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1 Changing the Model
Modal logics [6, 8] are particularly well suited to describe graphs, and this is fortunate as many
situations can be modeled using graphs: an algebra, a database, the execution flow of a program
or, simply, the arbitrary relations between a set of elements. This explains why modal logics have
been used in many, diverse fields. They offer a well balanced trade-off between expressivity and
computational complexity (model checking the basic modal language BML is only polynomial,
while its satisfiability problem is PSpace-complete). Moreover, the range of modal logics known
today is extremely wide, so that it is usually possible to pick and choose the right modal logic
for a particular application.

But if we want to describe dynamic aspects of a given situation, e.g., how the relations be-
tween a set of elements evolve through time or through the application of certain operations,
the use of modal logics (or actually, any kind of logic with classical semantics) becomes less
clear. We can always resort to modeling the whole space of possible evolutions of the system as
a graph, but this soon becomes unwieldy. It would be more elegant to use truly dynamic modal
logics with operators that can mimic the changes that the structure will undergo. This is not a
new idea, and a clear example of this kind of logics is the sabotage logic introduced by Johan
van Benthem in [19].

Consider the following sabotage game. It is played on a graph by two players, Runner and
Blocker. Runner can move on the graph from node to accessible node, starting from a designated
point, and with the goal of reaching a given final point. He should move one edge at a time.
Blocker, on the other hand, can delete one edge from the graph, every time it is his turn. Of
course, Runner wins if he manage to move from the origin to the final point in the graph, while
Blocker wins otherwise. van Benthem proposes transforming the sabotage game into a modal
logic, by working on models where edges are treated as objects and introducing the following
‘cross-model modality’ referring to submodels from which objects have been removed:

M,w |= –̂ϕ iff there is a state v , w ofM such thatM\ {v},w |= ϕ.

As a modal logic, it is clear that the –̂ operator changes the model in which a formula is
evaluated. As van Benthem puts it, –̂ is an “external” modality that takes evaluation to another
model, obtained from the current one by deleting some state or transition. Various sabotage
modal logics have been studied [13, 12, 17]. In particular, it has been proved that solving the
sabotage game is PSpace-hard, while the model checking problem of the associated modal logic
is PSpace-complete and the satisfiability problem is undecidable. The logic fails to have both the
finite model property and the tree model property. A translation of the sabotage modal logic into
first-order logic is also provided.

Memory logics, investigated in [1, 14, 3, 4], are another family of modal logics that can
change models. The semantics of these languages is specified on models that come equipped
with a set of states called the memory. The simplest memory logic includes a modality r© that
stores the current point of evaluation into memory, and a modality k© that verifies whether the
current state of evaluation has been memorized. The memory can be seen as a special proposi-
tion symbol whose extension grows whenever the r© modality is used. The general properties
of memory logics are similar to those of sabotage logics: a PSpace-complete model checking
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problem, an undecidable satisfiability problem, and failure of both the finite model and the tree
model properties.

In this article, we will investigate a modal changing operator that neither shrinks nor expands
the model1. Instead, it has the ability to swap the direction of a traversed edge. The

�
^ operator

is a ^ operator — to be true at a state w it requires the existence of an accessible state v where
evaluation will continue— but it changes the accessibility relation during evaluation —the pair
(w, v) is deleted, and the pair (v,w) added to the accessibility relation.

A picture will help understand the dynamics of
�
^. The formula

�
^^> is true in a model with

two related states:

w

�
^^>

v

w v
^>

As we can see in the picture, evaluation starts at state w with the edge pointing from w to v,
but after evaluating the

�
^ operator, it continues at state v with the edge now pointing from v to

w. In this article, we will see that the swap logic SL obtained by adding
�
^ to the basic modal

logic fares as the other model changing logics we mentioned above: thought still a fragment of
first-order logic, it is very expressive with a PSpace-complete model checking problem and an
undecidable satisfiability problem.

The rest of the article is organized as follows. We first present syntax and semantics of SL
in Section 2. In Section 3 we define a satisfiability preserving translation of SL into first-order
logic, then in Section 4 we provide an equivalence preserving translation into hybrid logic. In
Section 5 we study the expressive power of SL using bisimulations. Finally, in Section 6 we
study the complexity of its model checking and satisfiability problems. We close the article in
Section 7 summing up our results.

2 Basic Definitions
Now we introduce syntax and semantics for SL. We define some notation that will help us de-
scribe models with swapped accessibility relations. We provide some examples of SL formulas,
and we close this section showing the lack of finite model property of the logic.

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional symbols. Then the
set FORM of formulas of SL over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ^ϕ |
�
^ϕ,

1We will see in the next section that this is not completely true, the accessibility relation might shrink but only
in particular cases.
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where p ∈ PROP and ϕ, ψ ∈ FORM. Other operators are defined as usual. In particular �ϕ is a
shorthand for ¬^¬ϕ and

�
�ϕ stands for ¬

�
^¬ϕ.

The above definition shows that SL is the syntactic extension of the basic modal logic with
the

�
^ operator. This is also true semantically: formulas ofSL are evaluated in standard relational

models, and the meaning of all the operators of the basic modal logic is unchanged. When we
evaluate formulas of SL containing the

�
^ operator, we will need to keep track of the edges that

have been swapped. To that end, let us define precisely the models that we will use. In the rest of
this article we will use wv as a shorthand for {(w, v)} or (w, v). Context will always disambiguate
the intended use.

Definition 2 (Models and Model Variants). A modelM is a tripleM = 〈W,R,V〉, where W is a
non-empty set whose elements are called points or states; R ⊆ W×W is the accessibility relation;
and V : PROP 7→ P(W) is a valuation.

Given a model M = 〈W,R,V〉, we define the model M∗
vw = 〈W,R∗vw,V〉, where R∗vw = (R \

wv) ∪ vw, wv ∈ R.
We will refer to models obtained by swapping edges, or more generally, modifying a given

initial model, as model variants.

Definition 3 (Semantics). Let w be a state inM, the pair (M,w) is a pointed model; we usually
drop parenthesis and callM,w a pointed model. Given a pointed modelM,w and a formula ϕ
we say thatM,w satisfies ϕ (notation,M,w |= ϕ) when

M,w |= p iff w ∈ V(p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ andM,w |= ψ
M,w |= ^ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M, v |= ϕ

M,w |=
�
^ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M∗

vw, v |= ϕ.

ϕ is satisfiable if for some pointed modelM,w we haveM,w |= ϕ.

The semantic condition for
�
^ looks quite innocent but, as we will see in the next couple of

examples, it is actually very expressive. First, let us see the operator in action in two simple
important cases.

Example 1. The
�
^ operator leaves reflexive edges unchanged:

w w

�
^ϕ ϕ

Example 2. The
�
^ operator collapses symmetric edges into a single one:

w v w v

�
^ϕ ϕ
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We start with the model on the left, where R = {wv, vw} and evaluate
�
^ϕ at w. This implies

evaluating ϕ at v after the relation is updated to R∗vw = (R \ wv) ∪ vw = {vw}, as shown on the
right. This is actually the only situation where evaluating a

�
^ formula leads to a model variant

where |R| decreases.

Now let us see a couple of examples where SL formulas can force model with complex
structures.

Example 3. Define �0ϕ as ϕ, �n+1ϕ as ��nϕ, and let �(n)ϕ be a shorthand for
∧

1≤i≤n �
iϕ. The

formula
ϕ = p ∧ �(3)¬p ∧

�
^^^p

is true at a state w in a model if and only if w has a reflexive successor. Notice that no equivalent
formula exists in the basic modal language (formulas in the basic modal language can always be
satisfied at the root of a tree model).

Let us analyse the formula in detail. Suppose we evaluate ϕ at some state w of an arbitrary
model. The ‘static’ part of the formula p∧�(3)¬p makes sure that p is true in w and that no p state
is reachable within a three step neighbourhood of w (in particular, w cannot be reflexive). Now,
the ‘dynamic’ part of the formula

�
^^^p will do its magic. Because

�
^^^p is true at w, there

should be an R-successor v where ^^p holds once the accessibility relation has been updated to
R∗vw. Now, v has to reach a p-state in exactly two R∗vw-steps to satisfy ^^p. But the only p state
sufficiently close for this to happen is w which is reachable in one step. As w is not reflexive, v
has to be reflexive so that we can linger at v for one loop and reach p in the correct number of
states.

We analyse now two classical properties of modal logics: the tree and the finite model prop-
erty. Both fail in the case of SL.

Theorem 1. The tree model property fails for SL, i.e., there are formulas in SL that cannot be
satisfied at the root of a tree.

Proof. Consider the following SL formula that forces models that contain a diamond:

ϕ = ^p ∧ ^¬p ∧ �^> ∧ ���⊥
∧
�
��
�
���⊥

∧�
�
���⊥

∧
�
^
�
^^^^^^>

w

p ¬p

When evaluated at w, the first line of ϕ forces two different successors w1 and w2; each
of them has successors which are dead ends. The second line forces w to have at most two
successors, while the third makes sure that w1 and w2 have at most one successor. Finally, the
last line says that starting from w and after swapping two successive edges, we can create a path
of length at least five. For that to be true, w1 and w2 must share a successor. � �

Theorem 2. The finite model property fails for SL, i.e., there are formulas in SL that can only
be satisfied in infinite models.
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Proof. Consider the following SL formula:

ϕ = s ∧ �(9)¬s (1)
∧^> (2)
∧�^> (3)
∧
�
��¬^s (4)
∧
�
�
�
�(¬s → ^^^^^s) (5)

∧
�
�
�
�
�
�(¬^s → ^^^( ¬s ∧ ^^^s)) (6)

The formula forces models to have an infinite chain of states. It does so by ensuring that the
propositional symbol s is true only in the evaluation state w, and false in all the states reachable
from w. Then, it enforces specific properties on the model, locating states by their distance to
w using formulas of the form ^ . . .^s after swapping an outgoing edge from w. This way it is
possible to enforce seriality, irreflexivity and transitivity on a chain of states. Let us check the
formula in detail.

(1) makes s true at the state w and false at all states accessible within 9 steps. By (2), w has
one successor and by (3), every successor of w has some successor. (4) makes every successor
of w irreflexive.

(5) tells that from any state v , w reachable in two swapping steps, it is possible to go back
to w in five steps. But this is only possible by first going to w in two steps, then going to v in one
step and going again to w in two steps. Hence all states accessible in two steps from w are also
accessible in one. This makes w a ‘spy state’, i.e., it is directly connected to every state in the
submodel generated from it. (6) enforces the same property on the successors of w.

(3), (4) and (6) respectively enforce seriality, irreflexivity and transitivity on a chain of states
starting from w. Hence this chain must be infinite. � �

These examples should warn us about the expressivity of SL, which is certainly well above
that of the basic modal language. We might even wonder if the dynamic characteristics of SL
can be captured inside first-order logic.

3 Swap Logic as a Fragment of First-Order Logic
As we saw in the previous section SL is very expressive. This expressivity is intrinsically tied
to its ability to modify the model during evaluation (remember that we only extended the basic
modal language with a harmless looking diamond modality). It is well known that the basic
modal language can be seen as a fragment of first-order logic via a satisfiability preserving trans-
lation. We might wonder if this is the case also for SL. It is not obvious, a priori, that the model
changing capabilities of SL can be captured in the static setting of first-order.

In this section we provide a satisfaction preserving translation of SL into FOL, but it is far
more involved that the standard translation used for the basic modal logic. Indeed, we will have
to force the translated formula to be evaluated in a particular class of models. We will do this
through the use of two sorted first-order logic [22]. First, let us introduce formally the syntax
and semantics of (sorted) first-order logic.
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Definition 4 (Sorted first-order language). Let REL = {R1,R2, . . .} be a countable set of rela-
tion symbols, FUN = { f1, f2, . . .} a countable set of function symbols, CON = {c1, c2, . . .} a
countable set of constant symbols, VAR = {x1, x2, . . .} a countable set of variables and SORT =

{O1, ,O2, . . .} a countable set of sorts. We assume that REL, FUN, CON, VAR and SORT are
pairwise disjoint. To each relation symbol Ri ∈ REL and each function symbol fi ∈ FUN we
associate an arity n > 0 and a sort type given by the function S , where S (Ri) ∈ SORTn and
S ( fi) ∈ (SORTn,SORT). To each variable x ∈ VAR and constant c ∈ CONS, we have that
S (x) ∈ SORT and S (c) ∈ SORT. We call S = 〈REL,FUN,CON,VAR,SORT〉 a signature. If
FUN = {} we will say that the signature is relational.

The well-formed terms of the sorted first-order language over the signature 〈REL, FUN,
CON,VAR,SORT〉 are

TERM := xi | ci | fi(t1, . . . , tn),

where, xi ∈ VAR, ci ∈ CON, fi ∈ FUN of arity n and t1, . . . , tn ∈ TERM are of the appropriate
type. The well-formed formulas over the signature are

FORM := > | t1 = t2 | Ri(t1, . . . , tn) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x:O.ϕ,

where t1, t2, . . . , tn ∈ TERM, Ri ∈ REL is an n-ary relation symbol, ϕ, ϕ1, ϕ2 ∈ FORM, xi ∈ VAR,
S (t1) = S (t2), (S (t1) . . . S (tn)) = S (Ri) and O = S (x).

As usual, we take ∨,→,↔ and ∀ as defined symbols.

Turning to semantics, sorted first-order formulas are interpreted on sorted first-order models.

Definition 5 (Sorted first-order models and satisfiability). Let S be a signature, a sorted first-
order model for S is a structureM = 〈M,I〉 with M = {M1, . . . ,Mk}, where M′

i s are non-empty
sets and I is an interpretation function defined over REL ∪ FUN ∪ CONS ∪ SORT such that:

• To each Oi ∈ SORT, I(Oi) ∈ M.

• To each Ri ∈ REL such that S (Ri) = (O1, . . . ,On), I assigns a relation I(Ri) ⊆ I(Oi) ×
. . . × I(On).

• To each fi ∈ FUN such that S ( fi) = (O1, . . . ,On,On+1), I assigns a function I( fi) : I(O1)×
. . . × I(On)→ I(On+1).

• To each ci ∈ CONS with S (ci) = Oi, I assigns some element I(ci) ∈ I(Oi).

An assignment g forM is a mapping g : VAR →
⋃

Mi∈M Mi such that then g(x) ∈ I(S (x)).
Given an assignment g for M, x ∈ VAR and m ∈ I(S (x)), we define gx

m (an x-variant of g) by
gx

m(x) = m and gx
m(y) = g(y) for x , y. Given a model M and an assignment g for M, the

interpretation function I can be extended to all elements in TERM:

I(xi) = g(xi)
I( f (t1, . . . , tn)) = I( f )(I(t1), . . . ,I(tn)).

8
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w vR

R

i0

w v
Ri1

w v

R i2

S

S
S

S

Figure 1: A 2FOL model that statically represents a dynamic SL model.

Finally the satisfiability relation |= is defined as

M |= >[g] always
M |= t1 = t2[g] iff I(t1) = I(t2)

M |= R(t1, . . . , tn)[g] iff (I(t1), . . . ,I(tn)) ∈ I(R)
M |= ¬ϕ[g] iff M 6|= ϕ[g]

M |= ϕ1 ∧ ϕ2[g] iff M |= ϕ1[g] andM |= ϕ2[g]
M |= ∃x:O.ϕ[g] iff M |= ϕ[gx

m] for some m ∈ I(O).

If a given formula ϕ is satisfied under every assignment forM, we say that ϕ is valid inM and
writeM |= ϕ.

In the rest of the paper we will call 2FOL, to the sorted first-order logic with two sorts.

The key idea to provide a translation from SL to 2FOL is to unravel dynamic SL models
so that they can be represented by static first-order models. Consider the following SL model

w v

Swap operators will be able to transform the model in specific ways. A
�
^ operator evaluated

at w will produce a model variant where the accessibility relation is just the (v,w) edge, and
similarly for a

�
^ operator evaluated at v.

As illustrated in Figure 1, we can use an index to identify each of these possible model
variants, and then connect them using a new accesibility relation, where some state w in the
model i j is related with some state v in ik, if (w, v) ∈ R in the model i j, and ik is identical to
i j except that the edge (w, v) has been swapped around. The R relation is meant to link states
with the same index, while the S relation is meant to link states from a given model variant to a
possibly different model variant corresponding to the result of swapping an edge.

Now, we apply this idea to translate formulas of SL into 2FOL. We start by taking the well-
known standard translation from BML to FOL, but extend its definition so that

�
^ is translated

and interpreted using the S relation. To ensure that the relations R and S behave as intended, we
add to the translation some additional conditions. Let us see the translation in detail.

9



PIRSES-GA-2011-295261 / MEALS Page 10 of 28 Public

Definition 6 (Standard Translation). We define S T : SL × VAR × IND→ 2FOL where VAR is
a set of variables and IND a set of indexes. It produces formulas in two sorted first-order logic
with sorts W and I, one 3-ary predicate symbol R′ over W × I ×W, one 4-ary predicate symbol
S ′ over W × I ×W × I, and one unary predicate symbol Pp over W for each p ∈ PROP.

S T (p, x, i) = Pp(x)
S T (¬ϕ, x, i) = ¬S T (ϕ, x, i)
S T (ϕ ∧ ψ, x, i) = S T (ϕ, x, i) ∧ S T (ψ, x, i)
S T (^ϕ, x, i) = ∃y:W .(R′(x, i, y) ∧ S T (ϕ, y, i))
S T (

�
^ϕ, x, i) = ∃y:W, j:I .(S ′(x, i, y, j) ∧ S T (ϕ, y, j)).

Define the following two 2FOL formulas:

Cond1 = ∀w,v:W,i:I .(R′(w, i, v)↔ ∃ j:I .S ′(w, i, v, j))
Cond2 = ∀w,v:W,i, j:I .

(S ′(w, i, v, j) ↔
(R′(w, i, v)
∧ R′(v, j,w)
∧ w , v → ¬R′(w, j, v)
∧ ∀w′,v′:W .(w, v),(w′, v′) ∧ (w, v),(v′,w′)

→ R′(w′, i, v′)↔ R′(w′, j, v′)) ).

We finally define S T ′(ϕ, x, i) = S T (ϕ, x, i) ∧Cond1 ∧Cond2.

Cond1 says that whenever two states are linked in some model variant then it is possible to
swap the edge between them. That is, there exists some model variant indexed by j such that
the state w in model variant i is linked to the state v in model variant j. The other direction says
that if two points are linked by S between possibly different model variants, then they should be
linked by R in the same model variant.

Cond2 enforces a set of conditions that correspond to the expected effect of swapping edges.
Let us read it from left to right. Assume a ‘swapping edge’ exists between state w of model
variant i and state v of model variant j. Then there must be an edge in the model variant i between
w and v (R′(w, i, v)). There is also an edge from v to w in the model variant j (R′(v, j,w)). In the
case where w and v are distinct states, there is no longer an edge from w to v in the model variant
j. Finally, all the other edges of model variants i and j should not be affected by the swapping
(this is the last two lines of Cond2). The other direction of Cond2 tells that whenever all these
conditions are met, there should be a corresponding edge in S .

Notice that the translation from SL to 2FOL is polynomial. However, the class of models
in which we evaluate formulas that are the result of this translation is not the same in which we
evaluate the original SL-formula. The following definition associates each SL model with its
corresponding 2FOL model.

Definition 7 (Model Translation). Let ( )′ be the function that for every modelM = 〈W,R,V〉
associates a two sorted first-order model (M)′ = 〈{W ′, I′},I′〉 where W ′, I′ and I′ are defined as

10
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follows:
W ′ = W
I′ = {R} ∪ {U∗vw | U ∈ I′ ∧ (w, v) ∈ U}
I′(Pp) = V(p)
I′(R′) = {(w,T, v) | T ∈ I′, (w, v) ∈ T }
I′(S ′) = {(w,T, v,T ∗vw) | T ∈ I′, (w, v) ∈ T }.

The model translation above exhaustively expands an SL model into a complete, static
2FOL model that contains every possible model variant obtained by swapping arbitrary edges
of the initial model. This leads to the first part of the equisatisfiability theorem. We want to show
that if an SL formula is satisfiable, then its translation is also satisfiable.

Theorem 3. Let ϕ be an SL formula. If ϕ is satisfiable, then S T ′(ϕ, x, i) is satisfiable.

Proof. We will prove the following. LetM = 〈W,R,V〉 be a model and ϕ a formula of SL. Then

M,w |= ϕ iff (M)′ |= S T ′(ϕ, x, i)[x := w, i := ∅]. ⊗

In the rest of the paper we use the following notation: j = I′( j), i = I′(i),w = I′(w), v =

I′(v),w’ = I′(w′), v’ = I′(v′).

(1) We first prove that (M)′ |= Cond1 ∧Cond2.

1. ∀w,v:W,i:I .(R′(w, i, v)↔ ∃ j:I .S ′(w, i, v, j))
The right-to-left direction holds from the definitions of I′(S ′) and I′(R′). For the
left-to-right direction, it suffices to choose j = i∗vw.

2. ∀w,v:W,i, j:I .(S ′(w, i, v, j) ↔
(R′(w, i, v) ∧ R′(v, j,w) ∧ w , v→ ¬R′(w, j, v)
∧ ∀w′,v′:W .(w, v) , (w′, v′) ∧ (w, v) , (v′,w′)→

R′(w′, i, v′)↔ R′(w′, j, v′)))

LetM be a SL model such that (M)′ |= S ′(w, i, v, j)[w := w, i := i, v := v, j := j] for
arbitrary w, v in W and i, j in I. By definition of I′(S ′), we have that (w, v) ∈ i and
j = i∗vw.

– We have (w, v) ∈ i (definition of I′(R′)), hence (M)′ |= R′(w, i, v).
– We have (v,w) ∈ i∗vw, that is (v,w) ∈ j, i.e., (M)′ |= R′(v, j,w).
– Suppose (M)′ |= w,v, that is, w,v. Then by definition of the ∗ operation, (w, v) <

i∗vw, i.e., (w, v) < j, i.e., (M)′ |= ¬R′(w, j, v).
– We have (M)′ |= (w, v),(w′, v′) ∧ (w, v),(v′,w′) for some w′, v′ ∈ W if, and

only if (w, v),(w’, v’) and (w, v),(v’,w’), which gives (w’, v’) ∈ i if, and only if,
(w’, v’) ∈ i∗vw (by definition of the ∗ operation). This is equivalent to (w’, v’) ∈ j,
therefore (M)′ |= R′(w′, i, v′)↔R′(w′, j, v′).

11
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Hence (M)′ |= Cond1 ∧Cond2.

(2) Now let us prove the following property by structural induction:

〈W, S ,V〉,w |= ϕ iff (M)′ |= S T (ϕ, x, i)[x := w, i := S ].

When examining the following inductive cases, we will prove the left-to-right implica-
tion only. The right-to-left implication can be proved following the steps in the converse
direction.

ϕ = p: trivial by definition of ( )′.

ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2: trivial.

ϕ = ^ψ: Suppose 〈W, S ,V〉,w |= ^ψ. We have:

– ∃v ∈ W s.t. S (w, v) and 〈W, S ,V〉, v |= ψ, by definition of |= ⊗1

– (w, S , v) ∈ I′(R′), from ⊗1 by definition of I′(R′)
– 〈{W ′, I′},I′〉 |= R′(x, i, y)[x := w, y := v, i := S ], by definition of ( )′

– 〈{W ′, I′},I′〉 |= S T (ψ, y, i)[y := v, i := S ], from ⊗1 by I.H.
– 〈{W ′, I′},I′〉 |= ∃y:W .R′(x, i, y) ∧ S T (ψ, y, i)[x := w, i := S ],
– (M)′ |= S T (^ψ, x, i)[x := w, i := S ], by definition of S T .

ϕ =
�
^ψ: Suppose 〈W, S ,V〉,w |=

�
^ψ. We have:

– ∃v ∈ W s.t. S (w, v) and 〈W, S ∗vw,V〉, v |= ψ, by definition of |= ⊗2

– (w, S , v, S ∗vw) ∈ I′(S ′), by ⊗2 and definition of I′

– 〈{W ′, I′},I′〉 |= S ′(x, i, y, j)[x := w, i := S , y := v, j := S ∗vw]
– 〈{W ′, I′},I′〉 |= S T (ψ, y, j)[y := v, j := S ∗vw], from ⊗2 by I.H.
– 〈{W ′, I′},I′〉 |= S ′(x, i, y, j) ∧ S T (ψ, y, j)[x := w, i := S , y := v, j := S ∗vw]
– 〈{W ′, I′},I′〉 |= ∃y:W, j:I .S ′(x, i, y, j) ∧ S T (ψ, y, j)[x := w, i := S ]

– (M)′ |= S T (
�
^ψ, x, i)[x := w, i := S ], by definition of S T .

By (1) and (2) for S = ∅ Property ⊗ follows, completing the proof. � �

Now, we prove that if a first-order model satisfies the translation of an SL formula, then there
exists an SL model that satisfies the original formula. To do so, let us introduce a translation
from models of 2FOL to models of SL.

Definition 8. LetM = 〈{D, I},I〉 be a 2FOL model and let S ∈ I, define (M, S )′ = 〈W,R,V〉
where

• W = D

• V(p) = I(Pp)

12
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• R = {(w, v) ∈ W2 | (w, S , v) ∈ I(R′)}.

The translation ( )′ selects one part of the static model and turns it into an SL model. As we
will now see, the selected part is the model variant where the formula is to be evaluated.

Theorem 4. Let ϕ an SL formula. If S T ′(ϕ, x, i) is satisfiable, then ϕ is also satisfiable.

Proof. We will prove the following. LetM = 〈{D, I},I〉 be a 2FOL model, and S ∈ I. Then

M |= S T ′(ϕ, x, i)[x := w; i := S ] iff (M, S )′,w |= ϕ.

Trivially,M |= Cond1∧Cond2. It remains to be proved by structural induction on the formula
ϕ that:

M |= S T (ϕ, x, i)[x := w; i := S ] iff (M, S )′,w |= ϕ.

In the proof below we only describe the left-to-right implication. The right-to-left implication
can be proved following the steps in the converse direction.

ϕ = p: trivial by definition of ( )′.

ϕ = ¬ψ, ψ1 ∧ ψ2: trivial.

ϕ = ^ψ: SupposeM |= S T (^ψ, x, i)[x := w; i := S ]. We have:

• M |= ∃y:W .R′(x, i, y) ∧ S T (ψ, y, i)[x := w; i := S ]

• M |= R′(x, i, y)∧ S T (ψ, y, i)[x := w; i := S ; y := v], for some new v, by definition of
|= ⊗

• (w, S , v) ∈ I(R′), by definition of I

• (w, v) ∈ R, by definition of ( )′

• (M, S )′, v |= ψ, by I.H. on ⊗

• (M, S )′,w |= ^ψ, from the last two items by definition of |=

ϕ =
�
^ψ: SupposeM |= S T (

�
^ψ, x, i)[x := w; i := S ]. We have:

• M |= ∃y:W, j:I .S ′(x, i, y, j) ∧ S T (ψ, y, j)[x := w; i := S ]

• M |= S ′(x, i, y, j)∧ S T (ψ, y, j)[x := w; i := S ; y := v; j := U], for some new v and U,
by definition of |=

• M |= R′(x, i, y)[x := w; i := S ; y := v], by Cond1 (right-to-left)

• (w, S , v) ∈ I(R′), by definition of |=

• (w, v) ∈ R, by definition of ( )′ ⊗1

• (M,U)′, v |= ψ, by I.H. ⊗2

Now let us prove that (M,U)′ = (M, S )′∗vw:

13
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• Let (M,U)′ = 〈W1,R1,V1〉, (M, S )′∗vw = 〈W2,R2,V2〉
∗
vw = 〈W2,R∗2vw,V2〉

• Trivially W1 = W2 and V1 = V2.

• Now, we haveM |= S ′(x, i, y, j)[x:=w; i:= S ; y:= v; j:=U].
By Cond2, this is equivalent to:
M |= R′(w, i, v) ∧ R′(v, j,w) ∧ (w , v → ¬R′(w, j, v))
∧∀w′,v′:W . ((w, v),(w′, v′) ∧ (w, v),(v′,w′) → R′(w′, i, v′)↔R′(w′, j, v′))
Now by definition of ( )′, the above two facts give us R1 = R∗2vw.

We continue the proof knowing that (M,U)′ = (M, S )′∗vw:

• ∃v ∈ W s.t. (w, v) ∈ R and (M, S )′∗vw, v |= ψ, from ⊗1 and ⊗2

• (M, S )′,w |=
�
^ψ, by definition of |=. �

�

The last two theorems provide the desired result:

Corollary 1. Let ϕ an SL formula. ϕ is satisfiable if, and only if, S T ′(ϕ, x, i) is satisfiable.

Sorts are a convenient, but non-essential, extension of first-order logic. It is indeed possible
to translate many-sorted FOL to unsorted FOL following [10]. Hence SL is a fragment of
unsorted first-order logic.

This translation is not equivalence preserving, since it does not preserve truth of SL formulas
in the same models. However, using the construction of Definition 8, it is possible to select a part
of a the 2FOL model that satisfies the translation of a SL formula, to turn it into a SL model
for the initial formula. This means we are able to build models for satisfiable formulas of SL,
granted we can build models for 2FOL formulas.

4 Swap Logic as a Fragment of Hybrid Logic
Despite its dynamic behavior, SL remains a modal language: it retains a local perspective on
models. It would be interesting to see if SL is a fragment of some known, probably very expres-
sive, modal logic. It turns out that SL can be translated, maintaining truth on the same models,
to the hybrid logicH(:, ↓).

Let us introduce formally the hybrid logic H(:, ↓) [7, 5]. The syntax and semantics of this
language are an extension of the basic modal logic BML. Hybrid logics involve a special set of
propositional symbols called nominals, that act as names pointing to a unique state in the model.
H(:, ↓) introduces the operators : and ↓. : is called the satisfaction operator and the formula

n:ϕ states that ϕ is true at the unique state where n holds. The down-arrow binder ↓ binds a
given nominal to the current state in the model. Hence, ↓n.ϕ intuitively means “after naming the
current state n, ϕ holds”. H(:, ↓) is more expressive than BML. In fact, it is a reduction class of
first order logic [5].

14
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Definition 9. Let the signature 〈PROP,NOM〉 be given, with NOM ⊆ PROP. The set FORM of
formulas ofH(:, ↓) over 〈PROP,NOM〉 is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ^ϕ | n:ϕ | ↓n.ϕ,

where p ∈ PROP, n ∈ NOM and ϕ, ψ ∈ FORM.

Syntactically, nominals can appear at the same places as regular propositional symbols, but
they can also appear as parameters of the operators : and ↓. Models of hybrid logics are similar
to models of BML. However they need to make each nominal point to exactly one state. This
can be done associating to each hybrid model an assignment function for nominals.

Definition 10. A hybrid modelM is a triple 〈W,R,V〉 where W is non empty, R ⊆ W ×W and
V : PROP → P(W) is a valuation. An assignment g forM is an mapping g : NOM → W. Let
M be a hybrid model, w a state inM, and g an assignment, the semantics is defined as:

M,w |= p[g] iff w ∈ V(p), for p ∈ PROP \ NOM
M,w |= n[g] iff w = g(n), for n ∈ NOM
M,w |= ¬ϕ[g] iff M,w 6|= ϕ[g]

M,w |= ϕ ∧ ψ[g] iff M,w |= ϕ[g] andM,w |= ψ[g]
M,w |= ^ϕ[g] iff for some v ∈ W s.t. (w, v) ∈ R,M, v |= ϕ[g]
M,w |= n:ϕ[g] iff M, g(n) |= ϕ[g]
M,w |= ↓n.ϕ[g] iff M,w |= ϕ[gn

w].

ϕ is satisfiable if for some pointed modelM,w and some assignment g we haveM,w |= ϕ[g].

Now let us consider an equivalence preserving translation from SL to H(:, ↓). SL is a
logic that is able to modify the relation of a model. On the other hand, H(:, ↓) can only update
the assignment. Hence, to represent the model variant where some part of an SL formula is
evaluated, we will take advantage of the binder ↓ to name the pair of points of the model where
an edge should be considered as swapped. To ensure that formulas of the shape ^ϕ and

�
^ϕ are

satisfied in the correct model variant, the translation records the set of swapped edges as pairs of
nominals in the set N. The translation also uses C and D subsets of N, such that the current state
of evaluation is the source of all edges in C, and is the destination of all edges in D.

We now introduce the formal, quite involved, definition of the translation. Afterwards we
will explain in detail how the different parts work together.

Definition 11. Let N ⊆ NOM × NOM. For C,D ⊆ N, define:

locate(C,D,N) =
∧

xy∈C
x ∧

∧
xy∈N\C

¬x ∧
∧

xy∈D
y ∧

∧
xy∈N\D

¬y

forbid(C,D) =
∧

xy∈D
¬x ∧

∧
xy∈C
¬y

pass(C,N, ϕ) =
∨

xy∈C
y:(ϕ)′N

swap(C,N, ϕ) =
∨

xy∈C
y:(ϕ)′N\xy∪yx.

15
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Define ( )′N from formulas of SL to formulas ofH(:, ↓) as

(p)′N = p
(¬ϕ)′N = ¬(ϕ)′N

(ψ ∧ ϕ)′N = (ψ)′N ∧ (ϕ)′N

(^ϕ)′N =
∧

C,D⊆N
locate(C,D,N)→ [ ♦(forbid(C,D) ∧ (ϕ)′N) ∨ pass(C,N, ϕ) ]

(
�
^ϕ)′N = ↓x′. ^ (x′ ∧ (ϕ)′N)

∨
∧

C,D⊆N
locate(C,D,N)

→ [↓x′.♦↓y′.(¬x′ ∧ forbid(C,D) ∧ (ϕ)′N∪y′x′) ∨ swap(C,N, ϕ) ]

where x′ and y′ are nominals that do not appear in N.

We include new edges in N only when we simulate a swap, that is, in the translation of
formulas

�
^. We ensure this set never refers twice to the same edge, and it does not contain

symmetric or reflexive edges. More specifically, the translation prevents ^ and
�
^ formulas to be

satisfied by “building again” an edge that has already been swapped. This is why we use locate
and forbid simultaneously. On the other hand, it enables ^ and

�
^ formulas to be satisfied by

traversing a swapped edge, granted it is in the adequate direction in the current model variant.
This is what pass and swap do. Furthermore swap ensures that N remains antisymmetric.
Initially, N is empty, as we are in the model variant with no swapped edges. In that case, the
translation is simplified to:

(♦ϕ)′
∅

= ♦(ϕ)′
∅

(
�
^ϕ)′

∅
= ↓x′.^(x′ ∧ (ϕ)′

∅
) ∨ ↓x′.♦↓y′.(¬x′ ∧ (ϕ)′y′x′)

In (
�
^ϕ)′

∅
we see two occurrences of (ϕ)′N (for some N). Hence the translation may produce

formulas of size exponential in terms of the size of the initial formula, for instance, (
�
^
�
^ . . .

�
^p)′

∅
.

Now we show that the translation maintains equivalence. To do so, we show by inductive
argument that the set N really corresponds to swapped edges. Observe that there are no free
nominals in the formulas produced by the translation. This means that such formulas are satisfi-
able in models where the assignment for the nominals of the language does not matter.

Theorem 5. Given ϕ a formula of SL, M,w a pointed model and g an arbitrary assignment.
Then:

M,w |= ϕ iff M,w |= (ϕ)′∅[g].

Proof. LetM,w a pointed model. Let us show by induction that for all N ⊆ NOM × NOM, for
all S ⊆ W ×W, and for all g : NOM→ W such that:

(Props)

• N, S are irreflexive and antisymmetric.
• If xy ∈ N then g(x)g(y) ∈ S .
• If wv ∈ S , then there exists x, y ∈ N such that g(x)g(y) = wv.
• If xy, x′y′ ∈ N, then g(x)g(y) , g(x′)g(y′).

16
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then:
M∗

S ,w |= ϕ iff M,w |= (ϕ)′N[g].

Where M∗
S is the generalization of M∗

vw of Definition 2 to sets of pairs. M∗
S is uniquely

defined since we assume S to be irreflexive and asymmetric.
First, observe that the following can be easily verified:

(1) N,S and g comply with (Props) if, and only if, N ∪ y′x′ (for x′y′, y′x′ < N), S ∪ vw (for
wv, vw < S ) and (gx′

w )y′
v comply with (Props).

(2) N ∪ xy, S ∪wv and g comply with (Props) if, and only if, N ∪ yx, S ∪ vw and g comply with
(Props).

Now let us examine the two non-trivial inductive cases:

ϕ = ^ψ: we have the following successive equivalences:

• M∗
S ,w |= ^ψ

• exists v ∈ W such that wv ∈ R∗S andM∗
S , v |= ψ

• exists v ∈ W such that either wv ∈ R \ S andM∗
S , v |= ψ,

or wv ∈ S andM∗
S , v |= ψ

• exists v ∈ W such that either wv ∈ R \ S andM, v |= (ψ)′N[g],
or wv ∈ S andM, v |= (ψ)′N[g] (by IH)

• eitherM,w |=
∧

C,D⊆N
locate(C,D,N)→ ♦(forbid(C,D) ∧ (ϕ)′N)[g]

orM,w |=
∧

C,D⊆N
locate(C,D,N)→ pass(C,N, ϕ)[g]

• M,w |= (^ϕ)′N[g].

ϕ =
�
^ψ: we have the following successive equivalences:

• M∗
S ,w |=

�
^ψ

• exists v ∈ W s.t. wv ∈ R∗S and (M∗
S )∗vw, v |= ψ

• either: ww ∈ R∗S andM∗
S ,w |= ψ

or: exists v,w s.t. wv∈(R\S ) and (M∗
S )∗vw, v |= ψ, i.e.,M∗

S∪vw, v |= ψ
or: exists v,w s.t. wv ∈ S and (M∗

S )∗vw, v |= ψ, i.e.,M∗
S \wv∪vw, v |= ψ

• either: ww ∈ R∗S andM,w |= (ψ)′N[g] (IH)
or: exists v,w s.t. wv∈(R\S ) andM, v|=(ψ)′N∪y′x′[(g

x′
w )y′

v ] (IH, (1))
or: exists v,w s.t. wv ∈ S andM, v |= (ψ)′N\xy∪yx[g] (IH, (2))

• either: M,w |= ↓x′.^(x′ ∧ (ϕ)′N)[g]
or: M,w |=

∧
C,D⊆N

locate(C,D,N)→ ↓x′.♦↓y′.(¬x′ ∧ forbid(C,D) ∧ (ϕ)′N∪y′ x′ )[g]

or: M,w |=
∧

C,D⊆N
locate(C,D,N)→ swap(C,N, ϕ)[g]

17
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• M,w |= (
�
^ϕ)′N[g].

We proved that for all N, S , g such that Props hold, we haveM∗
S ,w |= ϕ if, and only if,M,w |=

(ϕ)′N[g]. It suffices to take the particular case where N, S and g are empty, to obtain the result we
wanted. � �

This translation is anything but economic: it may produce formulas of size exponential in
function of the input formula. Its advantage with respect to the translation to 2FOL of Section 3,
is that it is equivalence preserving. That is, it works on the same models as SL. This has at least
two nice consequences. First, to build a model for a SL formula, it is enough to build a model
for the translation. Second, equivalence preserving intuitively means that hybrid logic is at least
as expressive as swap logic (but, possibly, not as concise). Does the inverse hold? To answer this
question, we will need a notion of bisimulation for SL, as we will see in the next section.

5 Bisimulation and Expressive Power
In most modal logics, bisimulations are binary relations linking elements of the domains that
have the same atomic information, and preserving the relational structure of the model. This will
not suffice for SL where we also need to capture the dynamic behaviour of the

�
^ operator. The

proper notion of SL-bisimulations links states together with the current accessibility relation.

Definition 12 (SL-Bisimulations). Let M = 〈W,R,V〉, M′ = 〈W ′,R′,V ′〉 be two models. A
non empty relation Z ⊆ (W × P(W2)) × (W ′ × P(W ′2)) is an SL-bisimulation if it satisfies the
following conditions. If (w, S )Z(w′, S ′) then

(Atomic Harmony) for all p ∈ PROP,M,w |= p iffM′,w′ |= p;

(Zig) if wS v then for some v′, w′S ′v′ and (v, S )Z(v′, S ′);

(Zag) if w′S ′v′ then for some v, wS v and (v, S )Z(v′, S ′);

(S-Zig) if wS v then for some v′, w′S ′v′ and (v, S ∗vw)Z(v′S ′∗v′w′);

(S-Zag) if w′S ′v′ then for some v, wsv and (v, S ∗vw)Z(v′S ′∗v′w′).

Given two pointed modelsM,w andM′,w′ we say that they are SL-bisimilar and we write
M,w -SL M′,w′ if there is an SL-bisimulation Z such that (w,R)Z(w,R′) where R and R′ are
respectively the relations ofM andM′.

Theorem 6. Let M = 〈W,R,V〉 and M′ = 〈W ′,R′,V ′〉 be two models, w ∈ W, w′ ∈ W ′, and
let S ⊆ W2, S ′ ⊆ W ′2. If there is an SL-bisimulation Z between M,w and M′,w′ such that
(w, S )Z(w′, S ′) then for any formula ϕ ∈ SL, 〈W, S ,V〉,w |= ϕ iff 〈W ′, S ′,V ′〉,w′ |= ϕ.

Proof. The proof is by structural induction on SL formulas. The base case holds by Atomic
Harmony, and the ∧ and ¬ cases are trivial.

18
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ϕ = ^ψ: Suppose 〈W, S ,V〉,w |= ^ψ. Then there is v in W s.t. wS v and 〈W, S ,V〉, v |= ψ. By
Zig we have v′ in W ′ such that w′S ′v′ and (v, S )Z(v′, S ′). By I.H., 〈W ′, S ′,V ′〉′, v′ |= ψ and
by definition 〈W ′, S ′,V ′〉,w′ |= ^ψ. For the other direction use Zag.

ϕ =
�
^ψ: For the left to the right direction suppose 〈W, S ,V〉,w |=

�
^ψ. Then there is v in

W such that wS v and 〈W, S ∗vw,V〉, v |= ψ. By S-Zig we have v′ in W ′ s.t. w′S ′v′ and
(v, S ∗vw)Z(v′, S ′∗v′w′). By I.H., 〈W ′, S ′∗v′w′ ,V

′〉, v′ |= ψ and by definition 〈W ′, S ′,V ′〉,w′ |=
�
^ψ.

For the other direction use S-Zag. �

�

Example 4. The two models of Figure 2 are SL-bisimilar.

w w′ v′

M = 〈W,R,V〉 M′ = 〈W ′,R′,V ′〉

Figure 2: Two SL-bisimilar models.

The SL-bisimulation betweenM,w andM,w′ is the set of pairs:

(1) {(w,R), (w′,R′),
(2) (w,R), (v′,R′),
(3) (w,R), (v′,R′∗v′w′),
(4) (w,R), (w′,R′∗v′w′)}

(1) represents the starting modelsM,w andM,w′. (2) is needed to satisfy the Zag condition
on (1), (3) is needed to satisfy S-Zag on (1), and (4) is needed to satisfy Zag on (3). Note that
the first element of all pairs never changes, given that swapping a reflexive edge has no effect.
Example 5. There is no SL-bisimulation between the models of Figure 3.

w w′
M M′

Figure 3: Two non SL-bisimilar models.

Indeed, the formula
�
^^�⊥ is satisfiable inM′,w′ and not inM,w. Notice that the models

are BML-bisimilar.
We are now ready to investigate the expressive power of SL.

Definition 13. We say that L′ is at least as expressive as L (notation L ≤ L′) if there is a
function Tr between formulas of L and L′ such that for every modelM and every formula ϕ of
L we have that

M |=L ϕ iffM |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we use in each case
the appropriate semantic relation |=L or |=L′ as required.

We say thatL′ is strictly more expressive thanL (notationL < L′) ifL ≤ L′ but notL′ ≤ L.
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Our first result is fairly straightforward as it builds upon Example 5: BML is strictly less
expressive than SL.

Theorem 7. BML < SL.

Proof. We have to provide a translation from BML formulas to SL. This is trivial as BML is
a fragment of SL. To prove SL � BML we show two models that are bisimilar in BML and
a SL formula that distinguishes them. Consider the models of Figure 3. They are bisimilar for
BML but the SL formula

�
^^�⊥ distinguishes them. � �

The second result is a comparison between SL andH(:, ↓):

Theorem 8. SL < H(:, ↓).

Proof. The translation ( )′
∅

of Definition 11 is equivalence-preserving from SL to H(:, ↓). The
models in Example 4 (Figure 2) are SL-bisimilar. The H(:, ↓) formula ↓x.♦¬x distinguishes
them, being true inM′,w′ and false inM,w. � �

Let us now compare SL with a family of dynamic modal logics called memory logics. Mem-
ory logics [1, 14] are modal logics with the ability to store the current state of evaluation into a
set, and to consult whether the current state of evaluation belongs to this set.

Definition 14 (Syntax of memory logics). Given a set PROP, the set FORM of formulas of
ML( r©, k©) over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | ^ϕ | r©ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM.
Given a set PROP, the set FORM of formulas ofML(〈〈r〉〉, k©) over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | 〈〈r〉〉ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM.

Definition 15 (Semantics of memory logics). A model M = 〈W,R,V, S 〉 is an extension of an
SL model with a memory S ⊆ W. Let w be a state in M, we inductively define the notion of
satisfiability of a formula as:

〈W,R,V, S 〉,w |= k© iff w ∈ S
〈W,R,V, S 〉,w |= r©ϕ iff 〈W,R,V, S ∪ {w}〉,w |= ϕ
〈W,R,V, S 〉,w |= 〈〈r〉〉ϕ iff 〈W,R,V, S 〉,w |= r©♦ϕ.

A formula ϕ ofML( r©, k©) orML(〈〈r〉〉, k©) is satisfiable if there exists a model 〈W,R,V, ∅〉
such that 〈W,R,V, ∅〉,w |= ϕ.

In the definition of satisfaction, the empty initial memory ensures that no point of the model
satisfies the unary predicate k© unless a formula r©ϕ or 〈〈r〉〉ϕ has previously been evaluated there.
The memory logicML(〈〈r〉〉, k©) does not have the ♦ operator, and its expressive power is strictly
weaker thanML( r©, k©) [3, 14]. We now show that the expressive power of SL is uncomparable
with bothML( r©, k©) andML(〈〈r〉〉, k©).
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Theorem 9. SL �ML(〈〈r〉〉, k©).

Proof. As we showed before, no SL formula can distinguish models of Figure 2, but the formula
〈〈r〉〉¬ k© does (being satisfiable inM′,w′ but not inM,w). � �

Theorem 10. ML( r©, k©) � SL.

Proof. Models on Figure 4 are bisimilar inML( r©, k©). Indeed they are bisimilar for the basic
modal logic and acyclic, henceML( r©, k©) cannot see again points of the model stored using r©,
which means k© is always false after taking an accessibility relation. The formula

�
^^^> is true

inM,w but not inM′,w′. �
�

w w′

M M′

Figure 4: TwoML( r©, k©)-bisimilar models.

From Theorems 9 and 10 we can conclude that the expressive powers ofML( r©, k©) and SL
are uncomparable. The same holds for ML(〈〈r〉〉, k©) and SL. Figure 5 sums up the results of
this section (arrows that are not results of this paper, have been extracted from [3]).

BML

ML(〈〈r〉〉, k©) ML( r©, k©)

H(:, ↓)

SL

<

<

<

< <

�

�
�

�

Figure 5: Comparison of expressive power.

In [2] other operators than can modify the accessibility relation of a model have been inves-
tigated beside SL: in addition to the classic sabotage operator, we introduced a local version of
sabotage logic in which the operator deletes edges as it traverses them to reach accessible states,
and a “bridge” operator that can move to an unreachable state in the model while making it a
successor of the current state of evaluation. Appropriate notions of bisimulation for these logics
have been introduced, together with a proof that their expressive powers are all uncomparable.
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6 Complexity of Model Checking and Satisfiability
In this section we examine the computational behaviour of SL with regards to two common
tasks: model checking and satisfiability. At this point of our investigation, we have an idea of
what we can expect. Indeed, we know that these tasks have to be as easy as for the basic modal
logic, and as hard as for first-order logic. Model checking of first-order is PSpace-complete [9,
18, 21], while for the basic modal logic is in P [11]. Here we provide a proof that model checking
a formula of SL is PSpace-complete.

Theorem 11. Given an arbitrary finite modelM and ϕ a formula in SL, deciding whether ϕ is
satisfied by some state ofM is PSpace-complete.

Proof. A Quantified Boolean Formula (QBF) [15] is a Boolean formula with universal or exis-
tential quantification on its variables, e.g. ∀x1.∃x2.((x1 ∨ x2) ∧ (x1 ∨ ∃x3.¬x3)). Truth of a QBF
under some assignment v is defined as for propositional logic except for the following cases:
a formula of the form ∀x.ϕ is true under a valuation v iff ϕ is true according to the valuation
v[x := 0] and it is true according to v[x := 1]; ∃x.ϕ is true under v iff it is true under v[x := 0]
or it is true under v[x := 1]. For instance, ∀x1.∃x2.(x1 ∨ x2) is true under any valuation, while
∀x1.∀x2.(x1 ∨ x2) is false under any valuation. In such cases we simply say that these formulas
are respectively true and false.

Determining whether a QBF is true is a PSpace-hard problem. We will reduce this problem
to the model checking problem of SL. Let α be a QBF with variables {x1, . . . , xk}. Without loss
of generality, we assume that all its variables are quantified, and that they are quantified only
once. One can build in polynomial time the relational structureMk = 〈W,R,V〉 over a signature
with one relational symbol and propositions {p>, p1, . . . , pk}, where:

W = {w} ∪ {w1
i ,w

0
i | 1 ≤ i ≤ k}

V(pi) = {w1
i ,w

0
i }

V(p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i ), (w,w0

i ) | 1 ≤ i ≤ k}.

For instance,M3 is as follows:

p1

p>
p1 p2

p>
p2 p3

p>
p3

Let ( )′ be the following linear translation from QBF to SL

(∃xi.α)′ =
�
^(pi ∧ ^(α)′)

(xi)′ = ¬^(pi ∧ p>)
(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′.
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The evaluation of the SL formula in the model simulates the assignments of Boolean vari-
ables of the QBF α by swapping around edges between w and its successors. A variable xi is
assigned to 1 if w1

i is no longer accessible from w, and it is assigned to 0 otherwise.
It remains to prove that α is true iffMk,w |= (α)′. For a modelM with relation R we define

vR : {x1, . . . , xk} → {0, 1} as “vR(xi) = 1 iff (w,w1
i ) < R”, in the present case, iff the edge between

w and w1
i has been swapped. We write v |=qbf β if valuation v : {x1, . . . , xk} → {0, 1} satisfies the

QBF β.
Let β be any subformula of α. We will show by induction on β thatM,w |= (β)′ iff vR |=qbf β.

The first observation is that R satisfies i) if xi is free in β, then (w,w1
i ) < R or (w,w0

i ) < R but not
both, and ii) if xi is not free in β then (w,w1

i ) ∈ R and (w,w0
i ) ∈ R. From here it will follow that

Mk,w |= (α)′ iff v |=qbf α for any v since α has no free variables, iff α is true.
For the base case, vR |=qbf xi iff (w,w1

i ) < R which implies (from the definition of Mk)
M,w |= (xi)′. For the other direction, supposeM,w 6|= (xi)′. HenceM,w |= ^(pi ∧ p>) which
implies (w,w1

i ) ∈ R and uR 6|=qbf xi.
The Boolean cases follow directly from the inductive hypothesis.
Consider the case β = ∃xi.γ. Since no variable is bound twice in α we know (w,w1

xi
) ∈ R and

(w,w0
i ) ∈ R. We have vR |=qbf β iff (vR[xi := 0] |=qbf γ or vR[xi := 1] |=qbf γ) iff (vR∗

w0
i w
|=qbf γ

or vR∗
w1

i w
|=qbf γ). By inductive hypothesis, this is the case iff (M∗

w0
i w
,w0

i |= ^(γ)′ orM∗

w1
i w
,w1

i |=

^(γ)′) iffM,w |=
�
^(pi ∧ ^(γ)′) iffM,w |= (∃xi.γ)′.

This shows that the model checking problem of SL is PSpace-hard. To prove that it is in
PSpace, reason as follows. The evaluation of the truth of a formula in a model can be done by a
polynomial space algorithm that follows Definition 3.

The algorithm works on the same copy of the model, except when dealing with formulas
of the form

�
^ϕ that allocate twice as much space as the size of the initial model to store the

modified copy. This memory can be reclaimed once the result of the recursive call is known.
The maximum number of copies of the input model in memory is bounded by the nesting of
swapping operators

�
^ and

�
� of the input formula. By proceeding depth-first, the algorithm runs

using only polynomial space in the size of the model. � �

For a modal language with just one, syntactically simple, extra operator, SL has a surpris-
ingly hard model checking problem. Why is it that adding the

�
^ operator makes the difficulty of

this task jump to the same as first-order logic? We saw that this is happening because the lan-
guage can now store information in the model (by swapping edges) and then check again if some
piece of information is present or not (just using the usual modal operators). This is different
from model checking for the basic modal logic, where the model against which one checks some
formula remains static during all the evaluation.

We now turn to the satisfiability problem. Again, our expectations lie between PSpace-
completeness for the basic modal logic, and undecidability as it is the case for first-order logic,
the hybrid logicH(:, ↓) [5] and most memory logics [3]. We are indeed going to see that we can
reduce the satisfiability problem ofML( r©, k©) to the one of SL, hence showing its undecidabil-
ity.
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We need to simulate the behaviour of ML( r©, k©), i.e., the ability to memorize and check
states, without having an external memory. What we have instead is the ability to swap edges in
the model. We will build models that contain switches, special edges whose position – “off” by
default, and “on” if the direction of the edge has been swapped around – will represent whether a
point of the model has been remembered with the r© operator. We will simulate the k© predicate
by querying the position of these switches.

Let us introduce the translation fromML( r©, k©) to SL:

Definition 16. Let ϕ be a formula ofML( r©, k©) that does not contain the propositional symbols
s and sw. Let Tr(ϕ) be the following formula:

(1) s ∧ �(4)¬s ∧ ¬sw ∧ �¬sw
(2) ∧ �( ♦(sw ∧ �⊥) ∧

�
�(sw→ �¬♦sw) )

(3) ∧ ��( ¬sw → ♦(sw ∧ �⊥) ∧
�
�(sw→ �¬♦sw) )

(4) ∧
�
�
�
�( ¬s ∧ ¬sw →

�
^(sw ∧ ♦♦♦(s ∧ ♦¬♦sw)) )

(5) ∧
�
�
�
�����(sw→ �⊥)

(6) ∧ ♦(ϕ)′.

With ( )′ defined as:

( r©ψ)′ = ( ♦sw →
�
^(sw ∧ ♦(ψ)′) ) ∧ ( ¬♦sw → (ψ)′ )

k©′ = ¬♦sw
(ψ ⊗ χ)′ = (ψ)′ ⊗ (χ)′ for ⊗ ∈ {∨,∧}
(¬ψ)′ = ¬(ψ)′

(♦ψ)′ = ♦(¬sw ∧ (ψ)′)
(�ψ)′ = �(¬sw → (ψ)′)

In Tr(ϕ), the propositional symbol s is used to refer to the evaluation point, that will also
be a spy point, i.e., a point that has direct access to all the points in the part of the model that
represents the model of the original memory logic formula. sw will be true at “switch points”.

(1) puts adequate constraints on the truth of propositional symbols s and sw. (2) and (3)
initialize exactly one switch for every point accessible in one or two steps from the evaluation
point. (4) links the evaluation point to every point of the connected component except itself and
the switch points.

(5) ensures that switch points can be reached from the evaluation point by a unique path.
Indeed, if this were not the case, then it would be possible to swap around two edges leading to
some switch point, then come back to the evaluation point in two steps by this new path, and,
by some other path, come back to the same switch in two steps, where the formula (sw ∧ ¬�⊥)
would hold.

(6) places the translation of the memory logic formula right after the evaluation point.
By the definition of ( r©ψ)′, the action of remembering a point in a model of ϕ is done in

the corresponding model of Tr(ϕ) by swapping the edge between the corresponding point and its
switch point. In the case where the point has already been memorized, i.e., ( k©)′ = ¬♦sw holds,
then nothing needs to be swapped.
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It is important that switch points do not have successors and that they have exactly one pre-
decessor. This ensures that the path taken by ( r©ψ)′ correctly comes back to the same point of
the model.

A model of Tr(ϕ) for some ϕ is illustrated below:

ϕ . . .

s

sw sw
sw

In this picture, the thick points and lines represent the model of the initial memory logic formula
that can be extracted from the whole model. For instance, a model of the formula Tr( r©♦ k©) can
be:

ϕ

s

sw

Theorem 12. Let ϕ be a formula ofML( r©, k©) that does not contain the propositional symbols
s and sw. Then, ϕ and Tr(ϕ) are equisatisfiable.

Proof. Suppose that ϕ is satisfiable, i.e., there exists a modelM = 〈W,R,V, ∅〉 and w ∈ W such
that 〈W,R,V, ∅〉,w |= ϕ.

Let sw be a bijective function between W and a set S such that S ∩W = ∅, and eval a point
that is not a member of S ∪W. Then we can define the modelM′ = 〈W ′,R′,V ′〉 as follows:

W ′ = W ∪ {eval} ∪ S
R′ = R′ ∪ {(eval,w) | w ∈ W} ∪ {(w, sw(w)) | w ∈ W}
V ′(p) = V(p) for p ∈ PROP appearing in ϕ
V ′(s) = {eval}
V ′(sw) = {sw(w) | w ∈ W}.

Following the description of Tr(ϕ) given in this section, we can verify thatM′, eval |= Tr(ϕ).
For the other direction, suppose Tr(ϕ) is satisfiable, i.e., there exists a modelM = 〈W,R,V〉,

and w ∈ W such that 〈W,R,V〉,w |= Tr(ϕ). Then we can define the modelM′ = 〈W ′,R′,V ′, ∅〉
where

W ′ = { v | (w, v) ∈ R }
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V(p) ∩W ′ for p ∈ PROP.

We can verify that there exists some w ∈ W ′ such thatM′,w |= ϕ. � �
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We immediately get:

Theorem 13. The satisfiability problem of SL is undecidable.

7 Conclusions
In this paper we have extended the basic modal language with the

�
^ operator to describe dynamic

aspects of relational models.
�
^ is a diamond-like operator that in addition has the ability to invert

pairs of related elements in the domain while traversing an edge of the accessibility relation. The
SL logic obtained by adding the

�
^ operator to the basic modal logic is very expressive: it has a

PSpace-complete model checking problem and an undecidable satisfiability problem.
Other dynamic languages that can modify the model have been investigated in the literature

(e.g., sabotage logics [19, 12, 13], memory logics [14, 3, 4], hybrid logics [7, 5]), and we have
discussed in detail the relation between some of these languages and SL. In particular, we have
introduced an adequate notion of bisimulation for SL and used it to show that the expressive
power ofSL lies strictly in between the expressive powers of the basic modal logicBML and the
hybrid logic H(:, ↓), while it is uncomparable with the expressive powers of the memory logics
ML( r©, k©) and ML(〈〈r〉〉, k©). We also investigated the expressive power of SL in relation to
first-order logic. We have shown that despite the dynamic behaviour of SL it is indeed possible
to capture SL as a fragment of first-order logic, giving a satisfiability preserving translation to
two sorted first-order logic.

Many theoretical aspects of SL remain to be investigated. For example, it would be interest-
ing to obtain an axiomatic characterization which is sound and complete. The task is probably
non trivial, as the logic fails to be closed under uniform substitution (for example, the formula
^p ↔

�
^p is a validity, but if we substitute the propositional variable p by the formula ^p we

can easily check that the equivalence is not preserved). A proper axiomatization will require an
adequate definition of when a formula is free to substitute another formula in an axiom. Another
challenge is to exploit the expressive power of these logics that are able to modify the accessi-
bility relation, to encode Dynamic Epistemic Logics (DEL). This family of logics includes, for
example, Public Announcement Logic [16, 20], in which we can make some announcement that
is public for all the involved agents, deleting all the states where such announcement does not
hold. Another well known DEL is Action Model Logic [20]. In this case, some semantic objects
called action models are introduced as part of modal operators, and formulas are evaluated in
traditional epistemic models. Action models can be seen as epistemic actions, representing some
information change in epistemic models. It would be interesting to represent these epistemic
logics combining or modifying our model changing operators, for example using them to find a
completely syntactic way to represent actions of the agents without the need to include semantic
objects in modalities.
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Bibliography
[1] C. Areces. Hybrid logics: The old and the new. In X. Arrazola and J. Larrazabal, editors,

Proceedings of LogKCA-07, pages 15–29, San Sebastian, Spain, 2007.

[2] C. Areces, R. Fervari, and G. Hoffmann. Moving arrows and four model checking results.
In Proceedings of WoLLIC 2012, Buenos Aires, Argentina, September 2012.

[3] C. Areces, D. Figueira, S. Figueira, and S. Mera. The expressive power of memory logics.
The Review of Symbolic Logic, 4(2):290–318, 2011.

[4] C. Areces, S. Figueira, and S. Mera. Completeness results for memory logics. Annals of
Pure and Applied Logic, 163(7):961–972, 2012.

[5] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter, and J. van Benthem,
editors, Handbook of Modal Logics, pages 821–868. Elsevier, 2006.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, 2001.

[7] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and Infor-
mation, 4:251–272, 1995.

[8] P. Blackburn and J. van Benthem. Modal logic: A semantic perspective. In Handbook of
Modal Logic. Elsevier North-Holland, 2006.

[9] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational
databases. In Proceedings of 9th ACM Symposium on Theory of Computing, pages 77–90,
1977.

[10] H. Enderton. A mathematical introduction to logic. Academic Press, 1972.

[11] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. The MIT
Press, Cambridge, Massachusetts, 1995.
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