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1 Introduction

The concept of quantiles is well-known in statistics (see, e.g., [21]) and used there to reason

about the cumulative distribution function of a random variable R. Quantiles are defined as max-

imal values r such that the probability for the event R > r is beyond a given threshold. Although

quantiles can provide very useful insights in the interplay of various cost functions and other

system properties, they have barely obtained attention in the context of formal algorithmic sys-

tem analysis. Quantiles for probabilistic operational models, such as Markov chains or Markov

decision processes, can be defined using parameterized state properties Φ[r] or Ψ[r], where r is a

parameter for some cost or reward function and Φ[r] is increasing in r, whereas Ψ[r] is decreas-

ing in r. The notion “increasing” means that s |= Φ[r] implies s |= Φ[i] for all i > r (“decreasing”

has an analogous meaning). Quantiles for objectives Φ[r] and Ψ[r] in state s of the given model

are defined as min
{

r : s |= Φ[r]
}

resp. max
{

r : s |= Ψ[r]
}

. We formalize Φ[r] and Ψ[r] by

PRCTL-like constraints that assert lower or upper bounds either for the probabilities for reward-

bounded path formulas or for the expected accumulated rewards until reaching a certain target.

Typical examples are formulas of the form Φu[e] for fixed u and Ψe[u] for fixed e asserting that

the probability for

λe,u = ^
(

(energy 6 e) ∧ (utility > u)
)

is, e.g., at least 0.8. (We use LTL notations where the temporal operator ^ stands for “eventu-

ally”.) The quantile emin = min{e ∈ N : s |= Φu[e]} is the minimal initial energy budget required

to achieve the utility value u with probability at least 0.8, while umax = max{u ∈ N : s |= Ψe[u]} is

the maximal utility that can be achieved with probability at least 0.8, when the energy budget is

e. The curve for λe,u on the left of the figure below illustrates how the probability increases when

the utility value u is fixed and the energy budget e tends to∞. The curve on the right shows how

the probability for λe,u decreases when the energy budget e is fixed and the demanded degree of

utility tends to∞.
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State properties Φ[r] or Ψ[r] can also impose a constraint on the expected value of a random

variable. For example, one might ask for the minimal initial energy budget e that is needed to

ensure that the expected degree of utility is at least some predefined utility threshold u. Vice

versa, an expectation quantile might specify the maximal degree of utility that can be achieved

when the expected energy consumption is required to be less or equal some fixed value e.

In probabilistic models with nondeterminism (e.g., for modeling concurrency by interleaving)

such as Markov decision processes (MDPs), quantiles can be defined either in an existential or

in a universal version, depending on whether the quantile is used in a worst-case analysis (where

all possible resolutions of the nondeterminism are taken into account) or whether the task is to

synthesize a control mechanism that schedules actions in an optimal way.
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As the above examples suggest, quantiles can be seen as a concept to reason about the trade-

off between different quantitative aspects, such as energy and utility. Thus, they yield an alterna-

tive to multi-objective reasoning for MDPs by means of Pareto optimal schedulers for multiple

objectives given as Boolean combinations of constraints on the probabilities for certain events

and/or expected accumulated costs [11, 12]. The demand for algorithms to compute quantiles

in Markovian models occurred to us during case studies with resource management protocols

[3]. However, in various case studies with probabilistic model checkers carried out by other re-

searchers, quantiles have been used implicitly in diagrams illustrating the evaluation results of

the experimental studies.

Model-checking algorithms for various types of properties with fixed reward bounds have

been proposed for discrete Markovian models and implemented in tools, see, e.g., [1, 18, 15].

The task to compute quantiles is, however, more challenging since it requires to compute an opti-

mal reward bound for parameterized objectives. Our recent paper [4] briefly considers quantiles

for discrete and continuous-time Markov chains, as an example for nonstandard multi-objective

reasoning. To the best of our knowledge, [22] is the only paper where the computation of quan-

tiles has been addressed for MDPs. It considers quantiles in MDPs with a nonnegative reward

function for the states where the objective is a probability constraint for a reachability property

with an upper reward bound r, formalized using the temporal reward-bounded until operator U6r.

The above mentioned quantile min{e : s |= Φu[e]} appears as a special case since Φu[e] can be

seen as a probability constraint for the path property λe,u = ^
6e(utility > u) = true U6e(utility >

u). In [22], polynomial-time algorithms for qualitative constraints where the probability bounds

are 0 or 1 and an iterative linear-programming (LP) approach for probability bounds p with

0 < p < 1 has been presented. The minimal or maximal probabilities for a path property A U6r B

for r = 0, 1, 2, . . . is calculated until the probability bound p is reached, where the extrema are

taken over all resolutions of nondeterminism. This approach appears to be naïve, but the com-

putation of quantiles is known to be computationally hard (at least NP-hard already for Markov

chains by the results of [19]). This is reflected in the exponential upper bound in [22] for the

number of iterations and the size of the LPs to be solved.

Contribution. First, we generalize the approach of [22] by introducing general notions of

quantiles in MDPs where the objective can either be a probability constraint or a constraint on an

expectation (Sec. 3). Second, we revisit the iterative LP approach suggested by [22] and discuss

refinements that make the approach feasible in practice. The core idea is an iterative method

that propagates intermediate results as much as possible and follows the dynamic-programming

scheme with embedded LPs to deal with zero-reward cycles (Sec. 4.2). We implemented this

approach into Prism [14] and study its performance by means of an energy-aware job-scheduling

system (Sec. 6). Third, we present new algorithms for the computation of quantiles in MDPs

where the objective is (a) either a probability constraint for reachability conditions with lower

reward bounds (Sec. 4.3), or (b) a constraint on the expected accumulated reward (Sec. 5). These

algorithms also rely on an iterative LP approach and the propagation principle is applicable as

well (Sec. 4). Although we are not aware that expectation quantiles in MDPs have been addressed

before, the presented algorithm for (b) shares some similarities with algorithms that have been

proposed for stochastic shortest path problems [6] and to maximize/minimize the expected cost
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to reach a target [10].

2 Preliminaries

We provide a brief summary of the relevant concepts of MDPs and specifications given as for-

mulas in probabilistic computation tree logic with reward-bounded modalities (PRCTL). Further

details can be found, e.g., in [20, 9, 5].

Markov decision processes (MDPs). An MDP is a tupleM = (S ,Act, P), where S is a finite

set of states, Act a finite set of actions, P : S×Act×S → [0, 1] such that
∑

s′∈S P(s, α, s′) ∈ {0, 1}

for all states s ∈ S and actions α ∈ Act. The tuples (s, α, s′) ∈ S×Act×S with P(s, α, s′) > 0

are called steps and we then say that state s′ is an α-successor of s. We write Act(s) for the set

of actions α that have an α-successor from state s ∈ S and require that Act(s) , ∅ for all states

s. Intuitively, if the current state ofM is s, then first there is a nondeterministic choice to select

one of the enabled actions α. Then, M behaves probabilistically and moves with probability

P(s, α, s′) to some state s′. Markov chains are purely probabilistic instances of MDPs, i.e., where

the action set is a singleton.

Paths in an MDP M can be seen as sample runs with resolved nondeterminism. Formally,

paths are finite or infinite sequences π = s0 α0 s1 α1 s2 α2 . . . ∈ (S×Act)∗S ∪ (S×Act)ω that

are built by consecutive steps, i.e., αi ∈ Act(si) and P(si, αi, si+1) > 0 for all i. π[k] denotes the

(k+1)-st state in π and pref (π, k) the prefix of π consisting of the first k steps, ending in state

π[k] = sk. We write FPaths(s) for the set of finite paths and IPaths(s) for the set of infinite paths

starting in s.

Reward structure. A reward structure R for M consists of finitely many reward functions

rew : S × Act → N. If π = s0 α0 s1 α1 . . . αn−1 sn is a finite path, then the accumulated reward

rew(π) is the sum of the rewards for the state-action pairs, i.e., rew(π) =
∑

06i<n rew(si, αi).

Schedulers and induced probability space. Reasoning about probabilities for path proper-

ties in MDPs requires the selection of an initial state and the resolution of the nondeterministic

choices between the possible transitions. The latter is formalized via schedulers, often also called

policies or adversaries, which take as input a finite path and select an action to be executed. A

(deterministic) scheduler is a function S : FPaths → Act such that S(π) ∈ Act
(

sn

)

for all finite

paths π = s0 α0 . . . αn−1 sn. An S-path is any path that arises when the nondeterministic choices

inM are resolved using S, i.e., S
(

pref (π, k)
)

= αk for all 0 6 k < n. Infinite S-paths are defined

accordingly. Given some scheduler S and state s (viewed as the initial state), the behavior ofM

under S is purely probabilistic and can be formalized by a tree-like (infinite-state) Markov chain

MSs . One can think of the states inMSs as finite S-paths π = s0α0 . . . αn−1sn starting in state s,

where the probability to move from π to πα s′ is simply P(sn, α, s
′). Using standard concepts of

measure and probability theory, a sigma-algebra and a probability measure PrSs for measurable

sets of the infinite paths in the Markov chainMSs , also called (path) events or path properties,

is defined and can be transferred to maximal S-paths inM starting in s. For further details, we

refer to standard text books such as [13, 16, 20].

For a worst-case analysis of a system modeled by an MDP M, one ranges over all initial
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states and all schedulers (i.e., all possible resolutions of the nondeterminism) and considers the

minimal or maximal probabilities for ϕ. If ϕ represents a desired path property, then Prmin
s (ϕ) =

infS PrSs (ϕ) is the probability for M satisfying ϕ that can be guaranteed even for worst-case

scenarios, i.e., when ranging over all schedulers. Similarly, if ϕ stands for a bad (undesired) path

property, then Prmax
s (ϕ) = sup

S
PrSs (ϕ) is the least upper bound that can be guaranteed for the bad

behaviors.

State and path properties. Let s be a state, p ∈ [0, 1] a probability bound, ⊲⊳ ∈ {<,6,>, >}

and ϕ a path property. We write s |= ∃P⊲⊳p(ϕ) if there exists a scheduler S with PrSs (ϕ) ⊲⊳ p.

Similarly, s |= ∀P⊲⊳p(ϕ) if PrSs (ϕ) ⊲⊳ p for all schedulers S. Given a reward structure R with

reward function rew, sets A, B ⊆ S , and r ∈ N, then A U( (rew ⊲⊳ r)∧B ) stands for the set of

infinite paths π̃ such that there is some k ∈ N with rew( pref (π̃, k) ) ⊲⊳ r and π̃[k] ∈ B, π̃[i] ∈ A for

0 6 i < k. If rew is clear from the context (e.g., if the reward structure R is a singleton), we briefly

write A U⊲⊳r B rather than A U
(

(rew ⊲⊳ r)∧B
)

. We often use the notation π |= A U⊲⊳r B instead of

π ∈ A U⊲⊳r B. As usual, we derive the release operator R by A R⊲⊳r B = ¬(¬A U⊲⊳r ¬B), where

¬B denotes the complement of B. The temporal modalities ^ (eventually) and � (always) with

or without reward-bounds are derived as usual, e.g., ^⊲⊳rB = true U⊲⊳r B and �⊲⊳rB = ¬^⊲⊳r¬B,

where true stands for the full state space.

Reward-bounded path properties such as ϕ[r] = A U6r B are called increasing as π̃ |= ϕ[r]

implies π̃ |= ϕ[r+1]. The dual path properties ψ[r] = ¬ϕ[r] are called decreasing as π̃ |= ψ[r+1]

implies π̃ |= ψ[r]. Analogously, a state property Φ[r] is called increasing if s |= Φ[r] implies

s |= Φ[r+1]. Examples for increasing state properties are ∃P>p(ϕ[r]), ∀P>p(ϕ[r]), ∃P<p(ψ[r])

and ∀P<p(ψ[r]). Decreasing state properties are defined accordingly.

Sub-MDPs, end components. We use the notion sub-MDP of M for any pair (T,A) where

T ⊆ S and A : T → 2Act such that for all t ∈ T : (1) A(t) ⊆ Act(t) and (2) if α ∈ A(t) and

P(t, α, t′) > 0 then t′ ∈ T . An end component of M is a sub-MDP (T,A) of M where A(t) is

nonempty for all t ∈ T and the underlying directed graph with node set T and the edge relation

t → t′ iff P(t, α, t′) > 0 for some α ∈ A(t) is strongly connected. An end component is said to be

maximal if it is not contained in any other end component.

3 Quantiles

As stated in the introduction, quantiles in MDPs can be defined for arbitrary objectives given

by increasing or decreasing parameterized state properties. We now provide general definitions

for quantiles in MDPs where the state properties impose either a probability or an expectation

constraint, and identify the instances for which we present algorithms in the next two sections.

Quantiles for probability objectives. Let M = (S ,Act, P) be an MDP as in Sec. 2 and

rew : S × Act → N a distinguished reward function in its reward structure. Given an increasing

path property ϕ[r] where parameter r ∈ N stands for some bound on the accumulated reward,

we define the following types of existential quantiles, where ψ[r] = ¬ϕ[r], D ∈ {>, >} and

6
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p ∈ [0, 1] ∩ Q:

Qus

(

∃PDp(ϕ[?])
)

= min
{

r ∈ N : s |= ∃PDp

(

ϕ[r]
) }

= min
{

r ∈ N : Prmax
s

(

ϕ[r]
)

D p
}

Qus

(

∃PDp(ψ[?])
)

= max
{

r ∈ N : s |= ∃PDp

(

ψ[r]
) }

= max
{

r ∈ N : Prmax
s

(

ψ[r]
)

D p
}

Similarly, we can define the corresponding types of universal quantiles:

Qus

(

∀PDp(ϕ[?] )
)

= min
{

r ∈ N : Prmin
s

(

ϕ[r]
)

D p
}

Qus

(

∀PDp(ψ[?] )
)

= max
{

r ∈ N : Prmin
s

(

ψ[r]
)

D p
}

From each of these quantiles we can derive three more quantiles by applying duality arguments,

e.g., Prmax
s (ϕ[r]) = 1 − Prmin

s (ψ[r]), and the fact that min{r ∈ N : s |= Φ[r]} equals max{r ∈ N :

s 6|= Φ[r−1]} when Φ[r] is an increasing state property. For example:

min
{

r ∈ N : Prmax
s

(

ϕ[r]
)

> p
}

= min
{

r ∈ N : Prmin
s

(

ψ[r]
)

< 1−p
}

= max
{

r ∈ N : Prmin
s

(

ψ[r−1]
)

> 1−p
}

= max
{

r ∈ N : Prmax
s

(

ϕ[r−1]
)

6 p
}

This observation yields groups of four quantiles that are derivable from each other. See [2] for

the list of quantile dualities. For the above example we have:

Qus

(

∃P>p(ϕ[?])
)

= Qus

(

∀P<1−p(ψ[?])
)

= Qus

(

∀P>1−p(ψ[?])
)

+ 1 = Qus

(

∃P6p(ϕ[?])
)

+ 1

The quantiles studied in [22] are obtained by considering ϕ[r] = A U6r B and ψ[r] = (¬A) R6r(¬B).

Additionally, we address until-properties with lower reward bounds, i.e., ϕ[r] = A U>r B and

ψ[r] = (¬A) R>r(¬B). To investigate the interplay of two reward functions (such as one for

energy and one for utility) we also address path formulas where instead of the sets A and B,

constraints for some other reward function are imposed. For instance:

λe,u = ^
(

(energy 6 e) ∧ (utility > u)
)

,

where e, u ∈ N and energy and utility stand for the accumulated reward along finite paths of

reward functions erew : S×Act → N (for the energy) and urew : S×Act → N (for the utility). For

an infinite path π̃, we have π̃ |= λe,u iff π̃ has a finite prefix π with erew(π) 6 e and urew(π) > u.

Likewise, λe,u can be interpreted as an instance of an until-property with an upper or a lower

reward bound. For fixed utility threshold u, the path property ϕ[e] = λe,u = ^
6e(utility > u) is

increasing, while ψ[u] = λe,u = ^
>u(energy 6 e) is decreasing for fixed energy budget e. The

task to compute the existential quantiles

Qus

(

∃P>p(λ?,u)
)

= min
{

e ∈ N : Prmax
s (λe,u) > p

}

Qus

(

∃P>p(λe,?)
)

= max
{

u ∈ N : Prmax
s (λe,u) > p

}

7
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corresponds to the problem of constructing a scheduler that minimizes the energy ensuring that

the achieved utility is at least u with probability > p or to maximize the achieved degree of

utility for a given energy budget e. Analogously, universal quantiles provide the corresponding

information on the energy-utility characteristics in worst-case scenarios.

Quantiles for expectation objectives. We also consider quantiles where the objective is the

minimal or maximal expected value of a random variable f [r] : IPaths→ N∪ {∞}. For instance,

if f [r] is increasing in r and θ some rational threshold, then an expectation quantile can be defined

as the least r ∈ N such that the expected value of f [r] is larger than θ for all or some scheduler(s).

As an example for quantiles with expectation objectives, we consider a Boolean condition cond

for finite paths and the random variable f [e] = utility|cond : IPaths → N ∪ {∞} that returns the

utility value that is earned along finite paths where cond holds. Formally:

utility|cond(π̃) = sup
{

urew
(

pref (π̃, k)
)

: k ∈ N, pref (π̃, k) |= cond
}

That is, if π̃ is an infinite path with π̃ |= ^cond (i.e., pref (π̃, k) |= cond for some k ∈ N) then

utility|cond(π̃) = urew(π), where π is the longest prefix of π̃ with π |= cond. If π̃ |= �cond (i.e.,

pref (π̃, k) |= cond for all k ∈ N) then utility|cond(π̃) can be finite or infinite, depending on whether

there are infinitely many positions i with urew(si, αi) > 0. Given a scheduler S and a state s in

M, the expected utility for condition cond is the expected value of the random variable utility|cond

under the probability measure induced by S and s:

ExpUtilSs
(

cond
)

=
∑

r∈N

r · PrSs
{

π̃ ∈ IPaths : utility|cond(π̃) = r
}

Note that ExpUtilSs
(

cond
)

= ∞ is possible if PrSs
(

^�(cond)
)

> 0. We define

ExpUtilmax
s

(

cond
)

= sup
S

ExpUtilSs
(

cond
)

.

ExpUtilmin
s (cond) is defined accordingly, taking the infimum over all schedulers rather than the

supremum. Expectation energy-utility quantiles can be formalized by dealing with conditions

cond[e] that are parameterized by some energy value e ∈ N. Examples are the following quantiles

that fix a lower bound u for the extremal expected degree of utility and ask to minimize the

required energy:

Qus

(

∃ExpU>u( energy 6? )
)

= min
{

e ∈ N : ExpUtilmax
s

(

energy 6 e
)

> u
}

Qus

(

∀ExpU>u( energy 6? )
)

= min
{

e ∈ N : ExpUtilmin
s

(

energy 6 e
)

> u
}

where π |= (energy 6 e) iff erew(π) 6 e. Analogous definitions can be provided for quantiles

that ask to maximize the achieved utility if an upper bound e for the expected consumed energy

is given.

8
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minimize
∑

(s,i)∈S [r]

xs,i where S [r] = S × {0, 1, . . . , r}, subject to

xs,i = 0 if s 6|= ∃(A U B) and 0 6 i 6 r

xs,i = 1 if s ∈ B and 0 6 i 6 r

xs,i >
∑

t∈S

P(s, α, t) · xt,i−rew(s,α) if s < B, s |= ∃(A U B) and α ∈ Act(s)
such that rew(s, α) 6 i 6 r

Figure 1: Linear program LPr with the unique solution ps,i = Prmax
s

(

A U6i B
)

4 Computing probability quantiles

We now present algorithms for the computation of the quantitative quantiles introduced in Sec. 3.

We start in this section with quantiles where the objective is a constraint on the extremal probabil-

ity for a reward-bounded until formula. As stated before, quantiles that refer to reward-bounded

release formulas are dual and can be computed using the same techniques.

Recently, a linear-programming (LP) approach for computing quantiles for (constrained)

reachability properties with upper reward bounds (briefly called U6?-quantiles) in MDPs with

state rewards has been suggested [22]. We first recall this approach for quantitative U6?-quantiles

(Sec. 4.1) and then provide an efficient computation scheme that relies on an iterative back-

propagation procedure including several heuristics (Sec. 4.2). In Sec. 4.3, we briefly show how

to adapt these methods for reachability properties with lower reward bounds.

4.1 Iterative linear-programming based approach

We recall the approach of [22], focusing on existential U6?-quantiles with strict probability

bounds. Other U6?-quantiles can be treated similarly (see [22]).

The idea for computing Qus(∃P>p(A U6? B) ) is to first apply standard methods for comput-

ing the maximum probability ps = Prmax
s (A U B) for the unbounded until formula A U B. If ps

does not meet the probability bound p, i.e., ps 6 p, the quantile is infinite for state s. For ps > p,

the idea of [22] is to compute the maximal probabilities ps,r = Prmax
s (A U6r B) for increasing

reward bound r, until ps,r > p. For this purpose, [22] provides an LP with variables xs,i for

(s, i) ∈ S [r] = S × {0, 1, . . . , r} and the unique solution (ps,i)(s,i)∈S [r], where ps,i = Prmax
s ( A U6i B ).

Fig. 1 shows the LP of [22], adapted for the case of state-action rewards (rather than state re-

wards). This LP-based computation scheme can be solved in exponential time, as shown in [22]

by establishing an upper bound rmax for the smallest (finite) quantile. A naïve approach thus

could first compute rmax, generate the LP with variables xs,i for (s, i) ∈ S [rmax] and then use

general-purpose linear- or dynamic-programming techniques to solve the constructed LP (e.g.,

the Simplex algorithm, ellipsoid methods or value or policy iteration). However, since the upper

bound rmax is exponential in the size ofM and depends on the number of states inM, the tran-

sition probabilities and rewards inM and the probability bound p, this approach turns out to be

intractable whenM or the reward values are large.

9
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4.2 Back-propagation approach

The main bottleneck of the LP approach for computing quantitative quantiles is the possibly

exponential size of the LP. We propose an iterative approach that computes the values ps,i =

Prmax
s (A U6i B) successively for i = 0, 1, 2, . . . by decomposing the LP in Fig. 1 into smaller

ones and propagating already computed values as much as possible. Due to the reuse of already

computed values, we call this approach back-propagation (BP) approach.

Given that the solution (ps, j)06 j<i for LPi−1 is known when considering LPi, the constraints

for variable xs,i in the third case of Fig. 1 (i.e., if s < B, s |= ∃(A U B) and α ∈ Act(s)) can be

rewritten as follows:

xs,i > cs,i
def

= max
{ ∑

t∈S

P(s, α, t) · pt,i−rew(s,α) : α ∈ Act(s), rew(s, α) > 0
}

xs,i >
∑

t∈S P(s, α, t) · xt,i if rew(s, α) = 0

We can now use standard methods to solve LP′i with variables (xs,i)s∈S consisting of the above

linear constraints together with the terminal cases xs,i = 0 if s 6|= ∃(A U B) and xs,i = 1 if s ∈ B,

where the objective is to “minimize
∑

s∈S xs,i”. LP′i has indeed a unique solution which agrees

with the (unique) solution (ps,i)s∈S of LPi for the variables xs,i.

Suppose the task is to compute qs = Qus(∃P>p(A U6? B) ) for all states s. Let n = |S |,

m =
∑

s∈S |Act(s)| and z be the number of state-action pairs (s, α) for which s ∈ S , α ∈ Act(s)

and rew(s, α) = 0. Then, with the proposed back-propagation approach, (qs)s∈S is obtained by

first computing Prmax
s (A U B) for all states s (which can be done in time polynomial in the size

of M [7, 5] and serves to identify the states s ∈ S where qs = ∞) and then solving the LPs

LP′0,LP
′
1, . . . ,LP

′
r (where r ∈ max{qs : Prmax

s (A U B) > p}) with n variables and z + |S | linear

constraints each.

Reward window. To reduce the memory requirements, we can use the observation that the

constants cs,i in LP′i are obtained from the values pt,i−rew(s,α) where α ∈ Act(s) and rew(s, α) > 0.

As a consequence, the solution
(

pt,i

)

t∈S for LP′i can be discarded as soon as LP′i+w has been

solved for the maximal reward value w = max
{

rew(s, α) : s ∈ S , α ∈ Act(s)
}

inM. A further

improvement considers the maximum reward of all incoming transitions per state. That is, the

value of pt,i is not needed any more as soon as LP′i+w has been solved where w equals the maximal

reward of the state-action pairs (s, α) with P(s, α, t) > 0.

Linear programs for zero-reward sub-MDP. The back-propagation approach can yield a ma-

jor speed-up compared to the naïve approach with a single LP. However, if the number of state-

action pairs with zero reward is large compared to the full set of actions in S , LP′i needs still to

be solved for several i. The idea then is to decompose LP′i and treat the sub-LPs in a specific

order. Let G be the directed graph with node set S and the edge relation →⊆ S × S given

by s → t iff P(s, α, t) > 0 for some action α ∈ Act(s) with rew(s, α) = 0. Applying standard

graph algorithms, we compute the strongly connected components in G and a topological sorting

C1, . . . ,Ck for them. Then the SCCs C1, . . . ,Ck are the finest partition of S such that: if s ∈ Ch,

t ∈ C j, P(s, α, t) > 0 and rew(s, α) = 0, then h 6 j. Thus, we can decompose LP′i into LPs

LP′i,1, . . . ,LP
′
i,k, where LP′i,h consists of the linear constraints xs,i > cs,i and

10
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xs,i >
∑

t∈Ch

P(s, α, t) · xt,i +
∑

u∈C>h

P(s, α, u) · pu,i

for s ∈ Ch, α ∈ Act(s), rew(s, α) = 0. Here, C>h = Ch+1 ∪ . . . ∪ Ck and (pu,i)u∈C j
denotes the

solutions of LP′i, j. The objective of LP′i,h is to minimize the sum
∑

s∈Ch
xs,i.

Assuming that the sub-MDPM|rew=0 ofM resulting by removing all actions α from Act(s)

with rew(s, α) > 0 is acyclic, no LP has to be solved within our approach. In this case, the

sets C1, . . . ,Ck are singletons, say Ch = {sh}, and the solution
(

ps,i

)

s∈S is obtained directly when

processing the states in reversed topological order sk, sk−1, . . . , s1.

Other improvements. Several other heuristics can be integrated to speed up the computation

time or to decrease the memory requirements. For instance, zero-reward self-loops can be re-

moved by a quantile-preserving transformation M { M′. The MDP M′ has the same state

space S as M and the same rewards for all state-action pairs. The transition probability func-

tion P′ of M′ is given by P′(s, α, t) = P(s, α, t)/(1 − P(s, α, s)) if rew(s, α) = 0, t , s and

0<P(s, α, s)<1 and P′(s, α, t) = P(s, α, t) in all other cases (see [2]). Another heuristic, which

is however not yet realized in our implementation, is the aggregation method proposed in [8].

This approach permits to collapse all states belonging to the same maximal end components in

the sub-MDPM|rew=0 into a single state.

4.3 Lower reward bounds

The approach for computing U6?-quantiles can be adapted to compute quantiles for (constrained)

reachability formulas with lower reward bounds, i.e., A U>? B. For simplicity, we sketch only the

treatment of reachability (^>?B) with a lower reward bound. More details and proofs can be

found in [2]. We start with the universal quantile:

Qus

(

∀P<p(^>?B)
)

= min
{

r ∈ N : Prmax
s

(

^
>rB
)

< p
}

Clearly, if Prmax
s (^B) < p then the quantile for state s is 0. Furthermore:

Qus

(

∀P<p(^>?B)
)

= ∞ iff Prmax
s

(

^(C ∧ ^B)
)

> p,

where C consists of all states t that are contained in a maximal end component (T,A) with

rew(t′, α) > 0 for some state t′ ∈ T and an action α ∈ A(t′). Intuitively, when entering C one can

stay in C until the accumulated reward is greater or equal than r, before entering B. Otherwise,

we apply the same idea as before and compute the values ps,r = Prmax
s (^>rB) for increasing r until

ps,r < p. The values ps,r are obtained as the unique solution of the following LP with variables

xs,i for (s, i) ∈ S [r] and the following constraints for s ∈ S and 1 6 i 6 r:

xs,0 = Prmax
s

(

^B
)

xs,i > 0

xs,i >
∑

t∈S

P(s, α, t) · xt,ℓ if α ∈ Act(s) and ℓ = max{0, i − rew(s, α)}

11
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The objective is to minimize
∑

(s,i)∈S [r] xs,i. To speed up the computation, one can add the follow-

ing constraints: xs,i = 1 if Prmax
s

(

^(C ∧ ^B)
)

= 1 for s ∈ S .

The existential quantile

Qus

(

∃P<p(^>?B)
)

= min
{

r ∈ N : Prmin
s

(

^
>rB
)

< p
}

can then be computed by an analogous approach, using the fact that the values ps,r = Prmin
s

(

^
>rB
)

are the greatest solutions in [0, 1] of the linear constraints

xs,0 = Prmin
s

(

^B
)

xs,i = 0 if Prmin
s (^B) = 0 and i > 1

xs,i 6
∑

t∈S

P(s, α, t) · xt,ℓ if Prmin
s (^B) > 0, i > 1, α ∈ Act(s)

and ℓ = max{0, i − rew(s, α)}.

Then, Qus

(

∃P<p(^>?B)
)

= ∞ iff Prmin
s

(

�^B ∧ �^posR
)

> p, where posR ⊆ S × Act is the set

of state-action pairs (s, α) with rew(s, α) > 0. Again, one could add the following constraints:

xs,i = 1 if Prmin
s (�^B ∧ �^posR) = 1 for s ∈ S . Obviously, the back-propagation approach (cf.

Sec. 4.2) is applicable for the existential and universal quantiles with lower bounds as well.

4.4 Energy-utility quantiles

The energy-utility quantile Qus

(

∃P>p(λ?,u)
)

as introduced in Sec. 3 can be computed using the

same techniques as explained for quantiles of the form Qus

(

∃P>p(^6?B)
)

. For this purpose, we

might use an automaton Uu with states q0, q1, . . . , qu−1, qu representing the accumulated utility

value. The goal state qu represents that the achieved utility is at least u. The transitions of Uu

are given by qi → q j for j > i. We putM and Uu in parallel to obtain an MDPM⊗Uu with

a single reward function for the energy and synchronous transitions that capture the meaning of

Uu’s states. Formally,M⊗Uu = (S × {q0, . . . , qu},Act, P′) where

P′(〈s, qi〉, α, 〈t, q j〉) = P(s, α, t) if j = min{u, i + urew(s, α)}

and P′(·) = 0 in all other cases. The reward structure ofM⊗Uu consists of the energy reward

function erew lifted to the product. That is, we deal with the reward function erew′ forM⊗Uu

given by erew′(〈s, qi〉, α) = erew(s, α) for all s ∈ S , 0 6 i 6 u and α ∈ Act. With B = S × {qu},

we then have

Prmax
M,s

(

^( (energy 6 e) ∧ (utility > u) )
)

= Prmax
M⊗Uu,〈s,q0〉

(

^
6eB
)

and therefore QuMs (∃P>p(λ?,u) ) = Qu
M⊗Uu

〈s,q0〉
(∃P>p(^6?B ) ).

The quantile Qus(∃P>p(λe,?) ) is computable by an analogous automata-based approach, but now

using the LP approach suggested for lower reward bounds (Sec. 4.3). Various other energy-utility

quantiles can be computed using reductions to the case of reward-bounded until formulas or

derived path properties. It is obvious that an analogous automata-based approach is applicable for

quantiles where the objective is a probability constraint on path properties of the form ^((rew ⊲⊳

r)∧κ), where κ is a Boolean combination of constraints of the form rewi ⊲⊳i ri for multiple reward

functions rew1, . . . , rewk (other than rew).

12
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5 Computing expectation quantiles

We now discuss how to compute the expectation quantiles in MDPs with two reward functions

erew and urew for modeling the energy requirements and the achieved utility (see Sec. 3). Let us

exemplify the approach computing

E∃s = Qus

(

∃ExpU>u(energy 6?)
)

and E∀s = Qus

(

∀ExpU>u(energy 6?)
)

.

Using known results for standard MDPs, we obtain that ExpUtilmax
s (energy 6 e) is finite, provided

that Prmin
s (^(energy > e) ) = 1. If, however, M contains end components where all the state-

action pairs have zero energy reward then Prmin
s (^(energy > e) ) < 1 and ExpUtilmax

s (energy 6

e) = ∞ is possible.

Let us first make the simplifying assumption that all end components are both energy- and

utility-divergent, i.e., whenever (T,A) is an end component of M then there exist state-action

pairs (t, α) and (v, β) with t, v ∈ T and α ∈ A(t), β ∈ A(v) such that erew(t, α) and urew(v, β) are

positive. This assumption yields that Prmin
s (^(energy > e) ) = 1 and hence, ExpUtilmax

s ( energy 6 e )

and ExpUtilmin
s ( energy 6 e ) are finite for all states s ∈ S and all energy bounds e ∈ N. More-

over, lime→∞ ExpUtilSs (energy 6 e) = ∞ for each scheduler S. This yields the finiteness of

the expectation quantiles E∃s and E∀s . The computation of E∃s and E∀s can be carried out using

an iterative approach as for probability quantiles. For E∃s , we compute iteratively the values

us,e = ExpUtilmin
s (energy 6 e) until us,e > u, in which case E∃s = e. It remains to explain how to

compute us,e. Again, we can use an LP-based approach and characterize the vector (us,i)(s,i)∈S [e]

as the unique solution of the LP with variables xs,i for (s, i) ∈ S [e] = S × {0, 1, . . . , e} and the

objective to maximize the sum of the xs,i’s subject to:

xs,i 6 urew(s, α) +
∑

t∈S

P(s, α, t) · xt,i−erew(s,α)

if α ∈ Act(s) and erew(s, α) 6 i 6 e. For computing E∀s , the values vs,e = ExpUtilmax
s (energy 6 e)

can be computed by a similar schema, using the fact that the vector (vs,i)(s,i)∈S [e] is the least

solution in [0, 1]S [e] of the linear constraints

xs,i > urew(s, α) +
∑

t∈S

P(s, α, t) · xt,i−erew(s,α)

if α ∈ Act(s) and erew(s, α) 6 i 6 e. Obviously, the back-propagation approach is applicable as

well.

The computation of expectation quantiles for the general case, where no assumptions on the

end components are imposed, are detailed in [2]. Basically, this computation relies on an analo-

gous LP approach, but requires a preprocessing step to identify the states where ExpUtilmax
s (energy 6

e) = ∞, respectively ExpUtilmin
s (energy 6 e) = ∞ and computing those states where the quantile

is infinite. The main feature for this preprocessing is an analysis of end components, similar as

in [10, 12].
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6 Implementation and case studies

In this section, we deal with our implementation of the algorithms for computing U6?-quantiles

presented in Sec. 4.1 and 4.2 and demonstrate its usability within case studies. Our implemen-

tation relies on the computation of extremal probabilities for upper reward-bounded until prop-

erties on top of the explicit engine of the prominent probabilistic model checker Prism version

4.1 [14], which have not yet been supported within Prism so far. We compute quantiles either

by solving the LP of [22] (see Fig. 1) directly using the LP-solver lpsolve1 or with our back-

propagation approach (BP). Our first case study is taken from Prism’s benchmark suite [17],

showing the applicability of our implementation on relatively small models and compare the per-

formance of the LP and BP approach. Then, we turn to computing energy-utility quantiles for

an energy-aware job-scheduling protocol. All calculations were carried out on a computer with

two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM. More detailed information

and further case studies can be found in [2].

Self-stabilization. The self-stabilizing protocol by Israeli and Jalfon is modeled2 as an MDP

for N equal processes organized in a ring, each having a token at the beginning and aiming to

randomly send and receive tokens until the ring is in a stable state, i.e., only one process has a

token. We used our quantile algorithms to compute the minimal number of steps required for

reaching a stable state with probability of at least p for some schedulers (existential quantile)

or all schedulers (universal quantile). The latter problem also has been answered in the referred

Table 1: Results for randomized self-stabilizing (existential and universal quantile)
model existential quantile universal quantile

N p states build result LP BP result LP BP

10 0.1 1,023 0.24s 18 118.38s 0.03s 26 403.36s 0.16s

0.5 " " 38 1,066.64s 0.05s 43 1,388.15s 0.09s

0.99 " " 117 11,552.55s 0.14s 130 19,794.61s 0.15s

15 0.1 32,767 1.56s 42 timeout 1.85s 61 timeout 3.78s

0.5 " " 89 timeout 3.85s 100 timeout 4.10s

0.99 " " 270 timeout 11.42s 305 timeout 12.18s

Prism case study, but by iteratively increasing the step bound until the probability bound p was

met. Our approach is more elegant by implicitly computing the probability values and answering

only one (quantile) query. Table 1 shows our results for the LP and BP approach, with a timeout

of 12 hours. The time for BP covers the entire computation of the quantile value r. For LP, we

report the time for solving the linear program LPr. As it can be seen, the LP approach turns out

to be infeasible already for relatively small models, whereas the BP implementation performs

well. Table 1 also reveals that especially within the LP approach the time spent for evaluating

the quantile increases significantly when the probability bound p is high (and hence, also the

1http://lpsolve.sourceforge.net, we used version 5.5.2, presolving deactivated
2http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij
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Table 2: Results for energy-aware job scheduling (quantiles emin and umax)
model quantile emin

N p states build result time

4 0.1 368,521 14.67s 179 37.43s

0.5 " " 198 37.02s

0.99 " " 225 42.69s

5 0.1 6,079,533 377.95s 242 1,058.48s

0.5 " " 266 1,135.65s

0.99 " " 301 1,261.89s

model quantile umax

N p states build result time

4 0.1 872,410 14.47s 7 173.71s

0.5 " " 7 173.22s

0.99 " " 7 155.66s

5 0.1 3,049,471 65.69s 9 812.19s

0.5 " " 9 812.93s

0.99 " " 9 736.93s

quantile value is high).

Energy-aware job scheduling. We now turn to an energy-aware job-scheduling protocol mod-

eled as an MDP, for which we compute energy-utility quantiles. Assume a system of N processes

which need to enter a critical section in order to perform tasks, each within a given deadline. Ac-

cess to the critical section is exclusively granted by a scheduler, which selects processes only if

they have requested to enter. When a process states such a request, a deadline counter is set and

decreased over time even if the process did not enter the critical section yet. Since computing

a task also requires a certain amount of time in the critical section, deadlines can be exceeded.

Utility is hence provided in terms of tasks finished without exceeding their deadline. Each pro-

cess consumes energy, especially if it is in the critical section, and the global energy consumption

equals the sum of energy consumed by all processes. Additional dependencies between utility

and energy arise as the scheduler can activate a turbo mode for the critical section, doubling the

computation speed but tripling energy consumption. As motivated in the introduction, we are

now interested in the following energy-utility quantiles, both illustrating the trade-off between

energy and utility w.r.t. several probability bounds p. We consider the quantile for the minimal

energy emin required to guarantee u successfully finished tasks, and the quantile for the maximal

number umax of tasks successfully finished by one process requiring not more than e energy. Our

experiments solving these quantiles used the BP implementation with parameters u=N, e=50·N.

The results shown in Table 2 illustrate that even for large model sizes with millions of states, our

implementation of the BP algorithm is feasible. As expected, none of the quantile computations

for emin and umax finished within 12 hours when we used the LP approach instead of our BP

implementation.

7 Conclusion

We introduced a general notion of (energy-utility) quantiles for MDPs and extended the LP

schema from [22] to compute quantitative quantiles with lower and upper reward bounds, where

the objective can be a probability constraint or a constraint on an expectation. We implemented a

BP approach for quantitative quantiles with upper reward bounds, which can significantly speed

up quantile computations, and demonstrated its performance by means of case studies.
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