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1 Modal Logics with Memory
Modal logics [1, 2] can be considered nowadays as languages specially designed to describe
properties of relational structures. They try to find a balance between expressive power, easy of
use, and computational complexity. Many attempts have been made in recent years to increase
modal logic expressivity by adding some notion of state to standard relational structures. This
is a natural need, since modal logics are used in many different scenarios as tools for modeling
behavior.

One example of such logics are epistemic logic with dynamic operators. These languages are
used to express the evolution of knowledge by means of knowledge-changing actions. Such log-
ics are often called Dynamic Epistemic Logics (DEL) [3], and a large number of DELs has been
proposed [4, 5, 6, 7]. These logics differ considerably in expressive power among themselves,
but the common idea is to represent knowledge evolution by accessing and changing the model
structure through logic operators. For example, representing the fact that an agent obtains the
information that ϕ is true in state w amounts to eliminating all possible successor states where ϕ
does not hold.

Other examples of logics which have the ability to model behavior are some of the languages
used by the software verification community. The logic XCTL of Harel et al. [8], for exam-
ple, is a temporal logic with explicit global clocks which are accessed and controlled through
logic operators. Also from the software verification community, we could mention the exten-
sion of temporal logic with a concrete domain (e.g., the natural numbers with some operations
like addition, comparison, etc.) which is accessed via the so-called freeze operator [9, 10]. In
the extended language, we can model qualitative properties using the temporal operators, and
concrete properties –such as weight, temperature, etc.– using the new machinery. To cite yet
another example, concrete domains have also been added to description logics, with much the
same aims [11].

We would like to take a step back, and analyze some of the basic intuitions that most of the
formal languages mentioned above have in common. We want to try to investigate the idea of
adding an explicit state to a model, and being able to access (and modify) it via logical operators.
And we would like to take this idea in its simplest form, in order to be able to understand it in
detail.

We can take a standard relational structure and complement it with a data structure, that
will keep the state information we want to model. We will also add to the logical language a
collection of operations to modify and access the data structure. Formally, given a relational
structure 〈D, (Rr)r∈Rel, L〉 where D is a non empty domain, (Rr)r∈Rel is a set of relations over
D, and L : Atom → 2D is a labeling function that assigns atomic properties to elements of D,
we extend the structure with a set S ⊆ D. We can think of S as a set of states that are ‘known’
to us, and it will represent our current ‘memory’. Even in this simple setting we can define the
following operators:

〈D, (Rr)r∈Rel, L, S 〉,w |= ©rϕ iff 〈D, (Rr)r∈Rel, L, S ∪ {w}〉,w |= ϕ
〈D, (Rr)r∈Rel, L, S 〉,w |= ©k iff w ∈ S .

As it is clear from the definition above, the ‘remember’ operator©r (a unary modality) just marks
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the current state as being ‘known’ or ‘already visited’, by storing it in our ‘memory’ S . On
the other hand, the zero-ary operator ©k (for ‘known’) queries S to check if the current state
has already been visited. Notice that the extension of S is dynamic and it can vary during the
evaluation of a formula; while the ‘concrete’ operation we can apply to S is simple membership.

Other operators can naturally be added, for example:

〈D, (Rr)r∈Rel, L, S 〉,w |= ©fϕ iff 〈D, (Rr)r∈Rel, L, S \{w}〉,w |= ϕ
〈D, (Rr)r∈Rel, L, S 〉,w |= ©eϕ iff 〈D, (Rr)r∈Rel, L, ∅〉,w |= ϕ.

I.e., we can use the forget operator ©f to eliminate the current point of evaluation from the
memory S , while the erase operator ©e completely wipes out the memory S . We have intro-
duced this family of logics, that we called memory logics, and investigated its expressive power
in [12, 13, 14].

The language we have just described is very flexible, and it can be used to easily characterize
model properties. For example if all states in the domain of a model M satisfy the formula
©e©r 〈r〉©k then the relation Rr is reflexive (we wipe out the memory, memorize the current point
of evaluation and verify that it is accessible). Similarly, if they satisfy ©e©r [r]〈r〉©k then Rr is
symmetric. Actually, using©f ,©e ,©r and©k we can express properties similarly as how it is done
using binders in different hybrid languages [15, 16].

The two families of memory and hybrid logics are intimately related, but there are differences
among them. In [13, 14], for example, we have shown that ML(©r ,©k )1, the modal language
extended with ©r and ©k , is strictly more expressive than the basic modal logic but strictly less
expressive than the hybrid logic HL(↓). If we add the ©e operator toML(©r ,©k ), the resulting
language is still strictly less expressive than the hybrid logicHL(↓). Furthermore, we also know
that if we add ©f toML(©r ,©k ) we have at most the expressive power of HL(↓). It is an open
problem whether this inequality is strict although we believe it is. These two last results are not
yet published. The former follows using an argument similar to the proof of Theorem 6 of [13]
and the latter follows using a translation as the one used in the proof of Theorem 5 of [13].

In this article we are interested in providing complete axiomatizations for memory logics.
With this aim in mind, we will extend the language of memory logics with further ingredients
from the language of hybrid logics. In particular, we will include nominals (atomic symbols
which are true at a unique point in the relational structure) and the @ operator (which allows
us to control the point of evaluation). As discussed in [17], the hybrid machinery can be used
to prove general completeness results, and to axiomatize logics which are otherwise difficult to
characterize.

The rest of the paper is organized as follows. In the next section we formally introduce the
different logics we will investigate. In Section 3 we present a sound and complete axiomatization
forHL(@,©r ,©k ), the basic modal logic extended with nominals, @, and the ©r and©k memory
operators. In Section 4 we discuss completeness for languages including the©f and©e operators.

1Our convention for naming logics is as follows. We callML the basic modal logic, with the standard operators;
we useHL for the modal language extended with only nominals; and we then list the additional operators included
in the language. For example HL(@,©r ,©e ,©k ) is the modal language extended with nominals, and the @, ©r , ©k
and©e operators.
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As it will be clear from the details that we present in the corresponding sections, nominals
and @ play a crucial role in these axiomatic characterizations. Moreover, the axiomatizations we
present are non-finite. On the other hand, the results are fairly general, as they characterize not
only the base case where the languages are interpreted over the class of all possible models, but
also when we restrict ourselves to different subclasses (with the proviso that these classes can be
defined using ‘pure’ axioms).

In [13] we prove that the satisfiability problem ofML extended with©r and©k is undecidable,
and we introduce a decidable logic including©r and©k (strictly more expressive thanML) defin-
ing additional constrains on how the modal and the memory operators interact. We will show
a sound and complete axiomatization for this logic in Section 5. Moreover, this axiomatization
does not require the hybrid machinery.

We conclude in Section 6 with some final remarks.

2 Syntax and Semantics of Memory Logics
In this section we formally introduce the languages mentioned above, together with some basic
notation and notions related to completeness.

Definition 1 (Syntax). Let Prop = {p1, p2, . . . } (the propositional symbols), Nom = {n1, n2, . . .}
(the nominal symbols) and Rel = {r1, r2, . . . } (the relational symbols) be pairwise disjoint, count-
able infinite sets. Let Atom = Prop ∪ Nom. The set Forms of formulas in the signature
〈Prop,Nom,Rel〉 is defined as:

Forms ::= > | p | i | ©k | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | @iϕ | ©rϕ | ©fϕ | ©eϕ,

where p ∈ Prop, i ∈ Nom, r ∈ Rel and ϕ, ϕ1, ϕ2 ∈ Forms. We take [r]ϕ as a shorthand for
¬〈r〉¬ϕ, and use the standard definitions for Boolean operators like ∨,→, etc.

Definition 2 (Semantics). Given a signature S = 〈Prop,Nom,Rel〉, a model for S is a tuple
〈D, (Rr)r∈Rel, L, S 〉, satisfying the following conditions: (i) D , ∅; (ii) each Rr is a binary relation
on D; (iii) L : Atom→ 2D is a labeling function such that L(n) is a singleton whenever n ∈ Nom;
and (iv) S ⊆ D.

Given the modelM = 〈D, (Rr)r∈Rel, L, S 〉 and w ∈ D, the semantics for the different opera-
tors is defined as follows:

M,w |= > always
M,w |= p iff w ∈ L(p) p ∈ Atom
M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ ∧ ψ iff M,w |= ϕ andM,w |= ψ
M,w |= 〈r〉ϕ iff there is w′ such that Rr(w,w′) andM,w′ |= ϕ
M,w |= @iϕ iff M, v |= ϕ where L(i) = {v}
M,w |= ©rϕ iff 〈D, (Rr)r∈Rel, L, S ∪ {w}〉,w |= ϕ
M,w |= ©k iff w ∈ S
M,w |= ©fϕ iff 〈D, (Rr)r∈Rel, L, S \{w}〉,w |= ϕ
M,w |= ©eϕ iff 〈D, (Rr)r∈Rel, L, ∅〉,w |= ϕ.
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Given a model M, we say that ϕ is valid on M and write M |= ϕ if for all states w in the
domain ofM we have thatM,w |= ϕ.

In the rest of the paper the following notation will be useful. LetM = 〈D, (Rr)r∈Rel, L, S 〉 be
a model and w ∈ D, then we define

M[+w] = 〈D, (Rr)r∈Rel, L, S ∪ {w}〉
M[−w] = 〈D, (Rr)r∈Rel, L, S \{w}〉.

For [o1w1, . . . , onwn] a nonempty ordered list with wi ∈ D and oi ∈ {+,−}, letM[o1w1, . . . , onwn] =

(M[o1w1])[o2w2, . . . , onwn], where M[ ] = M. We will usually write [w1, . . . ,wn] instead of
[+w1, . . . ,+wn].

Definition 3 (Satisfiability, Validity, Completeness). Let C be a class of models. We say that ϕ is
satisfiable in C if there is a modelM ∈ C and a state w in the domain ofM such thatM,w |= ϕ.
We say that ϕ is valid in C if ¬ϕ is not satisfiable in C. The notions of satisfiability and validity
can be extended to set of formulas in the usual way. For example, we say that a set of formulas
Γ is satisfiable in a class of models C if there is a modelM ∈ C and a state w in the domain of
M such that for all formulas ϕ ∈ Γ we have M,w |= ϕ. We will note T (C) the set of all valid
formulas in C.

Given an axiomatizationA, a formula ϕ is a theorem ofA if it is an axiom inA, or it can be
obtained by a finite number of applications of inference rules inA from axioms ofA. We write
T (A) for the set of all theorems inA.

We say that a formula ϕ is consistent with respect to an axiomatization A (or A-consistent)
if ¬ϕ is not a theorem ofA. The notion of consistency can be extended to a set of formulas Γ by
requiring that for no finite subset Γ f , the formula

∧
Γ f → ¬> be a theorem ofA.

Given an axiomatization A and a class of models C we say that A is sound for C if T (A) ⊆
T (C), and that it is complete for C if T (C) ⊆ T (A). Completeness can be equivalently defined in
terms of consistency and satisfiability: A is complete for C if every formula consistent in A is
satisfiable in C.

Finally, we say that an axiomatization A is strongly complete with respect to C, if every
A-consistent set of formulas is satisfiable in C.

In this article we will present a number of axiomatizations and prove them (strongly) com-
plete with respect to different classes of models. The different logical languages involved will
be defined in terms of the operators introduced in Definitions 1 and 2; and we will be interested
mainly in the class of all models, and the class {〈D, (Rr)r∈Rel, L, S 〉 | S = ∅} of models with
no previously ‘remembered’ states. This last class is a natural choice: in the absence of the ©e
operator, evaluating formulas on such models provides additional expressivity, and the intuitive
meaning of the remember and known operators are naturally captured. For example the formula
©r 〈r〉©k characterizes reflexivity of Rr over this class (that is, letM = 〈D, (Rr)r∈Rel, L, S 〉 be an
arbitrary model, except that S = ∅, then M |= ©r 〈r〉©k if and only if Rr is reflexive). This no
longer holds when S is arbitrary. See [13] for further details.

As we mentioned in the introduction, we will also be interested in a logic in which the behav-
ior of the remember operator is highly coupled with the modal transitions to ensure decidability.
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Axioms:
CT All classical tautologies Intro ` (i ∧ p)→ @i p
K@ ` @i(p→ q)→ @i p→ @iq Self-dual@ ` @i p↔ ¬@i¬p
K[r] ` [r](p→ q)→ ([r]p→ [r]q) Ref ` @ii
Sym ` @i j↔ @ ji Nom ` (@i j ∧@ j p)→ @i p
Agree ` @ j@i p↔ @i p Back ` 〈r〉@i p→ @i p
Rem ` @i(©rϕ↔ ϕ[©k /(©k ∨ i)])
Rules:
MP If ` ϕ and ` ϕ→ ψ then ` ψ Gen[r] If ` ϕ then ` [r]ϕ
Name ` j→ ϕ then ` ϕ ( j not in ϕ) Gen@ If ` ϕ then ` @iϕ
Paste If ` (@i〈r〉 j ∧@ jϕ)→ ψ then ` (@i〈r〉ϕ)→ ψ

( j , i and j is not in ϕ or ψ)
SortedSub1 If ` ϕ then ` ϕ[p/ψ] for any p ∈ Prop
SortedSub2 If ` ϕ then ` ϕ[i/ j] for any i, j ∈ Nom

The expression ϕ[a/b] is the result of uniformly replacing all occurrences of a in ϕ by b.

Figure 1: Axiomatization forHL(@,©r ,©k ).

In this logic, every time we make a modal step, we are constrained to remember the current state.
We change the semantic definition of 〈r〉 to be:

〈D, (Rr)r∈Rel, L, S 〉,w |= 〈r〉ϕ iff ∃w′ ∈ D,Rr(w,w′) and
〈D, (Rr)r∈Rel, L, S ∪ {w}〉,w

′ |= ϕ

We call this logic ML− (HL− for the hybrid case). As we proved in [14], ML−(©r ,©k ) is
decidable and strictly more expressive thanML.

3 Completeness forHL(@,©r ,©k )

This section is devoted to prove a completeness result for HL(@,©r ,©k ). Our axiomatization is
shown in Figure 1. It is an extension of the axiomatization forHL(@) presented in [2].

The axiom characterizing the behavior of the memory operator is Rem. To show soundness
of the axiomatization, we only have to look at this new axiom. Intuitively, the axiom says that,
when standing in a state named by i, the act of remembering the current state is equivalent to
increase the extension of©k with i throughout the formula. Formally:

Lemma 1. LetM be a model and w ∈ M such thatM,w |= i. Then, for all v ∈ M,M[w], v |= ϕ
iffM, v |= ϕ[©k /(©k ∨ i)].

Proof. By induction on ϕ. For the base case, if ϕ is a proposition symbol or a nominal, then
since ϕ = ϕ[©k /(©k ∨ i)] we haveM[w], v |= ϕ iffM, v |= ϕ. For the ©k case we have to prove
M[w], v |= ©k iffM, v |= ©k ∨ i.
⇒) Assume thatM[w], v |= ©k . If v = w, thenM, v |= i, and thereforeM, v |= ©k ∨ i. If v , w,

thenM, v |= ©k , and henceM, v |= ©k ∨ i.
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⇐) Let’s assume thatM, v |= ©k ∨ i. If v = w, thenM[w], v |= ©k . On the other hand, if v , w,
then we know thatM[w], v |= ¬i, and thereforeM, v |= ©k . We concludeM[w], v |= ©k .

The conjunction, negation, diamond, @ and remember cases are straightforward, using the
inductive hypothesis and the fact that the replacement operation [©k /(©k ∨ i)] distributes over ∧,
¬, 〈r〉, @ and©r . �

Corollary 1. Rem is sound over the class of all models.

Proof. Take an arbitrary modelM and let w ∈ M be such thatM,w |= i. By definitionM, v |=
@i©rϕ iffM[w],w |= ϕ. Applying the previous lemma, this happens iffM,w |= ϕ[©k /(©k ∨ i)] iff
(by definition)M, v |= @iϕ[©k /(©k ∨ i)]. �

It is worth noting that having nominals in the language is a key feature to describe the ©r /©k
interaction with modal operators, and the Rem axiom strongly uses this feature. The possibility
to identify with a nominal the state in which a remember operation is taking place allows us to
fully describe the behavior of this interaction.

We now turn to completeness. We will build a Henkin model using named maximal consistent
sets (MCSs) for an arbitrary consistent set (see [2] for further details).

Definition 4. An MCS is named if and only if it contains a nominal. We call any nominal
belonging to an MCS a name for that MCS. Also, if Γ is an MCS and i is a nominal, then we call
{ϕ | @iϕ ∈ Γ} a named set yielded by Γ. Furthermore we say that a model is named if every state
in the model is the denotation of some nominal (for all w ∈ D there is some nominal i such that
L(i) = {w}).

The idea behind the construction presented in [2] is that we can extract all the information
we need to build a named canonical model from a single MCS. We start by noting that hidden
inside any MCS there is a collection of named MCSs with a number of relevant properties:

Lemma 2. Let Γ be an MCS. For every nominal i, let ∆i be {ϕ | @iϕ ∈ Γ}. Then, (i) for every
nominal i, ∆i is an MCS that contains i; (ii) for all nominals i and j, if i ∈ ∆ j, then ∆i = ∆ j; (iii)
for all nominals i and j, @iϕ ∈ ∆ j iff @iϕ ∈ Γ; and (iv) if i is a name for Γ then Γ = ∆i.

Proof. We only sketch the proof, the full details can be found in [2]. Claim (i) can be proved
using Ref (to guarantee that i ∈ ∆i), Gen@ and Self-dual@ (to prove that ∆i is an MCS). Claim
(ii) is proved using Sym and Nom, Claim (iii) follows by Agree. And Claim (iv) is obtained by
Intro and Self-dual@. �

Given a consistent set of formulas Σ, we can always expand it to an MCS Σ+ using the
standard Lindenbaum’s Lemma. The problem is that nothing guarantees that this MCS will
be named. In addition, as we want to extract named MCSs from named sets yielded by Σ+,
we have to ensure that there are enough named MCSs to use as existential witnesses during the
construction of the Henkin model. Here is where the Name and Paste rules are useful. Expanding
the language with new nominals, the Name rule is going to solve our first problem, and the Paste
rule solves the second. We call an MCS Γ pasted iff @i〈r〉ϕ ∈ Γ implies that for some nominal j,
@i〈r〉 j∧@ jϕ ∈ Γ. Name and Paste guarantee that any consistent set of formulas can be extended
to a named and pasted MCS.

8
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Lemma 3 (Extended Lindenbaum Lemma). Let S = 〈Prop,Nom,Rel〉 be a signature, let Nom′

be a countably infinite collection of nominals disjoint from Nom, and let S′ be the signature
obtained by extending S with Nom′. Then every HL(@,©r ,©k )-consistent set of formulas in S
can be extended to a named and pasted MCS in S′.

Proof. Full details can be found in [2]. The proof follows the standard Lindenbaum’s construc-
tion with the following modifications. Take a consistent set of formulas Σ, and name it by adding
a new nominal k (use Name to prove consistency). Using an enumeration of all the formulas,
we expand Σ step-by-step with a formula that is consistent with the expanded set at each point.
Because we want the final MCS to be pasted, at the (m + 1)-th step, when we are considering Σm

and the formula ϕm+1, if Σm ∪ {ϕm+1} is inconsistent, we set Σm+1 = Σm. Else, if ϕm+1 has the form
@i〈r〉ϕ, we set Σm+1 = Σm ∪ {ϕm+1} ∪ {@i〈r〉 j ∧@ j〈r〉ϕ}, where j is new (relying on the Paste
rule for consistency). If ϕm+1 does not have the form @i〈r〉ϕ, we set Σm+1 = Σm ∪ {ϕm+1} as usual.
Finally, we take the infinite union of all the Σi. �

Now we can define the model we need, using the named sets yielded by a named and pasted
MCS.

Definition 5. Let Γ be a named and pasted MCS. The named model yielded by Γ is MΓ =

(DΓ, (RΓ
r )r∈Rel, L

Γ, S Γ). Here DΓ is the set of all named sets yielded by Γ, RΓ
r (u, v) holds iff for

all formulas ϕ, ϕ ∈ v implies 〈r〉ϕ ∈ u, LΓ(a) = {w ∈ WΓ | a ∈ w} for any atom a, and
S Γ = {w | ©k ∈ w}.

Note thatMΓ is a well defined model, since by items (i) and (ii) of Lemma 2, LΓ assigns to
every nominal a singleton subset of DΓ. Using the fact that Γ is named and pasted, we can prove
the following Existence Lemma

Lemma 4 (Existence Lemma [2]). Let Γ be a named and pasted MCS, and letM = 〈D, (Rr)r∈Rel, L, S 〉
be the named model yielded by Γ. Suppose u ∈ M and 〈r〉ϕ ∈ u. Then there is a v ∈ M such that
Rr(u, v) and ϕ ∈ v

Now we are ready to prove the Truth Lemma that will lead us to the desired completeness
result. Before that, to treat the ©r case properly, we have to redefine the complexity of the
formulas, to be able to handle the substitutions made by the Rem axiom.

Definition 6. We define the complexity of a formula as comp(ϕ) = 2(k + 1)(r + 1)(d + 1) + v,
where k, r and d are the number of occurrences of©k ,©r and 〈r〉 respectively, and v is the number
of occurrences of all the other possible operators.

Note that with this definition, comp(©rϕ) > comp(ϕ[©k /(©k ∨ i)]).

Lemma 5 (Truth Lemma). LetM = 〈D, (Rr)r∈Rel, L, S 〉 be the named model yielded by a named
and pasted MCS, and let u ∈ D. Then, for all formulas ϕ, ϕ ∈ u iffM, u |= ϕ.

9
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Proof. By Induction on the complexity comp of ϕ. The atomic, boolean and modal cases are
obvious (the Existence Lemma is used for the modal case, and the ©k case follows directly from
the definition of S Γ). We analyze the satisfaction operators. SupposeM, u |= @iψ. This happens
iffM,∆i |= ψ (by items (i) and (ii) of Lemma 2, ∆i is the only MCS containing i, and hence, by
the atomic case of the present lemma, the only state inM where i is true) iff ψ ∈ ∆i (by inductive
hypothesis) iff @iψ ∈ ∆i (using the fact that i ∈ ∆i together with Intro for the left-to-right
direction and Intro and Self-dual@ for the right-to-left direction) iff @iψ ∈ u (by Agree).

To finish let’s analyze the case for ©r . Given u ∈ M, we know that for some nominal i we
have u = ∆i, so by definition,M, u |= i and i ∈ u. SupposeM, u |= ©rψ. This happens iffM, u |=
@i©rψ (becauseM, u |= i) iffM, u |= @iψ[©k /(©k ∨ i)] (by Corollary 1) iffM, u |= ψ[©k /(©k ∨ i)]
(again becauseM, u |= i) iff ψ[©k /(©k ∨ i)] ∈ u (by inductive hypothesis) iff @iψ[©k /(©k ∨ i)] ∈ u
(because i ∈ u, using Intro for the left-to-right direction, and Self-dual@ and Intro for the right-
to-left direction) iff @i©rψ ∈ u (by the Rem axiom) iff ©rψ ∈ u (because i ∈ u, applying again
Intro and Self-dual@). �

Theorem 1 (Completeness for HL(@,©r ,©k )). Every MCS in HL(@,©r ,©k ) is satisfiable in a
countable named model.

Proof. Let Σ be a consistent set of formulas from HL(@,©r ,©k ). We use the Extended Linden-
baum Lemma to expand it to a named and pasted set Σ+ in an extended countable language. Let
M be the named model yielded by Σ+. By item (iv) of Lemma 2, because Σ+ is named, Σ+ is an
element in the domain ofM. By the Truth Lemma,M,Σ+ |= Σ. The model is countable because
each state is named by some nominal in the extended language, and there are only countably
many of these. �

This establishes strong completeness as desired. But in fact, we have done more. Because
our Henkin model is named, we can prove a more general result.

Definition 7. If a formula ϕ contains no propositional symbols (that is, its atoms are nominals
or©k ), we say that ϕ is©k -pure. Furthermore, if ϕ is a©k -pure formula, we say that ψ is a©k -pure
instance of ϕ if ψ is obtained from ϕ by uniformly substituting nominals for nominals. A formula
ϕ is pure if its atomic subformulas are only nominals.

The axiomatization we presented in Figure 1 for HL(@,©r ,©k ) has the following property:
for any set of pure formulas Π, if P is the logic obtained by adding the formulas in Π as axioms,
then P is complete with respect to the class defined by Π.2 This result can be extended to©k -pure
formulas for the case of HL∅(@,©r ,©k ), the logic obtained over the class {〈D, (Rr)r∈Rel, L, S 〉 |
S = ∅} of models with no previously remembered states.

We first state a property that will help us achieve the completeness result for pure axioms.

Lemma 6. LetM = 〈D, (Rr)r∈Rel, L, S 〉 be a named model.

1. Let ϕ be a pure formula, and suppose that for all pure instances ψ of ϕ,M |= ψ. Then for
any L′ and S ′, 〈D, (Rr)r∈Rel, L

′, S ′〉 |= ϕ.

2These general completeness results are standard in hybrid logics (see [17]).

10
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2. Let S = ∅ and ϕ be a ©k -pure formula. Suppose that for all ©k -pure instances ψ of ϕ,
M |= ψ. Then for any L′, 〈D, (Rr)r∈Rel, L

′, S 〉 |= ϕ.

Proof. We only discuss item 2. Suppose that the hypothesis holds, but for some labeling L′,
〈D, (Rr)r∈Rel, L

′, ∅〉 6|= ϕ. We can take ρ, a ©k -pure instance of ϕ, such that ρ is obtained from ϕ
replacing each nominal i by j, where L′(i) = L( j). By an induction on the formula complexity, it
is easy to see that (D, (Rr)r∈Rel, L, ∅) 6|= ρ. This is a contradiction. �

With the help of Lemma 6, and since we showed that we can build named models from
HL(@,©r ,©k )-MCSs, a wide range of strong completeness results can be established (with the
same proof as the one given in [2]).

Theorem 2. Let Π be a set of pure formulas and letA be the axiomatization obtained by adding
formulas in Π as axioms to the axiomatization shown in Figure 1. Then, every A-consistent set
of formulas is satisfiable in a countable named model in the class defined by Π.

Proof. Given anA-consistent set of formulas Ω, we can use the Extended Lindenbaum’s Lemma
to extend it to a named an pasted A-MCS Ω+. The named modelMΩ that Ω+ gives rise to will
satisfy Ω at Ω+. In addition, as every formula in Π belongs to every A-MCS, we have that
MΩ |= Π. Therefore, by Lemma 6,MΩ is in the class of models defined by Π. �

To finish this section we will discuss an extension of the axiomatization presented above to
characterizeHL∅(@,©r ,©k ).

Theorem 3. The system obtained by extending the axiomatization in Figure 1 with the axiom
(Empty) ` ¬©k is sound and strongly complete forHL∅(@,©r ,©k ).

Proof. Soundness of Empty is obvious for the class ofHL∅(@,©r ,©k )-models. The completeness
proof is as the one forHL(@,©r ,©k ), but in addition, thanks to Empty, all maximal consistent sets
∆i are such that ¬©k ∈ ∆i. Therefore, the final model yielded by Γ,MΓ = 〈DΓ, (RΓ

r )r∈Rel, L
Γ, S Γ〉,

is such that S Γ = ∅, and thus, it is aHL∅(@,©r ,©k )-model. �

Proposition 1. For the case of HL∅(@,©r ,©k ), the result of adding Π, a set of pure formulas,
can be extended to a set Π of©k -pure formulas

Proof. Trivial, using Lemma 6, and the same proof as in Theorem 2. �

4 Completeness for the Erase and Forget Operators
We now turn to languages containing the©e and©f operators. We will first discuss completeness
forHL(@,©r ,©e ,©k ), then forHL(@,©r ,©f ,©k ), and finally for the languageHL(@,©r ,©e ,©f ,©k ).

11
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Axioms:
All the axioms fromHL(@,©r ,©k ) except Rem
Rem’ ` @i(©rϕ↔ ϕ?i )
Erase1 ` ©e¬©k

Erase2 ` ©e s↔ s s ∈ Prop ∪ Nom
Erase3 ` ©e¬p↔ ¬©e p
Erase4 ` ©e (p ∧ q)↔ (©e p ∧©e q)
Erase5 ` ©e 〈r〉p↔ 〈r〉©e p
Erase6 ` ©e@i p↔ @i©e p
Erase7 ` @i(©e©rϕ↔ ©eϕ?i )
Rules:
All the rules fromHL(@,©r ,©k )

Figure 2: Axiomatization forHL(@,©r ,©e ,©k ).

4.1 AxiomatizingHL(@,©r ,©e ,©k )

We take as a starting point the axiomatization forHL(@,©r ,©k ) presented in Figure 1. The first
thing we should notice is that the Rem axiom is no longer sound. For example, take the valid
formula @i©e (©k ∨ i) and use Rem to conclude @i©r©e©k . This is clearly a contradiction, since
after wiping out the memory, ©k cannot be true. Observe that the problem lays in the interaction
between ©r and ©e . The replacement operation defined by Rem cannot be carried out throughout
the whole formula: it should avoid replacements within the scope of an ©e . More formally, for
each formula ϕ and nominal i we define the formula ϕ?i as follows:

p?i = p p ∈ Prop ∪ Nom
©k ?i = ©k ∨ i

(¬ϕ)?i = ¬ϕ?i
(ϕ1 ∧ ϕ2)?i = ϕ1

?
i ∧ ϕ2

?
i

(©rϕ)?i = ©rϕ?i
(〈r〉ϕ)?i = 〈r〉ϕ?i
(@ jϕ)?i = @ jϕ

?
i

(©eϕ)?i = ©eϕ

Analogously to Lemma 1, we can use (·)? to characterize the behavior of the©r operator and
its interaction with the©e operator.

Lemma 7. LetM be a model and w ∈ M such thatM,w |= i. ThenM,w |= ©rϕ iffM,w |= ϕ?i .

This result naturally suggests an axiom Rem’ (shown in Figure 2) that replaces Rem. To
characterize the ©e operator we should notice first that it behaves globally and that it does not
change the evaluation point. This implies that there is no interaction between©e and ¬,∧, 〈r〉 and
@. To describe the interaction between ©e and ©r we can again make use of the operation (·)?.
The detailed axiomatization is in Figure 2.

12
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Soundness of this axiomatization is straightforward. The completeness proof uses the same
techniques introduced in Section 3. The proof of the Truth Lemma is carried out by induction
in the complexity of the formula, and the new axioms handle the case for ©e by appropriately
reducing the complexity in order to use the inductive hypothesis, as it is done in Lemma 5.

So now we can give the strong completeness result for HL(@,©r ,©e ,©k ). The proof of this
theorem follows exactly the same technique used in Theorem 1.

Theorem 4 (Completeness for HL(@,©r ,©e ,©k )). Every MCS of formulas in HL(@,©r ,©e ,©k )
is satisfiable in a countable named model.

Since it is clear that Lemma 6 still holds in HL(@,©r ,©e ,©k ), and the canonical model we
built is named, it is easy to see that one can also establish a stronger completeness result in terms
of pure formulas forHL(@,©r ,©e ,©k ), in the same way as stated in Theorem 2 and Theorem 3.

Theorem 5 (Completeness forHL(@,©r ,©e ,©k )). Let Π be a set of pure formulas and let A be
the axiomatization obtained by adding formulas in Π as axioms to the axiomatization shown in
Figure 2. Then, every A-consistent set of formulas is satisfiable in a countable named model in
the class defined by Π.

4.2 AxiomatizingHL(@,©r ,©f ,©k )

Let’s consider an axiomatization for HL(@,©r ,©f ,©k ). The main complication, compared with
the case we just discussed, is that the©f operator has a local behavior, and clearly depends on the
point of evaluation. Hence, describing its interaction with the©r operator will be more involved.
We will require two rewriting functions (·)r and (·) f . Using these two functions, we can obtain a
very simple axiomatization ofHL(@,©r ,©f ,©k ) (see Figure 3).

Axioms:
All the axioms fromHL(@)
Rem ` @i(©rϕ↔ ϕr

i )
Forg ` @i(©fϕ↔ ϕ

f
i )

Rules:
All the rules fromHL(@)

Figure 3: Axiomatization forHL(@,©r ,©f ,©k ).

For each formula ϕ ∈ HL(@,©r ,©f ,©k ) and nominal i, we define the formula ϕr
i as follows:

13
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pr
i = p p ∈ Prop ∪ Nom
©k r

i = (©k ∨ i)
(¬ϕ)r

i = ¬ϕr
i

(ϕ1 ∧ ϕ2)r
i = (ϕ1

r
i ∧ ϕ2

r
i )

(©rϕ)r
i = ©rϕr

i
(〈r〉ϕ)r

i = 〈r〉ϕr
i

(@ jϕ)r
i = @ jϕ

r
i

(©fϕ)r
i = ©f ((i→ ϕ) ∧ (¬i→ ϕr

i ))

Lemma 8. For every pointed model (M,w) such thatM,w |= i, and for all v ∈ M,M[+w], v |= ϕ
iffM, v |= ϕr

i .

Proof. By induction on ϕ. For the base case, if ϕ is a proposition symbol or a nominal, say
a, then since ar

i = a we have M[+w], v |= a iff M, v |= a. For the ©k case we have to prove
M[+w], v |= ©k iffM, v |= ©k ∨ i.
⇒) Assume that M[+w], v |= ©k . If v = w, then M, v |= i, and therefore M, v |= ©k ∨ i. If

v , w, thenM, v |= ©k , and henceM, v |= ©k ∨ i.
⇐) Let’s assume that M, v |= ©k ∨ i. If v = w, then M[+w], v |= ©k . On the other hand, if

v , w, then we know thatM[+w], v |= ¬i, and thereforeM, v |= ©k . We concludeM[+w], v |= ©k .
Let’s analyze the ϕ = ©fψ case. Suppose that v = w, therefore M[+w],w |= ©fψ iff

M[+w,−w],w |= ψ iffM[−w],w |= ψ iff (becauseM[−w],w |= i)M[−w],w |= (i→ ψ)∧ (¬i→
ψr

i ) iff (by definition of ©f ) M,w |= ©f ((i → ψ) ∧ (¬i → ψr
i )). On the other hand, suppose

w , v. Therefore,M[+w], v |= ©fψ iffM[+w,−v], v |= ψ iff (because v and w are different states)
M[−v,+w, ], v |= ψ iff (by inductive hypothesis) M[−v], v |= ψr

i iff (because M[−v], v |= ¬i)
M[−v], v |= (i→ ψ) ∧ (¬i→ ψr

i ) iff (by definition of©f )M, v |= ©f ((i→ ψ) ∧ (¬i→ ψr
i ))

The conjunction, negation, diamond, @ and remember cases are straightforward, using the
inductive hypothesis and the fact that the translation from ϕ to ϕr

i distributes over ∧, ¬, 〈r〉, @
and©r . �

Corollary 2. LetM by a model, and w ∈ M. ThenM,w |= @i(©rϕ↔ ϕr
i ).

In the same way, we can define a formula ϕ f
i to deal with the©f case:

p f
i = p p ∈ Prop ∪ Nom
©k

f
i = (©k ∧ ¬i)

(¬ϕ) f
i = ¬ϕ

f
i

(ϕ1 ∧ ϕ2) f
i = (ϕ1

f
i ∧ ϕ2

f
i )

(©fϕ) f
i = ©fϕ

f
i

(〈r〉ϕ) f
i = 〈r〉ϕ f

i

(@ jϕ) f
i = @ jϕ

f
i

(©rϕ) f
i = ©r ((i→ ϕ) ∧ (¬i→ ϕ

f
i ))

Lemma 9. For every pointed model (M,w) such thatM,w |= i, and for all v ∈ M,M[−w], v |= ϕ
iffM, v |= ϕ

f
i .

14
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Proof. By induction on ϕ. The only cases that are worth analyzing are ©k and ©rψ. The other
cases are equivalent to the proof of Lemma 8. For the ©k case we have to proveM[−w], v |= ©k
iffM, v |= ©k ∧ ¬i.
⇒) Assume thatM[−w], v |= ©k . If v = w, this is an absurd, so v , w. ThereforeM, v |= ©k ,

and henceM, v |= ©k ∧ ¬i.
⇐) Let’s assume thatM, v |= ©k ∧¬i. If v = w, thenM, v |= i, so this is an absurd. Therefore

v , w, and then we know thatM[−w], v |= ©k , and thereforeM[−w], v |= ©k ∧ ¬i.
Let’s analyze the ϕ = ©rψ case. Suppose that v = w, therefore M[−w],w |= ©rψ iff

M[−w,+w],w |= ψ iffM[+w],w |= ψ iff (becauseM[+w],w |= i)M[+w],w |= (i→ ψ)∧ (¬i→
ψ

f
i ) iff (by definition of ©r ) M,w |= ©r ((i → ψ) ∧ (¬i → ψ

f
i )). On the other hand, suppose

w , v. Therefore,M[−w], v |= ©rψ iffM[−w,+v], v |= ψ iff (because v and w are different states)
M[+v,−w, ], v |= ψ iff (by inductive hypothesis) M[+v], v |= ψ

f
i iff (because M[+v], v |= ¬i)

M[+v], v |= (i→ ψ) ∧ (¬i→ ψ
f
i ) iff (by definition of©r )M, v |= ©r ((i→ ψ) ∧ (¬i→ ψ

f
i )) �

Corollary 3. LetM by a model, and w ∈ M. ThenM,w |= @i(©fϕ↔ ϕ
f
i ).

Soundness of Rem and Forg in the axiomatization ofHL(@,©r ,©f ,©k ) in Figure 3 are a direct
consequence of Corollaries 2 and 3.

To achieve completeness, we first have to give an adequate notion of complexity of formulas
in such a way that the Truth Lemma for this logic can be shown. As in section 3, we look for a
function comp : Forms → N such that comp(©rϕ) > comp(ϕ[©k /(©k ∨ i)]). But in this setting,
to account for the new axioms of Figure 3, we have stronger restrictions: we need to find a
function such that comp(©rϕ) > comp(ϕr

i ) and comp(©fϕ) > comp(ϕ f
i ). The complexity given in

Definition 6 is not suitable because the lengths of ϕr
i and ϕ f

i are much larger than the length of
ϕ. We next show some upper bounds for the lengths of ϕr

i and ϕ f
i and then we define a suitable

complexity function.
Observe that some right-hand formulas in the definition of ϕr

i and ϕ
f
i are abbreviations of

formulas using ∧ and ¬ as the only boolean connectives. Having this in mind, it can easily be
shown the following equalities concerning |ϕ|, the length of a formula ϕ:

|(©fϕ)r
i | = 15 + |ϕ| + |ϕr

r|

|(©rϕ) f
i | = 15 + |ϕ| + |ϕ

f
i |

|(ϕ ∧ ψ)∗i | = 3 + |ϕ∗i | + |ψ
∗
i | for ∗ ∈ {r, f }

|(†ϕ)∗i | = 1 + |ϕ∗i | for † ∈ {¬, 〈r〉,@ j} and ∗ ∈ {r, f }
|©k r

i | = 8
|©k

f
i | = 6

It can be shown by induction in ϕ that max{|ϕr
i |, |ϕ

f
i |} ≤ (|ϕ| + 7)2. Let nr(ϕ) denote the nesting

depth of ©r in the formula ϕ, i.e. the maximum number of occurrences of ©r along the paths of
the syntactic tree of ϕ. In the same way, let n f (ϕ) denote the nesting depth of ©f in ϕ. Observe
that nr(ϕ) = nr(ϕr

i ) and n f (ϕ) = n f (ϕ
f
i ).

Let c(ϕ) : Forms→ R be defined as

c(ϕ) = 23(nr(ϕ)+n f (ϕ)) · log |ϕ|.
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The reader may verify that c(©rϕ) > c(ϕr
i ) and c(©fϕ) > c(ϕ f

i ). Furthermore, for all the subfor-
mulas ψ of a formula ϕ, c(ψ) is strictly increasing in |ψ|. Therefore, comp : Forms → N defined
as

comp(ϕ) = 2c(ϕ) = |ϕ|2
3(nr (ϕ)+n f (ϕ))

is a suitable complexity function.
With the complexity function properly defined, strong completeness follows using the same

techniques introduced in Section 3. As in the case forHL(@,©r ,©e ,©k ), it is easy to see that the
result holds for any pure axiomatic extension.

Theorem 6 (Completeness for HL(@,©r ,©f ,©k )). Let Π be a set of pure formulas and let A be
the axiomatization obtained by adding formulas in Π as axioms to the axiomatization shown in
Figure 3. Then, every A-consistent set of formulas is satisfiable in a countable named model in
the class defined by Π.

4.3 AxiomatizingHL(@,©r ,©e ,©f ,©k )

Finally, putting together the ideas from the previous two axiomatizations we obtain a sound and
complete axiomatization for HL(@,©r ,©e ,©f ,©k ). The first step is to extend the definition of ϕr

i

and ϕ f
i to handle the case of©e :

(©eϕ)r
i = ©eϕ

(©eϕ) f
i = ©eϕ

Note that Lemmas 8 and 9 still hold. Now we only need to add the axioms we used to char-
acterize ©e with minor changes. Observe that the complexity function defined in Subsection 4.2
is appropriate for this case also. The final axiomatization is shown in Figure 4.

Axioms:
All the axioms fromHL(@)
Rem ` @i(©rϕ↔ ϕr

i )
Forg ` @i(©fϕ↔ ϕ

f
i )

Erase1 ` ©e¬©k

Erase2 ` ©e s↔ s s ∈ Prop ∪ Nom
Erase3 ` ©e¬p↔ ¬©e p
Erase4 ` ©e (p ∧ q)↔ (©e p ∧©e q)
Erase5 ` ©e 〈r〉p↔ 〈r〉©e p
Erase6 ` ©e@i p↔ @i©e p
Erase′7 ` @i(©e©rϕ↔ ©eϕr

i )
Erase8 ` ©e©fϕ↔ ©eϕ
Rules:
All the rules fromHL(@)

Figure 4: Axiomatization forHL(@,©r ,©e ,©f ,©k ).
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Theorem 7 (Completeness for HL(@,©r ,©e ,©f ,©k )). Let Π be a set of pure formulas and let A
be the axiomatization obtained by adding formulas in Π as axioms to the axiomatization shown
in Figure 4. Then, every A-consistent set of formulas is satisfiable in a countable named model
in the class defined by Π.

5 The Case forML−(©r ,©k )

The last logic that we are going to discuss isML−(©r ,©k ). In the previous section we mentioned
the importance of nominals to describe the interaction between memory and modal operators. In
this section we will show that if we restrict ourselves to the logic in which we are constrained to
remember the current state every time we make a modal transition, it is possible to define a sound
and complete axiomatization where nominals can be avoided. The key ingredient to do this is
that in this logic we can describe the interaction between ©r and ©k at a propositional level. This
is not a coincidence. Because this logic has the tree model property [13, 14], we can assume that
we evaluateML−(©r ,©k )-formulas on trees, and since there are no cycles, the remember operator
has no real effect beyond the current state.

Given a formula ϕ, we define the formula ϕ] as the result of replacing all the occurrences of
©k that are in ϕ at modal depth zero by >. Formally:

p] = p p ∈ Prop
©k ] = >

(¬ϕ)] = ¬ϕ]

(ϕ1 ∧ ϕ2)] = ϕ]1 ∧ ϕ
]
2

(©rϕ)] = ©rϕ]

(〈r〉ϕ)] = 〈r〉ϕ

Lemma 10. M,w |= ©rϕ iffM,w |= ϕ].

Proof. We proceed by induction. The case for ©k , the propositional symbols and boolean con-
nectives are straightforward. We analyze the other cases. For the case ϕ = ©rψ. M,w |= ©r©rψ iff
M,w |= ©rψ iff (by inductive hypothesis)M,w |= ψ] iffM,w |= (ψ])] iff (by inductive hypothe-
sis)M,w |= ©r (ψ]) iffM,w |= (©rψ)]. For the case ϕ = 〈r〉ψ. M,w |= ©r 〈r〉ψ iff (by definition)
M[w],w |= 〈r〉ψ iff (by definition of 〈r〉) there is a v ∈ M, Rr(w, v) such thatM[w], v |= ψ iff (by
definition of 〈r〉)M,w |= 〈r〉ψ iff (by definition of ])M,w |= (〈r〉ψ)]. �

The axiomatization forML−(©r ,©k ) (see Figure 5) is an extension of the axiomatization for
the basic modal logic [2], plus the axiom Rem− ` ©rϕ↔ ϕ].

Soundness of Rem− follows from Lemma 10. We will prove completeness with respect to
the class of acyclic models, and therefore for the class of all models. We will use a step-by-step
construction. I.e., instead of building the entire canonical model, we will carry out a stepwise
selection from MCSs of the canonical model ofML−(©r ,©k ) as our basic building blocks.3

3Alternatively, one can take the standard canonical model and then unravel it to obtain a tree, and therefore
acyclic, model.
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Axioms:
CT All classical tautologies
K[r] ` [r](p→ q)→ ([r]p→ [r]q)
Rem− ` ©rϕ↔ ϕ]

Rules:
MP If ` ϕ and ` ϕ→ ψ then ` ψ
Gen[r] If ` ϕ then ` [r]ϕ
Sub If ` ϕ then ` ϕ[p/ψ] for any p ∈ Prop

Figure 5: Axiomatization forML−(©r ,©k ).

We define Mc = 〈Dc, (Rc
r)r∈Rel, L

c, S c〉, the ML−(©r ,©k ) canonical model, in the usual
sense (see [2] for details). That is, Dc is the set of all maximal consistent sets of formulas of
ML

−(©r ,©k ), Rc
r(Γ,∆) iff for all ϕ ∈ ∆, 〈r〉ϕ ∈ Γ, Γ ∈ Lc(p) iff p ∈ Γ and S c = {Γ | ©k ∈ Γ}.

Definition 8. A network N = 〈N, (Rr)r∈Rel, v〉 is a triple where N is a countable non-empty set
of elements, each Rr is a binary relation on N, and v is a function that maps elements in N to
maximal consistent sets.

We say that a network is coherent if (C1)
⋃

r∈Rel Rr defines an acyclic graph and (C2)
Rc

r(v(s), v(t)) for all s, t ∈ N such that Rr(s, t). A network is saturated if whenever 〈r〉ψ ∈ v(s) for
some s ∈ N, then there is a t ∈ N such that Rr(s, t) and ψ ∈ v(t).

We want networks to play the role of models, so we have to check that we have imposed the
right conditions on a network to achieve this.

Definition 9. Let N = 〈N, (Rr)r∈Rel, v〉 be a network. We define the induced labeling LN (p) =

{s ∈ N | p ∈ v(s)}, the induced set of remembered states SN = {s ∈ N | ©k ∈ v(s)}, and
the induced modelMN = 〈N, (Rr)r∈Rel, LN , SN〉. FN = 〈N, (Rr)r∈Rel〉 is called the underlying
frame of N .

We are now ready to prove a Truth Lemma.

Lemma 11 (Truth Lemma). Let N = 〈N, (Rr)r∈Rel, v〉 be a coherent and saturated network.
Then, for all ϕ and s ∈ N,

MN , s |= ϕ iff ϕ ∈ v(s).

Proof. Before we prove this lemma, let us observe the following property: letM = 〈D, (Rr)r∈Rel, L, S 〉
be an acyclic model, and let w, v ∈ D be such that Rr(w, v). Then for all formulas ϕ,M[w], v |= ϕ
iffM, v |= ϕ.

We now proceed by induction on ϕ. The propositional case, the©k case and the boolean cases
are straightforward, given the definition ofMN . Let’s suppose thatMN , s |= ©rψ. This happens
iff (by Lemma 10) MN , s |= ψ] iff (by inductive hypothesis) ψ] ∈ v(s) iff (by Rem− axiom)
©rψ ∈ v(s).

The 〈r〉 case: for the left-to-right direction, ifMN , s |= 〈r〉ψ, then there exists t ∈ N such that
Rr(s, t) andMN [s], t |= ψ. Therefore,MN , t |= ψ. By inductive hypothesis, ψ ∈ v(t). Because the
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network is coherent, and Rr(s, t), then Rc
r(v(s), v(t)), and we conclude 〈r〉ψ ∈ v(s). For the other

direction, let’s suppose that 〈r〉ψ ∈ v(s). Because the network is saturated, there is a t ∈ N such
that ψ ∈ v(t) and Rr(s, t). By inductive hypothesis,MN , t |= ψ, soMN [s], t |= ψ, and therefore
by definition,MN , s |= 〈r〉ψ. �

Summing up, we have reduced the problem of finding a model for an MCS ∆ to a search for
a coherent and saturated network for ∆. The idea here is to start with a coherent network and,
one step at a time, remove the defects that are preventing the network from being saturated.

Definition 10. LetN be a network. We say thatN has a saturation defect if there is a node s ∈ N
and a formula 〈r〉ψ ∈ v(s) such that there is not a t ∈ N, R(s, t) and ψ ∈ v(t).

Because a coherent network may have saturation defects, we have to say more about what is
the meaning of repairing a defect. We are going to extend a network with a saturation defect with
another where the defect is corrected.

Definition 11. Let N0 = 〈N0,R0, v0〉 and N1 = 〈N1,R1, v1〉 be two networks. We say that N1

extends N0 if FN0 is a subframe of FN1 and v0 agrees with v1 on N0.

The following lemma states that a saturation defect of a finite coherent network can always
be repaired.

Lemma 12 (Repair Lemma). Let N be a finite and coherent network with a saturation defect.
Then there is a network N ′ extending N without that defect.

Proof. BecauseN has a a saturation defect, there is a node s ∈ N and a formula 〈r〉ψ ∈ v(s) such
that there is not a t ∈ N, Rr(s, t) and ψ ∈ v(t). We define N ′ as

N′ = N ∪ {s′} with s′ < N
R′r = Rr ∪ {(s, s′)}
v′ = v ∪ {(s′,∆)}

where ∆ is an MCS containing ψ such that Rc
r(v(s),∆) (the existence of such ∆ can be proved

through an Existence Lemma similar to Lemma 4). Clearly, N ′ is a coherent network extending
N and does not have the previous defect. �

Now we can prove the desired strong completeness result. We start with a singleton network,
and we extend it step by step to a larger network using the Repair Lemma. We obtain the saturated
network we want by taking the union of our sequence of networks.

Theorem 8. The axiomatization is strongly complete with respect to the class of ML−(©r ,©k )
models.

Proof. Let S = {si | i ∈ ω}. Enumerate the potential saturation defects (the set S × Forms).
Given a consistent set Σ, expand it to an MCS Σ+. The initial network is N0 = 〈{s0}, ∅, (s0,Σ

+)〉,
which is finite and coherent. Given a network N i, i ≥ 0, where the minimal saturation defect is
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D, we define N i+1 as the extension of N i (following the Repair Lemma) without that defect. If
N i has no saturation defects, then N i+1 = N i. Let Nω = 〈N, (Rr)r∈Rel, v〉 be:

N =
⋃
n∈ω

Nn Rr =
⋃
n∈ω

Rn
r v =

⋃
n∈ω

vn.

It is clear that Nω is saturated. For suppose not; let d be the minimal saturation defect (with
respect to the enumeration) of Nω, say d = dk. By construction, there must be an approximation
N i of Nω of which d is also a defect. There only can be k defects that are less than d, so d will
be repaired before the stage k + i of the construction. This is a contradiction, soNω is a coherent
and saturated network, and thereforeMNω , s0 |= Σ. �

6 Conclusions
In this paper we presented several axiomatizations for some members of the memory logic fam-
ily. We showed how nominals can be an effective tool to achieve completeness: by allowing
to describe the precise interaction between ©r and ©k we could give a completeness result for
HL(@,©r ,©k ). Small variations of this axiomatization leads us to completeness results for other
languages, as we showed forHL∅(@,©r ,©k ) andHL(@,©r ,©e ,©k ).

Our intention was to give the basic techniques to characterize memory operators using nom-
inals, and not to exhaustively list all possible languages. Observe that, for example, the logic
HL

−(@,©r ,©k ) can be easily axiomatized by replacing the Back axiom presented in Figure 1 by
` @i〈r〉@ jϕ→ @ jϕ[©k /(©k ∨ i)] (and similarly with the Paste rule).

We also showed that nominals are not needed when we add constraints on how 〈r〉 interacts
with©r , giving a completeness result forML−(©r ,©k ). The idea behind this result lays in the fact
thatML−(©r ,©k ) has the tree model property and hence, we can describe the interaction between
©r and©k at a propositional level, independently of the modal operators.

We have not yet found suitable axiomatizations for certain memory logics. Languages with-
out the tree model property, and which do not have nominals seem to be particularly hard to
axiomatize. For example, we have not yet been able to devise complete axiomatizations for
ML(©r ,©k ) andML−∅ (©r ,©k ).
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