully charted [/]. Finite-variable (and in
particular two-variable) fragments of first-order logic are yet another kind of fragments whose
computational properties have been studied extensively, with decidability results going back to
the early 1960s [23| 14} [15, 20]. But even though many of these fragments have good computa-
tional properties, their meta-logical properties are often poor, and, in particular, they usually lack
a good model theory that explains their computational properties.

Research efforts have been devoted to identify fragments of first-order or second-order logic
that manage to combine good computational behavior with good meta-logical properties. One
such effort takes (propositional) modal logic as its starting point [4} I5]. Although modal log-
ics are syntactically presented as an extension of propositional logic, there exist well-known
translations through which modal languages may semantically be viewed as fragments of first-
order languages. Modal fragments are computationally very well-behaved; their satisfiability
and model checking problems are of reasonably low complexity, and they are so in a robust
way [26}[13]. The good computational behavior of modal fragments has been explained in terms
of the tree model property, and generalizations thereof.

Broadly speaking, there are three general strategies for modal theorem proving: (i) develop
purpose-built calculi and tools; (ii) translate modal problems into automata-theoretic problems,
and use automata-theoretic methods to obtain answers; (iii) translate modal problems into first-
order problems, and use general first-order tools. The advantage of indirect methods such as (ii)
and (iii) is that they allow us to reuse well-developed and well-supported tools instead of having
to develop new ones from scratch. In this paper we focus on the third option: translation-based
theorem proving for modal logic, where modal formulas are translated into first-order formulas
to be fed to first-order theorem provers. In particular, we will investigate the use of Satisfiability
Modulo Theories (SMT) techniques [3, [18] for reasoning in restricted first-order theories. We
provide rules that constrain the instantiations of quantifiers in the translated formulas, and we
show that these rules are sound, complete and terminating.

Outline. Section [2| introduces basic modal logic and explains the overall architecture of the
SMT-based decision procedure. The precise rules are indicated in section (3 together with the
proofs of soundness, completeness, and termination. Extensions of the procedure to global
modalities and hybrid logic appear in section @} and section [5|concludes the paper and discusses
related work.
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2 Background

2.1 Basic Modal Logic

The basic modal logic BML can be seen as an extension of propositional logic. Let # be a set of
propositional symbols, the syntax of BML is defined as

o =pl-pleAd leVvelop| O,

where p € P. Observe that we assume formulas to be in negation normal form where negation
is only applied to atomic propositions. Semantically, formulas of BML are interpreted over rela-
tional structures. Let M = (M, ™) be such that M is a non-empty set called the domain and M is
an interpretation function that assigns to each p € P a subset p™ of M and introduces a relation
RM € M x M (RM s usually called the accessibility relation of M). For a relational structure M,
we will often write | M| for the domain of M, and if w € |M| we will say that M, w is a pointed
model. For a pointed model M, w, the satisfaction relation for formulas in BML is defined by

Mwkp if wepM
MwE-p iff we¢pM
MwkEoenye if MwEge and MwE ¢
MwEevye iff MwEe or MiwE¢
M,w ke iff forall (w,v) € R we have that M,v E ¢
M,wE &¢ iff for some (w,v) € R™ we have that M, v E ¢.

We say that ¢ is satisfiable if there is a pointed model M, w such that M,w E ¢, otherwise
¢ is unsatisfiable. We define Mod(y) as the set of pointed models of ¢, formally, Mod(¢) =
IMow | M,w E ¢} (we will use Mod(gp) for the set of models of ¢ also when ¢ is a propositional
formula). For a set X of formulas, we let Mod(X) = (1, Mod(¢). Finally, let £ U {¢} be a set of
formulas, we say that ¢ is a consequence of X and we write X | ¢ if Mod(X) € Mod(gp).

The definition above makes it clear that the semantics of basic modal logic is purely first-
order. Actually, through translation, modal languages may be viewed as fragments of first-order
languages. Our starting point is the relational translation ST, which translates modal formulas
by transcribing their truth definitions as first-order formulas. Let ¢ be a modal formula and x a
first-order variable; then ST,(¢) is defined as follows:

ST.(p) = P(x) ST.(=p) = —P(x) (D)
ST A¢') = STp) A ST(¢) ST.(¢V¢) = ST(p) vV ST(¢) (2)
ST.(@p) = Yy :=R(x,y) V ST, (p) ST.(C¢) = Ay : R(x,y) A STy(p). (3)

In (I)), P is a unary predicate symbol corresponding to the proposition letter p; in (3), the variable
y is fresh. Observe how (3)) reflects the truth definition of the modal operators. Also observe that
ST.(¢) is a first-order formula in negation normal form whose only free variable is x, for any BML
formula . ST is extended to sets of formulas in the obvious way, i.e., ST,(X) = {ST,(¢) : ¢ € X}.
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Proposition 1. Let M, w be a pointed model, and ¢ a formula of BML then

MwEe iff M, glx— w]E ST(p),

where, on the right-hand side, M is viewed as a first-order interpretation, g is an arbitrary
assignment for M, and g[x — w] coincides with g but assigns w to x.

2.2 SMT Solving for Modal Satisfiability: Overall Setup

Starting from the relational translation of modal logic into first-order logic, we propose in this
paper an SMT-based procedure for deciding the satisfiability of BML formulas. It consists of two
cooperating modules, as illustrated in the schema below.

formula abs(S)

.

instantiation ground solver

‘\/

ground model I

The procedure maintains a finite set S of first-order formulas. Initially, S is obtained by re-
lational translation from the set of BML formulas whose satisfiability we wish to decide. New
formulas can be added through instantiation, provided that the resulting set of formulas is equi-
satisfiable with the original one.

The ground solver is given a ground abstraction of the set S, denoted in the following by
abs(S), and it decides if abs(S) is satisfiable. The solver is assumed to be sound, complete, and
terminating for ground formulas; it includes a SAT solver and possibly other decision proce-
dures. For example, the extension to hybrid logic of section [4.2] requires a decision procedure
for quantifier-free formulas over the theory of uninterpreted function and predicate symbols with
equality. The abstraction abs(S) for BML is obtained by (consistently) mapping formulas ¢ in S
that are either atomic or contain an outermost quantifier to fresh propositional symbols that we

denote by , while preserving the Boolean structure of formulas in S. For example, consider
the set
S ={(¥x: =R(c,x) V P(x)), R(c,d) A =P(d)}.

Its abstraction will be denoted as

abs(S) ={|Vx:=R(c,x)V P(x)|, |R(c,d)| A —=|P(d)|}.

Conversely, given a set I' of propositional formulas whose atoms are all of the form , we

define conc(I') to be the set of first-order formula obtained by “erasing the boxes”. In particular,
conc(abs(S)) =S.
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If the ground solver finds abs(S) to be unsatisfiable, then the procedure declares the original
set of formulas unsatisfiable. Otherwise, it computes a set of literals I" built from the atomic
propositions in abs(S) that corresponds to a model of abs(S). Although T is a propositional
model of abs(S), a first-order model for conc(I'), or indeed for S, may not exist. For example,
the set S above is unsatisfiable, but abs(S) has the propositional model

I =

——

Vx:=R(c,x)V P(x)|, |R(c,d)|,—~|P()|}.

In order to rule out models of abs(S) that do not correspond to first-order models of S, the deci-
sion procedure also contains an instantiation module that computes refinements of abs(S). More
precisely, given a model I' of abs(S), the instantiation module may generate relevant instances
of the quantified formulas that are abstracted in abs(S). For the above example, the instantiation
module should produce the formula

(Vx : =R(c,x) V P(x)) = (=R(c,d) vV P(d))

that will be added to S, yielding set S’. Note that I" is no longer a model of abs(S’), and that in
fact abs(S’) is unsatisfiable. We must ensure that only finitely many instances are generated over
time, so that the feedback loop eventually terminates and the procedure outputs a verdict.

3 Decision Procedure for Basic Modal Logic

We now define instantiation rules for basic modal logic BML. We show that these rules are
sound and complete. Moreover, only finitely many instantiations are created for each quantified
formula, hence the procedure terminates.

3.1 Instantiation Rules

Recall from section [2.1|that formulas arising from the relational translation of basic modal logic
are built from unary predicate symbols P(_) that correspond to the proposition symbols in £
and a single binary predicate symbol R(_, -). Formulas are in negation normal form and contain
exactly one free variable, representing the current point of evaluation. Occurrences of quantifiers
are restricted to the forms

Yy : =R(x,y) V ¢(y) and dy : R(x,y) A p(y)

where x is the variable designating the point of evaluation of the quantified formula, and y is the
only free variable in ¢(y).

The set of formulas given as input to the decision procedure is assumed to consist of formulas
of this form. We replace the unique free variable by a Skolem constant, obtaining a closed set
S0 of formulas. The decision procedure will maintain a set of formulas in this form, extended
by formulas (Q x : ¥(x)) = x where Q is a quantifier and y(x) and y are formulas in negation
normal form; y has no free variables and /(x) contains exactly the free variable x.

A configuration of the decision procedure is a triple (S, ®3, ©®y) where

6
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e 5 is a set of closed formulas as described above and

e the sets ®5 and ®, contain information about instances that have already been produced
and need not be created anew.

The initial configuration is (S 0.0,0). Given a configuration (S, ®5, ®y), the decision pro-
cedure invokes the ground solver on the set abs(S). If abs(S) is unsatisfiable, the procedure
terminates, declaring S° unsatisfiable. Otherwise, the ground solver produces a set of literals I
that represents a model of abs(S ), and the decision procedure computes a successor configuration
by applying one of the following instantiation rules (3) or (V) and continues. If no instantiation
rule is applicable, the procedure terminates, declaring S satisfiable.

Rule (3). This rule instantiates existentially quantified formulas in S by fresh constants:

(S,03,0y) L> (§,05,0y) if there exists € = [y : R(c,y) A o(y) | s.t.

e ¢ € '\ O3 is an atom corresponding to an existentially quantified formula that
appears in [" but for which no instance has yet been created,

e d is a fresh constant,

o §' =8 U{conc(e) = (R(c,d) A ¢(d))},

o O =05U{e}

Rule (V). This rule instantiates universally quantified formulas in S for constants such that the
guard of the quantified formula appears in I':

(5,05,0,) —> (§7,05,0,) if there exist € = ¥y : =R(c,y) V ¢(y)| and d s.t.

e ccl, |R(cd| €T, (d) ¢ Oy. In words, € is an atom that corresponds to a

universally quantified formula that appears in I', and d is a constant for which the
guard of € is asserted in I" but for which € has not yet been instantiated,

e S’ =5 U{conc(e) = (=R(c,d) V ¢(d))},

e 0, =0,U{(ed).

The rules are natural, and they resemble the rules in a tableaux algorithm for the basic modal
language, but implemented in the SMT setup. In particular, rule (3) uses fresh constants to denote
unique witnesses for existential quantifiers. It can be understood as on-the-fly Skolemization of
an outermost existential quantifier. Universal quantifiers are instantiated only for successors (via
the accessibility relation) of the only constant that appears in the guard of the quantifier. These
instantiations are guided by the propositional model I' computed by the ground solver.

7
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3.2 Soundness and Completeness

The soundness of the rules (3) and (V) is a consequence of the following two lemmas, whose
proof is straightforward.

Lemma 1. Assume that (S, ®3, Oy) N (§',04,00) according to rules () or (¥). Then S and
S’ are equisatisfiable sets of first-order formulas.

Lemma 2. If M is a first-order model of S, then abs(S') has a ground model T'.
Proof. DefineI to be the set of literals built from the atomic formulas in abs(S ) such that el

if M E ¢ and —| e I'if M £ . A straightforward inductive proof shows that I' = abs(S).
O O

Theorem 1 (Soundness). Assume that the procedure terminates with verdict “unsatisfiable”.
Then the initial set S° of formulas is unsatisfiable.

Proof. The verdict “unsatisfiable” is based on a sequence of configurations

(5°.0.0) 5 (5.0 0y ... I (sm on oy
s Uy s ) \' > EL v

such that the ground solver finds abs(S") to be unsatisfiable. By Lemma [2] it follows that S” is
unsatisfiable, and so is S, by iterating Lemma m] O

The completeness proof relies on the construction of a first-order model of the original set S© of
formulas from a propositional model of a saturated set S” in a configuration where no rules are
applicable anymore.

Theorem 2 (Completeness). Assume that the procedure terminates with verdict “satisfiable”.
Then the initial set S° of formulas is satisfiable.

Proof. The verdict “satisfiable” is based on a sequence of configurations
0 1 n—1

(s°,0,0) — (5',0,,0)) — . s (S",0" 6

such that the ground solver finds abs(S") to be satisfiable, and no transition according to the
rules (d) or (V) is possible. The ground solver produces a set I" of literals that corresponds to a
propositional model of abs(S"); more precisely, the propositional interpretation I'* that satisfies

the atomic formulas iff € I' is a model of abs(S").
Observe that the set S” is a superset of S° obtained by adding formulas of the form
Ay : R, y) Np(y) = ... and My : =R, y) V() = ...

by applications of rules (3) and (V). We define a first-order interpretation M as follows. The
universe | M| consists of the constants that appear in S”: observe that this set is non-empty since
S contains precisely one constant and S € S”. For the predicate symbols P(_) that appear in

S" and any a € | M|, we define a € PMiff | P(a)]| eT. Similarly, for the relation symbol, we let

(a,b) € RMiff |R(a,b)| €T.
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Step 1. We show that for every ground instance of every subformula ¢ of a formula in S° for
constants that appear in S”, if I'* = abs(y) then M = . The proof is by induction on .

e For ¢ = P(a) or ¢ = R(a,b), if I'" = abs(y) then abs(¥) € T and therefore M E ¢ by
definition of M. Similarly, if I'* | —abs(y) then abs(y) ¢ I" and therefore M | -, again
by definition of M.

e For conjunctions and disjunctions, the proof of the inductive step is immediate.

e Assume that y = Jy : R(c,y) A ¢(y) is a ground instance of a subformula in S° and that
I E absy), i.e. € I'. Since rule (d) cannot be applied, we must have € 04, and
therefore S” must contain

Y = (R(c,d) A o(d))

for some constant d, where the right-hand side of the implication is a ground instance of a
subformula in S°. Moreover, abs(S") contains

= abs(R(c,d) A o(d)).

Since I'* , it follows that I'* = abs(R(c, d) A ¢(d)). Now, M = R(c,d) A ¢(d) follows
by induction hypothesis, and this proves M = .

e Assume now that ¢ = Vy : =R(c,y) V ¢(y) and that I'* = abs(¥), i.e. € I'. Moreover,
assume that M E R(c, d) for a constant d € |M|: we must show that M E ¢(d). By the
definition of M and the assumption that M | R(c, d) it follows that |R(c,d)| € I'. Since

rule (V) cannot be applied, we must have ( ,d) € Oy, and S", resp. abs(S"), contain the
formulas

W = (=R(c,d)V o(d))  resp. = (=|R(c, d)| v abs(p(@))).

where the right-hand side of the implication on the left is a ground instance of a subformula
of $°. Because I'* |= abs(S"), we can conclude that I'* = abs(¢(d)), and therefore M =
¢(d) by induction hypothesis, and this suffices.

Step 2. Now suppose that formula ¢ appears in the original set S°. Then ¢ is ground and
I | abs(p) because I'* is a model of abs(S") 2 abs(S ). By step 1, it follows that M = ¢. Thus,
M is a model of S, and this concludes the proof. O O

Remark. Notice that the restriction to ground instances of (sub-)formulas of S in the above
proof is necessary: the model M need not satisfy all formulas in S”. For example, consider a set
§? containing the formula

(Jx: R(a, x) A P(x)) V (Jy: R(a,y) A P(y) A Q(¥))

€] &
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resulting from the translation of the modal formula (Gp) V O(p A g). The saturation of S° by
application of the instantiation rules may result in a set S” containg the two implications

€ = R(a,b) AP(b) and & = R(a,c) A P(c) A Q(c)

for two constants b and c¢. A possible propositional model I" of abs(S™) contains the literals

ﬁ, =|R(a,b)|, =| P(D)|, , Ra.ol. [Po]. [o©].

The corresponding first-order interpretation satisfies R(a,c) A P(c), hence it satisfies €, but it
does not satisty R(a, b) or P(b). Therefore it is not a model of S".

Observe, however, that the formulas added by applications of rule (V) are first-order valid,
and in particular true in the interpretation M.

3.3 Termination

Finally, we show that the procedure must terminate because only finitely many constants can be
introduced during any run of the procedure.

Theorem 3 (Termination). For any finite set S°, there cannot be an infinite transition sequence
0 @0 @0 I Lol @y L
(§7,03,0;) — (§,05,0,) — ...

Proof. The key is to observe that only finitely many constants can be introduced in sets S’ by
applications of rule (3), and that every constant can only give rise to finitely many applications
of rule (¥). We associate a depth 8, with every constant ¢ that appears in sets S', as follows:

e S? contains only a single constant ¢ whose depth 4, is 0.
o If (S, 51, @) results from an application of rule (V) the set of constants is unchanged.

o If (S, 0451, ") introduces constant d through an application of rule (3) for formula
dy : R(c,y) A @(y), then d; = 0. + 1.

We prove by induction that the set of constants ¢ at depth 0. = k is finite, for any k € N:
e The assertion is obvious for k = 0.

e Assuming there are only finitely many constants ¢ at depth k, there can only be a finite
set of formula instances dy : R(c,y) A ¢(y) in the sets S’ for every such ¢ since all these
instances come from subformulas of the original set S © of formulas, of which there are only
finitely many, and each of these instances can be used only once to generate a new constant
by rule (3) because its abstraction is then added to ®5. Therefore the set of constants of
depth k + 1 is again finite.

10
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Moreover, the depth of constants introduced in any set S is bounded by the maximal quanti-
fier depth of any formula in S, since every instantiation removes a quantifier.

Hence, the set of constants that appear throughout the transition sequence is finite, and there-
fore the rule (d) can be applied only finitely often. Moreover, rule (V) can only be applied
once per pair of universally quantified formula instance and constant. This proves termination.

O O

The proof above is a recast of the standard termination proof used in tableau calculi. We now
consider some extensions of the basic modal language. Interestingly, the proof requires only
small changes. By comparison, the corresponding termination proof for, say, the basic hybrid
logic is much more involved.

4 Extensions of the Basic Modal Logic

In this section, we consider some extensions of the basic modal logic to which we adapt the
procedure described before.

4.1 Global Modalities

The relational translation for modal operators of BML gives rise to formulas where quantifiers are
guarded by accessibility conditions (see definition clauses (3)) on paged)). Global modalities [12]
refer to arbitrary elements of the relational structure, which need not be related to the current
point. The existential global modality is usually denoted by E and A is its univesal dual. Their
semantics conditions are as follows

M,wE Ap iff forallv e M we have that M,v | ¢
M,wE Ep iff forsomev e M we have that M,v [ ¢.

Their relational translations introduces formulas
Yy o(y) and dy : (y)

where y is again the only free variable; moreover, ¢(y) does not contain any constant.
We introduce two new rules (E) and (A) for these modalities. In these rules, ¢(y) denotes an
unguarded formula that contains only y as free variable (and no constant).

Rule (E). This rule instantiates unguarded existentially quantified formulas in S by fresh con-
stants:

11
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(S,03,0y) N (§7,05,0y) ifthere exists € = |y : ¢(y)| s.t.

e € € ['\®5is an atom corresponding to an unguarded existentially quantified formula
that appears in I" but has not been handled yet,

e d is a fresh constant,

e S’ =5 U{conc(e) = ¢(d))},

¢ ©,=035U el

Rule (A). This rule instantiates unguarded universally quantified formulas in S for constants
that have not yet been instantiated.

(5,05,0,) — (57,05,0,) if there exist e = | ¥y : ()| and d s.t.

e ccl,disaconstantin S, (¢,d) ¢ ©y. In words, € is an atom corresponding to an
unguarded universally quantified formula that appears in I', and d is a constant for
which € has not yet been instantiated,

e S’ =S Uf{conc(e) = p(d)"},

e 0, =0, U{(d).

Without additional precautions, the rule (A) may lead to the regeneration of copies of for-
mulas for different constants that could make the procedure fail to terminate. For example, a
subformula VYx : Jy : R(x,y) A P(y) that corresponds to the relational translation of the modal
formula A p may lead to the generation of infinitely many copies of the formula R(c, d) A P(d)
for different constants ¢ and d.

In order to avoid the generation of redundant copies, we adopt a blocking rule similar to the
one proposed by Schmidt and Tishkovsky [22]. The instantiated formula ¢(d) generated in the
above rule has been decorated in order to remember that it is an instance of an unguarded univer-
sally quantifier. This decoration is understood to be distributed across the Boolean connectives
that appear in ¢. As a concrete example, consider the unguarded formula

€ = Vy:P(y)V(dz:R(y,2) A Q@)

that corresponds to the modal formula A(p V ©¢g). The application of rule (A) to this formula will
introduce the implication

conc(e) = P)A vV Az : R(y,2) A Q).

The decorated formulas are not distinguished from undecorated ones, except that we add the
following variant of the rule (3).

12
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Figure 1: Model for example formula with global modalities.

(S,05,0,) — (§/,@,0,) ifthere exists € = | (y : R(c,y) A o)* | s.t

e ¢ € '\ ®3 is an atom corresponding to an existentially quantified formula that
appears in I" but for which no instance has yet been created,

e if § contains the formula
@y : R(@,y) A e(»)* = (R(a,d) A ¢(d))
for some constants a and d, then
S’ =8 U{conc(e) = (R(c,d) A o(d))}

for that constant d, otherwise S’ is defined as above for a fresh constant d,

¢ ©,=05U el

For the soundness proof, it is essential to notice that Lemma m carries over to the new rules.
In particular, the above variant of the rule (3) ensures equisatisfiability of sets S and S’ because
the same successor satisfying ¢(d) may be chosen for any two diamond formulas in the scope
of a global A modality. The completeness and termination proofs of section (3| carry over to the
above rules in the obvious manner.

As a concrete example, the application of our rules to the modal formula

oap AoO-p AAOp V O-p)

may result in the model shown in figure |1} Its domain has five elements a, b, c, d, and e, with
a corresponding to the root point satisfying the original formula. The proposition p is true at d
and false at e. Note that every point has either d or e as a successor, ensuring that the subformula
A(Op V O-p) is satisfied.

4.2 Hybrid Logic

Hybrid languages [2] are modal languages that have special symbols to name individual points
in models. Syntactically, these new symbols i, j, k, ..., often called nominals, are just another

13
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sort of propositional symbolsﬂ For example, if i is a nominal and p and g are ordinary atomic
propositions, then
Oi AOg AOng and Op A Og A Og

are both well-formed formulas; but they have quite a different meaning. Actually, as we will
now explain, the second formula is satisfiable whereas the first one is not. The difference comes
from the interpretation that should be attributed to nominals. Because a nominal i represents a
particular element in the model it should be true at a unique state. Formally, its interpretation i
is a singleton set. For the left-hand formula above to be true at some point w, the first conjunct
requires that at most one state (the one denoted by i) can be accessible from the evaluation point
w. It is then impossible to satisfy both g and —¢g at that unique successor, as required by the
two other conjuncts. In contrast, the first conjunct of the right-hand formula just requires that all
states accessible from w satisfy p, but does not restrict their multiplicity. Hence, some successor
may satisfy ¢ and another one —g.

Once we have names for states we can introduce, for each nominal i, an operator @; that
allows us to jump to the point named by i. The formula @, (read “at i, ¢’) moves the point of
evaluation to the state named by i and evaluates ¢ there: Intuitively, the @; operators internalize
the satisfaction relation “=” into the logical language:

MwE @ iff M uk ¢ where i™ = {u).

For this reason, these operators are usually called satisfaction operators.
We will now extend our calculus to handle the operators of the basic hybrid logic.

4.3 SMT-Based Decision Procedure for Hybrid Logic
The relational translation for basic modal logic extends to hybrid logic through the definitions

ST, (i) = x=i
STA(@,p) = STi(y).

In particular, note that nominals are translated as constants of first-order logic. The relational
translation still produces formulas with at most one free variable.

We now adapt our SMT-based decision procedure to hybrid logic, starting from the rela-
tional translation of the input set of hybrid logic formulas; if that translation has a (single) free
variable, it is again replaced by a (Skolem) constant, otherwise the translation must contain a
constant corresponding to a nominal. Because equality is now a central part of reasoning, we no
longer produce propositional abstractions for use with a SAT solver, but rely on a ground SMT
solver that includes a decision procedure for equality over uninterpreted predicate symbols. Ac-
cordingly, the abstraction preserves all ground formulas of the forms P(a), R(a,b), and a = n,
but quantified formulas that arise from the translation of modal operators are still abstracted, as
in

VYx:-R(c,x)V (x=1iA-P(x))

!Propositional symbols and nominals are however handled quite differently while translating to first-order for-
mulas, as we will see later.

14
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that corresponds to asserting the formula O(i A —p) of hybrid logic at world c.

The algorithm from section [3|remains essentially unchanged. However, ground models I" are
now not just propositional models of abs(S ), but consist of an arrangement of the finite set C of
constants in S given by an equivalence relation = whose set of equivalence classes we will denote
by [C], valuations [P]] € [C] and [[R]] C [C] X [C] that indicate the extensions of the unary and

binary predicates in I', as well as a set of atoms that correspond to abstracted subformulas

in S that are true in I'. The rules () and (V) of section [3|remains basically the same, except that
conditions ¢ € I" should be read as I' = i, and that atomic formulas are no longer abstracted, as
discussed above.

4.4 Soundness, Completeness, and Termination

The proof of soundness extends immediately the one of section

Theorem 4 (Soundness for hybrid logic). Assume that the procedure terminates with verdict
“unsatisfiable”. Then the initial set S° of formulas is unsatisfiable.

Proof. The analogues of lemmasandremain true for hybrid logic: for any transition (S, ®3, ®y) 5
(§7,04,0(), we have that § and S’ are equisatisfiable. Also, any first-order model of S again
gives rise to a model of abs(S ), hence unsatisfiability of abs(S) implies unsatisfiability of S.

The soundness theorem is an immediate consequence of these two lemmas. O O

Completeness. The completeness proof is also analogous to the one in section whenever
the procedure produces a ground model in a state where no instantiation rule can be applied, then
the set of formulas is satisfiable.

Theorem 5 (Completeness for hybrid logic). Assume that the procedure terminates with verdict
“satisfiable”. Then the initial set S° of formulas is satisfiable.

Proof. Assume that the procedure terminates after a sequence of transitions

0 1 n—1

(s°,0,0) — (s',0,.0)) > ... 5 (s"e e

such that abs(S") is satisfied by a ground model I', and no transition according to (3) or (V) is
possible. As before, S is exactly the subset of S" without the formulas added by applications
of rules (3) and (V). Let M be the first-order structure that corresponds to I', i.e. the universe
M| is the set [C] of equivalence classes of the constants in abs(S"), and M interprets the unary

and binary predicate symbols, as well as the abstracted quantified formulas that appear in
abs(S™). We will prove that M is a model of S°.

15



PIRSES-GA-2011-295261 / MEALS Page 16 of Public

Step 1. We again prove that for every ground instance of every subformula ¢ of a formula in
§0 for constants that appear in abs(S"), if M k= abs(y) then M k= .

e For literals y that are ground instances of subformulas in $” (and a fortiori in %), we now
have abs(y) =y, and therefore M | abs(y) iff M [ . Note that this argument extends to
ground instances of the new subformulas x = i introduced by the translation from hybrid
logic.

e For conjunctions and disjunctions, the proof of the inductive step is immediate.

e For ground instances ¢ of quantified formulas of the forms dy : R(c,y) A ¢(y) and Vy :
=R(c,y) V ¢(y), the arguments are exactly the same as in the proof of theorem [2] replacing

eryMI: .

Step 2. For any formula ¢ € S°, we have that ¢ is ground and M | abs(p) because M is a
model of abs(S™) 2 abs(S°). By step 1, we conclude that M E ¢. O O

Termination. The termination proof follows exactly the lines of that of Theorem 3] except that
now S ° may contain several constants, corresponding to nominals and to the Skolem constant for
the world from which the model construction for S starts. All these (finitely many) constants
are assigned depth 0. The procedure applies the same rules as for the case of basic modal logic,
and the structure of the formulas is essentially the same (up to the addition of atomic equalities),
and therefore termination is ensured by the same argument.

The fact that the proofs of soundness, completeness, and termination carry over in a straight-
forward way from basic modal logic to hybrid logic is in marked contrast to the situation for
tableau calculi. In particular, the proof of termination is highly non-trivial for tableaux for hy-
brid logic [6].

5 Conclusions and Related Work

We have presented an SMT-based decision procedure for modal logic and some of its extensions.
It is based on combining a ground solver for propositional logic or quantifier-free first-order
logic with a custom instantiation module that lazily produces instances of quantified formulas as
directed by the ground solver. The procedure robustly extends from basic modal logic to hybrid
logic, the main difference being the replacement of a SAT solver by an SMT solver for reasoning
about equality. We have also adapted the procedure to take into account standard conditions on
the accessibility relation, such as reflexivity, symmetry, and transitivity; for lack of space, these
extensions will be described elsewhere. Further extensions, such as to the guarded fragment of
predicate logic [[1] that generalizes modal logic while retaining its good computational properties,
are an interesting avenue for future work.

In principle, the instantiation procedure can be implemented using patterns and e-matching,
which are provided by standard SMT solvers. However, one should not expect such a naive
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implementation to yield an efficient decision procedure for modal logics. In particular, without
imposing further control, subsequent calls to the ground solver may result in completely differ-
ent ground models. One way to obtain a decision procedure running in polynomial space is to
impose a depth-first search strategy similar to modal tableaux, where instances corresponding to
fully explored branches can be forgotten for the remainder of the exploration. This will imply for
the SMT solver to forget instances in a smart way, and such a feature requires some careful engi-
neering. Our preliminary experiments confirm that SMT solvers with trigger-based instantiation
as currently implemented are off-the-shelf decision procedures for basic modal logic, but also
show that forgetting instances is a required first step towards efficiency. More efficient transla-
tions from modal to first-order logic, such as the functional translation and its variants [19]], may
also help improving the performance without changing the basic setup of our procedure.

Whereas semantic tableaux remain state of the art decision procedures for modal and related
logics, several authors proposed alternative methods. In particular, Hustadt and Schmidt [[10}
16, 21] systematically explored techniques based on translations to first-order logic and the use
of resolution and superposition provers. Our work starts from the same encodings in first-order
languages but relies on ground decision procedures for suitable fragments of first-order logic.
We believe that our proofs are more elementary, and we hope to obtain similarly efficient imple-
mentations by controlling repeated calls to the ground solver.

Sebastiani et al. [11, 24] investigate the use of SAT solvers for modal and related logics.
Their approach does not start from an encoding into first-order logic, but abstracts formulas with
top-level modal connectives, similar to our abstractions of quantified formulas. When the set of
abstracted formulas is found satisfiable, the SAT solver is launched again on sets of sub-problems
derived from the formulas beneath the topmost modal operators. Whereas their decision proce-
dure is very efficient for basic modal logic, it appears to fundamentally depend on the clean
separation of truth conditions for worlds that correspond to distinct modal depths, and this con-
dition is not satisfied for many extensions of modal logic, including hybrid logic.

Our small investigation into SMT-based decision procedures for modal and related logics
owes in part to Martin Wirsing’s interest in modal logic, as witnessed by Chapter 6 of [4]. Our
work is being developed within an ongoing cooperation between teams located in Argentina
and in Europe, which Martin actively fostered. For both reasons, we hope that this paper is a
suitable contribution for the present volume, and we present Martin our sincere wishes for many
more years of intellectual happiness in pursuing research at the interface of algebra, logic, and
computer science.
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