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1 Introduction
We study the expressive power and model theory of XPath—arguably the most widely used
XML query language. Indeed, XPath is implemented in XSLT and XQuery and it is used as a
constituent part of many specification and update languages. XPath is, fundamentally, a general
purpose language for addressing, searching, and matching pieces of an XML document. It is an
open standard and constitutes a World Wide Web Consortium (W3C) Recommendation (6).

Core-XPath (term coined in (13)) is the fragment of XPath 1.0 containing the navigational
behavior of XPath. It can express properties of the underlying tree structure of the XML doc-
ument, such as the label (tag name) of a node, but it cannot express conditions on the actual
data contained in the attributes. In other words, it only allows to reason about trees over a finite
alphabet. Core-XPath has been well studied and its satisfiability problem is known to be decid-
able even in the presence of DTDs (17; 1). Moreover, it is known that it is equivalent to FO2

(first-order logic with two variables over an appropriate signature on trees) in terms of expressive
power (18), and that it is strictly less expressive than PDL with converse over trees (2). From a
database perspective, however, Core-XPath fails to include the single most important construct
in a query language: the join. Without the ability to relate nodes based on the actual data values
of the attributes, the logic’s expressive power is inappropriate for many applications.

The extension of Core-XPath with (in)equality tests between attributes of elements in an
XML document is named Core-Data-XPath in (4). Here, we will call this logic XPath=. Models
of XPath= are data trees which can be seen as XML documents. A data tree is a tree whose nodes
contains a label from a finite alphabet and a data value from an infinite domain (see Figure 1
for an example). We will relax the condition on finiteness and consider also infinite data trees,
although all our results hold also on finite structures.

The main characteristic of XPath= is to allow formulas of the form 〈α = β〉, where α, β are
path expressions, that navigate the tree using axes: descendant, child, ancestor, next-sibling,
etc. and can make tests in intermediate nodes. The formula is true at a node x of a data tree if
there are nodes y, z that can be reached by the relations denoted by α, β, respectively, and such
that the data value of y is equal to the data value of z.

Recent articles investigate several algorithmic problems of logics evaluated over data trees.
For example, satisfiability and evaluation are discussed in (8; 5). In particular, all the logics
studied in this article have a decidable satisfiability problem (10; 9); but tools to investigate their
expressive power are still lacking. There are good reasons for this: in the presence of joins and
data values, classical notions such as Ehrenfeucht-Fraı̈ssé games or structural bisimulations are
difficult to handle. In this article we take the first steps towards understanding the expressive
power and model theory of XPath= on data trees.

Contribution: XPath= can navigate the data tree by means of its axes: child (that we will note
↓), descendant (↓∗), parent (↑), ancestor (↑∗), etc. XPath= can also navigate the data tree
horizontally, by going to a next or previous sibling of the current node. However, we focus on
the vertical axes that allow downward and upward exploration. In particular, we will discuss the
following languages: XPath↓= (XPath= with ↓); XPathl= (XPath= with ↓ and ↑); XPath↓↓∗= (XPath=

with ↓ and ↓∗); XPathll
∗

= (XPath= with ↓, ↑, ↓∗ and ↑∗); and its positive fragments. Our main

4
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contributions can be summarized as follows:
• In §3 and §6 we introduce bisimulation notions for XPath↓=, XPath↓↓∗= , XPathl=, and XPathll

∗

=

and show that they precisely characterize the logical equivalence relation of the respective logic.
We also consider fine grained versions of these bisimulations that take into account the number
of nested axes and subformulas. The notion of bisimulation for XPathl= relies on a strong normal
form which we also introduce.
• In §5 we show that the simulations associated to the defined bisimulations characterize the
positive fragments of the logics: a formula is equivalent to a positive formula if and only if it is
invariant under simulations.
• In §7 we characterize XPath↓= as the fragment of first-order logic over data trees (over a signa-
ture that includes the child relation and an equivalence relation) that is invariant under bisimu-
lations. If we consider XPathl= instead the characterization fails, but a weaker result can still be
established.
• Using bisimulations we show (non)expressivity results about XPath= in §8. We character-
ize, for example, in which cases increasing the nesting depth increases the expressive power of
XPath↓=.
• All results are proved both over the class of arbitrary (possibly infinite) data trees, and over the
class of finite data trees.
Related work: The notion of bisimulation was introduced independently by Van Benthem (26)
in the context of modal correspondence theory, Milner (19) and Park (23) in concurrency theory,
and Forti and Honsell (11) in non-wellfounded set theory (see (25) for a historical outlook).
This classical work defines a standard notion of bisimulation but this notion has to be suitably
adapted for a particular, given logic. The notion of bisimulation for a given logic L defines
when two models are indistinguishable for L, that is, when there is no formula of L that is true
in one model but false in the other. Bisimulations can also be used to obtain model theoretic
characterizations that identifies the expressive power of a logic L1 in terms of the bisimulation
invariant fragment of a logic L2 which, hopefully, is better understood. The challenge, here, is to
pinpoint both the appropriate notion of bisimulation required and the adequate ‘framework’ logic
L2. The classical example of a result of this kind is Van Benthem’s characterization for the basic
modal logic as the bisimulation (with the standard notion of bisimulation) invariant fragment of
first-order logic (26). Van Benthem’s original result over arbitrary structures was proved to hold
for finite structures by Rosen (24). The proof was then simplified and unified by Otto (20; 22),
and later expanded by Dawar and Otto (7) to other classes of structures.

Logics for semi-structured databases can often be seen as modal logics. In fact, structural
characterizations for XPath without equality test were studied in (14), and XPath is known to be
captured by PDL (15), whose bisimulation is well-understood (3). It is then natural to look for
an intuitive bisimulation definition for XPath=.

5
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[[↓]]T = {(x, y) | x→y}

[[↑]]T = {(x, y) | y→x}

[[ε]]T = {(x, x) | x ∈ T }

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }

[[¬ϕ]]T = T \ [[ϕ]]T

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[↓∗]]T = reflexive transitive closure of [[↓]]T

[[↑∗]]T = reflexive transitive closure of [[↑]]T

[[a]]T = {x ∈ T | label(x) = a}

[[αβ]]T = {(x, z) | (∃y ∈ T ) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[〈α〉]]T = {x ∈ T | (∃y ∈ T ) (x, y) ∈ [[α]]T }

[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T )(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}

[[〈α , β〉]]T = {x ∈ T | (∃y,z ∈ T )(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) , data(z)}

Table 1: Semantics of XPath= for a data tree T .

2 Preliminaries

2.1 Notation
Let N = {1, 2, 3, . . . } and let [n] B {1, . . . , n} for n ∈ N. We use the symbol A to denote a finite
alphabet, and D to denote an infinite domain (e.g., N) of data values. In our examples we will
consider D = N. We write X∼Y to say that X is the result of replacing every data value d ∈ D
from Y by f (d) where f : D → D is some arbitrary bijection, for any objects X, Y . We write λ
for the empty string.

2.2 Data trees
Let Trees(A) be the set of ordered and unranked trees over an arbitrary alphabet A. We say that T
is a data tree if it is a tree from Trees(A×D) where A is a finite set of labels and D is an infinite
set of data values. Figure 1 shows an example of a (finite) data tree. A data tree is finitely
branching if every node has finitely many children. For any given data tree T , we denote by T
its set of nodes. We use letters x, y, z, v,w as variables for nodes. Given a node x ∈ T of T , we
write label(x) ∈ A to denote the node’s label, and data(x) ∈ D to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of x, and x
n
→y if y is a descendant of

x at distance n. In particular,
1
→ is the same as→, and

0
→ is the identity relation. (x

n
→) denotes

the set of all descendants of x at distance n, and (
n
→y) denotes the sole ancestor of y at distance n

6
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x

y

z

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1: A data tree of Trees(A×D) with A = {a, b} and D = N.

(assuming it has one).
For any binary relation R over elements of data trees, we say that a property P is R-invariant

whenever the following condition holds: for every data tree T and u ∈ T , if (T , u) satisfies P and
(T , u) is R-related to (T ′, u′) then (T ′, u′) satisfies P.

2.3 XPath
We introduce the query language XPath adapted to data trees as abstractions of XML documents.
We work with a simplification of XPath, stripped of its syntactic sugar. We consider fragments
of XPath that correspond to the navigational part of XPath 1.0 with data equality and inequal-
ity. XPath= is a two-sorted language, with path expressions (that we write α, β, γ) and node
expressions (that we write ϕ, ψ, η). The fragment XPath=(O), with O ⊆ {↓, ↓∗, ↑, ↑∗}, is defined
by mutual recursion as follows:

α, β F o | [ϕ] | αβ | α ∪ β o ∈ O ∪ {ε}
ϕ, ψ F a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 |

〈α = β〉 | 〈α , β〉 a ∈ A

A formula of XPath=(O) is either a node expression or a path expression. To save space, we
use XPath↓= for XPath=(↓); XPathl= for XPath=(↓, ↑); XPath↓↓∗= for XPath=(↓, ↓∗); and XPathll

∗

= for
XPath=(↓, ↑, ↓∗, ↑∗).

We formally define the semantics of XPath= in Table 1. As an example, if T is the data tree
shown in Figure 1, then [[〈↓∗[ b ∧ 〈↓[b] , ↓[b]〉 ]〉]]T = {x, y, z}, where the formula reads: “there
is a descendant node labeled b, with two children labeled b with different data values.” For a
data tree T and u ∈ T , we write T , u |= ϕ to denote u ∈ [[ϕ]]T , and we say that T , u satisfies ϕ.
We say that the formulas ϕ, ψ of XPath= are equivalent (notation: ϕ ≡ ψ) iff [[ϕ]]T = [[ψ]]T for
all data trees T . Similarly, path expressions α, β of XPath= are equivalent (notation: α ≡ β) iff
[[α]]T = [[β]]T for all data trees T .

We call downward XPath to XPath↓= and vertical XPath to XPathl=.
In terms of expressive power, it is easy to see that ∪ is unessential: every XPath= node expres-

sion ϕ has an equivalent ϕ′ with no ∪ in its path expressions. ϕ′ can be computed in exponential
time without incrementing the number of nested axes or the number of nested subformulas. It is

7
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enough to use the following equivalences to eliminate occurrences of ∪

〈α � β〉 ≡ 〈β � α〉

〈β(α ∪ α′)β′〉 ≡ 〈βαβ′〉 ∨ 〈βα′β′〉
〈γ � β(α ∪ α′)β′〉 ≡ 〈γ � βαβ′〉 ∨ 〈γ � βα′β′〉

where � ∈ {=,,}. We will henceforth assume that formulas do not contain union of path expres-
sions.

3 Bisimulation

3.1 Downward XPath
We write dd(ϕ) to denote the downward depth of ϕ, defined in Table 2. Let `-XPath↓= be the
fragment of XPath↓= consisting of all formulas ϕ with dd(ϕ) ≤ `.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′. We say that T , u and T ′, u′ are equivalent
for XPath↓= (notation: T , u ≡↓ T ′, u′) iff for all formulas ϕ ∈ XPath↓=, we have T , u |= ϕ iff
T ′, u′ |= ϕ. We say that T , u and T ′, u′ are `-equivalent for XPath↓= (notation: T , u ≡↓` T

′, u′)
iff for all ϕ ∈ `-XPath↓=, we have T , u |= ϕ iff T ′, u′ |= ϕ.

For every `, there are finitely many different formulas ϕ of dd(ϕ) ≤ ` up to logical equiva-
lence.

Proposition 1. ≡↓` has finite index.

Corollary 1. {T ′, u′ | T , u ≡↓` T
′, u′} is definable by an `-XPath↓=-formula χ`,T ,u.

3.1.1 Bisimulation and `-bisimulation

Let T and T ′ be two data-trees. We say that u ∈ T and u′ ∈ T ′ are bisimilar for XPath↓=
(notation: T , u↔↓ T ′, u′) iff there is a relation Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and
x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig (Figure 2): If xZx′, x
n
→v and x

m
→w then there are v′,w′ ∈ T ′ such that x′

n
→v′, x′

m
→w′

and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i
→v) Z (

i
→v′) for all 0 ≤ i < n, and

3. (
i
→w) Z (

i
→w′) for all 0 ≤ i < m.

• Zag: If xZx′, x′
n
→v′ and x′

m
→w′ then there are v,w ∈ T such that x

n
→v, x

m
→w and items 1,

2 and 3 above are verified.

8
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dd(a) = 0

dd(ϕ ∧ ψ) = max{dd(ϕ), dd(ψ)}

dd(¬ϕ) = dd(ϕ)

dd(〈α〉) = dd(α)

dd(〈α � β〉) = max{dd(α), dd(β)}

dd(λ) = 0

dd(εα) = dd(α)

dd([ϕ]α) = max{dd(ϕ), dd(α)}

dd(↓α) = 1 + dd(α)

Downward depth

vd(a) = (0, 0)

vd(ϕ ∧ ψ) = max{vd(ϕ), vd(ψ)}

vd(¬ϕ) = vd(ϕ)

vd(〈α〉) = vd(α)

vd(〈α � β〉) = max{vd(α), vd(β)}

vd(λ) = (0, 0)

vd(εα) = vd(α)

vd([ϕ]α) = max{vd(ϕ), vd(α)}

vd(↓α) = max{(0, 0), vd(α) + (1,−1)}

vd(↑α) = max{(0, 0), vd(α) + (−1, 1)}

Vertical depth

nd(a) = 0

nd(ϕ ∧ ψ) = max{nd(ϕ), nd(ψ)}

nd(¬ϕ) = nd(ϕ)

nd(〈α〉) = nd(α)

nd(〈α � β〉) = max{nd(α), nd(β)}

nd(αβ) = max{nd(α), nd(β)}

nd(ε) = 0

nd([ϕ]) = 1 + nd(ϕ)

nd(↓) = 0

nd(↑) = 0

Nesting depth

Table 2: Definitions of downward depth, vertical depth and nesting depth. (a ∈ A, � ∈ {=,,},
‘+’ and ‘max’ are performed component-wise, α is any path expression or the empty string λ.)

=
( 6=

)

8v 9v0

8w 9w0

T T 0

n

m

x x0

Z

=
( 6=

)

Figure 2: Zig clause of bisimulation for XPath↓=.
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For a data tree T and u ∈ T , let T |u denote the subtree of T induced by {v ∈ T | (∃n) u
n
→v}.

Observe that the root of T |u is u. The following results are straightforward consequences of the
definition of bisimulation:

Proposition 2. T , u↔↓ (T |u), u.

Proposition 3. If T is a subtree of T ′ and u ∈ T then T , u↔↓ T ′, u.

We say that u ∈ T and u′ ∈ T ′ are `-bisimilar for XPath↓= (notation: T , u↔↓` T
′, u′) if there

is a family of relations (Z j) j≤` in T × T ′ such that uZ`u′ and for all j ≤ `, x ∈ T and x′ ∈ T ′ we
have

• Harmony: If xZ jx′ then label(x) = label(x′).

• Zig: If xZ jx′, x
n
→v and x

m
→w with n,m ≤ j then there are v′,w′ ∈ T ′ such that x′

n
→v′,

x′
m
→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i
→v) Z j−n+i (

i
→v′) for all 0 ≤ i < n, and

3. (
i
→w) Z j−m+i (

i
→w′) for all 0 ≤ i < m.

• Zag: If xZ jx′, x′
n
→v′ and x′

m
→w′ with n,m ≤ j then there are v,w ∈ T such that x

n
→v, x

m
→w

and items 1, 2 and 3 above are verified.

Clearly if T , u↔↓ T ′, u′ then T , u↔↓` T
′, u′ for all `.

Proposition 4. Suppose T and T ′ have height at most `, u ∈ T, and u′ ∈ T ′. Then T , u↔↓` T
′, u′

iff T , u↔↓ T ′, u′.

For a data tree T and u ∈ T , let T |`u denote the subtree of T induced by {v ∈ T | (∃n ≤
`) u

n
→v}.

Proposition 5. T , u↔↓` (T |`u), u.

3.1.2 Equivalence and bisimulation

We now show that↔↓ coincides with ≡↓ on finitely branching data trees, and that↔↓` coincides
with ≡↓` .

Theorem 1.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse also holds when T and T ′ are finitely
branching.

2. T , u↔↓` T
′, u′ iff T , u ≡↓` T

′, u′.

10
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The Theorem above (see Appendix for details) is a consequence of the next two propositions:

Proposition 6. T , u↔↓` T
′, u′ implies T , u ≡↓` T

′, u′.

Proof. We actually show that if T , u↔↓` T
′, u′ via (Zi)i≤` then for all 0 ≤ n ≤ j ≤ `, for all ϕ with

dd(ϕ) ≤ j, and for all α with dd(α) ≤ j:

1. If xZ jx′ then T , x |= ϕ iff T ′, x′ |= ϕ;

2. If x
n
→v, x′

n
→v′ and (

i
→v) Z( j−n)+i (

i
→v′) for all 0 ≤ i ≤ n, then (x, v) ∈ [[α]]T iff (x′, v′) ∈

[[α]]T
′

.

We show 1 and 2 by induction on |ϕ| + |α|.
Let us see item 1. The base case is ϕ = a for some a ∈ A. By Harmony, label(x) = label(x′)

and then T , x |= ϕ iff T ′, x′ |= ϕ. The Boolean cases for ϕ are straightforward.
Suppose ϕ = 〈α = β〉. We show T , x |= ϕ ⇒ T ′, x′ |= ϕ, so assume T , x |= ϕ. Suppose

there are v,w ∈ T and n,m ≤ j such that x
n
→v, x

m
→w, (x, v) ∈ [[α]]T , (x,w) ∈ [[β]]T and data(v) =

data(w). By Zig, there are v′,w′ ∈ T ′ such that x′
n
→v′, x′

m
→w′, (

i
→v) Z j−n+i (

i
→v′) for all 0 ≤ i ≤ n,

(
i
→w) Z j−m+i (

i
→w′) for all 0 ≤ i ≤ m, and data(v′) = data(w′). By inductive hypothesis 2 (twice),

(x′, v′) ∈ [[α]]T
′

and (x′,w′) ∈ [[β]]T
′

. Hence T ′, x′ |= ϕ. The implication T ′, x′ |= ϕ ⇒ T , x |= ϕ
is analogous. The case ϕ = 〈α , β〉 is shown similarly. The case ϕ = 〈α〉 is similar (and simpler)
to the previous case.

Let us now analyze item 2. We only show the ‘only if’ direction. The base case is when
α ∈ {ε, ↓}. If α = ε then v = x and so n = 0. Since v′ = x′, we conclude (x′, v′) ∈ [[α]]T

′

. If α =↓

then x→v in T , and so n = 1. Since x′→v′, we have (x′, v′) ∈ [[α]]T
′

.
For the inductive step, let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

x = x0→x1→x2→· · ·→xn = v in T ,
x′ = x′0→x′1→x′2→· · ·→x′n = v′ in T ′,

and xiZ j−ix′i for all 0 ≤ i ≤ n. Assume, for contradiction, that (x′, v′) < [[α]]T
′

. Then, there is
a subformula ϕ of α and k ∈ {0, . . . , n} such that T , xk |= ϕ and T ′, x′k 6|= ϕ(this is shown in
Lemma 4 in the Appendix). This contradicts the inductive hypothesis 1. �

Proposition 7. T , u ≡↓` T
′, u′ implies T , u↔↓` T

′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡↓` T
′, u′. Define (Zi)i≤` by

xZix′ iff T , x ≡↓i T
′, x′.

11
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We show that Z is an `-bisimulation between T , u and T ′, u′. By hypothesis, uZ`u′. Fix h ≤ `, by
construction, Zh satisfies Harmony. Let us see that Zh satisfies Zig (the case for Zag is analogous).
Suppose xZhx′,

x = v0→v1→· · ·→vn = v in T ,
x = w0→w1→· · ·→wm = w in T ,

and data(v) = data(w) (the case data(v) , data(w) is shown in a similar way), where m, n ≤ h.
Let P ⊆ T ′2 be defined by

P = {(v′,w′) | x′
n
→v′ ∧ x′

m
→w′ ∧ data(v′) = data(w′)}.

Since T , x ≡↓h T
′, x′, dd(〈↓n=↓m〉) ≤ h and T , x |= 〈↓n=↓m〉, we conclude that P , ∅. We next

show that there exists (v′,w′) ∈ P such that

i. x′ = v′0→v′1→· · ·→v′n = v′ in T ′,

ii. x′ = w′0→w′1→· · ·→w′m = w′ in T ′,

iii. (∀i ∈ {0, . . . , n}) T , vi ≡
↓

h−i T
′, v′i , and

iv. (∀ j ∈ {0, . . . ,m}) T ,w j ≡
↓

h− j T
′,w′j,

and hence Zig is satisfied by Zh. By way of contradiction, assume that for all (v′,w′) ∈ P
satisfying i and ii we have either

(a) (∃i ∈ {0, . . . , n}) T , vi 6≡
↓

h−i T
′, v′i , or

(b) (∃ j ∈ {0, . . . ,m}) T ,w j 6≡
↓

h− j T
′,w′j.

Fix > as any tautology such that dd(>) = 0. For each (v′,w′) ∈ P we define two families of
formulas,

ϕ0
v′,w′ , . . . , ϕ

n
v′,w′ and ψ0

v′,w′ , . . . , ψ
m
v′,w′ ,

satisfying that dd(ϕi
v′,w′) ≤ h − i for all i ∈ {0, . . . , n} and dd(ψ j

v′,w′) ≤ h − j for all j ∈ {0, . . . ,m}
as follows:

• Suppose that (a) holds and that i is the smallest number such thatT , vi 6≡
↓

h−i T
′, v′i . Let ϕi

v′,w′

be such that dd(ϕi
v′,w′) ≤ h − i and T , vi |= ϕi

v′,w′ but T ′, v′i 6|= ϕi
v′,w′ . For k ∈ {0, . . . , n} \ {i},

let ϕk
v′,w′ = >, and for k ∈ {0, . . . ,m}, let ψk

v′,w′ = >.

• Suppose that (a) does not hold. Then (b) holds. Let j be the smallest number such that
T ,w j 6≡

↓

h− j T
′,w′j. Let ψ j

v′,w′ be such that dd(ψ j
v′,w′) ≤ h − j and T ,w j |= ψ

j
v′,w′ but T ′,w′j 6|=

ψ
j
v′,w′ . For k ∈ {0, . . . ,m} \ { j}, let ψk

v′,w′ = >, and for k ∈ {0, . . . , n}, let ϕk
v′,w′ = >.

12
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For each i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}, let

Φi =
∧

(v′,w′)∈P

ϕi
v′,w′ and Ψ j =

∧
(v′,w′)∈P

ψ
j
v′,w′ . (1)

Since dd(ϕi
v′,w′) ≤ h − i, by Proposition 1, there are finitely many non-equivalent formulas

ϕi
v′,w′; the same applies to ψ j

v′,w′ . Hence, both infinite conjunctions in (1) are equivalent to finite
ones, and we may assume that Φi and Ψ j are well-formed formulas. Finally, let

α = [Φ0]↓[Φ1]↓ · · · ↓[Φn] and β = [Ψ0]↓[Ψ1]↓ · · · ↓[Ψm].

By construction, dd(α), dd(β) ≤ h and so dd(〈α = β〉) ≤ h. Furthermore, T , x |= 〈α = β〉 and
T ′, x′ 6|= 〈α = β〉. This contradicts T , x ≡↓h T

′, x′. �

3.2 Vertical XPath
We now study bisimulation for XPathl=. Interestingly, the notion we give is simpler than the one
for XPath↓= due to a normal form enjoyed by the logic.

In the downward fragment of XPath= we used dd(ϕ) to measure the maximum depth from
the current point of evaluation that the formula can access. For the vertical fragment of XPath=,
we need to define both the maximum distance r going downward and the maximum distance s
going upward that the formula can reach. We call the pair (r, s) the vertical depth of a formula.
Formally, the vertical depth of a formula ϕ (notation: vd(ϕ)) is the pair vd(ϕ) ∈ Z2

≥0 defined in
Table 2.

The nesting depth of a formula ϕ (notation: nd(ϕ)) is the maximum number of nested [ ]
appearing in ϕ. See Table 2 for the formal definition.

Let (r, s, k)-XPathl= be the set of all formulas ϕ in XPathl= with vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k.
Let T and T ′ be data trees, let u ∈ T and u′ ∈ T ′. We say that T , u and T ′, u′ are equivalent

for XPathl= (notation: T , u ≡l T ′, u′) iff for all ϕ ∈ XPathl=, we have T , u |= ϕ iff T ′, u′ |=
ϕ. T , x and T ′, x′ are (r, s)-equivalent [resp. (r, s, k)-equivalent] for XPathl=, and we note it
T , x ≡lr,s T ′, x′ [resp. T , x ≡lr,s,k T

′, x′] if they satisfy the same XPathl= formulas ϕ so that
vd(ϕ) ≤ (r, s) [resp. vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k].

3.2.1 Normal form

We define a useful normal form for XPathl= that will be implicitly used in the definition of bisim-
ulation in the section. For n ≥ 0, let ↓n denote the concatenation of n symbols ↓. I.e., ↓0 is the
empty string λ, ↓1 = ↓, and ↓n+1 = ↓↓n (similarly for ↑n).

A path expression α of XPathl= is downward [resp. upward] if it is of the form ↓n[ϕ] [resp.
[ϕ]↑n] for some n ≥ 0 with ϕ ∈ XPathl=. For example, ↓[〈↑〉] is a downward expression whereas
↓[〈↓〉]↓ is not. An up-down expression is any expression of the form ε, α↑, α↓ or α↑α↓ where α↑ is
upward and α↓ is downward. Henceforth we will use α↑, β↑, γ↑ to denote upward expressions and
α↓, β↓, γ↓ to denote downward expressions and α↑↓, β↑↓, γ↑↓ to denote up-down expressions. Note
that in particular any downward or upward expression is an up-down expression. An XPathl=

13
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formula or expression is in up-down normal form if every path expression contained in it is
up-down and every data test is of the form 〈ε � α↑↓〉 with � ∈ {=,,}.

Proposition 8. Let ϕ ∈ (r, s, k)-XPathl=. There is ϕ↑↓ ∈ XPathl= in up-down normal form such that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s + 2).

3.2.2 Finite index

Contrary to the case of XPath↓= (cf., Proposition 1), the logical equivalence relation restricted to
XPathl=-formulas of bounded vertical depth has infinitely many equivalence classes.

Proposition 9. If r + s ≥ 2 then ≡lr,s has infinite index.

In the proof of the above proposition (see Appendix)we need to use formulas with unbounded
nesting depth. In fact, when restricted to bounded nesting depth there are only finitely many
formulas up to logical equivalence, as stated next.

Proposition 10. ≡lr,s,k has finite index.

Corollary 2. {T ′, u′ | T , u ≡lr,s,k T
′, u′} is definable by an (r, s, k)-XPathl=-formula.

3.2.3 Bisimulation and (r, s, k)-bisimulation

The advantage of the normal form presented in Section 3.2.1, is that it makes it possible to use a
very simple notion of bisimulation. The disadvantage is that, since it does not preserve nesting
depth,↔lr,s,k does not correspond precisely to ≡lr,s,k, although↔l corresponds precisely to ≡l.
Nonetheless, we obtain, for all r, s, k,

↔r,s,k ⊆ ≡
l

r,s,k ⊆↔
l

r,s,k·(r+s+2).

Let T and T ′ be two data-trees. We say that u ∈ T and u′ ∈ T ′ are bisimilar for XPathl=
(notation: T , u↔l T ′, u′) iff there is a relation Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and
x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′),

• Zig (Figure 3): If xZx′, y
n
→x and y

m
→z then there are y′, z′ ∈ T ′ such that y′

n
→x′, y′

m
→z′,

data(z) = data(x)⇔ data(z′) = data(x′), and zZz′.

• Zag: If xZx′, y′
n
→x′ and y′

m
→z′ then there are y, z ∈ T such that y

n
→x, y

m
→z, data(z) =

data(x)⇔ data(z′) = data(x′), and zZz′.

14
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Figure 3: Zig clause of bisimulation for XPathl=

Observe that contrary to the definition of↔↓, the conditions above do not require intermediate
nodes to be related by Z. This is a direct consequence of the up-down normal form (Proposi-
tion 8).

We say that u ∈ T and u′ ∈ T ′ are (r, s, k)-bisimilar for XPathl= (notation: T , u↔lr,s,k T
′, u′) if

there is a family of relations (Z k̂
r̂,ŝ)r̂+ŝ≤r+s,k̂≤k in T×T ′ such that uZk

r,su
′ and for all r̂+ ŝ ≤ r+s, k̂ ≤ k,

x ∈ T and x′ ∈ T ′ we have that the following conditions hold.

• Harmony: If xZ k̂
r̂,ŝx
′ then label(x) = label(x′).

• Zig: If xZ k̂
r̂,ŝx
′, y

n
→x and y

m
→z with n ≤ ŝ and m ≤ r̂ + n then there are y′, z′ ∈ T ′ such that

y′
n
→x′, y′

m
→z′, and the following hold

(1) data(z) = data(x)⇔ data(z′) = data(x′),

(2) if k̂ > 0, zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂ + n − m, ŝ′ = ŝ − n + m.

• Zag: If xZ k̂
r̂,ŝx
′, y′

n
→x′ and y′

m
→z′ with n ≤ ŝ and m ≤ r̂ + n then there are y, z ∈ T such that

y
n
→x, y

m
→z, and items (1) and (2) above are verified.

Observation 4. If xZ k̂
r̂,ŝx
′, y

n
→x and y′

n
→x′ then it follows that yZ k̂−1

r̂′,ŝ′y
′, for r̂′ = r̂ + n, ŝ′ = ŝ − n.

The same occurs with Z instead of Z k̂
r̂,ŝ for the case of bisimilarity.

For a data tree T and u ∈ T , let T |sru denote the subtree of T induced by

{v ∈ T | (∃m ≤ s) (∃n ≤ r + m) (∃w ∈ T ) w
m
→u ∧ w

n
→v}.

Proposition 11. T , u↔lr,s,k (T |sru), u.

4.0.4 Equivalence and bisimulation

The next result says that↔l coincides with ≡l on finitely branching data trees, and states precisely
in what way↔lr,s,k is related to ≡lr,s,k.

Theorem 2.

15
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1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse also holds when T and T ′ are finitely
branching.

2. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k T

′, u′.

3. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k T

′, u′.

Corollary 3.↔lr,s,k has finite index.

5 Simulation
In this section we define notions of directed (non-symmetric) simulations for XPath↓= and XPathl=,
as it is done, e.g., in (16) for some modal logics. We obtain results similar to Theorems 1 and 2
but relating each simulation notion with the corresponding logical implication.

We say that an XPath= formula is positive if it contains no negation ¬ and no inequality data
tests 〈α , β〉. For L one of XPath↓=, XPathl=, XPath↓↓∗= , or XPathll

∗

= , we write L+ for the positive
fragment of L.

A simulation for XPath↓= [resp. for XPathl=] is simply a bisimulation from which the Zag
clause and half of the first condition in the Zig clause have been omitted. Observe that simulations
need not be symmetric.

Formally, we say that u ∈ T is similar to u′ ∈ T ′ for XPath↓= (notation: T , u→↓ T ′, u′) iff
there is a relation Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, x
n
→v and x

m
→w then there are v′,w′ ∈ T ′ such that x′

n
→v′, x′

m
→w′ and

1. data(v) = data(w)⇒ data(v′) = data(w′),

2. (
i
→v) Z (

i
→v′) for all 0 ≤ i < n, and

3. (
i
→w) Z (

i
→w′) for all 0 ≤ i < m.

u ∈ T is similar to u′ ∈ T ′ for XPathl= (notation: T , u→l T ′, u′) iff there is a relation Z ⊆ T ×T ′

such that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, y
n
→x and y

m
→z then there are y′, z′ ∈ T ′ such that y′

n
→x′, y′

m
→z′, zZz′, and if

data(z) = data(x) then data(z′) = data(x′).

Relations→↓` and→lr,s,k are defined accordingly. We define one-way (non-symmetric) logical
implication between models as follows. We write T , uV↓ T ′, u′ for

(∀ϕ ∈ XPath↓+= ) [T , u |= ϕ⇒ T ′, u′ |= ϕ].

DefineV↓` ,V
l, andVlr,s,k in an analogous way for `-XPath↓+= , XPathl+= , (r, s, k)-XPathl+= , respec-

tively. As for bisimulation, we have that→ coincides withV.

16
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Theorem 3.

1. Let † ∈ {↓, l}. T , u→† T ′, u′ implies T , u V† T ′, u′. The converse holds when T ′ is finitely
branching.

2. T , u→↓` T
′, u′ iff T , uV↓` T

′, u′.

3. T , u→lr,s,k·(r+s+2) T
′, u′ implies T , uVlr,s,k T

′, u′.

4. T , uVlr,s,k T
′, u′ implies T , u→lr,s,k T

′, u′.

We say that T ′ is a substructure of T if T ′ is a data tree which results from removing some
nodes of T , i.e., T ′ ⊆ T and for all u, v ∈ T ′ we have: 1) u→v on T iff u→v on T ′; 2) label(u)
on T ′ equals label(u) on T ; and 3) data(u) on T ′ equals data(u) on T . Equivalently, seen as
σ-structures, T ′ is the σ-substructure of T induced by T ′ ⊆ T . One can verify that the identity
on T ′ is a simulation for XPathl= from T ′ to T .

Lemma 1. If T ′ is a substructure of T and u′ ∈ T ′ then T ′, u′→l T , u′.

We obtain that the formulas of XPath= invariant under simulations are, precisely, the positive
ones.

Theorem 4.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓`] iff it is equivalent to a formula of XPath↓+= [resp. `-
XPath↓+= ].

2. ϕ ∈ XPathl= is→l-invariant iff it is equivalent to a formula of XPathl+= .

3. If ϕ ∈ XPathl= is→lr,s,k-invariant then it is equivalent to a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-XPathl+= then ϕ is→lr,s,k′-invariant, for
k′ = k · (r + s + 2).

6 Adding transitivity
As it happens, for example, with the basic modal logic and propositional dynamic logic, the same
notion of bisimulation [resp. simulation] of each logic captures the logical equivalence [resp.
logical implication] for the corresponding fragments including the reflexive-transitive closure of
the axes which are present. Intuitively, this occurs because ↓∗ is an infinite union of compositions
of ↓, and similarly for ↑.

Let ≡↓↓∗ and ≡ll
∗

be the logical equivalence relation for XPath↓↓∗= and XPathll
∗

= respectively,
and letV↓↓

∗

andVll
∗

be the logical implication for XPath↓↓∗+= and XPathll
∗+

= respectively.

Theorem 5. Let † ∈ {↓↓∗, ll∗}.

17



PIRSES-GA-2011-295261 / MEALS Page 18 of 43 Public

1. T , u↔† T ′, u′ implies T , u ≡† T ′, u′. The converse also holds when T ′ is finitely branch-
ing.

2. T , u→† T ′, u′ implies T , uV† T ′, u′. The converse also holds when T ′ is finitely branch-
ing.

7 Characterization
In §7.1 we show that there is a truth-preserving translation from XPathl= to first-order logic over
an appropriate signature. In §7.2 we characterize XPath↓= as the fragment of first-order logic
↔↓-invariant over data trees. In §7.3 we show that this result fails for XPathl= in general, but a
weaker result can still be proved.

7.1 Translating to first-order logic
We say that an XPathl=-path expression α is in simple normal form if it is of the form

[ϕ0]o1[ϕ1]o2 · · · on[ϕn],

for n ≥ 0, ϕi ∈ XPathl=, and oi ∈ {↓, ↑}.

Proposition 12. For any XPathl=- [resp. XPath↓=-] path expression α there is an equivalent
XPathl=- [resp. XPath↓=-] path expression α′ in simple normal form. Further, α′ can be computed
in polynomial time from α.1

We say that an XPathl=-formula ϕ is in simple normal form if each path expression α occur-
ring in ϕ is in simple normal form.

Fix the signature σ with binary relations and ≈, and a unary predicate Pa for each a ∈ A.
Any data tree T can be seen as a first-order σ-structure such that

 T = {(x, y) ∈ T 2 | y is a child of x};
≈T = {(x, y) ∈ T 2 | data(x) = data(y)};
PTa = {x ∈ T | label(x) = a}.

We define the following translation Tr mapping XPathl= formulas in simple normal form to

1Note that this proposition holds only for paths expressions without union.

18
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first-order σ-formulas:

Trx(a) = Pa(x) (a ∈ A)
Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})

Trx(¬ϕ) = ¬Trx(ϕ)
Trx(〈α〉) = (∃ȳ)

(
x = y0 ∧ Trȳ(α)

)
Trx(〈α = β〉) = (∃ȳ)(∃z̄)

(
x = y0 ∧ x = z0 ∧ yn ≈ zm∧

Trȳ(α) ∧ Trz̄(β)
)

Trx(〈α , β〉) = (∃ȳ)(∃z̄)
(
x = y0 ∧ x = z0 ∧ yn 0 zm∧

Trȳ(α) ∧ Trz̄(β)
)

Trȳ(α) =

n−1∧
i=0

oi+1(yi, yi+1) ∧
n∧

i=0

Tryi(ϕi),

where ȳ = y0, . . . , yn and z̄ = z0, . . . , zm, and are fresh when quantified in the fourth and fifth
definition;

α = [ϕ0]o1[ϕ1]o2[ϕ2]o3 · · · on[ϕn];
β = [ψ0]o′1[ψ1]o′2[ψ2]o′3 · · · o

′
m[ψm];

oi, o′i ∈ {↓, ↑}; o j(u, v) represents u v if o j = ↓, and v u otherwise.

Proposition 13. For ϕ ∈ XPathl= we have T , u |= ϕ iff T |= Trx(ϕ)(u).

7.2 Downward XPath
Let FO(σ) be the set of first-order formulas over a given signature σ, and let C be a class of
σ-models. An FO(σ)-formula ϕ(x) is `-local if for all data trees T and u ∈ T , we have T |=
ϕ(u) ⇔ T|`u |= ϕ(u). Finally, for ϕ ∈ FO(σ) let qr(ϕ) be its quantifier rank, i.e., the depth of
nesting of its quantifiers.

Observe that the following result has two readings: one classical, and one restricted to finite
models.

Theorem 6 (Characterization). Let ϕ(x) ∈ FO(σ). The following are equivalent:

(i) ϕ is↔↓-invariant over [finite] data-trees;

(ii) ϕ is logically equivalent over [finite] data-trees to an `-XPath↓=-formula, where ` = 2qr(ϕ)−1.

Proof. The implication (ii)⇒ (i) follows straightforwardly from Theorem 1. The proof of (i)⇒
(ii) goes as follows: First, we show that any↔↓-invariant ϕ(x) ∈ FO(σ) is `-local for ` = 2qr(ϕ)−1
(Proposition 14). Then, we prove that any↔↓-invariant ϕ(x) ∈ FO(σ) that is `-local is↔↓`-
invariant(Proposition 22 in the Appendix). Finally, we show that any FO(σ)-definable property
which is↔↓`-invariant is definable in `-XPath↓=(Proposition 23 in the Appendix). �
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Figure 4: Definition of T ′, u′ and T ′′, u′′.

Proposition 14. Any↔↓-invariant ϕ(x) ∈ FO(σ) over [finite] data-trees is `-local for ` = 2qr(ϕ) −

1.

Proof. We follow Otto’s proof (20). Assume that ϕ(x) ∈ FO(σ) is↔↓-invariant, let q = qr(ϕ),
and put ` = 2q − 1. Given a data tree T and u ∈ T it suffices to show the existence of data trees
T ′ and T ′′, with corresponding elements u′ ∈ T ′ and u′′ ∈ T ′′ such that

(a) T ′, u′↔↓ T , u,

(b) T ′′, u′′↔↓ (T |`u), u, and

(c) T ′, u′ ≡q T
′′, u′′.

Indeed, from the above conditions it follows that

T |= ϕ(u) iff T ′ |= ϕ(u′) ((a) and↔↓-inv. of ϕ)
iff T ′′ |= ϕ(u′′) (c)
iff (T |`u) |= ϕ(u), ((b) and↔↓-inv. of ϕ)

and hence ϕ is `-local. By Proposition 2 one may assume that u ∈ T is the root of T .
We define T ′ and T ′′, as structures that are disjoint copies of sufficiently many isomorphic

copies of T and T |`u, respectively, all tied together by some common root. Both structures have
q isomorphic copies of both T and T |`u, and only distinguish themselves by the nature of the
one extra subtree, in which u′ and u′′ live, respectively: u′ is the root of one of the copies of T
and u′′ is the root of one of the copies of T |`u. We indicate the two structures in the diagram of
Figure 4, with distinguished elements u′ and u′′ marked by •; the open cones stand for copies of
T , the closed cones for copies of T |`u. The new isomorphic copies have the same data values as
the original one. The new root has an arbitrary, fixed, data value and label.

By Proposition 3, it is straightforward that conditions (a) and (b) are satisfied. Condition (c)
is true because one can exhibit a strategy for player II in the q-round Ehrenfeucht-Fraı̈ssé game
on structures T ′ and T ′′. The strategy is exactly the same used in (20). �

7.3 Vertical XPath
The analog of Theorem 6 fails for XPathl=:
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Lemma 2. The FO(σ)-formula
(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [finite] data-trees to any XPathl=-formula.

Hence XPathl= is not the fragment of FO(σ) which is↔l-invariant over [finite] data-trees.
However, the following analog of Proposition 23 (needed for the proof of Theorem 6) still holds
for the case of XPathl=:

Proposition 15. Let k′ = k · (r + s + 2). If ϕ(x) ∈ FO(σ) is↔lr,s,k′-invariant over [finite] data-
trees, then there is ψ ∈ (r, s, k)-XPathl= such that Trx(ψ) is logically equivalent to ϕ over [finite]
data-trees.

Notice that the counterexample in Lemma 2 is an unrestricted, existential formula. One may
wonder if it might be possible to extend the expressive power of XPathl= to accout for unrestricted
quantification. The natural candidate would be the modal operator E (usually known as the
existential modality) which, intuitively, let us express that there is some node in the model where
a formula holds. But even with the additional expressive power provided by E the analog of
Theorem 6 fails. Formally, consider the logic XPathlE= , which results from adding the operator E
to XPathl= with the following semantics: [[Eϕ]]T = T if [[ϕ]]T , ∅, and [[Eϕ]]T = ∅ otherwise.

The following lemma shows a counterexample to the analog of Theorem 6, showing that
XPathlE= is not the fragment of FO(σ)↔l-invariant over [finite] data-trees.

Lemma 3. The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]

is↔l-invariant though not logically equivalent over [finite] data-trees to any XPathlE= -formula.

8 Applications
We devote this section to exemplify how the model theoretic tools we developed can be used to
show expressiveness results for XPath=. We do not intend to be comprehensive; rather we will
exhibit a number of different results that show possible uses of the notions of bisimulation we
introduced.

8.1 Expressiveness hierarchies
Define ≡↓`,k as the equivalence ≡↓` restricted to formulas of nesting depth at most k, that is,
T , u ≡↓`,k T

′, u′ iff for all ϕ ∈ XPath↓= such that dd(ϕ) ≤ ` and nd(ϕ) ≤ k we have T , u |= ϕ
iff T ′, u′ |= ϕ. Define a more fine-grained notion of bisimulation in a similar way. We say that
u ∈ T and u′ ∈ T ′ are (`, k)-bisimilar for XPath↓= (notation: T , u↔↓`,k T

′, u′) if there is a family
of relations (Z j,t) j≤`,t≤k in T × T ′ such that uZ`,ku′ and for all j ≤ `, t ≤ k, x ∈ T and x′ ∈ T ′ we
have
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≡↓
0,0 ≡↓

0,1 ≡↓
0,2 ≡↓

0,3 ≡↓
0,4

≡↓
1,0 ≡↓

1,1 ≡↓
1,2 ≡↓

1,3 ≡↓
1,4

≡↓
2,1≡↓

2,0 ≡↓
2,2 ≡↓

2,3 ≡↓
2,4

≡↓
3,0 ≡↓

3,1 ≡↓
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Figure 5: Hierarchy of XPath↓=.

• Harmony: If xZ j,tx′ then label(x) = label(x′).

• Zig: If xZ j,tx′, x
n
→v and x

m
→w with n,m ≤ j then there are v′,w′ ∈ T ′ such that x′

n
→v′,

x′
m
→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. if t > 0, (
i
→v) Z j−n+i,t−1 (

i
→v′) for all 0 ≤ i < n, and

3. if t > 0, (
i
→w) Z j−m+i,t−1 (

i
→w′) for all 0 ≤ i < m.

• Zag: If xZ j,tx′, x′
n
→v′ and x′

m
→w′ with n,m ≤ j then there are v,w ∈ T such that x

n
→v,

x
m
→w and items 1, 2 and 3 above are verified.

Following the same ideas used in Propositions 6 and 7, it is easy to show that (`, k)-bisimulations
characterize (`, k)-equivalence.

Proposition 16. T , u↔↓`,k T
′, u′ iff T , u ≡↓`,k T

′, u′.

The following theorem —proved in the Appendix using the bisimulation notion introduced
above— characterizes when an increase in nesting depth results in an increase in expressive
power (see Figure 5). We conjecture that a similar hierarchy holds in the absence of data values,
but this is not a direct consequence of our result.

Theorem 7. For all `, k ≥ 0, i ≥ 1,

≡
↓

`,0 ) ≡
↓

`,1 ) · · · ) ≡
↓

`,` = ≡
↓

`,`+i, and

≡
↓

`,k ) ≡
↓

`+i,k.
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↔�

Figure 6: Closure under subtree replication.

8.2 Safe operations on models
Bisimulations can also be used to show that certain operations on models preserve truth. Such
operations are usually called safe for a given logic, as they can be applied to a model without
changing the truth values of any formula in the language. Proposition 2, for example, is already
an example of this kind of results showing that the class of models of a formula is closed under
sub-model generation. We will now show a more elaborate example.

We say that T ′ is a subtree replication of T , if T ′ is the result of inserting T |x into T as
a sibling of x, where x is any node of T different from the root. Figure 6 gives a schematic
representation of this operation.

Proposition 17. XPathll
∗

= is closed under subtree replication, i.e. if T ′ is a subtree replication of
T , and u ∈ T then T ′, u ≡ll

∗

T , u.

Proof. Suppose that x ∈ T is not the root of T , and that T ′ is the result of inserting T |x into T
as a sibling of x. Let us call Tx to the new copy of T |x inserted into T ′, and let X be the set of
nodes of T |x. Furthermore, if v ∈ X then vx is the corresponding node of Tx. Nodes v and vx

have the same label and data value, and the position of v in T |x coincides with the position of vx

in Tx.
By Theorem 5, it suffices to verify that T , u↔l T ′, u via Z ⊆ T × T ′ defined by:

Z = {(y, y) | y ∈ T } ∪ {(v, vx) | v ∈ X}

(Z is depicted as dotted lines in Figure 6). �

8.3 Non-expressivity results
Finally, we will use bisimulation to show the expressivity limits of different fragments of XPath.
Let key(a) be the property stating that every node with label a has a different data value. Let
fk(a, b) (for foreign key) be the property (∀x)[Pa(x)⇒ (∃y)[Pb(y) ∧ x ∼ y]].

Proposition 18.

1. key(a) is not expressible in XPathll
∗

= .

2. fk(a, b) is expressible in XPathll
∗

= but it is not expressible in XPath↓↓∗= or XPathll
∗+

= .
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a, 1

a, 2 a, 2a, 2

a, 1
x x0$l

Figure 7: key(a)
not in XPathll

∗

= .

↔↓

a, 1 a, 2b, 1 b, 2

x x�T T �

c, 0

a, 1a, 2 b, 1b, 2

c, 0

a, 3

Figure 8: fk(a, b) not in XPath↓↓∗= .

a, 1

a, 2 a, 3

a, 1

a, 1

a, 2 a, 2

T T 0

a, 1

a, 2

a, 1

a, 1

a, 2

x0x $#

Figure 9: dist3 not in
XPath↓↓∗= .

Proof. The first item follows from Proposition 17. Since the logic is closed under subtree repli-
cation, the trees of Figure 7 are equivalent. As key(a) holds in one and not in the other, the
statement follows.

For the second item, it is easy to see that fk(a, b) is expressible with the formula ¬〈↑∗↓∗[a ∧
¬〈ε = ↑∗↓∗[b]〉]〉. However, this property cannot be expressed in XPath↓↓∗= because the models T
and T ′ in Figure 8 are bisimilar for XPath↓= via Z, depicted as dotted lines. Since T , x satisfies
fk(a, b) but T ′, x′ does not, from Theorem 5 it follows that fk(a, b) is not expressible in XPath↓↓∗= .

Finally, suppose there exists ψ ∈ XPathll
∗+

= expressing fk(a, b). Since T is a substructure of
T ′ we have T , x→l T ′, x by Lemma 1. By Theorem 5(2) and the fact that T , x |= ψ, we have
T ′, x |= ψ, which is a contradiction. �

Let dist3(x) be the property stating that there are nodes y, z so that x→y→z and x, y, z have
pairwise distinct data values.

Proposition 19.

1. dist3 is expressible in XPathl=;

2. dist3 is not expressible in XPath↓↓∗= ;

3. neither dist3 nor its complement can be expressed in XPathll
∗+

= .

Proof. For 1, one can check that T , x |= ϕ iff T , x satisfies dist3, for ϕ = 〈ε , ↓↓[〈ε , ↑〉]〉.
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Let us see 2. Consider the data trees T , x and T ′, x′ depicted in Figure 9. It is straightforward
that T , x satisfies dist3 and T ′, x′ does not.

Let v′1 and v′2 be the leaves of T ′ and let v be the only node of T with data value 3. One can
check that T , x↔↓ T ′, x′ via Z ⊆ T × T ′ defined by

Z = {〈u, u′〉 | h(u) = h(u′) ∧ data(u) = data(u′)} ∪
{〈v, v′1〉, 〈v, v

′
2〉},

where h(y) denotes the height of y, i.e., the distance from y to the root of the corresponding tree
(Z is depicted as dotted lines in Figure 9). Since T , x satisfies dist3 but T ′, x′ does not, from
Theorem 5 it follows that dist3 is not expressible in XPath↓↓∗= .

For 3, one can verify that T , x→l T ′, x′ via Z as defined above. If dist3 were definable in
XPathll

∗+
= via ψ and the fact that T , x |= ψ, by Theorem 5(2) we would have T ′, x′ |= ψ, and this

is a contradiction.
Let dist3 denote the complement of dist3, i.e., dist3(x) iff for all y, z so that x→y→z, we have

that x, y, z do not have pairwise distinct data values. Now T ′, x′ satisfies dist3 and T , x does
not. Since T ′ is a substructure of T , by an argument analog to the one used in the proof of
Proposition 18-2, we conclude that dist3 is not expressible in XPathll

∗+
= . �

9 Discussion
In this article we studied model theoretic properties of XPath over both finite and arbitrary data
trees using bisimulations. One of the main results we discuss is the characterization of the down-
ward and vertical fragments of XPath as the fragments of first-order logic which are invariant
under suitable notions of bisimulation. This can be seen as a first step in the larger program of
studying the model theory and expressiveness of XPath with data values and, more generally,
of logics on data trees. It would be interesting to study notions of bisimulation with only de-
scendant; or characterizations of XPath with child and descendant, as a fragment of FO with
the descendant relation on data trees. We did not considered XPath with horizontal navigation
between siblings, such as the axes next-sibling and previous-sibling. In fact, adding
these axes results in a fragment that is somewhat less interesting since the adequate bisimulation
notion on finite data trees corresponds precisely to data tree isomorphism modulo renaming of
data values.

In Section 8 we show a number of concrete application of the model theoretic tools we de-
veloped, discussing both expressivity and non-expressivity results. We also show examples of
operations which are safe for a given XPath fragment. It would be worthwhile to devise other
model operations that preserve truth of XPath formulas as we show is the case for subtree repli-
cation.

An important application of bisimulation is as a minimization method: given a data tree
T1 we want to find a data tree T2, as small as possible, so that T1 and T2 are bisimilar for
some fragment L of XPath. Since L cannot distinguish between T1 and T2, we can use T2 as
representative of T1 while the expressive power ofL is all that is required by a given application.
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The complexity of several inference tasks (e.g., model checking) depends directly on the model
size. This is why in some cases it may be profitable to first apply a minimization step. The
existence of efficient minimization algorithms is intimately related to bisimulations: we can
minimize a data tree T by partitioning it in terms of its coarsest auto-bisimulation. We plan to
design and implement algorithms for data tree minimization using bisimulation and investigate
their computational complexity.

Bibliography
[1] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. J. of the

ACM, 55(2):1–79, 2008.

[2] M. Benedikt and C. Koch. XPath leashed. ACM Comput. Sur., 41(1), 2008.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts
Theoret. Comput. Sci. Cambridge University Press, 2001.

[4] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data
trees and XML reasoning. J. of the ACM, 56(3):1–48, 2009.
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A Proofs of Section 3
Given a path expression α, the navigation of α (notation: nav(α)) is the string of {↑, ↓}∗ that
results from removing all node expressions [ψ] and ε from α. For example, nav(↓[〈↑〉]↓[〈↓ =

↑〉]↑[b]) = ↓↓↑.
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Lemma 4. Let α be a path expression of XPath↓↓∗= . Let x
n
→v and x′

n
→v′ such that (x, v) ∈ [[α]]T

and (x′, v′) < [[α]]T
′

. Then there is a subformula ϕ of α and k ∈ {0, . . . , n} such that T , (
k
→v) |= ϕ

and T ′, (
k
→v′) 6|= ϕ.

Proof. Let x = v0→v1→· · ·→vn = v and x′ = v′0→v′1→· · ·→v′n = v′. We proceed by induction
on |α|. If α = ε then x = v and so n = 0. Hence x′ = v′ and (x′, v′) ∈ [[α]]T

′

, which contradicts
the hypothesis, and thus the statement is trivially true. If α =↓ then x→v and so n = 1. Hence
x′→v′ and (x′, v′) ∈ [[α]]T

′

. This case is also trivial. The case α = ↓∗ is similar.
Suppose α = [ψ]. Since (x′, v′) < [[α]]T

′

, we have x′ = v′ and T ′, v′ 6|= ψ. Taking k = 0 and
ϕ = ψ the statement holds. Observe that ψ is a subformula of α.

Suppose α = βγ. Then there is k such that (x, vk) ∈ [[β]]T and (vk, v) ∈ [[γ]]T . Since (x′, v′) <
[[α]]T

′

, we have (x′, v′k) < [[β]]T
′

or (v′k, v
′) < [[γ]]T

′

. In either case, apply inductive hypothesis
straightforwardly. �

Proposition 1. ≡↓` has finite index.

Proof. We show by induction on ` that there are finitely many non-equivalent formulas of down-
ward depth at most `, and finitely many non-equivalent path expressions of downward depth at
most `.

For the base case, any formula of downward depth 0 is a Boolean combination of labels, and
hence there are finitely many non-equivalent of them. Any path expression of downward depth
0 is equivalent to [ϕ] for dd(ϕ) = 0, and hence there are finitely many non-equivalent of them.

For the induction, any formula of downward depth ` + 1 is a boolean combination of labels
or formulas of the form 〈α〉, 〈α = β〉 or 〈α , β〉, where dd(α), dd(β) ≤ `+ 1, so it suffices to show
that there are finitely many non-equivalent path expressions of downward depth at most ` + 1.
Let α be such that dd(α) ≤ ` + 1. By Proposition 12, α is either equivalent to a path expression
of the form [ψ] or of the form [ψ] ↓ β, where dd(ψ), dd(β) ≤ `. By inductive hypothesis there are
finitely many non-equivalent ψ’s and βi’s, and hence finitely many non-equivalent α’s. �

Corollary 1. {T ′, u′ | T , u ≡↓` T
′, u′} is definable by an `-XPath↓=-formula χ`,T ,u.

Proof. Consider the conjunction of all `-XPath↓= formulas ϕ such that T , u |= ϕ. By Proposi-
tion 1, up to logical equivalence, there are finitely many such ϕ’s, and hence the conjunction is
equivalent to a finite one. Define χ`,T ,u as this finite conjunction. �

Theorem 1.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse also holds when T and T ′ are finitely
branching.

2. T , u↔↓` T
′, u′ iff T , u ≡↓` T

′, u′.
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Proof. Item 2 is a direct consequence of Propositions 6 and 7. The argument for item 1 is similar
to the one of the aforementioned propositions, but working with a single Z instead of (Zi)i≤`. For
the converse implication, define Z by xZx′ iff T , x ≡↓ T ′, x′. The conjunctions in (1) are then
finite because T ′ is finitely branching, and so P is finite (the fact that T is finitely branching is
used to show that Zag is satisfied). �

Proposition 8.Let ϕ ∈ (r, s, k)-XPathl=. There is ϕ↑↓ ∈ XPathl= in up-down normal form such
that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s + 2).

Proof. The idea is that we can factorize any path in the tree going down and up as a node tests
in the expression. Consider for instance the expression α = ↑↓[a]↑↑↓. It is immediate that α is
equivalent to the up-down expression [〈↑[〈↓[a]〉]〉]↑↑↓, which is in up-down normal form.

We use the following directed equivalences to translate any path expression into an equivalent
up-down expression.

εγ ≡l γ (ε)

α[ψ1][ψ2]β ≡l α[ψ1 ∧ ψ2]β (merge)

α ξ−n↓ · · · ↓ξ−1↓ξ0↑ξ1↑ · · · ↑ξn β ≡
l

α[〈ξ−nξn↓ · · · ↓ξ−1ξ1↓ξ0〉]β (factor)

α ξn↓ξn−1↓ · · · ↓ξ0 ≡
l α ↓n[〈ξ0↑ξ1↑ . . . ↑ξn〉] (shift-r)

ξ0↑ξ1↑ · · · ↑ξn β ≡
l [〈ξ0↑ξ1↑ · · · ↑ξn〉]↑n β (shift-l)

In the expressions above, each ξi is the empty string, or of the form ε or [ϕ1][ϕ2] . . . [ϕn], α and
β can be any path expression, or the empty string, and γ is any path expression. The idea is that
(factor) converts an expression that goes down n times and then up n times into a node expression,
and when doing this, any test done in the i-th node when going down is merged with the (n− i)-th
test when going up. For example, ↓[¬a]↓[c]↑[¬b]↑ ≡l [〈↓[¬a][¬b]↓[c]〉]. On the other hand,
(shift-r) and (shift-l) group all the node tests in the lowest node in the expression, making use
of the fact that the parent relation is functional. Thus, for example [a]↓[b]↓ ≡l ↓↓[〈↑[b]↑[a]〉]
and ↑[a]↑[b] ≡l [〈↑[a]↑[b]〉]↑↑. It is thus clear that the left and right expressions above are
semantically equivalent.

Lemma 5. Let α be an XPathl=-path expression with vd(α) = (r, s) and nd(α) = k, Then there is
an up-down path expression α↑↓ such that:

1. α↑↓ ≡l α

2. vd(α↑↓) = (r, s), and
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3. nd(α↑↓) ≤ k + r + s + 1.

Proof. We first apply rule (factor) as many times as possible. It is clear that if nav(α) is of the
form ↑n

↓
m for some n,m ≥ 0 then rule (factor) cannot be applied and we are done. Hence,

suppose nav(α) contains the pattern ↓↑. Let

α = γ↑α1γ↓

α1 = γ1 ξ
1
−n1
↓ . . . ↓ξ1

0↑ . . . ↑ξ
1
n1︸                    ︷︷                    ︸

matches (factor)

γ2 ξ
2
−n2
↓ . . . ↓ξ2

0↑ . . . ↑ξ
2
n2︸                    ︷︷                    ︸

matches (factor)

...

γm−1 ξ
m
−nm
↓ . . . ↓ξm

0 ↑ . . . ↑ξ
m
nm︸                      ︷︷                      ︸

matches (factor)

γm,

where nav(γ↑), nav(γm) ∈ ↑∗, nav(γ↓), nav(γ1) ∈ ↓∗, and ξi
j are the empty string, ε or [ϕi, j

1 ][ϕi, j
2 ] . . . [ϕi, j

hi, j
].

Furthermore, assume that m is maximal (i.e., it is impossible to apply (factor) in any of the γi’s)
and that the length of each γi is minimal (i.e., it is not the case that nav(γi) ends with ↓ and that
nav(γi+1) begins with ↑). Observe that nav(γi) ∈ ↑∗↓∗. We apply rule (factor) in the m−1 marked
places and obtain

α2 = γ1 [〈ξ1
−n1
ξ1

n1
↓ · · · ↓ξ1

−1ξ
1
1↓ξ

1
0〉]︸                          ︷︷                          ︸

(factor) applied

γ2 [〈ξ2
−n2
ξ2

n2
↓ · · · ↓ξ2

−1ξ
2
1↓ξ

2
0〉]︸                          ︷︷                          ︸

(factor) applied

...

γm−1 [〈ξm
−nm
ξm

nm
↓ · · · ↓ξm

−1ξ
m
1 ↓ξ

m
0 〉]︸                            ︷︷                            ︸

(factor) applied

γm,

Let vd(nav(α1)) = (r1, s1). Since nav(α) = nav(γ↑α1γ↓) contains the pattern ↓↑, we have
that r1 > 0. It can be shown that vd(γ↑α2γ↑) = (r, s), nd(α2) ≤ nd(α1) + 1, and vd(nav(α2)) ≤
(r1 − 1, s1). If we repeat this procedure with α2 and so on until we can no longer apply rule
(factor), we end up with an up-down path expression α f so that

1. α f ≡
l α1,

2. vd(γ↑α fγ↓) = (r, s), and

3. nd(α f ) ≤ nd(α1) + r1.
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Figure 10: Normal form for data tests.

We can now apply (shift-r), (shift-l), (ε) and (merge) to γ↑α fγ↓ in order to obtain an up-down
path expression α↑↓ satisfying the desired conditions:

1. α↑↓ ≡l α

2. vd(α↑↓) = (r, s), and

3. nd(α↑↓) ≤ k + r1 + 1 ≤ r + s + 1.

This concludes the proof of Lemma 5. �

Lemma 6. Let α↑↓, β↑↓ be up-down path expressions and let ϕ = 〈α↑↓ � β↑↓〉 (for � ∈ {=,,}) with
vd(ϕ) = (r, s) and nd(ϕ) = k. Then there is an up-down path expression γ↑↓ such that:

1. 〈ε � γ↑↓〉 ≡l ϕ,

2. vd(γ↑↓) = (r, s), and

3. nd(γ↑↓) ≤ k + 1.

Proof. Let us analyse the case where

α↑↓ = [ψα]↑nα↓
mα[τα]

β↑↓ = [ψβ]↑nβ↓
mβ[τβ]

(the remaining cases being only simpler), where ψα, ψβ, τα, τβ are in up-down normal form.
Suppose, without loss of generality, that nα ≤ nβ. Hence, we have 〈α↑↓ � β↑↓〉 ≡l 〈ε � γ↑↓〉, where

γ↑↓ = [ψα ∧ ψβ]↑nα↓
mα [τα ∧ 〈ε � ↑mα↑

nβ−nα↓
mβ[τβ]〉].

It is clear that the formulas are equivalent (cf. Figure 10). Moreover, the right-hand formula has
at most one more nesting than the left-hand formula, and its vertical depth is at most (r, s). This
concludes the proof of Lemma 6. �

By induction on ϕ, and using lemmas 5 and 6, one can show that there is ϕ↑↓ as desired. �
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Tn :

Figure 11: Model verifying ψ
j
i for all i ≥ n and not verifying ϕl for no l < n. Dotted lines

represent equal data values.

Proposition 9. If r + s ≥ 2 then ≡lr,s has infinite index.

Proof. We show that for every r, s so that r + s = 2 there is an infinite set of non-equivalent
formulas {ψi

r,s}i≥0 of vertical depth (r, s). It thus follows that for every r, s so that r + s ≥ 2, ≡lr,s
has infinite index.

Consider the following formulas.

ψ0
1,1 = 〈ε = ↑↓↓〉 ψi+1

1,1 = 〈ε = ↑↓[ψi
1,1]↓〉

ψ0
0,2 = 〈↑ = ↑↑↓↓〉 ψi+1

0,2 = 〈↑ = ↑↑↓[ψi
1,1]↓〉

ψ0
2,0 = 〈↓ = ↓↓〉 ψi+1

2,0 = 〈↓ = ↓[ψi
1,1]↓〉

Note that vd(ψn
r,s) = (r, s) and nd(ψn

r,s) = n for every n. The formula ψn
r,s intuitively says that there

is a chain of length n as depicted in Figure 11.
In the data tree Tn of the figure, we have that Tn, xr,s |= ψn

r,s but Tn, xr,s 6|= ψn′
r,s for any n′ > n.

Therefore, {ψi
r,s}i≥0 is an infinite set of non-equivalent formulas of vertical depth (r, s). �

Proposition 10.≡lr,s,k has finite index.

Proof. For any ϕ with nd(ϕ) = k and vd(ϕ) = (r, s), let F(ϕ) = (k, r + s). Define F in a similar
way for path expressions α. In this proof “finite” means finite up to logical equivalence. By
Proposition 8 we can consider only formulas in up-down normal form.

We show that there are finitely many formulas ϕ in up-down normal form such that F(ϕ) ≤
(k, t), and that there are finitely many path expressions α in up-down normal form such that
F(α) ≤ (k, t). We use induction on the lexicographic ordering of (k, t). Observe that if F(ϕ) =

(k, t) then ϕ is a boolean combination of labels and formulas of the form 〈ε = α〉, 〈ε , α〉 or 〈α〉,
where F(α) ≤ (k, t). Hence it suffices to show the statement for path expressions. If F(α) = (0, t)
then α is either ε or ↑n

↓
m, where n,m ≤ 2t, so there are finitely many of them. If F(α) = (k +1, t),

then α is [ϕ1]↑n
↓

m[ϕ2], where n,m ≤ 2t and nd(ϕi) ≤ k for i = 1, 2. Since F(ϕi) <lex (k + 1, t), by
inductive hypothesis there are finitely many such ϕi’s, and therefore α’s. �

Corollary 2. {T ′, u′ | T , u ≡lr,s,k T
′, u′} is definable by an (r, s, k)-XPathl=-formula.
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Proof. Similar to the proof of Corollary 1. �

Theorem 2.

1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse also holds when T and T ′ are finitely
branching.

2. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k T

′, u′.

3. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k T

′, u′.

Proof. Items 2 and 3 are shown in Propositions 20 and 21.
The argument for item 1 is similar to the one of the aforementioned propositions, but working

with a single Z instead of (Z k̂
r̂,ŝ)r̂,ŝ,k̂. For the converse implication, define Z by xZx′ iff T , x ≡l

T ′, x′. The conjunctions in (2) are then finite because T ′ is finitely branching, and so P is finite
(the fact that T is finitely branching is used for showing that Zag is satisfied). �

Proposition 20. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k T

′, u′.

Proof. We show that if T , u↔lr,s,k T
′, u′ via

(Z k̂
r̂,ŝ)r̂+ŝ≤r+s,k̂≤k

then for all n ≤ ŝ and m ≤ r̂ + n, for all ϕ in up-down normal form with vd(ϕ) ≤ (r̂, ŝ), nd(ϕ) ≤ k̂,
for all upward expression α↑ in up-down normal form, and for all downward expression α↓ in
up-down normal form with vd(α↑), vd(α↓) ≤ (r̂, ŝ), nd(α↑), nd(α↓) ≤ k̂:

1. If xZ k̂
r̂,ŝx
′ then T , x |= ϕ iff T ′, x′ |= ϕ.

2. If y
n
→x, y′

n
→x′, x Z k̂−1

r̂,ŝ x′, then (x, y) ∈ [[α↑]]T iff (x′, y′) ∈ [[α↑]]T
′

.

3. If y
m
→z, y′

m
→z′, z Z k̂−1

r̂′,ŝ′ z
′ for r̂′ = r̂ + n − m, ŝ′ = ŝ − n + m, then (y, z) ∈ [[α↓]]T iff

(y′, z′) ∈ [[α↓]]T
′

.

Hence, by Proposition 8, the main statement follows. We simultaneously show 1, 2 and 3 by
induction on |ϕ| + |α↑| + |α↓|.

Let us see item 1. The base case is ϕ = a for some a ∈ A. By Harmony, label(x) = label(x′)
and then T , x |= ϕ iff T ′, x′ |= ϕ. The boolean cases for ϕ are straightforward.

Suppose ϕ = 〈ε = α↑α↓〉. We show T , x |= ϕ ⇒ T ′, x′ |= ϕ, so assume T , x |= ϕ. Suppose
there are y, z ∈ T and n ≤ ŝ, m ≤ r̂ + n such that y

n
→x, y

m
→z, (x, y) ∈ [[α↑]]T , (y, z) ∈ [[α↓]]T

and data(x) = data(z). By Zig, there are y′, z′ ∈ T ′ such that zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂ + n − m,
ŝ′ = ŝ − n + m, and data(x′) = data(z′). By inductive hypothesis 2 and 3, (x′, y′) ∈ [[α↑]]T

′

and
(y′, z′) ∈ [[α↓]]T

′

. Hence T ′, x′ |= ϕ. The implication T ′, x′ |= ϕ ⇒ T , x |= ϕ is analogous. The
cases ϕ = 〈ε , α↑↓〉, and ϕ = 〈ε � α↑〉, ϕ = 〈ε � α↓〉 (� ∈ {=,,}) and ϕ = 〈α〉 (for α in up-down
normal form) are shown in a similar way. The cases ϕ = 〈ε � ε〉 (� ∈ {=,,}) are trivial.
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Let us now analyze item 2. Let α↑ = [ψ]↑n (n ≥ 0), and let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

y = x0→x1→· · ·→xn = x in T ,
y′ = x′0→x′1→· · ·→x′n = x′ in T ′,

and xZ k̂−1
r̂,ŝ x′. By Observation 4, we have x0Z k̂−1

r̂′,ŝ′ x
′
0, for r̂′ = r̂ + n, ŝ′ = ŝ − n. Assume by

contradiction that (x′, y′) < [[α↑]]T
′

. This necessarily means that T , x0 |= ψ but T ′, x′0 6|= ψ.
But ψ is a subformula of α↑, nd(ψ) ≤ k̂ − 1 and nd(ψ) ≤ (r̂′, ŝ′) and this contradicts inductive
hypothesis 1.

Item 3 is shown in a similar way. Let α↓ = ↓m[ψ] (m ≥ 0), and let

z0, . . . , zm ∈ T and z′0, . . . , z
′
m ∈ T ′

be such that

y = z0→z1→· · ·→zm = z in T ,
y′ = z′0→z′1→· · ·→z′m = z′ in T ′,

and zZ k̂−1
r̂′,ŝ′z

′. Assume by contradiction that (y′, z′) < [[α↓]]T
′

. This necessarily means that T , xm |=

ψ but T ′, x′m 6|= ψ. But ψ is a subformula of α↓, nd(ψ) ≤ k̂ − 1 and nd(ψ) ≤ (r̂′, ŝ′) and this
contradicts inductive hypothesis 1. �

Proposition 21. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k T

′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡lr,s,k T
′, u′. Define (Z k̂

r̂,ŝ)r̂+ŝ≤r+s,k̂≤k by

xZ k̂
r̂,ŝx
′ iff T , x ≡l

r̂,ŝ,k̂
T ′, x′.

We show that Zk
r,s is a (r, s, k)-bisimulation between T , u and T ′, u′. By hypothesis, uZk

r,su
′. Now

fix r̂ + ŝ ≤ r + s, k̂ ≤ k. By construction, Z k̂
r̂,ŝ satisfies Harmony. Let us see that Z k̂

r̂,ŝ satisfies Zig
(the case for Zag is analogous). Suppose xZ k̂

r̂,ŝx
′,

y = x0→x1→· · ·→vn = x in T ,
y = z0→z1→· · ·→zm = z in T ,

and data(x) = data(z) (the case data(x) , data(z) is shown in a similar way), where m ≤ r̂ + n.
Let P ⊆ T ′2 be defined by

P = {(y′, z′) | y′
n
→x′ ∧ y′

m
→z′ ∧ data(x′) = data(z′)}.

Since T , x ≡lr,s,k T
′, x′, vd(〈ε = ↑n

↓
m
〉) ≤ (r, s), nd(〈ε = ↑n

↓
m
〉) = 0, and T , x |= 〈ε = ↑n

↓
m
〉, we

conclude that P , ∅. We next show that there exists (y′, z′) ∈ P such that
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i. y′ = x′0→x′1→· · ·→x′n = x′ in T ′

ii. y′ = z′0→z′1→· · ·→z′m = z′ in T ′,

iii. T , x ≡l
r̂,ŝ,k̂−1

T ′, x′, and

iv. T , z ≡l
r̂′,ŝ′,k̂−1

T ′, z′, where r̂′ = r̂ + n − m, ŝ′ = ŝ − n + m,

and hence, by inductive hypothesis, Zig is satisfied by Z k̂
r̂,ŝ. By way of contradiction, assume that

for all (y′, z′) ∈ P satisfying i and ii we have either

(a) T , x 6≡l
r̂,ŝ,k̂−1

T ′, x′; or

(b) T , z 6≡l
r̂′,ŝ′,k̂−1

T ′, z′ for r̂′ = r̂ + n − m, ŝ′ = ŝ − n + m.

Fix > as any tautology such that vd(>) = (0, 0), nd(>) = 0. For each (y′, z′) ∈ P we define
formulas, ϕy′,z′ and ψy′,z′ , satisfying that vd(ϕy′,z′) ≤ (r̂, ŝ), nd(ϕy′,z′) < k̂ and vd(ψy′,z′) ≤ (r̂′, ŝ′),
nd(ψy′,z′) < k̂ as follows:

• Suppose (a) holds. Let ϕy′,z′ be such that vd(ϕv′,w′) ≤ (r̂, ŝ), nd(ϕv′,w′) < k̂, and such that
T , x |= ϕy′,z′ but T ′, x′ 6|= ϕy′,z′; and let ψv′,w′ = >.

• Suppose (a) does not hold. Then (b) holds. Let ψy′,z′ be such that vd(ψy′,z′) ≤ (r̂′, ŝ′),
nd(ψy′,z′) < k̂ and such that T , z |= ψy′,z′ but T ′, z′ 6|= ψy′,z′; and let ϕy′,z′ = >.

Let
Φ =

∧
(y′,z′)∈P

ϕy′,z′ and Ψ =
∧

(y′,z′)∈P

ψy′,z′ . (2)

Since vd(ϕy′,z′) ≤ (r̂, ŝ), nd(ϕy′,z′) < k̂, by Proposition 10, there are finitely many non-equivalent
formulas ϕy′,z′ . The same applies to formulas ψy′,z′ . Hence both infinite conjunctions in (2) are
equivalent to finite ones, and therefore without loss of generality we may assume that Φ and Ψ

are well-formed formulas.
Finally, let

α↑ = [Φ]↑n and α↓ = ↓m[Ψ].

By construction, vd(α↑α↓) ≤ (r̂, ŝ), nd(α↑α↓) ≤ k̂. Furthermore, T , x |= 〈ε = α↑α↓〉 and T ′, x′ 6|=
〈ε = α↑α↓〉, but this contradicts the fact that T , x ≡l

r̂,ŝ,k̂
T ′, x′. �

Corollary 3.↔lr,s,k has finite index.

Proof. Immediate from Theorem 2 and Proposition 10. �
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B Proofs of Section 5

Theorem 3.

1. Let † ∈ {↓, l}. T , u→† T ′, u′ implies T , u V† T ′, u′. The converse holds when T ′ is finitely
branching.

2. T , u→↓` T
′, u′ iff T , uV↓` T

′, u′.

3. T , u→lr,s,k·(r+s+2) T
′, u′ implies T , uVlr,s,k T

′, u′.

4. T , uVlr,s,k T
′, u′ implies T , u→lr,s,k T

′, u′.

Proof. The proofs are straightforward adaptations of the proofs of Propositions 6 and 7 and
Propositions 20 and 21 respectively, and are ommitted here. In particular, for the ‘if’ part, in the
adaptation of the proofs of Propositions 7 and 21, the simulations are defined by

xZix′ iff T , xV↓i T
′, x

xZ k̂
r̂,ŝx
′ iff T , xVl

r̂,ŝ,k̂
T ′, x

respectively, and the conditions (a) and (b) on page 12 become now

(a) [∃i ∈ {0, . . . , n} ∃ϕ ∈ XPath↓+= ] dd(ϕ) ≤ h − i ∧ T , vi |= ϕ ∧ T ′, v′i 6|= ϕ; or

(b) [∃ j ∈ {0, . . . ,m} ∃ϕ ∈ XPath↓+= ] dd(ϕ) ≤ h − j ∧ T ,w j |= ϕ ∧ T ′,w′j 6|= ϕ,

and

(a) [∃i ∈ {0, . . . n} ∃ϕ ∈ XPathl+= ] vd(ϕ) ≤ (r̂ + i, ŝ − i) ∧ nd(ϕ) ≤ k − 1 ∧ T , vi |= ϕ ∧ T ′, v′i 6|= ϕ;
or

(b) [∃ j ∈ {0, . . .m} ∃ϕ ∈ XPathl+= ] vd(ϕ) ≤ (r̂+ j′, ŝ− j′) for j′ = n−m+ j ∧nd(ϕ) ≤ k−1∧T ,w j |=

ϕ ∧ T ′,w′j 6|= ϕ

respectively. �

Lemma 7.

(1) {T ′, u′ | T , u→↓` T
′, u′} is definable by an XPath↓+= -formula χ+

`,u,T of downward depth ≤ `.

(2) {T ′, u′ | T , u→lr,s,k T
′, u′} is definable by an XPathl+= -formula χ+

r,s,k,u,T of vertical depth
≤ (r, s) and nesting depth ≤ k.
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Proof. For item (2), let simlr,s,k(T , u) = {T ′, u′ | T , u→lr,s,k T
′, u′}. Let ΦT ′,u′ be the set of all

positive formulas ϕ ∈ XPathl+= of vertical depth at most (r, s) and nesting depth at most k so that
T ′, u′ |= ϕ. Let Ψ be

Ψ =
∨

T ′,u′∈simlr,s,k(T ,u)

∧
ΦT ′,u′ .

Since every ΦT ′,u′ is finite up to logical equivalence by Proposition 10, it follows that Ψ is a valid
formula. We show that it defines simlr,s,k(T , u).

Let T ′, u′ ∈ simlr,s,k(T , u). Then, T ′, u′ |=
∧

ΦT ′,u′ and thus T ′, u′ |= Ψ. If on the other
hand T ′, u′ |= Ψ we have that T ′, u′ |=

∧
ΦT ′′,u′′ for some T ′′, u′′ ∈ simlr,s,k(T , u) and then

T ′, u′ ≡lr,s,k T
′′, u′′. By Theorem 2-3 we then have that T ′, u′↔lr,s,k T

′′, u′′, and in particular
T ′′, u′′→lr,s,k T

′, u′. Since T , u→lr,s,k T
′′, u′′ and T ′′, u′′→lr,s,k T

′, u′, then T , u→lr,s,k T
′, u′ (by

transitivity of→lr,s,k) and thus T ′, u′ ∈ simlr,s,k(T , u).
Item (1) is shown in a similar way, making use of Proposition 1 and Theorem 1-2. �

Theorem 4.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓`] iff it is equivalent to a formula of XPath↓+= [resp. `-
XPath↓+= ].

2. ϕ ∈ XPathl= is→l-invariant iff it is equivalent to a formula of XPathl+= .

3. If ϕ ∈ XPathl= is→lr,s,k-invariant then it is equivalent to a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-XPathl+= then ϕ is→lr,s,k′-invariant, for
k′ = k · (r + s + 2).

Proof. We start with item (1), for the case of→↓` . The ‘if’ part is straightforward from Theorem 3-
2, and here we focus on the ‘only if’ part. Let ϕ be preserved under→↓` . Let {(Ti, ui)}i≤n be the
set of all pointed models of ϕ modulo↔↓` (which is finite due to Theorem 1-2 together with
Proposition 1). We claim that

T , u |= ϕ iff Ti, ui→
↓

` T , u for some i ≤ n. (3)

On the one hand, if T , u |= ϕ then there is i ≤ n such that Ti, ui↔
↓

` T , u, and so Ti, ui→
↓

` T , u.
On the other hand, suppose Ti, ui→

↓

` T , u. Since ϕ is preserved under→↓` and Ti, ui |= ϕ, we
conclude T , u |= ϕ.

Let χ`,ui,Ti ∈ XPath↓+= , dd(ψi) ≤ `, be as in Lemma 7-(1). Using (3) one shows that
∨

i≤n χ`,ui,Ti ≡

ϕ.
For the case of→↓ of item (1), the ‘if’ direction follows from Theorem 3-1. For the ‘only

if’ direction, let ϕ be preserved under→↓. It is easy to see that ϕ is preserved under→↓ iff it
is preserved under→↓dd(ϕ). We can then apply the same reasoning as before and the statement
follows.
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Item (3) follows the same argument as item (1) but this time using Corollary 3 and Lemma 7-
(2).

Item (4) is straightforward from Theorem 3-3.
Item (2) follows from items (3) and (4) and the observation that ϕ is preserved under→l iff it

is preserved under→lr,s,k·(r+s+2) for vd(ϕ) = (r, s) and nd(ϕ) = k. �

Proposition 22. Any↔↓-invariant ϕ(x) ∈ FO(σ) over [finite] data-trees that is `-local, is↔↓`-
invariant.

Proof. Let ϕ(x) be `-local and↔↓-invariant. Suppose T , u↔↓` T
′, u′ and T |= ϕ(u). By `-locality,

T |`u |= ϕ(u). Now

T , u↔↓` T
′, u′ iff (T |`u), u↔↓` (T ′|`u′), u′ (Prop. 5)

iff (T |`u), u↔↓ (T ′|`u′), u′. (Prop. 4)

By↔↓-invariance, T ′|`u′ |= ϕ(u′) and by `-locality again, T ′ |= ϕ(u′). �

Proposition 23. If ϕ(x) ∈ FO(σ) is↔↓`-invariant over [finite] data-trees, then there is ψ ∈ `-
XPath↓= such that Trx(ψ) is logically equivalent to ϕ over [finite] data-trees.

Proof. By Corollary 1, for every data tree T and u ∈ T there is an `-XPath↓= formula χ`,T ,u such
that T , u ≡↓` T

′, u′ iff T ′, u′ |= χ`,T ,u. Let

ψ =
∨
T |=ϕ(u)

χ`,T ,u.

Since χ`,T ,u ∈ `-XPath↓= and, by Proposition 1, ≡↓` has finite index, it follows that ψ is equivalent
to a finite disjunction.

We now show that ϕ ≡ Trx(ψ). Let us see that ϕ |= Trx(ψ). Suppose T |= ϕ(u). Since
T , u |= χ`,T ,u, we have T , u |= ψ and so T |= Trx(ψ)(u). Let us now see that Trx(ψ) |= ϕ.
Assume T |= Trx(ψ)(u), and so T , u |= ψ. Then there exists T ′, u′ such that T ′ |= ϕ(u′) and
T , u |= χ`,T ′,u′ . By the property of χ`,T ′,u′ , we have T , u ≡↓` T

′, u′ and since ϕ is↔↓`-invariant (and
hence ≡↓`-invariant by Theorem 1-2) we conclude T |= ϕ(u). �

C Proofs of Section 6

Theorem 5.Let † ∈ {↓↓∗, ll∗}.

1. T , u↔† T ′, u′ implies T , u ≡† T ′, u′. The converse also holds when T ′ is finitely branch-
ing.

2. T , u→† T ′, u′ implies T , uV† T ′, u′. The converse also holds when T ′ is finitely branch-
ing.

Proof. The proof that T , u↔↓ T ′, u′ ⇒ T , u ≡↓↓∗ T ′, u′ follows from a simple adaptation of
Proposition 6 to the logic XPath↓↓∗= and Lemma 4. The fact that for finitely branching, T , u ≡↓↓∗
T ′, u′ ⇒ T , u↔↓ T ′, u′ is straightforward from Theorem 1-1 since ≡↓↓∗ ⊆ ≡↓.

The cases for XPathll
∗

= , XPath↓↓∗= and XPathll
∗+

= are analogous. �
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D Proofs of Section 7

Proposition 12.For any XPathl=- [resp. XPath↓=-] path expression α there is an equivalent XPathl=-
[resp. XPath↓=-] path expression α′ in simple normal form. Further, α′ can be computed in poly-
nomial time from α.

Proof. The translation is straightforward, given the following equivalences:

ε ≡ [>]
α ≡ [>]α ≡ α[>]

α[ϕ][ψ]β ≡ α[ϕ ∧ ψ]β

where > denotes any fixed tautology, for example a ∨ ¬a, for some a ∈ A. �

Lemma 2.The FO(σ)-formula
(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [finite] data-trees to any XPathl=-formula.

Proof. Let ϕ(x) be the FO(σ)-formula for there is a node labeled a in the tree, i.e.,

ϕ(x) = (∃y) Pa(y).

We prove that ϕ is↔l-invariant over [finite] data-trees, though it is not logically equivalent over
[finite] data-trees to any XPathl=-formula.

To see that ϕ is↔l-invariant over [finite] data-trees, take T , u and T ′, u′ such that T , u↔l

T ′, u′ and T |= ϕ(u). Furthermore, suppose that T , u |= ↑m
↓

na for adequate n and m. By
Theorem 2, T ′, u′ |= ↑n

↓
ma and so T ′ |= ϕ(u′).

Assume by contradiction that there is ψ ∈ XPathl= such that T , u |= ψ iff T |= ϕ(u) for all
data-tree T and u ∈ T . Suppose vd(ψ) = (r, s) and nd(ψ) = k. Let T be a data tree formed by a
chain of length r+1 starting from the root u with all its nodes containing a label b except the leave,
which has label a (the data values are irrelevant). By Proposition 11 we have T , u↔lr,s,k (T |sru), u.
Since T , u |= ψ, by Theorem 2, we have (T |sru), u |= ψ, and so T |sru |= ϕ(u). This last fact is a
contradiction because no node of T |sru is labeled with a. �

Proposition 15. Let k′ = k · (r + s + 2). If ϕ(x) ∈ FO(σ) is↔lr,s,k′-invariant over [finite]
data-trees, then there is ψ ∈ (r, s, k)-XPathl= such that Trx(ψ) is logically equivalent to ϕ over
[finite] data-trees.

Proof. By Corollary 2, for every data tree T and u ∈ T there is an (r, s, k)-XPathl= formula
χr,s,k,T ,u such that T , u ≡lr,s,k T

′, u′ iff T ′, u′ |= χr,s,k,T ,u. Let

ψ =
∨
T |=ϕ(u)

χr,s,k,T ,u.
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As χr,s,k,T ,u ∈ (r, s, k)-XPathl= and, by Proposition 10, ≡lr,s,k has finite index, it follows that ψ is
equivalent to a finite disjunction. The proof that ϕ(x) ≡ Trx(ψ) is similar to Proposition 23, as
we show next. Let us see that ϕ |= Trx(ψ). Suppose T |= ϕ(u). Since T , u |= χr,s,k,T ,a, we have
T , u |= ψ and so T |= Trx(ψ)(u). Let us see that Trx(ψ) |= ϕ. Assume T |= Trx(ψ)(u), and so
T , u |= ψ. Then there exists T ′, u′ such that T ′ |= ϕ(u′) and T , u |= χr,s,k,T ′,u′ . By the property of
χr,s,k,T ′,u′ , we have T , u ≡lr,s,k T

′, u′ and since ϕ is↔↓r,s,k·(r+s+2)-invariant (and hence ≡↓r,s,k-invariant
by Theorem 2-2) we conclude T |= ϕ(u). �

Lemma 3.The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]

is↔l-invariant though not logically equivalent over [finite] data-trees to any XPathlE= -formula.

Proof. Let ϕ(x) be the FO(σ)-formula for there are two nodes with same data value and labels
a and b respectively, i.e.,

ϕ(x) = (∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)].

We show that ϕ cannot be expressed in XPath↓,↑,E= . Suppose, by means of contradition, that there
is a formula ψ ∈ XPath↓,↑,E= expressing ϕ, with vd(ψ) = (r, s) (vd(·) for XPath↓,↑,E= is defined as in
Table 2 plus the clause vd(Eϕ) = vd(ϕ)). Let n = r + s, and let T be the chain-like data-tree

u0 → u1 → · · · → un

such that label(u0) = a, label(un) = b, label(ui) = c for i ∈ {1, . . . n − 1} and data(ui) = i for
i ∈ {0, . . . , n}. Let T ′ be the chain-like data-tree

u′0 → u′1 → · · · → u′n

such that label(u′i) = label(ui) for i ∈ {0, . . . n}, data(u′i) = data(ui) for i ∈ {0, . . . , n − 1} and
data(u′n) = 0. Note that T 6|= ϕ(u0) and T ′ |= ϕ(u′0). However, one can show that for all
i ∈ {0, . . . , n} we have T , ui |= ψ iff T ′, u′i |= ψ. Hence, ψ does not express ϕ and thus ϕ is not
expressible in XPath↓,↑,E= . �

E Proofs of Section 8

Theorem 7. For all `, k ≥ 0, i ≥ 1,

≡
↓

`,0 ) ≡
↓

`,1 ) · · · ) ≡
↓

`,` = ≡
↓

`,`+i, and

≡
↓

`,k ) ≡
↓

`+i,k.
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Figure 12: Definition of data trees T i
n, T ′in (n ≥ 0, i ∈ {1, 2}) for proof of Theorem 7.

Proof. Consider the data trees defined in Figure 12 for every k. Note that ≡↓`,k+1 ⊆ ≡
↓

`,k and
≡
↓

`+1,k ⊆ ≡
↓

`,k by definition. We show that ≡↓`,k , ≡
↓

`,k+1 for all ` ≥ k + 1. For this purpose, we show
that T 1

k , x
1
k ≡

↓

k+1,k T
′1
k , x

′1
k but T 1

k , x
1
k 6≡

↓

k+1,k+1 T
′1
k , x

′1
k .

The fact that T 1
k , x

1
k 6≡

↓

k+1,k+1 T
′1
k , x

′1
k comes from the fact that the property “there is a path of

length k+1 ending with a label a whose every pair of consecutive nodes have distinct data value”
is definable with the following formula ϕk+1 of depth k + 1 and nesting depth k + 1,

ϕ1 = 〈ε , ↓[a]〉
ϕi+1 = 〈ε , ↓[ϕi]〉 for i > 0.

Since T 1
k , x

1
k |= ϕk+1 but T ′1k , x

′1
k 6|= ϕk+1, it follows that T 1

k , x
1
k 6≡

↓

k+1,k+1 T
′1
k , x

′1
k .

To show T 1
k , x

1
k ≡

↓

k+1,k T
′1
k , x

′1
k we actually use Proposition 16 and show T 1

k , x
1
k↔
↓

k+1,k T
′1
k , x

′1
k .

Note that T 1
k and T 2

k (resp. T ′1k and T ′2k ) are equal modulo renaming of data values, so we are
also showing that the roots of any two data trees with subindex k are (k + 1, k)-bisimilar.

Observation F. Note that the set of immediate subtrees of the roots of T 1
k ,T

′1
k ,T

2
k ,T

′2
k are the

same as those of T ′1k ,T
2
k ,T

′2
k (and of T 1

k ,T
′1
k ,T

′2
k ) by construction.

We now show T 1
k , x

1
k↔

↓

k+1,k T
′1
k , x

′1
k . For every j ≤ k + 1, t ≤ k, let Z j,t be the set of all pairs

(x, y) ∈ T 1
k × T ′1k so that x and y are some xi

k′ or x′ik′ for i ∈ {1, 2} and k′ ≥ t.2 Observe that

Z j+1,t ⊆ Z j,t for all j, t ≤ k. (4)

We show that (Z j,t) j≤k+1,t≤k verify the bisimulation conditions. We proceed by induction on j + t.
The base case, j = t = 0, is trivial. The case l > 0, t = 0 is also straightforward.

2Note that xi
k′ or x′ik′ do not necessarily uniquely identify one node, but many possible. The intended meaning is

that x, y can be any of them.
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Suppose then that t > 0. Let (u, u′) ∈ Z j,t. Again, Harmony is met since Zl,t relates only nodes
with label a. Let us suppose that u is some x1

t′ and u′ is x′1t′ for some t′ ≤ t, the other cases being
similar or simpler.

Let us now show Zig. Let v,w be so that x1
t′

n
→v and x′1t′

m
→w with n,m ≤ j.

• If v is inside the subtree T 2
t′−1 of T 1

t′ , but it is not x2
t′−1, then we choose v′ as the correspond-

ing3 node inside the subtree T 1
t′−1 of T ′1t′ . Note that data(v) = data(v′) by Observation F.

Further, since every node of T 1
t′−1 is in a Z j,t−1-relation with the corresponding node in

T 2
t′−1 by construction of Z j,t−1, it follows that (

i
→v)Z j,t−1(

i
→v′) for all i ≤ n. Thus, by (4),

(
i
→v)Z j−n+i,t−1(

i
→v′) for all i ≤ n.

• If, on the other hand, v is x2
t′−1, we choose v′ as the root of T ′2t′−1, x′2t′−1. Again, we have that

data(v′) = data(v) and by construction that vZ j,t−1v′. Thus, by (4), vZ j−1,t−1v′.

• Finally, if v falls outside T ′2t′−1, we choose v′ as the same node in T ′1t′ , where of course

we will have that data(v) = data(v′) and that (
i
→v)Z j,t−1(

i
→v′) for all i ≤ n. Thus, by (4),

(
i
→v)Z j−n+i,t−1(

i
→v′) for all i ≤ n.

We do the same with w and w′. Since in every case we can reach a node with the same data value
and so that the corresponding nodes in the path are Z j,t−1-related, it follows that the Zig condition
is satisfied. The Zag condition is only easier, and hence we conclude that T 1

k , x↔
↓

k+1,k T
′
k

1, x′ for
every k.

We therefore have that ≡↓`,k+1 ( ≡
↓

`,k for all ` ≥ k + 1.

The fact that ≡↓`+1,k ( ≡
↓

`,k is of course trivial, formulas of depth ` + 1 can express “the tree
has at least depth ` + 1”, which cannot be expressed by formulas of depth `.

It remains to show that ≡↓`,k = ≡
↓

`,k+1 for all ` ≤ k. To show this, we prove T , x↔↓`,k+1 T
′, x′

for every T ,T ′ so that T , x↔↓`,k T
′, x′. We prove it by induction on ` + k. The base case is easy.

For the inductive case, let Z j,t =↔
↓

j,t for all j ≤ `, t ≤ k. Hence, (Z j,t) j≤`,t≤k verify the
bisimulation conditions. Let Z`,k+1 = {(x, x′)}. We show that Z`,k+1 together with (Z j,t) j≤`,t≤k

verifies the bisimulation conditions. Harmony follows from xZ`,kx′. We show Zig since Zag is
equivalent. Suppose x

n
→v, x

m
→w with n,m ≤ `. Then, since Z`,k verifies Zig, there are x′

n
→v′,

x′
m
→w′ where

(1) data(v) = data(w′) iff data(v′) = data(w′),

(2) (
i
→v)Z`−n+i,k−1(

i
→v′) for all i ∈ {0, . . . , n − 1}, and

(3) (
i
→w)Z`−m+i,k−1(

i
→w′) for all i ∈ {0, . . . ,m − 1}.

3Remember that T 1
t′−1 and T 2

t′−1 are isomorphic modulo a renaming of data values, so by corresponding we mean
the node in the same position in the tree
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Since ` ≤ k, then ` − n + i ≤ k − 1. Further, ` − n + i + k < ` + k, which means that we
can apply the inductive hypothesis. Hence, by inductive hypothesis, T , (

i
→v)↔↓`−n+i,k T

′, (
i
→v′)

and thus (
i
→v)Z`−n+i,k(

i
→v′). By an indentical reasoning, T , (

i
→w)↔↓`−n+i,k T

′, (
i
→w′) and thus

(
i
→w)Z`−n+i,k(

i
→w′). Thus, the Zig condition for↔↓`,k+1 is verified. The Zag condition holds by

symmetry. �

With respect to vertical XPath, note that since ≡lr,s,k ⊆ ≡
l

r′,s′,k′ for all (r, s, k) ≤ (r′, s′, k′),
as a consequence of Proposition 9 we obtain that for every r, s, k with r + s ≥ 2 there is some
k′ > k so that ≡lr,s,k ) ≡

l

r,s,k′ . In fact, we conjecture that ≡lr,s,k ) ≡
l

r,s,k+1 for every k. We argue
that this can be proven through the models (Tn)n in the proof of Proposition 9, by showing that
Tk, xr′,s′ ≡

l

r,s,k Tk+1, xr′,s′ but Tk, xr′,s′ 6≡
l

r,s,k+1 Tk+1, , xr′,s′ for every (r, s) ≥ (r′, s′). The fact that
≡
l

r,s,k ) ≡
l

r+1,s,k and ≡lr,s,k ) ≡
l

r,s+1,k are straightforward. We then obtain the following.

Claim G. ≡lr,s,k ) ≡
l

r′,s′,k′ for all (r, s, k) < (r′, s′, k′), r + s ≥ 2.
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