
PIRSES-GA-2011-295261 /MEALS
November 17, 2015

Page 1 of 38

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 1.7 / 2

Title of Deliverable: Probabilistic Model Checking for Feature-oriented Systems

Contractual Date of Delivery to the CEC: 30-Sep-2015
Actual Date of Delivery to the CEC: 30-Sep-2015
Organisation name of lead contractor for this deliverable: UNC
Author(s): Clemens Dubslaff, Christel Baier, Sascha Klüppelholz
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1 Introduction
The concept of product lines is widely used in the development and marketing of modern hard-
ware and software. In a product line, customers can purchase a base system extendible and
customizable with functionalities, also called features. Following the definition for product lines
in the software domain (also called software product lines), a product line can also be understood
as the collection of all features itself and rules how the features can be combined into products
[14]. The rules for the composition of features are typically provided using feature diagrams
[35, 7], where the features and their hierarchical structure are given by a tree-like structure. For
describing large product lines supporting several instances of features, feature diagrams with
multi-features come into place, where cardinality ranges are annotated to features indicating how
many of them can be instantiated towards a valid feature combination [18].

Feature combinations are often assumed to be static, i.e., some realizable feature combination
is fixed when the product is purchased and is never changed afterwards. However, this does not
faithfully reflect adaptations of modern products during their lifetime. For instance, when in-
app purchases are placed or when a free trial version of a software product expires, features
are activated or deactivated during runtime of the system. Similarly, components of a hardware
system might be upgraded to more powerful or energy-efficient ones or are necessarily replaced
due to a hardware failure. In all these situations, the products change but still belong to the same
product line. Such product lines capable of modeling adaptations after deployment are called
dynamic product lines [29], for which the design of specification formalisms is an active and
emerging field in product line engineering [31, 22, 45, 19].

Verification of Product Lines
To meet requirements in safety-critical parts of the features or to guarantee overall quality (in
particular within features that are used in many or most of the products of the product line)
verification is of utter interest. Verification is even more important for dynamic product lines,
where side-effects arising from dynamic feature changes are difficult to predict in the develop-
ment phase of a product. Model checking [11, 5] is a fully automatic verification technique for
establishing temporal properties of systems (e.g., safety or liveness properties). Indeed, model
checking has been already successfully applied to integrate features in components and to detect
feature interactions [43]. However, the typical task for reasoning about static product lines is to
solve the so-called featured model-checking problem:

Compute the set of all valid feature combinations C such that some given temporal require-
ment φ holds for the products corresponding to C.

This is in contrast to the classical model-checking problem that amounts to prove that φ holds
for some fixed system, e.g., one specific product obtained from a feature combination. The
naive approach for solving the featured model-checking problem is to verify the products in the
product line one-by-one after their deployment. However, already within static product lines,
this approach certainly suffers from an exponential blow-up in the number of different valid fea-
ture combinations. To tackle this potential combinatorial blow-up, family-based approaches are
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very successful, checking all products in a product line at once rather than one-by-one [53]. In
[13, 12], the concept of featured transition systems has been introduced to encode the operational
behaviors of all products in a product line into a single model. The transitions in featured transi-
tion systems are annotated by feature combinations: a transition can only be fired if it is labeled
by the feature combination corresponding to the product deployed. Symbolic techniques [39] de-
scribe states and transitions of an operational model as sets with common properties rather than
listing them one-by-one. Such techniques can be used for solving the featured model-checking
problem for product lines represented by featured transition systems efficiently for both linear-
time [13] and branching-time properties [12]. An extension of featured transition systems that
introduces guarded transitions for switches between valid feature combinations was presented
by Cordy et al. [16] allowing for dynamic adaptions of feature combinations during the lifetime
of a product. Besides purely functional temporal requirements, the quality of (software) prod-
ucts crucially depends on quantitative properties. Measurement-based approaches for reasoning
about feature-oriented software have been studied intensively, see, e.g., [51, 50, 41]. In contrast,
probabilistic model-checking techniques were studied only recently [28, 52], relying on proba-
bilistic operational models based on discrete-time Markov chains and probabilistic computation
tree logic. For instance, Ghezzi and Sharifloo analyzed parametric sequence diagrams using the
probabilistic model-checking tool Param [28].

A Compositional Framework for Feature-oriented Systems
In this paper, we present a compositional framework to model dynamic product lines which
allows for the automated quantitative system analysis using probabilistic model checking [5].
Our approach allows for easily specifying large-scaled product lines with thousands of products
described through feature diagrams with multi-features.
Markov chains, the purely probabilistic model used in most approaches of probabilistic product-
line analysis [28, 52], are less adequate for the compositional design with parallel components
than operational models supporting both, nondeterministic and probabilistic choices (see, e.g.,
[48]). A Markov decision process (MDP) is such a formalism, extending labelled transition
systems by internal probabilistic choices taken after resolving nondeterminism between actions
of the system. Our framework for dynamic product lines presented in this paper relies on MDPs
with annotated costs [44]. In particular, it consists of

(1) feature modules: MDP-like models for the feature-dependent operational behavior of the
components and their interactions,

(2) a parallel operator: feature-aware composing feature modules to represent the parallel
execution of independent actions by interleaving and supporting communication between
the feature modules,

(3) a feature controller: an MDP-like model for the potential dynamic switches of feature
combinations, and

(4) a join operator: yielding a standard MDP model of the complete dynamic product line
represented by feature modules and a feature controller
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A product line naturally induces a compositional structure over features, where a feature or a
collection thereof corresponds to a component. In our framework, these components are called
feature modules (1). Feature modules are composed using a parallel operator (2), which com-
bines the operational behaviors of all features represented by the feature modules into another
feature module. We only allow for composing compatible feature modules, i.e., feature modules
which represent the operational behavior of different features. Thus, different implementations
or versions of the same feature need either to be modeled as distinct features excluding each
other or cannot be combined in our framework. Feature activation and deactivation at runtime is
described through a feature controller (3), which is a state-based model controlling valid changes
in the feature combinations. As within feature modules, choices between feature combinations
can be probabilistic (e.g., on the basis of statistical information on feature combinations and
their adaptations over time) or nondeterministic (e.g., if feature changes rely on internal choices
of the controller or are triggered from outside by an unknown or unpredictable environment) and
combinations thereof.

The semantics of a feature module under a given feature controller is defined as a parallel
composition synchronizing over common feature annotations (4), providing an elegant formal-
ization of the feature module’s behavior within the dynamic product line represented by the
feature controller. Note that our approach separates between computation and coordination
[27, 42, 47], which allows for specifying features in the context of various different dynamic
product lines. Feature-oriented extensions of programming languages and specialized composi-
tion operators such as superimposition are an orthogonal approach [36, 2, 1]. However, the effect
of superimposition could also be encoded into our framework, e.g., using techniques proposed
by Plath and Ryan [43].

Quantitative Analysis and Strategy Synthesis
Fortunately, the semantics of feature modules under feature controllers yields an MDP. Thus, our
approach permits to apply standard but sophisticated probabilistic model-checking techniques
to reason about quantitative properties. This is in contrast to existing (also nonprobabilistic)
approaches, which require model-checking algorithms specialized for product lines. Within our
approach, quantitative queries such as “minimize the energy consumption until reaching a target
state” can be answered. Whereas for static product lines, one aims to solve the featured model-
checking problem, we introduce the so-called strategy synthesis problem for dynamic product
lines. This problem amounts to find an optimal strategy to resolve the nondeterminism between
feature combination switches in the feature controller [23]. The strategy includes the initial step
of the dynamic product line by selecting an initial feature combination, which suffices to solve
the featured model-checking problem. Our approach thus additionally provides the possibility to
reason over worst-case and best-case scenarios concerning feature changes during runtime.

Implementation and Case Study
Models of product lines have to face a combinatorial blow-up in the number of features. When
modeling dynamic product lines, the number of possible feature changes during runtime yield
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an additional combinatorial blow-up. However, symbolic representations of models including all
the behaviors in a product line can avoid these blow-ups [12]. In this paper, we extend our com-
positional framework for dynamic product lines [23] towards feature modules and controllers
with variables, such that it nicely fits with guarded-command languages such as the input lan-
guage of the symbolic probabilistic model checker Prism [34]. Prism uses multi-terminal binary
decision diagrams for the symbolic encoding of the probabilistic model to obtain a compact rep-
resentation. To demonstrate the usability of Prism within our framework, we carried out a case
study based on a real-case server-platform scenario, where several variants of a server can be
endowed with different kinds of network interface cards. This product line can be equipped with
an energy-aware network driver, similarly as done for the eBond device [30]. Network cards with
different performance characteristics are then bonded or switched off according to energy-saving
algorithms which, e.g., take usage of the varying bandwidth requirements during day and night
time. The arising energy-aware server system product line, which we call eServer, can be sub-
ject of several quantitative requirements, e.g., on the energy consumption of the products in the
product line. We illustrate how Prism can be used to solve the strategy synthesis problem w.r.t. to
such requirements for eServer and can provide strategies how to equip a server used in different
environments. In particular, we show that symbolic methods applied to dynamic product lines
such as eServer clearly outperform explicit ones.

Outline
The paper starts with a brief summary on the foundations of product lines, feature models, rele-
vant principles of MDPs and their quantitative analysis. The compositional framework for spec-
ifying dynamic product lines by means of feature modules and feature controllers is presented
in Section 3. Section 4 is devoted to the encoding of our framework into guarded-command
languages, such as the input language of the probabilistic model-checking tool Prism. Our case
study follows in Section 5, where we use Prism and the encoding of our framework to discuss the
scalability of our approach towards product lines with thousands of products and the influence
of symbolic representations. The paper ends with some concluding remarks in Section 6.

2 Preliminaries
Before we recall the standard concepts for product lines, probabilistic models and their quan-
titative analysis, we introduce notations for Boolean and linear expressions to provide intuitive
symbolic representations for sets.

Boolean Expressions. The powerset of a set X is denoted by 2X. For convenience, we sometimes
use symbolic notations based on Boolean expressions for the elements of 2X, i.e., the subsets of
X. Let B(X) denote the set of all Boolean expressions ρ built over Boolean variables x ∈ X as
atoms and the usual connectives of propositional logic (negation ¬, conjunction ∧, etc.). The
satisfaction relation |=⊆ 2X× B(X) is defined in the obvious way. For instance, if X = {x1, x2, x3}

and ρ = x1 ∧ ¬x2, then Y |= ρ iff Y = {x1} or Y = {x1, x3}. To specify binary relations on
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2X symbolically, we use Boolean expressions ρ ∈ B(X ∪ X′), where X′ is the set consisting of
pairwise distinct, fresh copies of the elements of X. Then, the relation Rρ ⊆ 2X× 2X is given by:

(Y,Z) ∈ Rρ iff Y ∪ {z′ : z ∈ Z} |= ρ

As an example, the Boolean expression ρ = (x1 ∨ x′3) ∧ ¬x2 represents the relation Rρ consisting
of all pairs (Y,Z) ∈ 2X× 2X, where (1) x1 ∈ Y or x3 ∈ Z and (2) x2 < Y . For Y ⊆ X, we use Y = Y ′

as a shortform notation for the Boolean expression
∧

y∈Y y↔ y′.

Linear Constraints. The symbolic notations for subsets of X using Boolean expressions can
be extended towards sets of functions f : X → N, i.e., elements of NX which we define through
linear constraints γ of the form

a1x1 + a2x2 + . . . + anxn ▷◁ θ,

where ai ∈ Z, xi ∈ X for all i = 1, 2, . . . , n, ▷◁ ∈ {<,≤,=,≥, >} and θ ∈ Z. A function f ∈ NX

fulfills such a linear constraint γ as above if a1 f (x1) + a2 f (x2) + . . . + an f (xn) ▷◁ θ. We then
write f |= γ. The set of all linear constraints over X is denoted by C(X), while the set of Boolean
expressions over linear constraints is BC(X) = B(C(X)). With these ingredients, the definitions
stated above for subsets of variables X take over, e.g., to the satisfaction relation |=⊆ NX×BC(X).
Note that this is indeed an extension of Boolean expressions over X: for f ∈ NX, let C f ⊆ X
denote the support of f , i.e., C f = {x ∈ X : f (x) ≥ 1}. Then for any Boolean expression
ρ ∈ B(X), replacing all variables x by the linear constraint (x ≥ 1) ∈ C(X) yields ρ̂ ∈ BC(X),
where for all f ∈ NX

f |= ρ̂ iff C f |= ρ

Due to this, we also allow for mixed Boolean expressions in B(C(X) ∪ X), simply also denoted
by BC(X). For instance, with X = {x1, x2} the mixed expression

ρ = x1 ∧ (2 · x1 + x2 ≤ 4)

defines exactly four functions f ∈ NX where f |= ρ is described through the pairs (x1, x2) ∈
{(1, 0), (1, 1), (1, 2), (2, 0)}. Similar as for Boolean expressions without linear constraints, a binary
relation on NX can be defined via an expression ρ ∈ BC(X∪X′), where X′ is the set consisting of
pairwise distinct, fresh copies of the elements of X. Then, the relation Rρ ⊆ NX× NX is given by:

( f , g) ∈ Rρ iff h |= ρ,

where h ∈ NX∪X′ is defined by h(x) = f (x) and h(x′) = g(x) for all x ∈ X. We also use Y = Y ′ as
a shortform notation of the expression

∧
y∈Y(y = y′).

2.1 Feature Models
A product line is a collection of products, which have commonalities w.r.t. assets called features
[14]. We discuss here a variant of product lines which allows for multi-features, i.e., a feature can
appear in a product within multiple instances [18]. Let F denote the finite set of all such (multi-
)features of a product line. A feature combination is a function f assigning to each feature
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x ∈ F the cardinality f (x). We say that f ∈ NF is valid if there is a corresponding product
in the product line consisting of exactly f (x) instances of the features x ∈ F. A product line
can hence be formalized in terms of a feature signature (F,V), where V ⊆ NF is the set of
valid feature combinations. A feature signature (F,V) is Boolean, ifV ⊆ {0, 1}F , i.e., there is at
most one instance of each feature in a valid feature combination. Feature diagrams [35] provide a
compact representation of feature signatures via a tree-like hierarchical structure (see, e.g., Figure
1). Nodes in feature diagrams correspond to features of F. The nodes are annotated with integer
ranges that restrict the number of instances built for the given feature [18, 17]. The integer ranges
are of the form [l..u], where l, u ∈ Nwith l ≤ u standing for the lower and upper cardinality bound
on the feature instances. Usually, range annotations [1..1] are omitted in the feature diagrams,
and instead of range annotations [0..1] (corresponding to optional features) a circle above the
respective feature node is drawn. If the node for feature x′ is a son of the node for feature x, then
every instance of feature x′ requires its corresponding instance of x. Several types of branchings
from a node for feature x towards its sons x′1, . . . , x

′
n are possible. Standard branchings denote that

all sons of x are instantiated according to their cardinality range (AND connective) and connected
branchings indicate that exactly one son is required (XOR connective). Boolean expressions of
linear constraints over F may be further annotated to describe, e.g., numerical dependencies
between the number of instances of features. In this paper, we stick to this informal and rather
intuitive description of multi-feature diagrams as it suffices for obtaining the feature signature
and the hierarchical structure of features. We refer to [18, 17] for a detailed discussion on the
semantics of multi-feature diagrams.

Dynamic Product Lines. Usually, product lines are static in the sense that a valid feature com-
bination is fixed prior of launching the product. Product lines allowing for activation and deacti-
vation of features during runtime of the system are called dynamic product lines. The common
approach towards dynamic product lines is to indicate disjoint sets of dynamic features D and
environment features E, which respectively include features that can be activated or deactivated
at runtime either by the system itself (features of D) or by the environment (features of E). In-
tuitively, an activation and deactivation of an environment feature may impose (de-)activations
of dynamic features [16]. In [22] dynamic product lines are formalized using a generalization of
feature diagrams where dashed nodes represent elements of D∪E. When not restricted by further
annotated constraints, each instance of such a dynamic feature can be activated and deactivated
at any time. In the approach by [19], the possible (de)-activations of each feature are defined
explicitly by a switching relation over (Boolean) feature combinations. We choose a similar ap-
proach towards our compositional framework, which is also capable of supporting multi-features
and explained in Section 3.

Further Extensions. Costs for feature activations in dynamic product lines have been considered
in [54]. Besides assigning ranges to features describing their number of instances, ranges can
also be annotated to branchings in the feature diagram, generalizing Boolean connectives for the
branchings. In our formalization using linear constraints, such group cardinalities allow for a
compact representation of lower and upper bounds on the number of instances in sons of the
feature diagram [17].

Example 1. As the running example of this paper, let us consider an energy-aware server product

8
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Rack

Network Cards

Advanced

eServer

Entry Level

Coordination

Aggressive

High Savings

Balanced

Premium

[1..10]

Slow

[1..10]

Switch Policy

Round Robin

Weighted

Minimal Fast

Maximal Fast

Fast 10GBit 1GBit

Type Slots

Distribution

L⇒ (o ≤ 2) ∧ A⇒ (o ≤ 7 ∧ o ≥ 2 ∧ F ≤ 2) ∧
P⇒ (o ≤ 10 ∧ o ≥ 6 ∧ F ≤ 8) ∧ (N ≤ o) ∧ (G ≤ F)

Figure 1: Feature diagram of the dynamic eServer product line

line eServer, which is inspired by the server-rack product line of a famous computer vendor
and incorporates an energy-aware driver for bonding network cards as presented in [30]. This
product line can be represented by a feature diagram as shown in Figure 1.
Each node is identified with the underlined letter, i.e., the set of features is

F = {e,R,T,L,A,P, o,F,S,C, y, g,H,B,D,W,M, x, b,N,G, i}.

The eServer product line consists of a server rack (R), which has at most ten slots (o) where up to
ten network cards (N) can be plugged in. Each slot supports either a high-speed data transfer (F)
or only a slow-speed transfer (S). Clearly, a fast 10 GBit network card (G) can only be used when
plugged into a fast slot. Depending on the type of the rack, the number of slots and their kind is
restricted according to the linear constraints over F provided at the bottom of the feature diagram.
E.g., an advanced (A) eServer has at least 2 but at most 7 slots, where at most 2 of them are fast
ones. Besides these hardware features, the eServer product line consists also of a software
feature in terms of a driver coordinating the interplay of the heterogeneous network cards (C).
The eServer incorporates eBond [30]: depending on the selected switch policy (y), network cards
can be activated for serving more bandwidth or deactivated for saving energy. Furthermore,
the method how the requested bandwidth is distributed along the active cards is coordinated
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by the feature D. For instance, the round robin feature (b) may stand for the standard uniform
distribution of bandwidth, whereas the weighted feature (W) refers to distributing bandwidth
such that every card has the same workload.

Note that the network card feature (N) is a dynamic multi-feature, i.e., its cardinality may
vary from 1 to 10 during runtime of the eServer system. However, the annotated constraints still
need to be fulfilled, e.g., N ≤ o for ensuring that at most as many cards as slots available are
plugged.

Obviously, this dynamic product line is large-scaled, dominated by the possible combina-
tions of the multi-features representing slots and network cards. Taking the linear constraints on
the card combinations into account, the eServer product line amounts to 17,544 valid feature
combinations.

2.2 Probabilistic Systems and Their Quantitative Analysis
The operational model used in this paper for modeling and analyzing the behavior of products in a
dynamic product line is given in terms of Markov decision processes (MDPs) [44]. We deal here
with MDPs where transitions are labeled with a cost value. MDPs with multiple cost functions
of different types (e.g., for reasoning about energy and memory requirements and utility values)
can be defined accordingly.

Distributions. Let S be a countable nonempty set. A distribution over S is a function σ : S →
[0, 1] with

∑
s∈S σ(s) = 1. The set {s ∈ S : σ(s) > 0} is called the support of σ and is denoted by

supp(σ). Distr(S ) denotes the set of all distributions over S . Given t ∈ S , the Dirac distribution
Dirac[t] of t over S is defined by

Dirac[t](t) = 1 and Dirac[t](s) = 0 for all s ∈ S \{t}.

The product of two distributions σ1 ∈ Distr(S 1) and σ2 ∈ Distr(S 2) is defined as the distribution
σ1 ∗ σ2 ∈ Distr(S 1×S 2), where (σ1 ∗ σ2)(s1, s2) = σ1(s1) · σ2(s2) for all s1 ∈ S 1 and s2 ∈ S 2.

Markov Decision Processes. An MDP is a tuple

M = (S , S init,Moves),

where S is a finite set of states, S init ⊆ S is the set of initial states and Moves ⊆ S ×N×Distr(S )
specifies the possible moves of M and their costs. We require Moves to be finite and often
write s

c
−→ σ iff (s, c, σ) ∈ Moves. Intuitively, the operational behavior of M is as follows.

The computations ofM start in some nondeterministically chosen initial state of S init. If during
M’s computation the current state is s, one of the moves s

c
−→ σ is selected nondeterministically

first, before there is an internal probabilistic choice, selecting a successor state s′ with probability
σ(s′) > 0. Value c specifies the cost for taking the move s

c
−→ σ.

Steps ofM, written in the form s
c
↪→p s′, arise from moves s

c
−→ σ resolving the probabilistic

choice by plugging in some state s′ with positive probability, i.e., p = σ(s′) > 0. Paths inM are
sequences of consecutive steps. In the following, we assume a finite path π having the form

10
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π = s0
c1
↪→p1 s1

c2
↪→p2 s2

c3
↪→p3 . . .

cn
↪→pn sn. (∗)

We refer to the number n of steps as the length of π. If 0 ≤ k ≤ n, we write π ↓ k for the prefix of
π consisting of the first k steps (then, π ↓ k ends in state sk). Given a finite path π, the probability
Pr(π) is defined as the product of the probabilities in the steps of π and the accumulated costs
cost(π) are defined as the sum of the costs of π’s steps. Formally,

Pr(π) = p1 · p2 · . . . · pn and cost(π) = c1 + c2 + . . . + cn.

State s ∈ S is called terminal if there is no move s
c
−→ σ. A path is maximal, if it is either

infinite or ends in a terminal state. The set of finite paths starting in some state of S init is denoted
by FPaths.

Schedulers and Probability Measure. Within MDPs, reasoning about probabilities requires
the selection of an initial state and resolution of the nondeterministic choices between possible
moves. The latter is formalized via schedulers, which take as input a finite path and decide which
move to take next. For the purposes of this paper it suffices to consider deterministic, possibly
history-dependent schedulers, i.e., partial functions

S : FPaths → N × Distr(S ),

where for all finite paths π as in (∗),S(π) is undefined if π is maximal and otherwiseS(π) = (c, σ)
for some sn

c
−→ σ. AnS-path is any path that arises when the nondeterministic choices inM are

resolved by S. Thus, a finite path π is a S-path iff there are distributions σ1, . . . , σn ∈ Distr(S )
such that S

(
π ↓ k−1

)
= (ck, σk) and pk = σk(sk) for all 1 ≤ k ≤ n. Infinite S-paths are defined

accordingly.
Given a schedulerS and some initial state s ∈ S init, the behavior ofM underS and s is purely

probabilistic and can be formalized by a tree-like infinite-state Markov chainMSs over the finite
S-paths of M starting in s. Markov chains are MDPs that do not have any nondeterministic
choices, i.e, where S init is a singleton and |Moves(s)| ≤ 1 for all states s ∈ S . Using standard
concepts, a probability measure PSs for measurable sets of maximal branches in the Markov chain
MSs is defined and can be transferred to maximal S-paths inM starting in s. For further details
we refer to standard text books such as [32, 37, 44].

Quantitative Properties. The concept of schedulers permits to talk about the probability of a
measurable path property φ for paths starting in a fixed state s and respecting a given scheduler
S. Typical examples for such a property φ are reachability conditions of the following type,
where T and V are sets of states:

• reachability: φ = ^T denotes that eventually some state in T will be visited

• constrained reachability: φ = VU T imposes the same constraint as ^T with the side-
condition that all states visited before reaching T belong to V

For a worst-case analysis of a system modeled by an MDPM, one ranges over all initial states
and all schedulers (i.e., all possible resolutions of the nondeterminism) and considers the max-
imal or minimal probabilities for φ. If φ represents a desired path property, then Pmin

s (φ) =

11
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infS PSs (φ) is the probability forM satisfying φ that can be guaranteed even for the worst-case
scenarios. Similarly, Pmax

s (φ) = supS P
S
s (φ) is the least upper bound that can be guaranteed for

the likelihood ofM to satisfy φ (best-case scenario).
One can also reason about bounds for expected costs of paths in M. We consider here

accumulated costs to reach a set T ⊆ S of target states from a state s ∈ S . Formally, if S is
a scheduler such that PSs (^T ) = 1, then the expected accumulated costs for reaching T from s
under S are defined by

ESs (^T ) =
∑
π cost(π) · Pr(π),

where π as in (∗) ranges over all finite S-paths with sn ∈ T , s0 = s and {s0, . . . , sn−1} ∩ T =
∅. If PSs (^T ) < 1, i.e., with positive probability T will never be visited, then ESs (^T ) = ∞.
Furthermore,

Emin
s (^T ) = infS ESs (^T ) and Emax

s (^T ) = supS E
S
s (^T )

specify the greatest lower bound (least upper bound, respectively) for the expected accumulated
costs reaching T from s inM.

Quantitative Analysis. Several powerful probabilistic model-checking tools support the algo-
rithmic quantitative analysis of MDPs against temporal specifications, such as the reachability
properties stated above. But also for temporal properties such as formulas of linear temporal
logic (LTL) or probabilistic computation-tree logic (PCTL) [8, 6], there is a broad tool support.
PCTL provides an elegant formalism to specify various temporal properties, reliability and re-
source conditions. In our case study, we will use the prominent probabilistic model checker
Prism [34] that offers a symbolic MDP-engine for PCTL, dealing with a compact internal repre-
sentation of the MDP using multi-terminal binary decision diagrams [26]. For the purpose of the
paper, the precise syntax and semantics of PCTL over MDPs is not relevant. It suffices to know
that in PCTL, the (constrained) reachability properties above can be described and encapsulated
with a probability or expectation operator. Probabilistic model-checking algorithms for PCTL
then allow for computing minimizing and maximizing schedulers for probabilities (e.g., Pmax

s (φ))
and expectations (e.g., Emin

s (^T )) up to an arbitrary precision [8, 6, 20, 25]. For the computation
of the latter we assume that Pmin

s (^T ) = 1.

3 Compositional Framework
A product line naturally induces a compositional structure where features correspond to modules
composed, e.g., along the hierarchy provided by feature diagrams. Thus, it is rather natural to
choose a compositional approach towards a modeling framework for dynamic product lines. We
formalize feature implementations by so-called feature modules that might interact with each
other and can depend on the presence of other features and their current own configurations. De-
pendencies between feature modules are represented in form of guarded transitions in the feature
modules, which may impose constraints on the current feature combination and perform syn-
chronized actions. The interplay of the feature modules can also be described by a single feature

12
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module, which arises from the feature implementations via parallel composition and hence only
depends on the dynamic feature changes. Unlike other models for dynamic product lines, there
is no explicit representation of the dynamic feature combination changes inside the feature mod-
ules. Instead, we implement a clear separation between computation and coordination as it is
central for exogenous coordination languages [27, 42, 47]. In our approach, the dynamic acti-
vation and deactivation of features is represented in a separate module, called feature controller.
This separation yields some advantages: feature modules can be replaced and reused for many
scenarios that vary in constraints for switching feature combinations and that might even rely on
different feature signatures.

We model both, feature modules and feature controllers, as MDP-like automata models with
annotations for (possibly feature-dependent) interactions between modules and the controller. To
reason about resource constraints, cost functions are attached to the transitions of both, the fea-
ture modules and the feature controller. Through parallel composition, the operational behavior
of the complete dynamic product line has a standard MDP semantics. We show also that our
approach towards dynamic product lines is more expressive than existing approaches by pro-
viding embeddings into our framework. The compositional framework we present here aims
also to provide a link between abstract models for feature implementations and the guarded com-
mand languages supported by state-of-the art model checkers. This approach is orthogonal to the
compositional approaches for product lines that have been proposed in the literature, presenting
an algebra for the nonprobabilistic feature-oriented composition of modules that covers subtle
implementation details (see, e.g., [33, 43, 2, 40]).

3.1 Feature Modules
To keep the mathematical model simple, we put the emphasis on the compositional treatment of
features and therefore present first a data-abstract lightweight formalism for the feature modules.
In this setting, feature modules can be seen as labeled transition systems, where the transitions
have guards that formalize feature-dependent behaviors and are annotated with probabilities and
costs to model stochastic phenomena and resource constraints.

We start with the definition of a feature interface that declares which features are “imple-
mented” by the given feature module (called own features) and on which external features the
behavior of the module depends. In the following, we assume a given feature signature (F,V),
e.g., provided by a feature diagram, whereV ⊆ NF is finite.

Definition 1 (Feature interface). A feature interface F is a pair ⟨OwnF,ExtF⟩ consisting of two
subsets OwnF and ExtF of F such that OwnF ∩ ExtF = ∅.

With abuse of notations, we often write F to also denote the set OwnF ∪ ExtF of features
affected by the feature interface F. We now define feature modules as an MDP-like formalism
according to a feature interface, where moves may depend on features of the feature interface and
the change of own features can be triggered, e.g., by the environment. Note that we assume a
feature module to incorporate all behaviors of the instances of the own features, i.e., its behavior
depends on the cardinality of the instances of own features and its types, but cannot depend on
the implementation of single instances.

13
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Definition 2 (Feature module). A tuple Mod = (Loc, Locinit,F,Act,Trans) is called feature mod-
ule when

• Loc is a countable set of locations,

• Locinit
⊆ Loc is the set of initial locations,

• F = ⟨OwnF,ExtF⟩ is a feature interface,

• Act is a finite set of actions, and

• Trans = TrAct ∪ TrSw is a finite transition relation.

The operational behavior of Mod specified by Trans is given by feature-guarded transitions that
are either labeled by an action (TrAct) or by a switch event describing own feature changes
(TrSw). Formally:

TrAct ⊆ Loc × BC(F) × Act × N × Distr(Loc)

TrSw ⊆ Loc × BC(F) × BC(OwnF ∪ OwnF′) × N × Distr(Loc)

Recall that BC(·) stands for the set of Boolean expressions over linear constraints on feature
combinations.

Let us go more into detail concerning the operational behavior of feature modules. Both
types of transitions in Mod, action-labeled transitions and switch transitions, have the form θ =
(ℓ, ϕ, , c, λ), where

• ℓ is a location, called source location of θ,

• c ∈ N specifies the cost1 caused by executing θ,

• ϕ ∈ BC(F) is a Boolean expression of linear constraints on feature combinations, called
feature guard, and

• λ is a distribution over Loc specifying an internal choice that determines the probabilities
for the successor locations.

For action-labeled transitions, the third component is an action α ∈ Act representing some
computation of Mod, which will be enabled if the current feature combination fulfills the feature
guard ϕ and not avoided by the interaction with other feature modules. For switch transitions,
is a Boolean expression ρ ∈ BC(OwnF ∪ OwnF′), enabling Mod to react or impose constraints
on dynamic changes of features owned by Mod.

Note that we defined feature modules in a generic way, such that feature modules need not to
be aware of the feature signature and realizable feature switches. This makes them reusable for
different dynamic product lines.

1For simplicity, we deal here with a single cost value for each guarded transition. Feature modules with multiple
cost values will be considered in the case study of Section 5 and can be defined accordingly.
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3.2 Parallel Composition
We formalize the interactions of feature modules by introducing a parallel operator on feature
modules. Thus, starting with separate feature modules for all features f ∈ F one might generate
feature modules that “implement” several features, and eventually obtain a feature model that
describes the behavior of all “controllable” features of the product line. Additionally, there might
be some features in the set of features F provided by an unknown environment, where no feature
modules are given.

The parallel operator for two composable feature modules follows the style of parallel com-
position of probabilistic automata [49, 48] using synchronization over shared actions (handshak-
ing) and interleaving for all other actions. Let

Mod1 = (Loc1, Locinit
1 ,F1,Act1,Trans1)

Mod2 = (Loc2, Locinit
2 ,F2,Act2,Trans2),

where Fi = ⟨OwnFi,ExtFi⟩ and Transi = TrActi ∪ TrSwi for i = 1, 2. Composability of Mod1 and
Mod2 means that OwnF1 ∩ OwnF2 = ∅. Own features of Mod1 might be external for Mod2 and
vice versa, influencing each others behavior.

Definition 3 (Parallel composition). The parallel composition of two composable feature mod-
ules Mod1 and Mod2 is defined as the feature module

Mod1 ∥Mod2 = (Loc, Locinit,F,Act,Trans),

where the feature interface F = ⟨OwnF,ExtF⟩,

Loc = Loc1 × Loc2 Locinit = Locinit
1 × Locinit

2

OwnF = OwnF1 ∪ OwnF2 ExtF = (ExtF1 ∪ ExtF2) \ OwnF

Act = Act1 ∪ Act2 Trans = TrAct ∪ TrSw

and TrAct and TrSw are defined by the rules shown in Figure 2.

Obviously, Mod1 ∥Mod2 is again a feature module. In contrast to the (nonprobabilistic) super-
imposition approach for composing modules [36, 43], the parallel operator ∥ is commutative and
associative. More precisely, if Modi for i ∈ {1, 2, 3} are pairwise composable feature modules,
then:

Mod1 ∥Mod2 = Mod2 ∥Mod1

(Mod1 ∥Mod2) ∥Mod3 = Mod1 ∥ (Mod2 ∥Mod3)

For the parallel composition of feature modules with multiple cost functions, one has to declare
which cost functions are combined. This can be achieved by dealing with types of cost functions
(e.g., energy, money, memory requirements) and accumulating costs of the same type.
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α ∈ Act1 \ Act2, (ℓ1, ϕ, α, c, λ1) ∈ TrAct1

(⟨ℓ1, ℓ2⟩, ϕ, α, c, λ1 ∗ Dirac[ℓ2]) ∈ TrAct

α ∈ Act2 \ Act1, (ℓ2, ϕ, α, c, λ2) ∈ TrAct2

(⟨ℓ1, ℓ2⟩, ϕ, α, c,Dirac[ℓ1] ∗ λ2) ∈ TrAct

α ∈ Act1 ∩ Act2, (ℓ1, ϕ1, α, c1, λ1) ∈ TrAct1, (ℓ2, ϕ2, α, c2, λ2) ∈ TrAct2

(⟨ℓ1, ℓ2⟩, ϕ1 ∧ ϕ2, α, c1 + c2, λ1 ∗ λ2) ∈ TrAct

(ℓ1, ϕ, ρ, c, λ1) ∈ TrSw1

(⟨ℓ1, ℓ2⟩, ϕ, ρ ∧ OwnF2 = OwnF′2, c, λ1 ∗ Dirac[ℓ2]) ∈ TrSw

(ℓ2, ϕ, ρ, c, λ2) ∈ TrSw2

(⟨ℓ1, ℓ2⟩, ϕ, ρ ∧ OwnF1 = OwnF′1, c,Dirac[ℓ1] ∗ λ2) ∈ TrSw

(ℓ1, ϕ1, ρ1, c1, λ1) ∈ TrSw1, (ℓ2, ϕ2, ρ2, c2, λ2) ∈ TrSw2

(⟨ℓ1, ℓ2⟩, ϕ1 ∧ ϕ2, ρ1 ∧ ρ2, c1 + c2, λ1 ∗ λ2) ∈ TrSw

Figure 2: Rules for the parallel composition of feature modules

3.3 Feature Controller
We now turn to feature controllers, which specify the rules for the possible changes of feature
combinations during runtime of the system. We start with purely nondeterministic controllers
(Definition 4) switching feature combinations similar to [19]. Then, we extend the purely non-
deterministic controllers by assigning probabilities to the feature switch events (Definition 5).

Definition 4. A simple feature controller is a tuple

Con = (V,Vinit,SwRel),

where Vinit ⊆ V is the set of initial feature combinations and SwRel ⊆ V×N×V is a rela-
tion, called (feature) switch relation, that formalizes the possible dynamic changes of the feature
combinations and their cost. We refer to elements in SwRel as switch events and require that
( f , d1, f ′), ( f , d2, f ′) ∈ SwRel implies d1 = d2.

If there are several switch events ( f , d1, f1), ( f , d2, f2), . . . that are enabled for the feature com-
bination f , then the choice which switch event fires is made nondeterministically. This is ade-
quate, e.g., to represent user activities such as upgrades or downgrades of a software product or
to express environmental influences.
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Although our focus is on dynamic product lines, static product lines can easily be modeled
using the simple feature controller Constatic = (V,V,∅). The concept of simple feature con-
trollers also covers the approach of [16, 22], where dynamic product lines are represented by
Boolean feature signatures (F,V) extended with disjoint sets of dynamic features D ⊆ F and
environment features E ⊆ F. The features in D ∪ E can be activated or deactivated at any time,
while the modes of all other features remain unchanged. This dynamic behavior of the feature
combinations is formalized using the controller

ConD,E = (V,V,SwRelD,E),

where SwRelD,E is defined for all f , g ∈ V, omitting cost values of switch events for better
readability:

( f , g) ∈ SwRelD,E iff ∅ , {x ∈ F : f (x) + g(x) = 1} ⊆ D ∪ E.

There might also be switch events where statistical data on the frequency of uncontrollable fea-
ture switch events is at hand. For instance, the deactivation of features that are damaged due to
rare environmental events (electrical power outage, extreme hotness, etc.) might be better mod-
eled probabilistically instead of nondeterministically. This leads to the more general concept of
probabilistic feature controllers, where switch events are pairs ( f , d, γ) consisting of a feature
combination f , a cost value d ∈ N and a distribution γ over V. Thus, probabilistic feature
controllers can be seen as MDPs with switch events as moves.

Definition 5 (Controller). A probabilistic feature controller, briefly called controller, is a tuple
Con = (V,Vinit,SwRel) as in Definition 4, but where

SwRel ⊆ V × N × Distr(V)

is finite and ( f , d1, γ), ( f , d2, γ) ∈ SwRel implies d1 = d2.

Clearly, each simple feature controller Con can be seen as a (probabilistic feature) controller.
For this, we just have to identify each switch event ( f , d, g) with ( f , d,Dirac[g]).

3.4 MDP-semantics
The semantics of a feature module Mod under some controller Con is given in terms of an MDP.
If Mod stands for the parallel composition of all modules that implement the features of a given
product line and the controller Con specifies the dynamic adaptions of the feature combinations,
then the arising MDP formalizes the operational behaviors of the product line where the feature
switches are resolved according to the rules specified by the controller. In what follows, we fix a
feature module and a controller

Mod = (Loc, Locinit, F, Act, Trans)

Con = (V,Vinit,SwRel)
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(ℓ, ϕ, α, c, λ) ∈ TrAct, f |= ϕ

(⟨ℓ, f ⟩, c, λ ∗ Dirac[ f ]) ∈ Moves

(ℓ, ϕ, ρ, c, λ) ∈ TrSw, f |= ϕ, f
d
−→ γ,

∃g ∈ supp(γ), x ∈ OwnF. f (x) , g(x),
∀g ∈ supp(γ).( f , g) ∈ Rρ

(⟨ℓ, f ⟩, c + d, λ ∗ γ) ∈ Moves

f
d
−→ γ, ∀g ∈ supp(γ), x ∈ OwnF. f (x) = g(x)

(⟨ℓ, f ⟩, d,Dirac[ℓ] ∗ γ) ∈ Moves

Figure 3: Rules for the moves in the MDP Mod Z Con

as in Definition 2 and Definition 5, where F ⊆ F. Intuitively, an action-labeled transition
(ℓ, ϕ, α, c, λ) of Mod is a possible behavior of Mod in location ℓ, provided that the current state
f of the controller Con (which is simply the current feature combination) meets the guard ϕ.
Switch events of the controller can be performed independently from Mod if they do not affect
the own features of Mod, whereas if they affect at least one feature in OwnF, the changes of the
mode have to be executed synchronously. Thus, feature modules can trigger or prevent switch
events by offering or refusing the required interactions with the feature controller. This allows,
e.g., to model that system upgrades may be only permitted when all internal actions of the feature
modules are completed.

Definition 6 (Semantics of feature modules). Let Mod and Con be as before. The behavior of
Mod under the controller Con is formalized by the MDP

Mod Z Con = (S , S init,Moves),

where S = Loc × V, S init = Locinit
× Vinit and where Moves is defined by the rules in Figure 3.

Recall that ρ ∈ BC(OwnF ∪ OwnF′) is regarded as a Boolean expression on linear constraints
over F ∪ F′ specifying a binary relation Rρ ⊆ NF×NF.

Due to the MDP semantics of feature modules under a controller, standard probabilistic
model-checking techniques for the quantitative analysis can be directly applied. This includes
properties involving feature combinations, since these are encoded into the states of the arising
MDP.

3.5 Remarks on our Framework
In this section, we briefly discuss how the basic formalisms of our framework can be refined for
more specific applications.

Handling Switch Events. Within the presented formalism the switch events appear as nonde-
terministic choices and require interactions between the controller and all modules that provide
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implementations for the affected features. Employing the standard semantics of MDPs, where
one of the enabled moves is selected nondeterministically, this rules out the possibility to express
that certain switch events might be unpreventable. However, such unpreventable switch events
can be included into our framework, refining the concept of feature controllers by explicitly spec-
ifying which switch events must be taken whenever they are enabled in the controller. This could
modeled by adding an extra transition relation for urgent switch events or prioritizing switches.

Instead of urgency or priorities, one might also keep the presented syntax of feature modules
and controllers, but refine the MDP-semantics by adding fairness conditions that rule out compu-
tations where enabled switch events are postponed ad infinitum. Also here, we can benefit from
standard techniques to treat fairness assumptions within PCTL properties developed for MDPs
[6].

Another option for refining the nondeterministic choices in the controller is the distinction
between switch events that are indeed controllable by the controller and those that are triggered
by the environment. This naturally leads to a game-based view of the MDP for the composite
system.

Feature Controller as Feature Module. To emphasize the feature-oriented aspects of our
framework, we used a different syntax for controllers and feature modules. Nevertheless, con-
trollers can be viewed as special feature modules when we discard the concept of switch events
and switch transitions and rephrase them as action-labeled transitions. To transform controllers
syntactically to feature modules, we have to add the trivial guard “true” and introduce names for
all switch events. When turning the switch transitions of the feature modules into action-labeled
transitions, matching names must be introduced to align the parallel operators ∥ and ▷◁. Note
that in the constructed feature modules, all features are external and the controller locations co-
incide with feature combinations. However, the framework can easily be extended supporting
also own operational behavior of the controllers by adding locations to the feature combina-
tions. Furthermore, since controllers are then a special kind of feature modules, different feature
controllers may be composed, enabling to specify the rules for switching features provided by
different stakeholder perspectives, e.g., restrictions on feature combination switches imposed by
the vendor of the product line, the operator of the system, or the user.

Multi-features as Multiple Features. We assumed that a multi-feature includes all the behaviors
of the instances of the feature, i.e., the instances do not have a distinguishable characteristics.
However, annotating each feature and its actions with the number of its instantiation makes
multi-features explicit, breaking the symmetry between the multi-features. One consequence for
feature models is that multi-feature diagrams then have the same expressiveness as simple feature
diagrams. Concerning our framework, every instance of each multi-feature then requires its own
implementation in terms of a feature module.

Superimposition. Feature modules and feature controllers might serve as a starting point for a
low-level implementation of features in a top-down design process. Vice versa, feature modules
may also be extracted from “real” implementations using appropriate abstraction techniques.
Prominent composition operators for feature-oriented software such as superimposition [36, 43,
2] are only supported implicitly in our framework by representing the effect of superimposition
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by means of feature guards and synchronization actions.

4 Variables and Guarded-command Languages
So far, we presented a lightweight data-abstract formalism for feature modules with abstract ac-
tion and location names. This simplified the presentation of the mathematical model. From the
theoretical point of view, feature modules in the sense of Definition 2 are powerful enough to en-
code systems where the modules operate on variables with finite domains. Even communication
over shared variables can be mimicked by dealing with handshaking and local copies of shared
variables. In practice, however, the explicit use of assignments for variables and guards for the
transitions that impose constraints for local and shared variables is desirable; not only to avoid
unreadable encodings, but also for performance reasons of the algorithmic analysis. The concept
of variables can also help to generate more compact representations of the MDP-semantics for
product lines according to our compositional framework, using, e.g., symbolic representations
with linear constraints over variables. Furthermore, feature modules with variables could also
provide operators that mimic the concept of superimposition [43]. The formal definition of an
extension of feature modules by variables is rather technical, but fairly standard. However, such
extended feature modules directly yield a translation into guarded-command languages, which
makes our framework useful for the application of model-checking tools, such as Prism [34].

4.1 Feature Modules with Variables
Let use suppose that Var is a finite set of typed variables, where the types are assumed to be finite
as well (e.g., Boolean variables or integers with some fixed number of digits). We denote fur-
thermore byVAL the set of valuation functions for the variables, i.e., type-consistent mappings
that assign to each variable x ∈ Var a value. In analogy to the symbolic representation of sets
of integer-valued functions by Boolean expressions over linear constraints we introduced in the
preliminaries, we can represent subsets of VAL by Boolean expressions, where the atoms are
assertions on the values of the variables. Let BC(Var) denote the set of these Boolean expres-
sions. Then, e.g., if x and y are variables with domain {0, 1, 2, 3} and z a variable with domain
{red, green, blue}, the Boolean expression ϕ = (x < y) ∧ (y > 2) ∧ (z , green) represents all
valuations v ∈ VAL with v(x) < v(y) = 3 and v(z) ∈ {red, blue}.

Interface. The interface of a feature module Mod now consists of a feature interface F =
⟨OwnF,ExtF⟩ as in Definition 1 and a declaration which variables from Var are local and which
ones are external. The local variables can appear in guards and can be modified by Mod, while
the external variables can only appear in guards, but cannot be written by Mod. Instead, the
external variables of Mod are supposed to be local for some other module. We denote these sets
by OwnV and ExtV, write V for OwnV ∪ ExtV and extend the notion of composability of two
feature modules by the natural requirement that there are no shared local variables.

Locations and Initial Condition. One can think of the variable valuations for the local variables
to serve as locations in the module Mod. However, there is no need for an explicit reference
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to locations since all transitions will be described symbolically (see below). Instead of initial
locations, we deal with an initial condition for the local variables.

Updates and Symbolic Transitions. Transitions in Mod might update the values of the local
variables. The updates are given by sequences of assignments x1 := expr1; . . . ; xn := exprn,
where x1, . . . , xn are pairwise distinct variables in OwnV and expri are type-consistent expres-
sions that refer to variables in V. We formalize the effect of the updates that might appear
in Mod by functions upd : VAL → VAL with upd(v)(y) = v(y) for all non-local variables
y ∈ Var \ OwnV.

Instead of explicit references to the variable valuations in the transitions, we use a symbolic
approach based on symbolic transitions. Symbolic transitions represent sets of guarded transi-
tions, possibly originating from multiple locations, and are of the following form

θ = (guard, ϕ, , c, prob upd),

where guard ∈ BC(V) is a variable guard imposing conditions on the local and external variables,
and ϕ ∈ BC(F) is a feature guard as before. The third and fourth component and c are as in
the data-abstract setting. That is, stands for an action label α ∈ Act or a Boolean expression
ρ ∈ BC(OwnF ∪ OwnF′) for the switch events, while c ∈ N stands for the cost caused by taking
transition θ. The last component prob upd is a probabilistic update, i.e., a distribution over
finitely many updates for variables in OwnV. These are written in the form

p1 : upd1 + p2 : upd2 + . . . + pk : updk,

where pi are positive rational numbers with p1 + . . . + pk = 1 and the updi’s are updates for the
local variables. That is, pi is the probability for update updi.

4.2 Data-aware Parallel Composition
The extension of the parallel operator ∥ for composable feature modules with variables is rather
tedious, but straightforward. As stated above, composability requires that there are no common
own features and no common local variables. The local variables of the composite module
Mod1 ∥Mod2 are the variables that are local for one module Modi, i.e., OwnV = OwnV1∪OwnV2

and ExtV = (ExtV1 ∪ ExtV2) \ OwnV. The feature interface of Mod1 ∥Mod2 is defined as in the
data-abstract setting. The initial variable condition of Mod1 ∥Mod2 arises by the conjunction of
the initial conditions for Mod1 and Mod2. Let us now turn to the transitions in Mod1 ∥Mod2.

• All action-labeled symbolic transitions in Mod1 or Mod2 with some non-shared action α
are also transitions in Mod1 ∥Mod2.

• Action-labeled symbolic transitions

θ1 = (guard1, ϕ1, α, c1, prob upd1) ∈ TrAct1

θ2 = (guard2, ϕ2, α, c2, prob upd2) ∈ TrAct2
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with a shared action α ∈ Act1∩Act2 are combined into a symbolic transition of Mod1 ∥Mod2:

θ1 ∥ θ2 = (guard, ϕ, α, c1 + c2, prob upd),

where guard = guard1 ∧ guard2, ϕ = ϕ1 ∧ ϕ2 and prob upd combines the probabilistic
update functions prob upd1 and prob upd2. That is, if updi has probability pi under distri-
bution prob updi for i = 1, 2, then the combined update that performs the assignments in
upd1 and upd2 simultaneously has probability p1 · p2 under prob upd.

• The adaption of the rules for switch transitions in Mod1 ∥Mod2 can be obtained analo-
gously as for action transitions and is omitted here.

4.3 Data-aware MDP-semantics
In the data-abstract setting, a reasonable MDP-semantics of a feature module Mod under con-
troller Con = (V,Vinit,SwRel) has been defined, no matter whether Mod is just a fragment of
the product line and may interact with other modules or not. An analogous definition for the
data-aware setting can be provided either for modules without external variables or by modelling
the changes of the values of the external variables by nondeterministic choices.

Let us here consider the first case where we are given a module Mod = Mod1 ∥ . . . ∥Modn

that arises through the parallel composition of several modules such that all variables x ∈ Var
are local for some module Modi. Then, Mod has no external variables and Var = OwnV = V.
Furthermore, OwnF is the set of all features of the given product line for which implementations
are given, while ExtF stands for the set of features controlled by the environment. The MDP
Mod Z Con has the state space S = VAL × V. The initial states are the pairs ⟨v, f ⟩ where v
satisfies the initial variable condition of Mod and f ∈ Vinit. The moves in Mod Z Con arise
through rules that are analogous to the rules shown in Figure 3 on page 18. More precisely,
Moves is the smallest set of moves according to the following three cases, where ⟨v, f ⟩ is an
arbitrary state in Mod Z Con:

• An action-labeled transition (guard, ϕ, α, c, prob upd) in Mod is enabled in state ⟨v, f ⟩ if
f |= ϕ and v |= guard. If updi(v) , upd j(v) for i , j, then:

(⟨v, f ⟩, c, λ ∗ Dirac[ f ]) ∈ Moves,

where λ(updi(v)) = pi for i = 1, . . . , k and λ(v̂) = 0 for all other valuation functions v̂.

• If f
d
−→ γ is a switch transition in Con that does affect at most the features of the environ-

ment, i.e., f (x) = g(x) for all g ∈ supp(γ), x ∈ OwnF, then:

(⟨v, f ⟩, d,Dirac[ℓ] ∗ γ) ∈ Moves
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• Suppose that (guard, ϕ, ρ, c, prob upd) is a switch transition in Mod enabled in ⟨v, f ⟩ and
affecting own features, i.e., f |= ϕ and v |= guard and there are g ∈ supp(γ), x ∈ OwnF
with f (x) , g(x). Again, ρ ∈ BC(OwnF∪OwnF′) specifies a binary relation Rρ ⊆ NF×NF.
If ( f , g)∈Rρ for all g∈supp(γ) then:

(⟨v, f ⟩, c + d, λ ∗ γ) ∈ Moves,

where λ is defined as in the first (action-labeled) case.

5 Quantitative Feature Analysis
Within the compositional framework presented in the previous sections, let us assume that we
are given feature modules Mod1, . . . ,Modn which stand for abstract models of certain features in
F and a feature controller Con specifying the rules for feature combination changes. The feature
set F might still contain other features where no implementations are given, which are external
features controlled by the environment. Alternatively, one of the feature modules can formalize
the interference of the feature implementations with a partially known environment, e.g., in form
of stochastic assumptions on the workload, the frequency of user interactions, or reliability of
components. Applying the compositional construction by putting feature modules in parallel and
joining them with the feature controller, we obtain an MDP of the form

M = (Mod1 ∥ . . . ∥Modn) Z Con.

This MDPM formalizes the operational behavior of a dynamic product line and can now be used
for a quantitative analysis. Whereas other family-based model-checking approaches for product
lines require feature-adapted algorithms [13, 12], the task of a quantitative analysis of dynamic
product lines is thus reduced to standard algorithmic problems for MDPs and permits the use of
generic probabilistic model-checking techniques.

5.1 The Strategy Synthesis Problem
A quantitative worst-case analysis in the MDPM that establishes least upper or greatest lower
bounds for the probabilities of certain properties or for the expected accumulated costs as intro-
duced in Section 2.2 can be carried out with standard probabilistic model-checking tools. These
values provide guarantees on the probabilities under all potential resolutions of the nondeter-
ministic choices inM, possibly imposing some fairness constraints to ensure that continuously
enabled dynamic adaptions of the feature combinations (switch events) cannot be superseded
forever by action-labeled transitions of the feature modules.

In our framework, we separated the specifications of the potential dynamic adaptions of fea-
ture combinations (the controller) and the implementations of the features (the feature modules).
Hence, although a worst-case analysis can give important insights in the correctness and quality
of a product line, it appears natural to go one step further by asking for optimal strategies trig-
gering switch events. Optimality can be understood with respect to queries like maximizing the
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probability for desired behaviors or minimizing the expected energy consumption while meeting
given deadlines.

Several variants of this problem can be considered. The basic and most natural variant that
we address here relies on the assumption that the nondeterminism in the MDPM for the com-
posite system stands for decisions to be made by the controller, i.e., only the switch events appear
nondeterministically, whereas the feature modules behave purely probabilistically (or determin-
istically) after joining them with the controller. More formally, we suppose that in each state s
ofM, either there is a single enabled move representing some action-labeled transition of one
or more feature modules or all enabled moves stand for switch events. Furthermore, we assume
that features which are implemented as software or hardware components (usually the features
not modeling the environment) act deterministically. In this case, an optimal strategy for the
controller is just a scheduler forM that optimizes the quantitative measure of interest. The task
that we address is the strategy synthesis problem, i.e., given M and some PCTL-query Φ as
in Section 2.2, construct a scheduler S for M that optimizes the solution of the query Φ. In-
deed, the standard probabilistic model-checking algorithms for PCTL are applicable to solve the
strategy synthesis problem. Note that if the feature controller represents a static behavior (see
Constatic in Section 3.3), the strategy synthesis problem coincides with the probabilistic version
of the featured model-checking problem mentioned in the introduction, where the task amounts
of computing all initial feature combinations such that the corresponding product satisfies Φ.

5.2 The eServer Product Line
In this section, we describe the eServer product line for which the feature model has been al-
ready introduced in the preliminaries (see Example 1). We modeled this dynamic product line
following our framework, i.e., implementing feature modules and a feature controller.

Feature Modules. The feature diagram shown in Figure 1 depicts the features of the eServer
product line, including their hierarchical dependencies and cardinalities which restrict the valid
feature combinations. We implemented each feature in a single feature module, where three
basic feature modules arise through parallel composition: the rack (R), network cards (N), and
coordination feature (C). The rack feature is the basic server hardware, where depending on its
type multiple slots (o) for network cards can be chosen. Slots are either supporting a high or low
bandwidth. The initial hardware configuration cannot be changed after deployment, except for
the network cards feature, where during runtime the quantities of cards may increase (until the
number of slots in the basic system is reached) or the type of the card can be changed upgrading
from a slow 1 GBit to a fast 10 GBit network card. Clearly, a fast network card can only be used
as such in a slot supporting high bandwidths. The rules for network card switches are formalized
by the feature controller and will be described in the next section.

Besides these hardware features of the product line, the coordination feature stands for the
software features. More precisely, it stands for the drivers which control the interplay between
the hardware and the higher-level software layers. The distribution feature (D) manages how the
requested bandwidth is distributed amongst the network cards in the system:

Round Robin stands for the standard distribution scheme, where a data package is served by
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the next network card having free capacities

Weighted is like the round robin scheme, but weighs the fast cards according to their maximal
bandwidth with a factor of 10 compared to the lower ones

Maximal Fast first lets all fast network cards serve packages before a round robin distribution
over all slow cards is performed

Minimal Fast is as Maximal Fast with switched roles for fast and slow cards

The switch policy feature (y) implements an energy-aware bonding of (heterogenous) network
cards according to the eBond principle [30] and exploits the different energy characteristics of
the network cards to save energy. Individual network cards can be switched on at any time
whenever more bandwidth is required and switched off otherwise. In [30], simulation-based
techniques were used to show that within eBond, energy savings up to 75% can be achieved
when the demand for bandwidth varies over time, e.g., between day and night time. In the
eServer product line, we follow the energy-savings algorithms presented for eBond, providing a
switch policy how to activate and deactivate network cards during runtime:2

Aggressive stands for a policy where all those cards are switched off which have not been used
within the last five minutes

High Savings assumes 10% higher bandwidth before switching off cards

Balanced behaves as the high savings policy, but with an additional cool-down phase of 30
minutes after the activation of a network card in which network cards can only be activated
but not deactivated

Note that both, the distribution and switch policy feature, are chosen initially when the eServer
is deployed and cannot be changed any further during runtime. Furthermore, all the features
described by now behave deterministically, but depend on the environment modeled probabilis-
tically.

Environment Features. For a quantitative analysis of eServer, we further incorporate environ-
ment features, which implement deterministic environment behavior such as time and statistical
assumptions on the environment, e.g., the feature switch behavior or the requested bandwidth the
server platform has to face. Feature switches are influenced by the environment, since replacing
hardware clearly depends on the reliability of the technical staff of the server operator. We exem-
plified this influence by assuming that the technical staff requires at least five minutes after the
need for a new network card has been discovered, and arrives with a probability of 90% in each
time interval of five minutes. The bandwidth is modeled via a noised zick-zag curve parameter-
ized over a maximal bandwidth value the server has to expect. This curve follows the behavior
of real-world server systems, where the same characteristics can be observed: during night time,
bandwidth requirements are almost vanished, whereas in the mid day, the requested bandwidth

2Activation and deactivation of network cards should not be confused with changing the network cards feature
by plugging or unplugging cards.
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Figure 4: Bandwidth feature (left) and real-world bandwidth behavior (right)

peaks at a value which is almost constant over the days. In Figure 4, a plot of our bandwidth
model over three days is shown on the left, whereas a real-world example taken from [30] is
shown on the right. In both cases, the peak for the requested bandwidth is at about 2.4 GBit/s.
Thanks to enhancing our framework by variables, these environmental parameters can easily be
encoded as variables time and bandwidth.

Feature Controller. Rules for plugging new network cards or upgrading a slow network card to
a fast one are implemented into a feature controller. These rules are a combination of restrictions
provided by the vendor of the product line or the server operator. Whereas the vendor restricts
feature switches only in the sense that the aimed product should not leave the product line,
the server operator may require that money for new network cards should only be spent if the
network card is needed for the eServer to operate faithfully, i.e., when the workload of the
system is almost at the maximum of the available bandwidth. Furthermore, we assume that
network cards that are inactive do not consume any energy and the system operator does not
allow for downgrading, i.e., unplugging a network card from the system. Figure 5 shows the
fragment of the feature controller we implemented for eServer, where it is assumed that the
initial product is an advanced server with two fast and one slow slot (similar to the professional
eServer device presented in [23]) initially equipped with one slow network card only. The figure

G = 0
i = 1

G = 1
i = 1

G = 0
i = 2

G = 2
i = 1

G = 1
i = 2

G = 0
i = 3

slow, $24

fast, $526

upgrade, $526fast, $526

slow, $24 upgrade, $526

slow, $24

Figure 5: Fragment of the eServer feature controller
shows the quantity of the features for the network cards only, captured by pairs [ G = n, i =
k ], which stand for n active 10GBit features and k active 1GBit network card features. There
are three possible actions which can be performed by the feature controller: plugging a fresh
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10 GBit card into the system (fast), replacing a 1 GBit card by a 10 GBit one (upgrade), and
plugging a fresh 1 GBit card into the system (slow). New cards go along with monetary costs,
i.e., a 10 GBit card costs $526, whereas a 1 GBit card sells at $24. These prices are taken from
the vendors product line which inspired the eServer example. Not drawn in the figure are the
constraints on the transitions, requiring, e.g., that the technical staff is present and that the current
requested bandwidth justifies the need of changing the feature combination, both influenced by
the environment feature. Expressing this more formally with variables and linear constraints
on feature combinations, and assuming that the environment variable bandwidth is measured
in GBit/s, each transition is in fact equipped with a guard

80% · (10 ·G + i) < bandwidth,

meaning that the workload of the network cards is higher than 80% and hence, the system is
under stress. This may lead to a point where the server may not be able to serve the bandwidth
requested. The latter corresponds to a service-level agreement (SLA) violation in the terms by
[30].

Energy Consumption and Monetary Costs. Quantitative properties of the eServer product
line are incorporated through the annotation of costs, where we consider in particular the energy
consumption of the network cards and monetary costs. For the latter, we annotated costs to the
feature controller describing the money to be spent for plugging new cards. Furthermore, we
annotate the initial costs for the system purchased, where the entry systems range from $629
to $1494, the advanced systems from $1279 to $1699 and the premium systems from $2139 to
$9399. For requesting technical staff we assume costs of $39.

The energy consumption of the network cards (we refer to an Intel Ethernet Server Adapter
X520-T featuring an E76983 CPU as 10 GBit card and an Intel EXPI9301CTBLK network
interface card with an E25869 CPU as 1 GBit card) highly depends on the workload. Detailed
measurements for the cards mentioned above have been undertaken in [30] in the scope of eBond.
We approximate their results by linear functions, as suggested by the authors of [30]. The 10 GBit
card consumes 7.88 Watts in the idle state and 8.10 Watts under full load. For the 1 GBit card, the
power consumption rises linearly from 1.35 Watts until reaching a throughput of 540 MBit/s at
1.92 Watts, staying constantly at this energy consumption until the full load is reached. Thus, as
one expects, the energy consumption of the fast card is higher than of the slower one. This yields
potential for energy saving when controlling the utilization of the network cards, e.g., through
different coordination features.

MDP-semantics. Via parallel composition of the feature modules described above, including
the environment features containing stochastic assumptions and joining them with the feature
controller, we obtain the MDP semantics of the eServer product line:

M = ( eServer ∥Hardware ∥Coord︸                               ︷︷                               ︸
eServer

∥ Env︸︷︷︸
environment

) Z Con

Here, eServer stands for the basic server functionality, incorporating the interplay between soft-
ware, hardware and environment, which are in turn implemented through the feature modules
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Hardware, Coord and Env. This interplay is managed in a cyclic manner through three phases:
first, the hardware is allowed to be changed according to the rules by the feature controller Con,
then the control is handed to Coord, activating and deactivating network cards according to its
switching policy, before the environment takes over for five minutes, providing the model of the
requested bandwidth from the users the server has to compete with. Each phase corresponds
to a step in M. Note that the feature modules given above are in fact feature modules which
arise by parallel composition of feature modules standing for features in the feature diagram of
the eServer product line. Coord arises by parallel composition of the modules belonging to the
coordination feature, whereas Hardware arises by parallel composition of all the other feature
modules except the environment features, which are implemented in the feature module Env.

5.3 Quantitative Analysis of the eServer Product Line
Besides solving the strategy synthesis problem for the eServer product line under certain as-
sumptions on the environment regarding energy consumption and monetary costs (those charac-
teristics rely on the eServer product line itself), we also consider the amount of time the server
could not deliver the bandwidth requested by the users. This situation is called a service-level
agreement (SLA) violation (according to [30]) and may happen either when the eServer is not ap-
propriately equipped (the feature combination does not suffice) or when the requested bandwidth
peaks and the coordination feature deactivated too many cards for saving energy. SLA violations
also influence the money spent for the system during runtime. Besides the costs for purchasing
the eServer, the costs for the technical staff and reconfiguration of features, we modeled costs
for SLA violations that are rather expensive. Five minutes not serving the bandwidth requested
costs $200. It is clear that a customer then tries to avoid SLA violations by purchasing a device
whose reliability guarantees the desired throughput functionality. On the other hand, a customer
also tries to save initial costs when buying the device and to save energy during runtime using
the advantages of the energy-saving switch policies.
This trade-off directly leads to the question how to choose the initial feature combination and
when to reconfigure the system by feature switches. That is, solving the strategy synthesis prob-
lem for M regarding various quantitative objectives concerning, e.g., energy, money and SLA
violations. Although our framework directly permits to consider arbitrary quantitative objec-
tives which can be stated for standard MDPs, e.g., expressed within PCTL, we restrict ourselves
to (constrained) reachability objectives in this case study. In particular, we consider here four
different strategy synthesis problems forM: maximizing the probability of not raising an SLA
violation (i.e., reliability of the device), minimizing the expected energy consumption, money
spent or time with SLA violations, respectively, all within a fixed time horizon:

pmax = Pmax((¬Violation)U T ) emin = Emin[energy](^T )

mmin = Emin[money](^T ) vmin = Emin[violation](^T )

Here, the type of the expected minimal costs is annotated to the query (i.e., energy, money and
violation for SLA violations). Furthermore, Violation stands for the set of states in M where
an SLA violation occurred and T for the set of states in M where some fixed time horizon
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is reached. Using the compositional framework presented in Section 3 and its extension with
variables (Section 4), we modeled a parameterized version of the eServer product line in the
guarded-command input language of Prism. Our model is parameterized in terms of the peak
bandwidth during a day/night-cycle. Depending on this maximal bandwidth, different initial
feature combinations and strategies for feature switches may provide different optimal solutions
for pmax, emin, mmin, and vmin.

General Facts. For our case study we fixed certain model parameters. We chose a time hori-
zon of the first day the deployed system is in operation (T = 24 hours) and solved the strategy
synthesis problem for maximal bandwidths ranging from 100 MBit/s to 16 GBit/s in steps of
100 MBit/s. For each of the quantitative objectives, we present four graphs, each showing one
chart for each product configuration at the deployment of the eServer. The first three show the
results for all entry level, advanced and premium eServer products, respectively. Charts with
similar colors are representing similar multi-features, i.e., a similar number and types of slots
and network cards. In all these graphs, the difference between the coordination features chosen
can hardly be figured out, due to the large-scaled product line, which yields many overlapping
charts. Hence, we spot on those advanced eServer products in the lower right graph which have
one fast and two slow slots and are purchased with one 10 GBit card only. This gives rise to
12 possible charts, representing the feature combinations for the coordination feature: colors en-
code the distribution feature (black, red, green, blue for Round Robin, Weighted, Maximal Fast,
and Minimal Fast features, respectively) and the line type stands for different switching policies
(solid, dotted, dashed for Aggressive, High Savings, and Balanced, respectively).

Utility Analysis. We first look at pmax, i.e., the maximum probability of avoiding an SLA vi-
olation within the first day of usage, corresponding to a measure of reliability for an eServer
product. In Figure 6 it can be seen that when the maximal required bandwidth is below 1 GBit/s,
SLA violations can almost surely be avoided within all kinds of servers. This is clear, since at
least one card needs to be active in the server, such that at least a 1 GBit/s can be served at any
time. When the initial feature combination is not sufficient to serve the maximal requested band-
width, the maximal probability avoiding an SLA violation during one day drops significantly.
This can be seen especially at bandwidths with 1, 2 or 10 GBit/s. In general, given the maximal
bandwidth assumed to be requested by users, the best choice for an initial feature combination
is the one corresponding to the topmost chart. The advanced products detailed in the last graph
show that the chosen switching policy has a very similar influence on the results as determined in
the original eBond case studies [30, 23]. An aggressive strategy almost surely raises an SLA vi-
olation when turning 10 GBit/s, whereas plugging a new slow card and choosing a strategy with
a higher bandwidth assumption still retains a possibility to circumvent an SLA violation until
11 GBit/s are reached. The distribution algorithms do not influence significantly this probability
property and are almost indistinguishable.

Energy Analysis. When turning to the minimization of the expected energy consumption, i.e.,
computing emin for M, it is clear that the best strategy is to never upgrade or buy new cards,
keeping the energy costs as small as possible. Hence, the smallest configuration with only one
slow card initially activated performs best with only 1.88 Watts of energy consumption for max-
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imal bandwidths greater than 1 GBit/s (cf. Figure 7). Configurations activating a fast card only
in situations when the bandwidth is above 1 GBit/s range between the energy consumption of
slow and fast cards until reaching 10 GBit/s. In between, the charts in Figure 7 show mixed
configurations, where mainly the switching policies influence the energy consumption. The ag-
gressive policy requires least energy, followed by the high savings and the balanced one. This
can also be seen in our example shown in the last graph, where until reaching 80% workload
of the initial fast card, the energy consumption equals the energy characteristics of the 10 GBit
card. For higher bandwidths than 8 GBit/s, a new slow card can then be plugged and thus, the
energy consumption can be reduced relying on the switching policy.

SLA Violation Analysis. When minimizing the expected number of SLA violations, i.e., com-
puting vmin for M, similar phenomena can be observed as within our utility analysis. The
solution of the strategy synthesis problem yields a scheduler upgrading and plugging new and
fast cards as soon as the feature controller permits it. However, as one can see in Figure 8, choos-
ing initial configurations with only slow slots, the expected percentage of time within an SLA
violation increases significantly when the maximal required bandwidth exceeds the supported
bandwidth of the server with the maximally equipped network cards. Especially for the entry
level systems, one can easily distinguish between the systems having only one slot (raising SLA
violations when the bandwidth exceeds 1 GBit/s or 10 GBit/s) and having two slots from which
at least one is a slow slot (raising SLA violations at 2 GBit/s or 11 GBit/s). In the lower left,
premium systems stay below 12% of the time within an SLA violation if the bandwidth is below
6 GBit/s, which then may grow very fast. This is mainly due to the fact that a premium server
system has at least six slots where cards can be plugged. When choosing the example config-
uration (see the last graph), the minimal expected percentage of time run with SLA violations
with a maximal bandwidth of 11 GBit/s is quite low with at most 3%. Note that as in eBond
case study, the balanced switching policy minimizes SLA violations always best, followed by
the high savings and aggressive policy.

Monetary Analysis. Closely related to the SLA violation time analysis is the solution of the
strategy synthesis problem which minimizes the money to be spent for the eServer system. Fig-
ure 9 shows the results for computing mmin for M. Choosing a system with a fast 10 GBit
network interface card does not yield additional costs after purchase, since SLA violations are
very unlikely (see utility analysis for pmax). However, when purchasing only small configu-
rations, expenses may exceed the costs for high equipped server products when facing higher
bandwidths due to SLA violation fees to be paid. Thus, the customer may purchase a better per-
forming but more expensive system if the maximal required bandwidth is high. However, as the
first graph shows, it is a good strategy to buy an entry-level system with fast slots and upgrade
cards on demand, facing only a few of SLA violations and resulting into low monetary costs.

5.4 Scalability and Statistical Evaluation
As the case study in the last section already illustrated, it is a challenging task to verify large-
scaled product lines with thousands of feature combinations. However, using symbolic encod-
ings for the model and information about the structure of the feature diagram, we managed to
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apply probabilistic model checking for a quantitative analysis. But even after we could reduce
the size of the model encoding, we had to carefully choose the numerical methods to guarantee
convergence of the approximation algorithms. In this section, we deal with the model and run-
time characteristics of the eServer case study to show scalability of our approach towards model
checking dynamic product lines which incorporate multi-features and hence are large-scaled.

Runtime Characteristics. The case study was carried out on an Intel Xeon X5650 @ 2.67 GHz
with 384 GBytes of RAM and using the symbolic MTBDD engine of Prism 4.1 with a precision
of 10−5. The logarithmically scaled Figure 10 shows the time needed for model checking, the
number of states in the model, and the memory consumption – each depending on the maximal
bandwidth assumed in the environment feature. Note that the behaviors of all feature combi-
nations and feature switches are encoded into one single model, such that the model-checking
time includes the computation time of all the four properties of the case study and for all 17,544
initial feature combinations. The symbolic representation of the model allowed for a memory
consumption of only a few MBytes in all cases. At 16 GBit/s we had to construct a system
model of 465,950,960 states and 1,072,736,675 transitions.

Compact State-space Representation. Within models symbolically represented using multi-
terminal binary decision diagrams (MTBDDs), states and transitions are encoded by a binary
tree-like structure where branchings stand for decisions on variable valuations [26]. Traversing
this tree-like diagram, the decisions are not made in an arbitrary fashion, but follow a given
variable ordering. It is well-known that the size of such diagrams crucially depends on that
variable ordering [9]. In our setting, the variables which appear in the MTBDD representation
exactly correspond to the variables Var of the feature modules presented in Section 4, where we
assume that also the locations of feature modules are encoded by variables. More formally, a
variable ordering on Var is a partial order π = (Var,≤), where if x < y, the variable x is decided
prior to y in the MTBDD of the model. Given two sets of variables A, B ∈ Var, we write A ≤ B
iff for all x ∈ A, y ∈ B we have x ≤ y.

To optimize the size of the model representation of the large-scaled eServer product line
M, we investigated several variable orderings on Var. A good heuristic for variable orderings
in MTBDDs is to first decide variables which are “most-influential”, i.e., changed only at the
beginning of an execution of the modeled system but influence the systems behavior significantly
[38]. This directly fits to the product-line setting by placing variables of static features before the
variables of dynamic features and to order variables of the same feature module close together.
Also environment features and the base scheduling of interplay between hardware, software and
environment can be assumed to change their behavior quite often and should be the greatest
elements of an ordering. Keeping these facts in mind, we hence started with an intuitive variable
ordering πstart defined using the modular structure of the product line:

Con < Hardware︸      ︷︷      ︸
T<o<N

< Coordination︸          ︷︷          ︸
D<y

< eServer︸  ︷︷  ︸
phase

< Env︸︷︷︸
bandwidth<time

,

where the sets stand for variables in Var contained in the respective feature modules, e.g.,
Hardware contains all variables of the feature modules T, o and N incorporated in Hardware.
phase is a variable encoding the three phases of eServer, i.e., whether the system is in a recon-
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figuration, coordination or environment phase. bandwidth and time are environment variables
encoding the requested bandwidth and the time passed. Then, we applied sifting methods [46]
for dynamically optimizing variable orderings, which revealed a variable ordering πopt:

eServer < Con < Hardware < Coordination < Env.

For comparison reasons, we also defined variable orderings ρstart and ρopt, which denote the
reverse variable orderings of πstart and πopt, respectively.

Table 1: Statistics of various variable orderings (maximal bandwidth = 2.4 GBit/s)
variable order #states #nodes memory [MBytes] query time [min]

πstart 145,984,112 116,381 2,337 17
ρstart ” 168,043 3,275 72
πopt ” 63,990 1,207 11
ρopt ” 175,467 9,253 237

Table 1 depicts the influence of these variable orderings on the performance of solving the strat-
egy synthesis problem for M and the four queries pmax, emin, vmin and mmin under the as-
sumption that the maximal requested bandwidth is 2.4 GBit/s. As it can be seen, optimizing the
variable ordering has a strong impact on the nodes of the MTBDD required to encode the model
and the time needed for the query computation. The complete case study presented in the last
section has been carried out using the variable ordering πopt. The computations would have taken
more than one day each for maximal bandwidths greater than 5.4 GBit/s if we would have chosen
the variable ordering ρopt.

Symbolic vs. Explicit Model Checking. It is well-known that an explicit engine is usually
faster than a symbolic one when the model contains lots of different numeric values or available
memory is not the restricting factor of the system setup. However, the operational model for
product lines designed through multi-features contain lots of symmetric behaviors due to the
several instances of multi-features and hence, symbolic methods outperform the explicit ones
in our case study. Table 2 compares the characteristics solving the strategy synthesis problems
for an eServer (again assuming 2.4 GBit/s maximal bandwidth) and the four queries of our case
study using various engines. Besides the MTBDD engine used in the whole case study, we run the
sparse and explicit engine of Prism. Whereas the sparse engine constructs the model symbolically
and then uses an explicit sparse matrix representation for solving queries, the explicit engine also
constructs the model explicitly. This has a strong impact especially on memory consumption,
peaking at over 240 GBytes within the explicit engine.

Table 2: Statistics of various Prism engines (maximal bandwidth = 2.4 GBit/s)
engine all-in-one one-by-one

#states memory [MBytes] query time [min] query time [min]

MTBDD 145,984,112 1,207 11 3,112
sparse ” 11,167 224 3,156
explicit ” 241,991 432 802
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All-in-one vs. One-by-one. Within our approach, all behaviors of the products in the dynamic
product line are encoded into a single model, similar to the family-based approaches for product
line analysis [53]. This allows to exploit the commonalities between the products, especially
in combination with a symbolic representation of the model. However, we have shown in the
last paragraph that explicit engines for probabilistic model checking do not perform well on
large models due to memory constraints, such that checking every product in isolation and hence
dividing the model into smaller parts might still yield a faster analysis method. Table 2 also
depicts a comparison between the explicit and symbolic engines of Prism used to analyze the
17,544 products of the eServer product line one-by-one when assuming a maximal bandwidth
of 2.4 GBit/s. The largest model of a single product in the product line contains 120,575 states.
Both, the MTBDD and sparse engine computations took more than two days. Although the
explicit engine turned out to be the fastest engine for the one-by-one approach, it took more than
70 times longer than the all-in-one MTBDD-approach.

6 Conclusions
We presented a compositional modeling framework for dynamic product lines that relies on an-
notated versions of probabilistic automata. The implementation of features and the behavior of
possibly unknown or only partially known implementations of external features are represented
by feature modules, which are probabilistic automata with guards and special switch transitions
for the feature changes. Constraints on the activation and deactivation of features during run-
time of the system are imposed by feature controllers, probabilistic automata synchronizing with
switch transitions of feature modules. Most of the family-based verification approaches for static
and nonprobabilistic product lines use monolithic models including all behaviors of the products
in the product line. Our approach with feature modules and controllers allows to generate such
operational models in a compositional way.

Dynamic product lines modeled within our framework yield an MDP semantics, such that
many problems for feature-oriented systems can be solved using standard algorithms. This in-
cludes model-checking problems for properties referring to feature combinations, which till now
required specialized algorithms even in the nonprobabilistic setting [12]. We also presented a
translation from our framework into guarded-command languages used, e.g., by the prominent
probabilistic model checker Prism. For a case study concerning an energy-aware server product
line (called eServer), we used Prism to solve the strategy synthesis problem that asks for strate-
gies to trigger feature combination changes according to various quantitative properties. We also
placed the focus on large-scaled product lines which contain thousands of valid feature combi-
nations and can be described elegantly through multi-feature diagrams. For large-scaled eServer
models, we compared different model-checking engines and showed that symbolic approaches
clearly outperform explicit ones.

There are many other interesting variants of the strategy synthesis problem that are also solv-
able by known algorithms applicable to the MDP semantics of our framework. One might dis-
tinguish between switch events that are indeed controllable and those that cannot be enforced or
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prevented, but are triggered by the environment. In this case, the arising MDP can be seen as a
stochastic game structure, where the controller and the environment are opponents and the task
to generate an optimal strategy for the controller reduces to well-known game-based problems
[15, 24, 21, 10]. Similarly, one might take into account that also the feature modules can behave
nondeterministically.

A challenge remaining for further work is to integrate our feature-oriented formalisms into
model-checking tools to ease their use for software developers, enabling to integrate quantitative
analyses into the workflow of product-line development. This includes the interpretation and
compact output of the strategies solving the strategy synthesis problem, till now only internally
computed by existing model-checking tools. Also investigations on feature-dependent multi-
objectives are important in this context [4]. Such requirements would, e.g., enable to check
whether the trade-off between energy consumption and the time without SLA violations is better
for premium or advanced eServer variants [3].
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Figure 6: Evaluation of pmax for the different eServer variants
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Figure 7: Evaluation of emin for the different eServer variants
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Figure 8: Evaluation of vmin for the different eServer variants
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Figure 9: Evaluation of mmin for the different eServer variants
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