
PIRSES-GA-2011-295261 /MEALS
November 16, 2015

Page 1 of 32

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 2.1 / 3

Title of Deliverable: Symmetries in Modal Logics

Contractual Date of Delivery to the CEC: 30-Sep-2015
Actual Date of Delivery to the CEC: 30-Sep-2015
Organisation name of lead contractor for this deliverable: UNC
Author(s): Carlos Areces, Ezequiel Orbe
Participants(s): UNC
Work package contributing to the deliverable: WP2
Nature: R+D
Dissemination Level: Public
Total number of pages: 32
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

In this paper we develop the theoretical foundations to exploit symmetries in modal logics. We generalize the notion
of symmetries of propositional formulas in conjunctive normal form to modal formulas using the framework provided
by coinductive modal models introduced in [1]. Hence, the results apply to a wide class of modal logics including, for
example, hybrid logics. We present two graph constructions that enable the reduction of symmetry detection in modal
formulas to the graph automorphism detection problem, and we evaluate the graph constructions on modal benchmarks.

Note:

This deliverable is based on material that will be published in the Bulletin of Symbolic Logic.”

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 32 Public

Contents
1 Symmetries in Automated Theorem Proving 3

2 Symmetries in the Basic Modal Logic 4

3 Beyond Basic Modal Logic 9
3.1 Coinductive Modal Models . 10
3.2 A Generalized Theory of Symmetries . 13
3.3 Layered Permutations . 16

4 Symmetry Detection for Modal Logics 19
4.1 Experimental Evaluation . 25

4.1.1 Implementation . 25
4.1.2 Results . 26

5 Discussion 27

Bibliography 28

MEALS Partner Abbreviations 31

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 32 Public

1 Symmetries in Automated Theorem Proving
Symmetry is a familiar notion. Intuitively, we say that an object is symmetric if “under any kind
of transformation at least one property of the object is left invariant” [2]. Symmetry has many
uses. Not only can we study the symmetric properties of an object (geometric, mathematical,
etc.) to understand its behavior, but we can also derive specific consequences regarding the ob-
ject under study based on its symmetry properties, i.e., using a “symmetry-based argument” [3].
In automated reasoning, many problem classes, in particular those arising from real world appli-
cations, present symmetries, and their presence is usually a source of additional complexity since
we might end up looking for solutions in symmetrical subspaces of the problem’s search space.
Ideally, if we can recognize that such symmetries exist, we might use them to direct a search
algorithm to look for solutions only in non-symmetric parts of the search space, thus reducing
the overall difficulty [4].

In this context, a symmetry can be defined as a permutation of the variables (or literals) of
the input formula that preserves its structure and its solutions. Symmetries can be classified into
semantic or syntactic [5]. Semantic symmetries are permutations of the formula that preserves
its set of the models (or solutions) and, therefore, can be regarded as properties of the underlying
Boolean function, independent of the particular syntactic representation. For example, consider
the Boolean function f (a, b, x, y) = axy + bxy, where a, b, x, y take values over {0, 1} and sum
and product are binary. It is straightforward to verify that the permutation that interchanges the
parameters a and b leaves the function unchanged, maintaining its set of solutions. Syntactic
symmetries, on the other hand, correspond to the specific representation of the function. In
particular, a symmetry of a given function’s syntactic representation might not be a symmetry of
another equivalent syntactic representation. For example, the formulas axy + bxy and (ax + bx)y
represent the same Boolean function, but it is easy to see that the permutation that interchanges
x and y is a syntactic symmetry of the former (modulo commutativity of the sum) and not of
the latter. Every syntactic symmetry of a formula is also a semantic symmetry of the underlying
Boolean function, while the converse does not always hold.

Syntactic symmetries have received much attention in the context of propositional SAT solv-
ing since they were first used in [6] as a mechanism to strengthen resolution-based proof systems
for propositional logic. Since then, many articles discuss how to detect and exploit syntactic
symmetries in SAT solving [7, 5, 8, 9, 10, 11, 12, 13, 14]. Symmetries have been also ex-
tensively investigated and successfully exploited in other domains besides SAT like Constraint
Satisfaction Problem [15, 16], Integer Programming [17, 18], Planning [19, 20], Model Check-
ing [21, 22, 23, 24], Quantified Boolean Formulas (QBF) [25, 26, 27], and Satisfiability Modulo
Theories (SMT) [28, 29, 30].

In modal logics, research has been done on how to exploit symmetries in model checking for
the temporal logic LTL [21, 31, 32, 33], and for some temporal-epistemic logics [34]. However,
to the best of our knowledge, the use of symmetries in satisfiability and automated theorem
proving for modal logics remains largely unexplored. In this work, we generalize the notion
of symmetries from the propositional setting to modal formulas in conjunctive normal form for
different modal logics. Our generalization works for the basic modal language over different
model classes (e.g., reflexive, linear or transitive models), and for modal logics with additional

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 32 Public

modal operators (e.g., universal and hybrid operators).
We also present a method to detect symmetries of modal formulas in conjunctive normal

form. This method reduces the symmetry detection problem to the graph automorphism prob-
lem. A general graph construction algorithm, suitable for many modal logics, is presented. In
order to tackle a broad range of modal languages we use the semantics provided by coinductive
modal models [1] instead of the more familiar relational semantics. Coinductive modal models
provide a homogeneous framework to investigate different modal languages at a greater level of
abstraction.

The paper is organized as follows. In Section 2 we define modal symmetries for the basic
modal logic, together with the appropriate notion of simulation. The main goal of this section
is to introduce the fundamental ideas behind symmetries in modal logic as clearly as possible,
avoiding the complexities of the coinductive framework. In Section 3, we present coinductive
modal models, and generalize the notion of modal symmetries to work with it. We also introduce
layered permutations and show that they can be used when the modal logic has the adequate
notion of the tree model property. In Section 4 we present two graph constructions to detect
symmetries in modal formulas, prove their correctness and show experimental results on modal
benchmarks. In Section 5, we draw our conclusions and discuss future research.

2 Symmetries in the Basic Modal Logic
In what follows, we assume basic knowledge of classical modal logics and group theory, see [35,
36, 37] for details.

Definition 1 (Syntax). A modal signature is a pair S = 〈PROP,MOD〉, where PROP and MOD
are two countable disjoint sets and PROP is infinite. The well-formed formulas over the signa-
ture S are defined by the rule

ϕ, ψ ::= p | ¬ϕ | ϕ ∨ ψ | [m]ϕ,

where p ∈ PROP and m ∈ MOD. FORM denotes the set of all well-formed formulas over a
given signature S. > and ⊥ stand for an arbitrary tautology and contradiction, respectively. 〈m〉ϕ
is defined as ¬[m]¬ϕ. Other connectives such as ∧,→, etc. are defined in the usual way. [m] is
called a box operator, and 〈m〉 is called a diamond operator. When MOD is a singleton, i.e., in
the mono-modal case, we simply write � and ^ for the box and diamond operators.

Definition 2 (Propositional literals). A propositional literal l is either a propositional variable
p ∈ PROP or its negation ¬p. The set of propositional literals over PROP is PLIT = PROP ∪
{¬p | p ∈ PROP}. L ⊆ PLIT is complete if for each p ∈ PROP either p ∈ L or ¬p ∈ L. It is
consistent if for each p ∈ PROP either p < L or ¬p < L. Any complete and consistent set of
literals L defines a unique propositional valuation v ⊆ PROP which is defined as p ∈ v iff p ∈ L.

Definition 3 (Modal literals, clauses and modal CNF). A formula is in modal conjunctive normal
form (modal CNF) if it is a conjunction of clauses. A clause is a disjunction of propositional and
modal literals. A modal literal is a formula of the form [m]C or ¬[m]C where C is a clause.

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 32 Public

Every modal formula can be transformed into an equivalent formula in modal CNF at the risk
of an exponential blowup in the size of the formula; it can be transformed into an equisatisfiable
formula in polynomial time, using additional propositional variables (see [38] for details).

To consider formulas modulo commutativity and idempotency of conjunction and disjunc-
tion, we represent a modal CNF formula as a set of clauses (interpreted conjunctively), and each
clause as a set of propositional and modal literals (interpreted disjunctively). This set represen-
tation disregards order and multiplicity of clauses and literals in a formula. We will assume that
modal CNF formulas are represented using set notation, even though we will often write them
using the familiar notation and, we will write l ∈ C to denote that the literal l occurs in the clause
C, and C ∈ ϕ to denote that the clause C is a clause of the formula ϕ.

Example 1. The formula ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) ∧ ¬�(¬q ∨ �p ∨ �¬p) is written, using the
set notation, as {¬�{¬p,�{q},�{¬q}},¬�{¬q,�{p},�{¬p}}}.

Definition 4 (clauses function). The function clauses returns the multiset of clauses in a for-
mula ϕ. Let] be the operation of union with repetition between multisets. Let ϕ be a modal
CNF formula, C a clause, p ∈ PROP, l ∈ PLIT and m ∈ MOD, we define clauses as follows,

clauses(p) = {}

clauses(¬p) = {}

clauses([m]C) = clauses(C)
clauses(¬[m]C) = clauses(C)
clauses(C) = {C}]

⊎
l∈C clauses(l)

clauses(ϕ) =
⊎

C∈ϕ clauses(C).

Example 2. The formula ϕ = ¬�(¬p∨�q∨�¬q∨¬p)∧¬�(¬q∨�p∨�¬p) is in modal CNF,
and, clauses(ϕ) = {¬�(¬p ∨ �q ∨ �¬q ∨ ¬p),¬�(¬q ∨ �p ∨ �¬p),¬p ∨ �q ∨ �¬q ∨ ¬p,¬q ∨
�p ∨ �¬p, q,¬q, p,¬p}.

It is worth mentioning that, even though we focus on modal CNF formulas, the forthcoming
results apply to arbitrary modal formulas. We could have used arbitrary modal formulas and
work modulo equivalence to their CNFs.

Definition 5 (Models). A (pointed) model is a tuple 〈w,W, {Rm}m∈MOD,V〉, where W is a non-
empty set, w ∈ W, Rm ⊆ W × W for all m ∈ MOD and V(v) ⊆ PROP for all v ∈ W. Given a
modelM = 〈w,W, {Rm}m∈MOD,V〉 and w′ ∈ W, we defineM,w′ = 〈w′,W, {Rm}m∈MOD,V〉.

Definition 6 (Semantics). LetM = 〈w,W, {Rm}m∈MOD,V〉 be a model and ϕ a modal formula. We
define the satisfiability relation |=, inM at point w, as follows,

M |= p iff p ∈ V(w)
M |= ¬ϕ iff M 6|= ϕ
M |= ϕ ∨ ψ iff M |= ϕ orM |= ψ
M |= [m]ϕ iff M,w′ |= ϕ, for all w′ s.t. wRmw′.

We say that a formula ϕ is satisfiable if for some pointed model M we have that M |= ϕ.
Otherwise, it is unsatisfiable. Mods(ϕ) = {M | M |= ϕ} denotes the class of all models that
satisfy ϕ.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 32 Public

Definition 7 (Modal depth). The modal depth of a modal formula ϕ (notation: md(ϕ)) is the
maximum nesting of modal operators that occurs in ϕ:

md(p) = 0
md(¬ϕ) = md(ϕ)
md(ϕ ∨ ψ) = max{md(ϕ),md(ψ)}
md([m]ϕ) = 1 + md(ϕ).

Definition 8 (Permutations). A permutation ρ of a set A is a bijection ρ : A 7→ A. ρ0 denotes the
identity permutation and ρ−1 the inverse of ρ. For n ∈ Z, ρn denotes the n-times composition of
ρ with itself if n ≥ 1, and the n-times composition of ρ−1 with itself if n ≤ −1.

Each permutation ρ of a set A determines a natural partition of A into equivalence classes,
also called the orbits of ρ, with the property that a, b ∈ A are in the same equivalence class if and
only if b = ρn(a) for some n ∈ Z.

A permutation ρ has finite support if for only a finite number of elements a ∈ A we have that
ρ(a) , a. Permutations with finite support can be represented using cyclic notation [37]. A cycle
is a finite sequence of different elements (a1 a2 . . . ak), that defines the permutation

ρ(a) = a if a does not appear in the sequence
ρ(ai) = ai+1 if i < k
ρ(ak) = a1.

A cycle with only two elements is called a transposition. A permutation is represented as a finite
sequence of cycles, e.g., (a11 . . . a1k1) . . . (ai1 . . . aiki). The associated permutation is obtained
as the composition of the permutations associated to each cycle.

Definition 9 (Permutation over PLIT). A permutation of propositional literals is a bijection ρ :
PLIT 7→ PLIT. If L is a set of propositional literals then ρ(L) = {ρ(l) | l ∈ L}.

Notice that Definition 9 defines permutations over the infinite set PLIT. However, in practice
we only deal with permutations over a finite subset A of PLIT, i.e., the set of propositional literals
occurring in the formula at hand, which enables us to use all the available results on permutations
over finite sets and with finite support.

Definition 10 (Consistent Permutation). For p ∈ PROP, let ∼p = ¬p and ∼¬p = p. We say that
a permutation ρ is consistent if for every propositional literal l, ρ(∼l) = ∼ρ(l).

Consistency guarantees that a permutation interacts nicely when applied to a set of literals,
e.g., if we have a consistent set of literals it will remain consistent after applying a consistent
permutation to it. From a group theoretic perspective, consistent permutations form a subgroup
of the group of all permutations over a given set, as the composition of two or more consis-
tent permutations is again a consistent permutation. From now on, we only consider consistent
permutations of propositional literals.

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 32 Public

Definition 11 (Permutation of a formula). Let ϕ be a modal formula. We define the application
of a permutation ρ to ϕ as follows

ρ(¬ϕ) = ¬ρ(ϕ)
ρ(ϕ ∨ ψ) = ρ(ϕ) ∨ ρ(ψ)
ρ([m]ϕ) = [m]ρ(ϕ).

Definition 12 (Symmetry). Let ϕ be a modal CNF formula and ρ a consistent permutation. We
say that ρ is a symmetry of ϕ if ϕ = ρ(ϕ), when ϕ is represented using set notation.

Example 3. ρ = (p ¬q)(¬p q) is the permutation that makes ρ(p) = ¬q, ρ(¬q) = p, ρ(¬p) = q,
ρ(q) = ¬p and leaves unchanged all other literals. ρ is a consistent permutation, and it is a
symmetry of the formula ϕ = (¬p∨ r)∧ (q∨ r)∧ �(¬p∨ q) since ϕ and ρ(ϕ) are identical using
set notation.

Definition 13 (Generated set of propositional literals).
Let M = 〈w,W, {Rm}m∈MOD, V〉 be a model. For every v ∈ W, we define its generated set of
propositional literals (notation: LV(v)) as V(v) ∪ {¬p | p ∈ PROP\V(v)}. LV(v) is a consistent and
complete set of propositional literals.

The key concept to talk about symmetries in modal logics is that of ρ-simulations.

Definition 14 (ρ-simulation). Let ρ be a permutation. A ρ-simulation between models M =

〈w,W, {Rm}m∈MOD,V〉 andM′ = 〈w′,W ′, {R′m}m∈MOD,V ′〉 is a relation Z ⊆ W ×W ′ that satisfies the
following conditions:

Root: wZw′.

ρ-Harmony: wZw′ implies l ∈ LV(w) iff ρ(l) ∈ LV′(w′).

Zig: If wZw′ and wRmv then there exists v′ such that w′R′mv′ and vZv′.

Zag: If wZw′ and w′R′mv′ then there exists v such that wRmv and vZv′.

We say that two pointed modelsM andM′ are ρ-similar (notation: M�ρ M
′) if there is a

ρ-simulation Z between them.

Notice that the relation �ρ is not symmetric (hence, it is not a bisimulation): M�ρM
′

does not imply M′�ρM. On the other hand, it is not difficult to prove that M�ρM
′ implies

M′�ρ−1M. We can think of a ρ-simulation as relaxing the atomic harmony condition of bisim-
ulations to incorporate the effect of permutations.

Example 4. Consider the models M = 〈w, {w}, ∅,V〉 and M′ = 〈w′, {w′}, ∅, V ′〉 where V(w) =

{p, s} and V ′(w′) = {q, s}. Let ρ = (p q r)(¬p ¬q ¬r) be a consistent permutation. ThatM�ρM
′

is straightforward: just consider the set LV(w) = {p,¬q,¬r, s}, then we have that ρ(LV(w)) = LV′(w′)

and the ρ-harmony condition holds. However it is not the case that M′�ρM. To see this,
consider the set LV′(w′) = {¬p, q,¬r, s}, then ρ(LV′(w′)) = {¬q, r, ¬p, s} , LV(w) and the ρ-harmony
condition fails.

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 32 Public

If we restrict ourselves to permutations that can be defined as the product of disjoint transpo-
sitions then the ρ-simulation relation is indeed symmetric.

From the definition of ρ-simulations it follows that while they do not preserve satisfiability of
modal formulas (as is the case with bisimulations) they do preserve satisfiability of permutations
of formulas.

Proposition 1. Let ρ be a consistent permutation, ϕ a modal formula andM = 〈w,W, {Rm}m∈MOD,V〉,
M′ = 〈w′,W ′, {R′m}m∈MOD,V ′〉 models such thatM�ρM

′. ThenM |= ϕ iffM′ |= ρ(ϕ).

Proof. The proof is by induction on the syntactic structure of ϕ.

Base Case:
[ϕ = p]: M |= p iff p ∈ V(w) iff p ∈ LV(w) iff, by ρ-Harmony, ρ(p) ∈ LV′(w′) iffM′ |= ρ(p).
Inductive Step:
[ϕ = [m]ψ]: M |= [m]ψ iff 〈v,W, {Rm}m∈MOD,V〉 |= ψ for all v ∈ W s.t. wRmv. SinceM�ρM

′, by
Zig, for all v exists v′ ∈ W ′ s.t. w′R′mv′ and vZv′, and, by inductive hypothesis, 〈v′,W ′, {R′m}m∈MOD,V ′〉 |=
ρ(ψ). Hence,M′ |= [m]ρ(ψ) = ρ([m]ψ). The converse follows using Zag and the inductive hy-
pothesis.
The remaining cases follow by induction. �

We also need to consider the effect of applying permutations to models.

Definition 15 (Permutation of a model). Let ρ be a permutation andM = 〈w,W, {Rm}m∈MOD,V〉
a model. Then ρ(M) = 〈w,W, {Rm}m∈MOD,V ′〉, where V ′(v) = ρ(LV(v))∩ PROP for all v ∈ W. For
M a class of models, ρ(M) = {ρ(M) | M ∈ M}.

It follows thatM and ρ(M) are always ρ-similar.

Proposition 2. Let ρ be a consistent permutation andM a model. ThenM�ρ ρ(M).

Proof. We show that the identity relation is a ρ-simulation.
[ρ-Harmony]: From the definition of ρ(M), LV′(v) = ρ(LV(v)) for all v ∈ W, hence if l ∈ LV(v) then
ρ(l) ∈ ρ(LV(v)). Moreover, ρ(LV(v)) is a complete set of literals since LV(v) is a complete set of
literals and ρ is a consistent permutation, and hence the converse also follows.
[Root, Zig and Zag]: Trivial as the relation in both models is the same.

�

If ϕ is true in a modelM, we intuitively want ρ(ϕ) to be true in ρ(M).

Proposition 3. Let ρ be a consistent permutation, ϕ a modal formula andM = 〈w,W, {Rm}m∈MOD,V〉
a model. ThenM |= ϕ iff ρ(M) |= ρ(ϕ).

Proof. It follows directly from Proposition 1 and Proposition 2. �

If ρ is a symmetry of ϕ, a modelM satisfies ϕ if and only if ρ(M) also does.

Theorem 1. Let ϕ be a modal CNF formula and ρ a symmetry of ϕ. ThenM |= ϕ iff ρ(M) |= ϕ.

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 32 Public

Proof. It follows from Proposition 3 in the particular case when ϕ is a modal CNF formula and
ρ is a symmetry of ϕ and hence ρ(ϕ) = ϕ. �

A consequence of Theorem 1 is that given a set of models and the symmetries of a formula
ϕ, the latter partition the former in such a way that the resulting equivalence classes (orbits)
contain only models satisfying ϕ or models not satisfying ϕ. From a practical point of view, this
implies that, when searching for a satisfying model for a given formula, we can focus just on the
representatives from each equivalence class, provided that we can compute them.

Symmetries also provide us with an inference mechanism.

Theorem 2. Let ϕ and ψ be modal CNF formulas and let ρ be a symmetry of ϕ. Then ϕ |= ψ iff
ϕ |= ρ(ψ).

Proof. We first show that under the hypothesis of the theorem the following claim holds

Claim: Mods(ϕ) = ρ(Mods(ϕ)).
[⊇]: Let X ∈ ρ(Mods(ϕ)) and M ∈ Mods(ϕ) be models such that X = ρ(M). Then M |= ϕ
and, by Theorem 1, ρ(M) |= ϕ and hence ρ(M) = X ∈ Mods(ϕ). [⊆]: Let M ∈ Mods(ϕ),
then M |= ϕ. By Theorem 1, ρ(M) |= ϕ, therefore, ρ(M) ∈ Mods(ϕ). Since ρ is arbitrary,
the results holds also for ρk, k ∈ Z. Since ρ is a finite permutation, there exists n such that
ρn is the identity permutation. Now consider ρn−1(M), we know ρn−1(M) ∈ Mods(ϕ). Hence
ρn(M) =M ∈ ρ(Mods(ϕ)).

Now, we have to prove that ϕ |= ψ if and only if ϕ |= ρ(ψ). ϕ |= ψ iff Mods(ϕ) |= ψ
iff, using Proposition 3, ρ(Mods(ϕ)) |= ρ(ψ). Since ρ is a symmetry of ϕ, by the Claim above
ρ(Mods(ϕ)) |= ρ(ψ) iff Mods(ϕ) |= ρ(ψ) and hence ϕ |= ρ(ψ). �

It follows from Theorem 2 that we can use the symmetries of a formula as an inexpensive
inference mechanism in every situation where entailment is involved during modal automated
reasoning. Indeed, applying a permutation on a formula is a calculation that is, arguably, com-
putationally cheaper than. e.g., a tableaux expansion or a resolution step. Therefore, inferences
obtained by this mechanism may reduce the total running time of an inference algorithm. In the
case of propositional logic, strengthening clause learning with symmetric inferences has been
proved efficient [14].

Theorem 1 and Theorem 2 are the core results that enable the exploitation of symmetries in
the basic modal logic.

3 Beyond Basic Modal Logic
We now generalize the obtained results to richer modal logics. To do so we use the framework of
coinductive modal models introduced in [1] to investigate normal forms for modal logics. This
framework allows the representation of different modal logics homogeneously: results obtained
can be extended to concrete modal languages by just selecting the appropriate model classes.

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 32 Public

3.1 Coinductive Modal Models
We now introduce the basic definitions concerning coinductive modal models (see [1] for more
details).

Definition 16 (Syntax). A modal signature is a pair S = 〈ATOM,MOD〉, where ATOM and
MOD are two countable disjoint sets and ATOM is infinite. The well-formed formulas over the
signature S are defined by the rule

ϕ, ψ ::= a | ¬ϕ | ϕ ∨ ψ | [m]ϕ,

where a ∈ ATOM and m ∈ MOD. FORM denotes the set of all well-formed formulas over the
signature S. > and ⊥ stand for an arbitrary tautology and contradiction, respectively. Classical
connectives such as ∧,→ and 〈m〉 are defined in the usual way.

As for the basic modal logic case, we are going to work with formulas in modal CNF as
defined previously, but now using atom literals instead of propositional literals, where ALIT =

ATOM ∪ {¬a | for all a ∈ ATOM}.
Notice that the language we just defined is the language of the basic multi-modal logic in-

troduced in Definition 1 but, as we will now see, we will be able to cast other modal logics
including, for example, hybrid operators right into this same syntax in a natural way. How we do
this will become clear once we provide our definition of models.

Definition 17 (Models). Let S = 〈ATOM,MOD〉 be a signature and W be a fixed, non-empty
set. ModsW , the class of all models with domain W, for the signature S, is the class of all tuples
〈w,W,R,V〉 such that w ∈ W is the point of evaluation, W is the domain, R(m, v) ⊆ ModsW for
m ∈ MOD and v ∈ W is the accessibility relation, and V(v) ⊆ ATOM for v ∈ W is the valuation.

Let Mods be the class of all models over all domains, i.e., Mods =
⋃

W ModsW .

Observe that for each W, ModsW is well-defined (coinductively), and so is Mods, the class
of all models.

The main difference between Definition 5 and Definition 17 lies in how we handle m-successors.
In the latter, for each modality m and each state v in a model, we define R(m, v), the successors of
v through the m modality, as a set of models (therefore, this definition of models is coinductive),
while in the former we define it as a set of points in the domain.

Example 5. Consider the relational model in Figure 1a, and its equivalent coinductive model
in Figure 1b. The point of evaluation in each model is circled. Notice that the relation of a
coinductive model leads to another coinductive model, whereas in a relational model the relation
leads to another point of the same model.

Definition 18 (Domain, point of evaluation, valuation and accessibility relation of an arbitrary
model). Let M be a coinductive model, we will write |M| for its domain, wM for its point of
evaluation, VM for its valuation, and RM for its accessibility relation.

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 32 Public

w v

m

(a) Relational.

w v vw

m

(b) Coinductive.

Figure 1: A relational model and its equivalent coinductive model.

Example 6. Let us consider the following coinductive model: N = 〈0,N, {}, {n 7→ {} | n ∈ N}〉,
where 0 is the point of evaluation, N is the set of natural numbers, the accessibility relation is
the empty relation, and the valuation assigns the empty set to all elements in the domain. Then
|N| = N, wN = 0, RN = {} and VN = {n 7→ {} | n ∈ N}.

Definition 19 (Extension of a model). GivenM ∈ ModsW , let Ext(M), the extension ofM, be
the smallest subset of ModsW that containsM and is such that if N ∈ Ext(M), then RN (m, v) ⊆
Ext(M) for all m ∈ MOD, v ∈ W.

In words, the extension of a model is the class of models reachable via the reflexive and
transitive closure of the union of its accessibility relations.

In what follows, we are interested in working with classes of coinductive models that are
closed under accessibility relations.

Definition 20 (Closed class). A non-empty class of models C is closed under accessibility rela-
tions (we will say that C is a closed class, for short) wheneverM ∈ C implies Ext(M) ⊆ C.

Definition 21 (Semantics). Let ϕ be a modal formula andM = 〈w,W, R,V〉 a model in Mods.
We define the satisfiability relation |= as follows

M |= a iff a ∈ V(w) for a ∈ ATOM
M |= ¬ϕ iff M 6|= ϕ
M |= ϕ ∨ ψ iff M |= ϕ orM |= ψ
M |= [m]ϕ iff M′ |= ϕ, for allM′ ∈ R(m,w).

If C is a closed class, we write C |= ϕ whenever M |= ϕ for every M in C. We say that
ΓC = {ϕ | C |= ϕ} is the logic defined by C, and we write |=C to indicate entailment modulo the
closed class C. Mods(ϕ) = {M | M |= ϕ} denotes the class of all models that satisfy ϕ and
ModsC(ϕ) = {M | M |= ϕ andM ∈ C} denotes the class of all models in C that satisfy ϕ.

The logic ΓMods (generated by the class of all possible models) coincides with the basic multi-
modal logic K [1]. Inspecting the definition above, we can see that the semantic clause for
[m] is the classical condition defining a box operator. However, if we restrict ourselves to the
appropriate class of models, we can actually ensure that [m] behaves in different ways and capture
different modal logics.

Let us call a predicate P on models a defining condition for a class C whenever C is such
that M ∈ C if and only if P(M) holds. Consider the signature S = 〈ATOM,MOD〉 where
ATOM = PROP ∪ NOM, MOD = REL ∪ {A} ∪ {@i | i ∈ NOM}; and PROP = {p1, p2, . . .},

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 32 Public

Class Defining condition

CK
m PK

m(M) iff ∀m,w . RM(m,w) ⊆ {〈v, |M|,RM,VM〉 | v ∈ |M|}
CA PA(M) iff ∀w . RM(A,w) = {〈v, |M|,RM,VM〉 | v ∈ |M|}
C@i P@i(M) iff ∀i,w . RM(@i,w) = {〈v, |M|,RM,VM〉 | i ∈ V(v)}
CNOM PNOM(M) iff ∀i,w . {w | i ∈ VM(w)} is a singleton

Table 1: Defining conditions for different modal logics.

NOM = {n1, n2, . . .} and REL = {r1, r2, . . .} are mutually disjoint, countable infinite sets. Table 1
introduces a number of closed model classes by means of their defining conditions.

Observe that PK
m is true for a model M if every successor of wM is identical to M except

perhaps on its point of evaluation. We call m a relational modality when it is interpreted in CK
m,

because over this class they behave as classical relational modalities [1].
We can capture different modal operators, like the ones from hybrid logics [39], by choos-

ing the proper class of models. Predicates PA and P@i , for instance, impose conditions on the
point of evaluation of the accessible models restricting the evaluation to the class of models
where the relation is, respectively, the total relation (∀xy.R(x, y)) and the ‘point to all i’ relation
(∀xy.R(x, y)↔ i(y)). Observe that whenever the atom i is interpreted as a singleton set, the ‘point
to all i’ relation becomes the usual ‘point to i’ relation (∀xy.R(x, y) ↔ y = i) of hybrid logics.
Finally, predicate PNOM turns elements of NOM into nominals, i.e., true at a unique element of the
domain of the model.

We can express the combination of modalities as the intersection of their respective classes.
For example, CH(@), the class of models for the hybrid logicH(@), can be defined as follows

CH(@) = CNom ∩ C@ ∩ CRel, where
C@ =

⋂
i∈Nom C@i , and CRel =

⋂
m∈Rel C

K
m.

The crucial characteristic of the coinductive framework is that these different modal operators
are captured using the same semantic condition introduced in Definition 21. All the details
defining each particular operator are now introduced as properties of the accessibility relation.
As a result, a unique notion of bisimulation is sufficient to cover all of them.

Definition 22 (Bisimulations). A bisimulation between models M and M′ is a relation Z ⊆
Ext(M) × Ext(M′) that satisfies the following conditions:

Root: MZM′.

Atomic Harmony: SZS′ implies VS(wS) = VS
′

(wS
′

), for all a ∈ ATOM.

Zig: If SZS′, then T ∈ RS(m,wS) implies TZT ′ for some T ′ ∈ RS
′

(m,wS
′

).

Zag: If SZS′, then T ′ ∈ RS
′

(m,wS
′

) implies TZT ′ for some T ∈ RS(m,wS).

We say that two modelsM andM′ are bisimilar (notation: M↔M′) if there is a bisimula-
tion Z between them.

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 32 Public

The classic result of invariance of modal formulas under bisimulation can easily be proved [1].

Theorem 3. IfM↔M′, thenM |= ϕ iffM′ |= ϕ, for all ϕ.

This general notion of bisimulation works for every modal logic definable as a closed subclass
of Mods. Many well known bisimulations (e.g., for temporal logics, global modalities, hybrid
logics, etc.) can be seen as specializations of Definition 22.

3.2 A Generalized Theory of Symmetries
We now extend the theory presented in Section 2 for the basic modal logic to the coinductive
framework. We start by adapting the needed definitions.

Definition 23 (Permutation over ALIT). A permutation of atom literals is a bijective function
ρ : ALIT 7→ ALIT. For L a set of atom literals, ρ(L) = {ρ(l) | l ∈ L}.

As for the basic modal logic case, we will restrict ourselves to work with permutations over a
finite set of atom literals, i.e., permutations over the set of atom literals occurring in the formula
at hand.

Definition 24 (Consistent Permutation). For a ∈ ATOM, let ∼¬a = a and ∼a = ¬a. We say that
a permutation ρ is consistent if for every atom literal l, ρ(∼l) = ∼ρ(l).

From now on we only consider consistent permutations of atom literals.
Since, in our language, atoms may occur within modalities, e.g., @i, we should take some

care when applying permutations to modal formulas. We say that a modality is indexed by atoms
if its definition depends on the value of an atom. If m is indexed by an atom a we write m(a).

Definition 25 (Permutation of a formula). Let ϕ be a modal formula. We define the application
of a permutation ρ to ϕ as follows

ρ(¬ϕ) = ¬ρ(ϕ)
ρ(ϕ ∨ ψ) = ρ(ϕ) ∨ ρ(ψ)
ρ([m]ϕ) = [ρ(m)]ρ(ϕ).

Where ρ(m) = ρ(m(a)) = m(ρ(a)) if m is indexed by a, and ρ(m) = m otherwise.

Definition 26 (Symmetry). Let ϕ be a modal CNF formula and ρ a consistent permutation. We
say that ρ is a symmetry of ϕ if ϕ = ρ(ϕ), when ϕ is represented using set notation.

Definition 27 (Generated set of atom literals). LetM = 〈w,W,R,V〉 be a model. For every v ∈
W, we define its generated set of atom literals (notation: LV(v)) as V(v) ∪ {¬a | a ∈ ATOM\V(v)}.
LV(v) is a consistent and complete set of atom literals.

Now we are ready to generalize the results obtained for the basic modal logic to the coinduc-
tive framework. We begin with the notion of ρ-simulation.

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 32 Public

Definition 28 (ρ-simulation). Let ρ be a permutation. A ρ-simulation between models M and
M′ is a relation Z ⊆ Ext(M) × Ext(M′) that satisfies the following conditions:

Root: MZM′.

ρ-Harmony: SZS′ implies l ∈ LVS(wS) iff ρ(l) ∈ LVS′ (wS′).

Zig: If SZS′, then T ∈ RS(m,wS) implies TZT ′ for some T ′ ∈ RS
′

(ρ(m),wS
′

).

Zag: If SZS′, then T ′ ∈ RS
′

(m,wS
′

) implies TZT ′ for some T ∈ RS(ρ−1(m), wS).

We say that two models M and M′ are ρ-similar (notation: M�ρM
′) if there is a ρ-

simulation Z between them.

Notice that the definition of ρ-simulation takes into account the fact that there exist modali-
ties that are indexed by atoms by considering the permutation when accessing successors, e.g.,
RS

′

(ρ(m),wS
′

). Also, as for the basic modal logic case, the relation �ρ is not symmetric.
As expected, ρ-simulations preserve validity of permutations of formulas.

Proposition 4. Let ρ be a consistent permutation, ϕ a modal formula and M = 〈w,W,R,V〉,
M′ = 〈w′,W ′,R′,V ′〉 models such thatM�ρM

′. ThenM |= ϕ iffM′ |= ρ(ϕ).

Proof. The proof is by induction on the syntactic structure of ϕ.

Base Case:
[ϕ = a]: M |= a iff a ∈ V(w) iff a ∈ LV(w) iff, by ρ-Harmony, ρ(a) ∈ LV′(w′) iffM′ |= ρ(a).
Inductive Step:
[ϕ = [m]ψ]: M |= [m]ψ iff N |= ψ for all N ∈ R(m,w). SinceM�ρM

′, by Zig, for all N exist
N ′ such that N �ρN

′ and N ′ ∈ R′(ρ(m),w′). By the inductive hypothesis, N ′ |= ρ(ψ) for all
N ′ ∈ R′(ρ(m),w′) iffM′ |= [ρ(m)]ρ(ψ) iffM′ |= ρ([m]ψ). The converse follows by using Zag
and the inductive hypothesis.
The remaining cases follow by induction directly. �

Now we define how to apply permutations to coinductive models.

Definition 29 (Permutation of a model). Let ρ be a permutation andM = 〈w,W,R, V〉 a model.
Then ρ(M) = 〈w,W,R′,V ′〉, where, V ′(v) = ρ(LV(v))∩ATOM for all v ∈ W, and R′(m, v) = {ρ(N) |
N ∈ R(ρ(m), v)} for all m ∈ MOD and v ∈ W. For M a class of models, ρ(M) = {ρ(M) | M ∈ M}.

Besides modifying the valuation, permuting a coinductive modal model involves propagating
the permutation to all accessible models.

As before,M and ρ(M) are ρ-similar.

Proposition 5. Let ρ be a consistent permutation andM a model. ThenM�ρ ρ(M).

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 32 Public

Proof. We show that the relation Z = {(N , ρ(N)) | N ∈ Ext(M)} is a ρ-simulation betweenM
and ρ(M).
[ρ-Harmony:] From the definition of ρ(M), LV′(v) = ρ(LV(v)) for all v ∈ W, hence if l ∈ LV(v) then
ρ(l) ∈ ρ(LV(v)). Moreover, ρ(LV(v)) is a complete set of literals since LV(v) is a complete set of
literals and ρ is a consistent permutation, and hence the converse also follows.
[Root, Zig and Zag:] Straightforward. �

Proposition 6. Let ρ be a consistent permutation, M a model and ϕ a modal formula. Then
M |= ϕ iff ρ(M) |= ρ(ϕ).

Proof. It follows directly from Proposition 5 and Proposition 4. �

Theorem 4. Let ϕ be a modal CNF formula and ρ a symmetry of ϕ. ThenM |= ϕ iff ρ(M) |= ϕ.

Proof. It follows from Proposition 6 in the particular case when ϕ is a modal CNF formula and
ρ is a symmetry of ϕ and hence ρ(ϕ) = ϕ. �

Theorem 4 tells us that the symmetries of a formula ϕ have the same effect on the coinductive
framework as for the basic modal logic, i.e., they partition the space of models into equivalence
classes in such a way that every equivalence class contains either models satisfying ϕ or models
not satisfying ϕ. The result applies to any modal logic that can be cast into the coinductive
framework. To clarify the implications of Theorem 4, consider the following example.

Example 7. Given ϕ = (p∨q∨r)∧(s∨q∨r)∧(¬p∨¬s)∧〈m〉(p∨ s)∧[A]¬r and ρ = (p s)(¬p ¬s)
a symmetry of ϕ. We have thatM1 |= ϕ (Figure 2a), and, by Theorem 4, ρ(M1) |= ϕ (Figure 2b).

M1
w

{p, q}

v

{s}

M2
v

{s}

w

{p, q}

A Am

A

A

(a)M1.

ρ(M1)
w

{s, q}

v

{p}

ρ(M2)
v

{p}

w

{s, q}

A Am

A

A

(b) ρ(M1).

Figure 2: A coinductive model and its permutation.

Now we show that in the coinductive framework we can also use symmetries as an inference
mechanism.

Theorem 5. Let ϕ and ψ be modal CNF formulas and let ρ be a symmetry of ϕ. Then ϕ |= ψ iff
ϕ |= ρ(ψ).

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 32 Public

Proof. We first show that under the hypothesis of the theorem the following claim holds
Claim: Mods(ϕ) = ρ(Mods(ϕ)).

The argument is as in the Claim in Theorem 2 but using Theorem 4.

Now, we have to prove that ϕ |= ψ iff ϕ |= ρ(ψ). ϕ |= ψ iff Mods(ϕ) |= ψ, iff, using Proposi-
tion 6, ρ(Mods(ϕ)) |= ρ(ψ). Since ρ is a symmetry of ϕ, by the Claim above, ρ(Mods(ϕ)) |= ρ(ψ)
iff Mods(ϕ) |= ρ(ψ), iff ϕ |= ρ(ψ). �

Notice that the notion of ρ-simulation in coinductive modal models is general enough to be
applicable to a wide range of modal logics. However, our definition of ρ-simulation makes no
assumption about the models being in the same class. Consider, for example, a modelM ∈ CH(@)

and an arbitrary permutation ρ = (i p)(¬i ¬p) for i ∈ NOM, p ∈ PROP. By the defining condition
CH(@), nominals in M are true at a unique element in the domain, but this does not necessary
hold for ρ(M), and hence ρ(M) might not be in CH(@).

However, when working with the symmetries of a formula, this is not an issue, and we guar-
antee that every modelM and its symmetric ρ(M) are in the same model class. This is so since
a symmetry of a formula is, implicitly, a typed permutation: it only maps symbols in such a way,
that the resulting formula is a formula of the language. If this is not the case, either the formula
at hand is not in the language of the logic, or the permutation is not a symmetry.

3.3 Layered Permutations
We now present the notion of layered permutations that, in cases where the modal language has
a tree model property, enables us to develop a more flexible notion of symmetry.

First let us define the tree model property [35] for coinductive modal models.

Definition 30 (Paths in a model). Given a modelM, a (finite) path rooted atM is a sequence
π = (M0,m1,M1, . . . ,mk,Mk), for mi ∈ MOD whereM0 = M, k ≥ 0, andMi ∈ R(mi,wMi−1)
for i = 1, . . . , k. For a path π = (M0,m1,M1, . . . ,mk,Mk) we define first(π) = M0, last(π) =

Mk, and length(π) = k. For a path π = (M0,m1,M1, . . . ,mk,Mk), a model N and a modality
m ∈ MOD, such thatN ∈ R(m,wMk), by πmN = (M0,m1,M1, . . . ,mk,Mk,m,N) we denote the
extension of π by N through m. We denote the set of all paths rooted atM as Π[M].

Definition 31 (Coinductive trees). We say that a coinductive model is a tree if it has a unique
path to every reachable model (every model in Ext(M)). Formally we can define the class of all
coinductive tree models, CTree, with the following defining condition:

CTree := PTree(M)⇐⇒ last : Π[M] 7→ Ext(M) is bijective.

The unraveling construction (in its version for coinductive modal models) shown below al-
ways defines a model in CTree.

Definition 32 (Model unraveling). Given a modelM = 〈w,W,R,V〉, the unraveling ofM, (nota-
tion: T (M)), is the rooted coinductive modal modelT (M) = 〈(M),Π[M],R′,V ′〉where V ′(π) =

V(wlast(π)), for all π ∈ Π[M], R′(m, π) = {〈π′,Π[M],R′,V ′〉 | ∃N ∈ ModsW such that π′ = πmN}
for m ∈ MOD, π ∈ Π[M].

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 32 Public

It is easy to verify that given a modelM, its unraveling T (M) is a tree (T (M) ∈ CTree) and,
as expected,M and T (M) are bisimilar.

In what follows, we use trees to define a more flexible type of symmetries that we call layered
symmetries. The following gives a sufficient condition that enables us to work with layered
symmetries.

Definition 33 (Tree witnesses). We say that a class C of models has tree witnesses if for every
modelM ∈ C exists a tree model T ∈ C such thatM↔T .

From Definition 33 it follows that a class of models C closed under unravelings (T (M) ∈ C for
allM ∈ C) has tree witnesses.

Logics defined over classes having tree witnesses have an interesting property: there is a
direct correlation between the syntactical modal depth of the formula and the depth of a tree
model satisfying it. In tree models, a notion of layer is induced by the depth (distance from the
root) of the nodes in the model. Similarly, in modal formulas, a notion of layer is induced by the
nesting of the modal operators. A consequence of this correspondence is that literals occurring
at different layers of the formula are semantically independent of each other [40], i.e., at different
layers the same literal can be assigned a different truth value.

The independence between literals at different layers enables us to give a more flexible notion
of a permutation that we call layered permutation.

Definition 34 (Layered permutation). A layered permutation ρ̄ is a, possibly empty, finite se-
quence of permutations 〈ρ1, . . . , ρk〉. Let |〈ρ1, . . . , ρk〉| = k be the length of ρ̄ (〈〉 has length 0).
For 1 ≤ i ≤ n, ρ̄i is the sub-sequence that starts from the ith element of ρ̄ (in particular, ρ̄i = 〈〉 for
i > |ρ̄| and ρ̄1 = ρ̄). Let ρ̄ = 〈ρ1, . . . , ρk〉 then ρ̄(i) is ρi if 1 ≤ i ≤ |ρ̄| and ρ̄(i) = ρId otherwise, for
ρId the identity permutation.

A layered permutation is consistent if all its permutations are consistent.
Let ϕ be a modal formula. We define the application of a layered permutation ρ̄ to ϕ as

follows. Define 〈〉(ϕ) = ϕ, and for |ρ̄| ≥ 1:

ρ̄(a) = ρ̄(1)(a)
ρ̄(¬ϕ) = ¬ρ̄(ϕ)
ρ̄(ϕ ∨ ψ) = ρ̄(ϕ) ∨ ρ̄(ψ)
ρ̄([m]ϕ) = [ρ̄(1)(m)]ρ̄2(ϕ).

Where ρ̄(1)(m) = ρ̄(1)(m(a)) = m(ρ̄(1)(a)) if m is indexed by a, and ρ̄(1)(m) = m otherwise.
A layered permutation ρ̄ is a symmetry of a modal CNF formula ϕ if ρ̄(ϕ) = ϕ, when ϕ is

represented using set notation.

Notice that applying a layered permutation to a formula is well defined even if the modal
depth of the formula is greater than the size of the layered permutation.

Layered permutations let us use a different permutation at each modal depth, which can
capture symmetries that non layered permutations cannot define.
Example 8. Consider the formula ϕ = (p ∨ �(p ∨ ¬r)) ∧ (¬q ∨ �(¬p ∨ r)). If we only consider
non-layered permutations then ϕ has no symmetry. However, the layered permutation 〈ρ1, ρ2〉

generated by ρ1 = (p ¬q)(¬p q) and ρ2 = (p ¬p)(r ¬r) is a symmetry of ϕ.

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 32 Public

From now on we can mostly repeat the work we did in the previous section to arrive to
results similar to Theorems 4 and 5 but involving layered permutation, with one caveat: the
obvious extension of the notion of permuted model ρ(M) to layered permutations is ill defined
ifM is not a tree. Hence, we need the additional requirement that the class C of models has tree
witnesses for the result to go through.

Definition 35 (Layered permutation of a model). Let ρ̄ be a layered permutation and M =

〈w,W,R,V〉 a tree model. Then ρ̄(M) = 〈w,W,R′,V ′〉, where V ′(v) = ρ̄(1)(LV(v)) ∩ ATOM for all
v ∈ W, and R′(m, v) = {ρ̄2(N) | N ∈ R(ρ̄(1)(m), v)} for all m ∈ MOD and v ∈ W. For M a class
(or a set) of tree models, ρ̄(M) = {ρ̄(M) | M ∈ M}.

We can now extend the notion of ρ-simulation to layered permutations.

Definition 36 (ρ̄-simulation). Let ρ̄ be a layered permutation, a ρ̄-simulation between tree models
M = 〈w,W,R,V〉 and M′ = 〈w′,W ′,R′,V ′〉 is a family of relations Zρ̄i ⊆ Ext(M) × Ext(M′),
1 ≤ i, that satisfies the following conditions:

Root: MZρ̄1M
′.

ρ̄-Harmony: SZρ̄iS
′ implies l ∈ LVS(wS) iff ρ̄i(1)(l) ∈ LVS′ (wS′).

Zig: If SZρ̄iS
′, then T ∈ RS(m,wS) implies T ′Zρ̄i+1T

′

for some T ′ ∈ RS
′

(ρ̄i(1)(m),wS
′

).

Zag: If SZρ̄iS
′, then T ′ ∈ RS

′

(m,wS
′

) implies TZρ̄i+1T
′

for some T ∈ RS(ρ̄i(1)−1(m),wS).

We say that two models M and M′ are ρ̄-similar (notation: M�ρ̄M
′), if there is a ρ̄-

simulation between them.

Definition 36 does not make any assumption about the size of the layered permutation. It is
well defined even if the layered permutation at hand is the empty sequence. In that case, it just
behaves as the identity permutation at each layer and the relation defines a bisimulation between
the models.

Theorem 6. Let ϕ be a modal CNF formula and ρ̄ a symmetry of ϕ. ThenM |= ϕ iff ρ̄(M) |= ϕ.

Proof. The proof is similar to the one for Theorem 4 but using layered permutations. �

Theorem 7. Let ϕ and ψ be modal formulas and let ρ̄ be a consistent layered permutation, and
let C be a class of models with tree witnesses. If ρ̄ is a symmetry of ϕ then for any ψ we have that
ϕ |=C ψ iff ϕ |=C ρ̄(ψ).

Proof. We first show that under the hypothesis of the theorem the following two properties hold.

Claim 1: ModsC∩CTree(ϕ) = ρ̄(ModsC∩CTree(ϕ)).
The argument is the same as for the Claim in Theorem 5 but using layered permutations.

18

PIRSES-GA-2011-295261 / MEALS Page 19 of 32 Public

Claim 2: ModsC(ϕ) |=C ϕ iff ModsC∩CTree(ϕ) |=C ϕ.
The left-to-right direction follows trivially from the fact that ModsC∩CTree(ϕ) ⊆ ModsC(ϕ).

For the other direction, assume ModsC∩CTree(ϕ) |=C ϕ and ModsC(ϕ) 6|=C ϕ. Then there exists
M ∈ ModsC(ϕ) such thatM 6|=C ϕ. ButM↔T , and T ∈ ModsC∩CTree(ϕ). Hence T 6|=C ϕ which
contradicts our assumption.

It remains to prove that ϕ |=C ψ if and only if ϕ |=C ρ̄(ψ). By definition, ϕ |=C ψ iff
ModsC(ϕ) |=C ψ, iff, by Claim 2, ModsC∩CTree(ϕ) |=C ψ, iff, using a layered version of Prop. 6,
ρ̄(ModsC∩CTree(ϕ)) |=C ρ̄(ψ). Since ρ̄ is a symmetry of ϕ, by Claim 1, ρ̄(ModsC∩CTree(ϕ)) |=C ρ̄(ψ)
iff ModsC∩CTree(ϕ) |=C ρ̄(ψ), iff, by Claim 2, ModsC(ϕ) |=C ρ̄(ψ) then ϕ |=C ρ̄(ψ). �

4 Symmetry Detection for Modal Logics
We now focus on detecting symmetries for modal formulas. Unless stated otherwise, we work
with modal CNF formulas considering them as sets of sets (see Section 2), although we might
write them as usual for the sake of clarity.

Let us start by presenting the needed definitions.

Definition 37 (atoms and indexes functions). Let ϕ be a modal CNF formula, C a clause and
a ∈ ATOM. The function atoms that returns the set of atoms occurring in ϕ is defined as follows:

atoms(a) = {a}
atoms(¬a) = {a}
atoms([m]C) = atoms(C)
atoms([m(a)]C) = {a} ∪ atoms(C)
atoms(¬[m]C) = atoms(C)
atoms(¬[m(a)]C) = {a} ∪ atoms(C)
atoms(C) =

⋃
l∈C atoms(l)

atoms(ϕ) =
⋃

C∈ϕ atoms(C).

By atoms(ϕ, i) we denote the set of atoms occurring in ϕ at modal depth i. We define lits(ϕ) =

{¬a | a ∈ atoms(ϕ)} ∪ atoms(ϕ).
The function indexes that returns the set of atoms indexing a modality in ϕ is defined as

follows:
indexes(a) = ∅

indexes(¬a) = ∅

indexes([m]C) = indexes(C)
indexes(¬[m]C) = indexes(C)
indexes([m(a)]C) = {a} ∪ indexes(C)
indexes(¬[m(a)]C) = {a} ∪ indexes(C)
indexes(C) =

⋃
l∈C indexes(l)

indexes(ϕ) =
⋃

C∈ϕ indexes(C).

19

PIRSES-GA-2011-295261 / MEALS Page 20 of 32 Public

To detect the symmetries of a formula we will construct an undirected labeled finite graph
such that the automorphism group of the graph is isomorphic to the symmetry group of the
formula.

Definition 38. An undirected, labeled finite multi-graph is a structure G = 〈N, {Ei}i∈I , l〉 where
N, the set of nodes, is a finite non-empty set; Ei, the edge-relations, are symmetric relations over
N × N; and l : N 7→ L is the labeling function mapping nodes into a finite set L of labels.

To construct the graph we need to identify the clauses in a formula and label the nodes
correctly to avoid detecting automorphisms in the graph that do not correspond to symmetries in
the formula.

Definition 39 (Identification function). Let ϕ be a modal CNF formula. An identification func-
tion ()id : clauses(ϕ) 7→ I is an injective function that assigns to each clause in ϕ a unique
identifier over an arbitrary set I. We define ids(ϕ) = {Cid | C ∈ clauses(ϕ)}.

Definition 40 (Admissible labeling). Let ϕ be a modal CNF formula. An admissible labeling is
a function l : lits(ϕ) ∪ ids(ϕ) 7→ L mapping literals and clause identifiers of ϕ to a finite set of
labels L, such that the following holds:

1. All atom literals have the same label.

2. Given C and D, clauses at modal depth 0, then l(Cid) = l(Did).

3. Given [m]C and [m]D then l(Cid) = l(Did).

4. Given ¬[m]C and ¬[m]D then l(Cid) = l(Did).

5. Given [m]C and ¬[m]D then l(Cid) , l(Did).

6. Given [m(a)]C and [m(b)]D then l(Cid) = l(Did).

7. Given ¬[m(a)]C and ¬[m(b)]D then l(Cid) = l(Did).

8. Given [m(a)]C and ¬[m(a)]D then l(Cid) , l(Did).

9. The sets of labels associated to atom literals, clauses at modal depth 0 and modal literals,
are pairwise disjoint, i.e., an atom literal, a clause at modal depth 0 and a modal literal do
not share a label.

In what follows we call global permutation (symmetry) a permutation (symmetry) as defined
by Definition 23, and layered permutation (symmetry) a layered permutation (symmetry) as de-
fined by Definition 34.

We now present two graph constructions for detecting global and layered symmetries, re-
spectively, in modal CNF formulas. Both constructions are based on the MIN3C construction
for propositional CNF formulas [11]. Unlike MIN3C, in our graphs we use two types of edges,
coloring is more complex since we have to deal with different modalities, and we fix the repre-
sentation of binary clauses and Boolean consistency by using a vertex and two edges to model
binary clauses and an edge between the positive literal and negative literal vertices to model
Boolean consistency.

20

PIRSES-GA-2011-295261 / MEALS Page 21 of 32 Public

Definition 41 (Global graph construction). Let ϕ be a modal CNF formula. Let l be an admissible
labeling and let id be an identification function.

The graph GGid,l(ϕ) = (N, E1, E2, l) corresponding to ϕ, l and id is the smallest labeled graph
satisfying the following conditions:

1. For each a ∈ atoms(ϕ):

(a) There are nodes a and ¬a in N with labels l(a) and l(¬a).

(b) There is an edge between a and ¬a in E1.

2. For each clause C at modal depth 0 there is a node Cid in N with label l(Cid).

3. For each atom literal k occurring as a disjunct in a clause C, there is an edge between C
and k in E1.

4. For each modal literal [m]D (¬[m]D) occurring as a disjunct in a clause C:

(a) There is a node Did in N with label l(Did).

(b) There is an edge between Cid and Did in E1.

(c) If m is indexed by an atom variable a, then there is an edge between Did and a in E2.

GGid,l(ϕ) has 2 × |atoms(ϕ)| + |clauses(ϕ)| nodes.

Example 9. Consider the formula ϕ = (a ∨ [m](b ∨ ¬[m]c)) ∧ (b ∨ [m](a ∨ ¬[m]c)). Figure 3
shows its associated labeled graph GGid,l(ϕ). Notice that in this case there is no modality indexed
by an atom variable and therefore, E2 = ∅. Labels are represented by shapes in the figure and
assigned according to the conditions in Definition 40. Thus, clauses, A and B, which are clauses
at modal depth 0, have the same label (square) by condition 2; clauses C, D have the same label
(hexagon) by condition 3; clauses E, F have the same label (pentagon) by condition 4; and all
atom literals have the same label (circle) by condition 1.

A B

C D

E F

a ¬a b¬bc

¬c

A = (a ∨ [m](b ∨ ¬[m]c))
B = (b ∨ [m](a ∨ ¬[m]c))
C = [m](b ∨ ¬[m]c)
D = [m](a ∨ ¬[m]c)
E = ¬[m]c
F = ¬[m]c

Figure 3: Global graph construction example.

The graph has one non-trivial automorphism π = (A B)(C D)(E F)(a b) (¬a ¬b) which
corresponds to the symmetry ρ = (a b)(¬a ¬b) of ϕ.

21

PIRSES-GA-2011-295261 / MEALS Page 22 of 32 Public

We now show that each symmetry of the formula ϕ corresponds to an automorphism of the
graph GGid,l(ϕ).

Proposition 7. Let ϕ be a modal CNF formula and GGid,l(ϕ) = (N, E1, E2, l) the graph corre-
sponding to ϕ. For each symmetry ρ of ϕ there exists an automorphism πρ of GGid,l(ϕ).

Proof. We have to prove that given a symmetry ρ of ϕ, we can build an automorphism πρ of
GGid,l(ϕ). Let us define πρ as follows:

πρ(x) =

{
ρ(x) if x ∈ lits(ϕ)
ρ(C)id if x = Cid ∈ ids(ϕ).

Since ρ is a symmetry, πρ is a well defined bijection. Moreover, πρ is a permutation over
N = lits(ϕ) ∪ ids(ϕ). We have to prove the following properties for a an atom literal and C,D
clauses in ϕ:

1. (a,∼a) ∈ E1 iff (πρ(a),∼πρ(a)) ∈ E1.

(→): If (a,∼a) ∈ E1 then a or ∼a occur in ϕ, and since ρ is a symmetry of ϕ, ρ(a) or ∼ρ(a)
occur in ϕ, and therefore, by construction (ρ(a),∼ρ(a)) = (πρ(a),∼πρ(a)) ∈ E1.

(←): Same argument as before.

2. (a,Cid) ∈ E1 iff (πρ(a), πρ(Cid)) ∈ E1.

(→): Assume (a,Cid) ∈ E1, then a occurs as a disjunct in the clause C. Since ρ is a
symmetry of ϕ, ρ(a) occurs as a disjunct in ρ(C), and both occur in ϕ. Then (ρ(a), ρ(C)id) =

(πρ(a), πρ(Cid)) ∈ E1.

(←): Assume (πρ(a), πρ(Cid)) ∈ E1, then πρ(a) = ρ(a) occurs a disjunct in ρ(C). Since ρ is
a symmetry of ϕ, a occurs as disjunct in C and both occur in ϕ, then (a,Cid) ∈ E1.

3. (Cid,Did) ∈ E1 iff (πρ(Cid), πρ(Did)) ∈ E1.

(→): Assume (Cid,Did) ∈ E1, then either C or D occurs as a modal literal within the other.
Assume that D occurs as a modal literal in C, then, C = {. . . , [m]D, . . . }. Since ρ is a
symmetry of ϕ, ρ(C) = {. . . , ρ([m]D), . . .} = {. . . , [ρ(m)]ρ(D)), . . .} occurs in ϕ. Then
(ρ(C)id, ρ(D)id) = (πρ(Cid), πρ(Did)) ∈ E1.

(←): It follows by the same argument.

4. (a,Cid) ∈ E2 iff (πρ(a), πρ(Cid)) ∈ E2.

(→): Assume (a,Cid) ∈ E2, then C occurs as a modal literal indexed by a, i.e., [m(a)]C
occurs in ϕ. Since ρ is a symmetry of ϕ, ρ([m(a)]C) = [m(ρ(a))]ρ(C) occurs in ϕ. Hence
(ρ(a), ρ(C)id) = (πρ(a), πρ(Cid)) ∈ E2.

(←): It follows by the same argument.

5. If πρ(x) = y then l(x) = l(y).

If follows from the fact that l is an admissible labeling and ρ a symmetry.

22

PIRSES-GA-2011-295261 / MEALS Page 23 of 32 Public

�

We show that any automorphism of GGid,l(ϕ) induces a symmetry of ϕ.

Proposition 8. Let ϕ be a modal CNF formula and GGid,l(ϕ) = (N, E1, E2, l) the graph corre-
sponding to ϕ. For each automorphism π of GGid,l(ϕ) there exists a symmetry ρπ of ϕ.

Proof. Let us define ρπ = π � lits(ϕ). To prove that ρπ is a symmetry of ϕ, we have to prove the
following:

1. ρπ is a consistent permutation, i.e., ρπ(∼a) = ∼ρπ(a) for a ∈ ALIT.

By construction (a,∼a) ∈ E1, since π is an automorphism of GGid,l(ϕ) it follows that
(π(a), π(∼a)) ∈ E1 iff π(∼a) = ∼π(a), which implies that ρπ(∼a) = ∼ρπ(a).

2. ρπ(ϕ) = ϕ.

It follows directly from the construction of GGid,l(ϕ) and the fact that l is an admissible
labeling which only allows the automorphism to permute nodes having the same label.
Therefore, atom literals are permuted with atom literals, clauses at modal depth 0 with
clauses at modal depth 0 and modal literals to modal literals of the same modality and
polarity.

�

Theorem 8 (Correctness). Let ϕ be a modal CNF formula and GGid,l(ϕ) = (N, E1, E2, l) the graph
corresponding to ϕ. Then every symmetry ρ of ϕ corresponds one-to-one to an automorphism π
of GGid,l(ϕ).

Proof. Immediate from Proposition 7 and 8. �

Theorem 8 ensures that the proposed graph construction is correct and, therefore, no spurious
symmetry, i.e., automorphisms of the graph that do not correspond to symmetries of the formula,
is detected.

Since we developed this construction in the coinductive framework and it makes no assump-
tion about the class of models on which we interpret the formulas, it can be used as a template
from which to derive graph constructions for concrete modal logics. For some modal logics, e.g.,
basic modal logic, we can use the algorithm as it is defined. However, for other modal logics, this
has to be done carefully. Further constraints might be required to ensure that properties enforced
by the particular class of models intended, are respected.

We now extend the graph construction from Definition 41 to detect layered symmetries. Re-
call that in modal logics defined over classes having tree witnesses, literals occurring at different
modal depths can be considered independently. Therefore, we can define a layered permutation
with a different permutation at each modal depth (see Definition 34).

Definition 42 (Layered graph construction). Let ϕ be a modal CNF formula. Let l be an admis-
sible labeling and let id be an identification function.

The graph LGid,l(ϕ) = (N, E1, E2, l′) corresponding to ϕ, l and id is the smallest labeled graph
satisfying the following conditions:

23

PIRSES-GA-2011-295261 / MEALS Page 24 of 32 Public

1. The labeling function l′, that extends the labeling function l to work with pairs in lits(ϕ)×N,
is defined as:

ł′(x) =

{
ł(y) if x = (y, i)
ł(x) otherwise .

2. For each atom variable a ∈ indexes(ϕ):

(a) There are nodes a and ¬a in N with labels l′(a) and l′(¬a).

(b) There is an edge between a and ¬a in E1.

3. For each atom variable a ∈ (atoms(ϕ, i)\indexes(ϕ)) with 0 ≤ i ≤ md(ϕ):

(a) There are nodes (a, i) and (¬a, i) in N with labels l′((a, i)) and l′((¬a, i)).

(b) There is an edge between (a, i) and (¬a, i) in E1.

4. For each clause C at modal depth 0 there is a node Cid in N with label l′(Cid).

5. For each atom literal k occurring as a disjunct in a clause C at modal depth i, there is an
edge between C and k in E1, if k ∈ indexes(ϕ), or between C and (k, i) in E1, otherwise.

6. For each modal literal [m]D (¬[m]D) occurring as a disjunct in a clause C:

(a) There is a node Did in N with label l′(Did).

(b) There is an edge between Cid and Did in E1.

(c) If m is indexed by an atom variable a, then there is an edge between Did and a in E2.

LGid,l(ϕ) has 2 × indexes(ϕ) + 2 × |atoms(ϕ)| × (md(ϕ) + 1) + |clauses(ϕ)| nodes.

This construction differs from Definition 41 in the way literals are handled since it treats
differently the atoms indexing modalities and atoms not indexing modalities. Atoms indexing
modalities are considered “global”, i.e., just a pair of nodes are added for this type of atoms
(see item 2). On the other hand, for atoms not indexing modalities, if the same literal occurs at
different modal depths, the construction treats these occurrences independently adding distinct
literal nodes (see item 3) including the modal depth information, which we will use later to build
the layered permutation corresponding to the formula.

Example 10. Consider the following modal CNF formula ϕ = (¬a∨ [m(i)]b∨ [m(i)]¬b)∧ (¬b∨
[m(j)]a ∨ [m(j)]¬a), where m(i) and m(j) represent modalities indexed by the atoms i and j
respectively. Figure 4 shows its graph LGid,l(ϕ) (labels are represented by shapes, nodes of the
form (l, i) by li, edges in E1 and E2 by single and double lines respectively).
A set of generators for the automorphism group of LGid,l(ϕ) is:

π1 = (C D)(b1 ¬b1)
π2 = (E F)(a1 ¬a1)
π3 = (A B)(C E)(D F)(a0 b0)(¬a0 ¬b0)(a1 b1)(¬a1 ¬b1)(i j)(¬i ¬ j).

24

PIRSES-GA-2011-295261 / MEALS Page 25 of 32 Public

A

C Da0 ¬a0

b1 ¬b1¬i i

B

E Fb0 ¬b0

a1 ¬a1¬ j j

A = (¬a ∨ [m(i)]b ∨ [m(i)]¬b)
B = (¬b ∨ [m(j)]a ∨ [m(j)]¬a)
C = [m(i)]b
D = [m(i)]¬b
E = [m(j)]a
F = [m(j)]¬a

Figure 4: Layered construction example.

To obtain the corresponding layered permutation for ϕ we build the permutations at each modal
depth using the depth information present in each node ai and adjoining the cycles involving
atoms indexing modalities, since they are considered “global permutations”. We obtain the fol-
lowing:

ρ̄1 = 〈ρId, (b ¬b)〉
ρ̄2 = 〈ρId, (a ¬a)〉
ρ̄3 = 〈(a b)(¬a ¬b)(i j)(¬i ¬ j), (a b)(¬a ¬b)(i j)(¬i ¬ j)〉,

where ρId is the identity permutation.

Theorem 9 (Correctness). Let ϕ be a modal CNF formula and LGid,l(ϕ) = (N, E1, E2, l) the graph
corresponding to ϕ. Then every symmetry ρ̄ of ϕ corresponds one-to-one to an automorphism π
of LGid,l(ϕ).

Proof. It follows from a straightforward generalization of Propositions 7 and 8. �

4.1 Experimental Evaluation
We now empirically evaluate the graph constructions to see how often symmetries appear in
modal benchmarks and how hard it is to actually find them.

An evaluation of the effects of using symmetry information in a tableaux algorithm for the
basic modal logic is available in [41].

4.1.1 Implementation

For testing purposes, we restrict ourselves to the basic modal logic. Our test set contains 378 in-
stances, distributed in 9 problem classes, from the Logics Workbench Benchmark for K (LWB) [42].

The LWB is a structured test set that has been extensively used to test modal provers and
therefore it constitutes a good starting point to assess our detection algorithms. It should be
mentioned, however, that most of the formulas in this test set became too easy for state of the art
provers, even though it still contains instances which remain difficult. An extensive evaluation
of the detection algorithms on more challenging test sets is done in [41].

We implemented the global and layered graph constructions into the tool sy4ncl. sy4ncl
is a command line tool, written in Haskell, that takes a basic modal logic formula, builds the

25

PIRSES-GA-2011-295261 / MEALS Page 26 of 32 Public

selected graph (global or layered) and outputs it in a suitable format, for further processing by an
automorphisms detection tool, along with a mapping from vertices to literals and statistics about
the constructed graph.

To search for symmetries we use the graph automorphism detection tool Bliss [43]. Bliss
takes a graph specification and returns a set of generators for the automorphism group of the
graph. If the graph has non-trivial automorphisms, we then reconstruct the symmetries of the
formula using the mapping generated by sy4ncl.

All tests were ran on an Intel Core i7 2.93GHz with 16GB of RAM and a timeout of 10
seconds for both graph construction and symmetry detection. The tools and benchmarks are
available at:

http://cs.famaf.unc.edu.ar/˜ezequiel/sml-am.

4.1.2 Results

Table 2 summarizes the results for the LWB test set using both constructions (global and layered).
Columns #In, #To and #S y are the number of instances in the test set, the number of instances
that timeouted and the number of instances with at least one non-trivial symmetry, respectively.
Columns TG and TS are the total time, in seconds, needed to create the graph and search for
automorphisms, for all the instances, respectively.

#In #To #S y TG TS

Global 378 0 135 9.83 1.18
Layered 378 0 208 9.80 1.80

Table 2: Symmetries in the LWB test set.

Table 2 shows that many symmetric instances exists in the LWB test set and that the time
required to compute the symmetries (graph time plus search time) is negligible. It also confirms
our claim that by using the layered construction we could detect more symmetries. Indeed, with
the layered construction, we find 73 more symmetric instances than with the global construction.

Table 3 shows detailed results for the LWB test set. Column M is the median number of de-
tected generators in each problem class. This value gives an approximated idea of how symmetric
are the instances in a problem class.

Table 3 shows that the LWB test set presents a behavior that matches our expectations: the
existence of symmetries is driven by the codification used in each problem class. Many problem
classes (k_branch, k_path, k_grz, k_ph and k_poly) exhibit many symmetric instances, while
others exhibit none (k_d4, k_dum, k_t4p) or few symmetric instances (k_lin). Also notice
the effect of using the layered construction. For some problem classes (k_branch, k_ph and
k_poly) both graph constructions yield practically the same results, with the layered version
detecting a few more symmetries per instances than the global version. However, in the k_path
and k_grz classes, differences are more evident.

26

http://cs.famaf.unc.edu.ar/~ezequiel/sml-am

PIRSES-GA-2011-295261 / MEALS Page 27 of 32 Public

Global Layered

Class #In #S y M #S y M

k_branch 42 42 11.5 42 11.5
k_d4 42 0 - 0 -
k_dum 42 0 - 0 -
k_grz 42 2 1 42 4.5
k_lin 42 1 1 1 1
k_path 42 9 1.75 42 34.5
k_ph 42 39 1 39 1
k_poly 42 42 16 42 18
k_t4p 42 0 - 0 -

Table 3: Symmetries in the LWB test set detailed by problem class.

To gain an insight on the size of the resulting graphs, Table 4 provides detailed information
for the top 10 largest graphs generated using both constructions. Columns md, #V and #Cl are
the modal depth, the number of propositional variables and the number of clauses (clauses at
modal depth 0 plus clauses occurring in modal literals) in the input formula. Columns #N and
#E are the number of nodes and the number of edges in the resulting graph, respectively. Column
TG+S is the total time, in seconds, required to build the graph and to search for automorphisms in
it.

As can be seen in Table 4, the graph building algorithms and the search for automorphisms
are efficient, requiring a negligible amount of time even for graphs containing thousands of nodes
and edges (e.g., k_branch_p_21). The table also shows that layered graphs are slightly bigger
than global graphs due to the duplication of literal nodes occurring at different modal depths.

5 Discussion
We presented the theoretical foundations for exploiting and detecting symmetries in modal log-
ics.

First we focused on the basic modal logic and established two results: that symmetries of
a formula partition the model space into equivalence classes containing only models satisfying
the formula or only models not satisfying it, and that symmetries can be used as an inference
mechanism. The key notion for proving these results is that of ρ-simulation, which can be seen
as a relaxed form of bisimulation that takes into account the effects of a permutation ρ.

We extended the results to a broad range of modal logics using the coinductive framework
and introduced a more flexible notion of symmetry, i.e., layered symmetries, for modal logics
defined over model classes having tree witnesses.

27

PIRSES-GA-2011-295261 / MEALS Page 28 of 32 Public

Global Layered

Formula md #V #Cl #N #E TG+S #N #E TG+S

k_branch_p_21 22 991 40119 42101 48678 0.37 44081 49668 0.38
k_branch_n_21 22 991 40097 42079 48656 0.38 44059 49646 0.36
k_ph_n_21 2 484 14368 15336 20186 0.24 15336 20186 0.22
k_ph_p_21 2 484 14368 15336 20186 0.24 15336 20186 0.21
k_poly_n_21 65 100 10726 10926 11086 0.05 11054 11150 0.07
k_poly_p_21 64 99 10401 10599 10756 0.06 10723 10818 0.06
k_path_n_21 22 6 4416 4428 4754 0.02 4680 4880 0.06
k_path_p_21 21 6 4104 4116 4430 0.02 4356 4550 0.06
k_t4p_n_21 46 5 2786 2796 3045 0.01 2892 3093 0.01
k_lin_n_21 3 239 1662 2140 3245 0.03 2464 3407 0.03

Table 4: Top 10 largest graphs.

We then introduced graph constructions to detect global and layered symmetries in modal
CNF formulas. We proved that the graph constructions are correct, i.e., every detected auto-
morphism of the resulting graph corresponds to a symmetry of the original formula. Since the
constructions are developed in the coinductive framework, they can be seen as templates from
which to derive concrete implementations for concrete modal logics.

We tested the constructions on basic modal logic benchmarks. Experimental results showed
that symmetries do exists in modal benchmarks, and, as expected, the presence of symmetries
highly depends on the problem codification. Results also showed that detecting symmetries is
relatively inexpensive even for large graphs.

The next step would be to see how to profit from the presence of symmetries in modal formu-
las in an automated prover. A preliminary evaluation of the effect of using symmetric information
in a tableaux algorithm for the basic modal logic is available in [41]. Also, more testing in richer
modal logics, e.g., hybrid logic, is necessary.

Acknowledgements This work was partially supported by grants ANPCyT-PICT-2008-306, ANPCyT-
PICT-2010-688, ANPCyT-PICT-2013-2011, the FP7-PEOPLE-2011-IRSES Project “Mobility between
Europe and Argentina applying Logics to Systems” (MEALS) and the Laboratoire International Associé
“INFINIS”.

Bibliography
[1] C. Areces, D. Gorı́n, Coinductive models and normal forms for modal logics (or how we

learned to stop worrying and love coinduction), Journal of Applied Logic 8 (4) (2010)

28

PIRSES-GA-2011-295261 / MEALS Page 29 of 32 Public

305–318.

[2] G. Darvas, Symmetry. Cultural-historical and ontological aspects of science-arts relations.
The natural and man-made world in an interdisciplinary approach, Basel: Birkhäuser, 2007.

[3] J. Harrison, Without loss of generality, in: S. Berghofer, T. Nipkow, C. Urban, M. Wenzel
(Eds.), Proceedings of the 22nd International Conference on Theorem Proving in Higher
Order Logics, Vol. 5674 of LNCS, Springer-Verlag, Munich, Germany, 2009, pp. 43–59.

[4] K. Sakallah, Symmetry and Satisfiability, Vol. 185 of Frontiers in Artificial Intelligence and
Applications, IOS Press, 2009, Ch. 10, pp. 289–338.

[5] B. Benhamou, L. Sais, Theoretical study of symmetries in propositional calculus and ap-
plications, in: Automated Deduction (CADE-11), 1992, pp. 281–294.

[6] B. Krishnamurthy, Short proofs for tricky formulas, Acta Informatica 22 (3) (1985) 253–
275.

[7] C. Brown, L. Finkelstein, P. Purdom Jr, Backtrack searching in the presence of symmetry,
in: Applied algebra, algebraic algorithms and error-correcting codes, Springer, 1989, pp.
99–110.

[8] J. Crawford, A theoretical analysis of reasoning by symmetry in first-order logic, in: Pro-
ceedings of AAAI Workshop on Tractable Reasoning, San Jose, CA, 1992, pp. 17–22.

[9] B. Benhamou, L. Sais, Tractability through symmetries in propositional calculus, Journal
of Automated Reasoning 12 (1) (1994) 89–102.

[10] J. Crawford, M. Ginsberg, E. Luks, A. Roy, Symmetry-breaking predicates for search prob-
lems, in: Proceedings of KR 1996, 1996, pp. 148–159.

[11] F. Aloul, A. Ramani, I. Markov, K. Sakallah, Solving difficult instances of Boolean satisfia-
bility in the presence of symmetry, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 22 (9) (2003) 1117–1137.

[12] F. Aloul, I. Markov, K. Sakallah, Shatter: efficient symmetry-breaking for Boolean satisfia-
bility, in: Design Automation Conference, IEEE, 2003, pp. 836–839.

[13] F. Aloul, K. Sakallah, I. Markov, Efficient symmetry breaking for Boolean satisfiability,
IEEE Transactions on Computers 55 (5) (2006) 549–558.

[14] B. Benhamou, T. Nabhani, R. Ostrowski, M. Saidi, Enhancing clause learning by symmetry
in SAT solvers, in: Proceedings of the 22nd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), 2010, pp. 329–335.

[15] I. Gent, K. Petrie, J. Puget, Symmetry in constraint programming, in: F. Rossi, P. van Beek,
T. Walsh (Eds.), Handbook of Constraint Programming, Elsevier, 2006, Ch. 10.

29

PIRSES-GA-2011-295261 / MEALS Page 30 of 32 Public

[16] D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, B. Smith, Symmetry definitions for constraint
satisfaction problems, in: Principles and Practice of Constraint Programming, Springer,
2005, pp. 17–31.

[17] F. Margot, Pruning by isomorphism in branch-and-cut, Mathematical Programming 94 (1)
(2002) 71–90.

[18] F. Margot, Exploiting orbits in symmetric ILP, Mathematical Programming 98 (1-3) (2003)
3–21.

[19] M. Fox, D. Long, The detection and exploitation of symmetry in planning problems, in:
IJCAI, Vol. 99, 1999, pp. 956–961.

[20] M. Fox, D. Long, Extending the exploitation of symmetries in planning, in: AIPS, 2002,
pp. 83–91.

[21] E. Clarke, R. Enders, T. Filkorn, S. Jha, Exploiting symmetry in temporal logic model
checking, Formal Methods in System Design 9 (1-2) (1996) 77–104.

[22] C. Ip, D. Dill, Better verification through symmetry, Formal methods in system design
9 (1-2) (1996) 41–75.

[23] A. Sistla, V. Gyuris, E. Emerson, SMC: a symmetry-based model checker for verification
of safety and liveness properties, ACM Transactions on Software Engineering and Method-
ology (TOSEM) 9 (2) (2000) 133–166.

[24] D. Bošnački, D. Dams, L. Holenderski, Symmetric Spin, International Journal on Software
Tools for Technology Transfer 4 (1) (2002) 92–106.

[25] G. Audemard, B. Mazure, L. Sais, Dealing with symmetries in Quantified Boolean For-
mulas, in: Proceedings of the 7th International Conference on Theory and Applications of
Satisfiability Testing (SAT’04), 2004, pp. 257–262.

[26] G. Audemard, S. Jabbour, L. Sais, Efficient symmetry breaking predicates for Quantified
Boolean Formulae, in: Proceedings of SymCon-Symmetry in Constraitns-CP workshop,
2007.

[27] G. Audemard, S. Jabbour, L. Sais, Symmetry breaking in Quantified Boolean Formulae, in:
IJCAI, 2007, pp. 2262–2267.

[28] G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani, Bounded model checking for
timed systems, in: Formal Techniques for Networked and Distributed Sytems (FORTE
2002), Springer, 2002, pp. 243–259.

[29] K. Roe, The heuristic theorem prover: Yet another SMT modulo theorem prover, in: Com-
puter Aided Verification, Springer, 2006, pp. 467–470.

30

PIRSES-GA-2011-295261 / MEALS Page 31 of 32 Public

[30] D. Déharbe, P. Fontaine, S. Merz, B. Woltzenlogel Paleo, Exploiting symmetry in SMT
problems, in: Automated Deduction (CADE-23), Vol. 6803 of LNCS, Springer Berlin Hei-
delberg, 2011, pp. 222–236.

[31] A. Donaldson, A. Miller, Automatic symmetry detection for model checking using compu-
tational group theory, in: Formal Methods, Springer, 2005, pp. 481–496.

[32] A. Miller, A. Donaldson, M. Calder, Symmetry in temporal logic model checking, ACM
Computing Surveys 38 (3).

[33] A. Donaldson, Automatic techniques for detecting and exploiting symmetry in model
checking, Ph.D. thesis, University of Glasgow (2007).

[34] M. Cohen, M. Dam, A. Lomuscio, H. Qu, A symmetry reduction technique for model
checking temporal-epistemic logic., in: IJCAI, Vol. 9, 2009, pp. 721–726.

[35] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2001.

[36] P. Blackburn, J. van Benthem, F. Wolter, Handbook of Modal Logic, Vol. 3 of Studies in
Logic and Practical Reasoning, Elsevier Science Inc., New York, NY, USA, 2006.

[37] J. Fraleigh, V. Katz, A first course in abstract algebra, Addison-Wesley world student series,
Addison-Wesley, 2003.

[38] P. Patel-Schneider, R. Sebastiani, A new general method to generate random modal formu-
lae for testing decision procedures, Journal of Artificial Intelligence Research 18 (2003)
351–389.

[39] C. Areces, B. ten Cate, Hybrid logics, in: P. Blackburn, F. Wolter, J. van Benthem (Eds.),
Handbook of Modal Logics, Elsevier, 2006, pp. 821–868.

[40] C. Areces, R. Gennari, J. Heguiabehere, M. de Rijke, Tree-based heuristics in modal theo-
rem proving, in: Proceedings of ECAI’2000, Berlin, Germany, 2000, pp. 199–203.

[41] C. Areces, E. Orbe, Symmetric blocking, Theoretical Computer Science. In Press. doi:
http://dx.doi.org/10.1016/j.tcs.2015.06.020.

[42] P. Balsiger, A. Heuerding, S. Schwendimann, A benchmark method for the propositional
modal logics K, KT, S4, Journal of Automated Reasoning 24 (3) (2000) 297–317.

[43] T. Junttila, P. Kaski, Engineering an efficient canonical labeling tool for large and sparse
graphs, in: Proceedings of the Workshop on Algorithm Engineering and Experiments
(ALENEX), 2007.

31

http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.06.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2015.06.020

PIRSES-GA-2011-295261 / MEALS Page 32 of 32 Public

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

32

	Symmetries in Automated Theorem Proving
	Symmetries in the Basic Modal Logic
	Beyond Basic Modal Logic
	Coinductive Modal Models
	A Generalized Theory of Symmetries
	Layered Permutations

	Symmetry Detection for Modal Logics
	Experimental Evaluation
	Implementation
	Results

	Discussion
	Bibliography
	MEALS Partner Abbreviations

