
PIRSES-GA-2011-295261 /MEALS
November 29, 2013

Page 1 of 31

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 1.3 / 1

Title of Deliverable: Distributed Probabilistic Input/Output Automata: Expressive-
ness, (Un)Decidability and Algorithms

Contractual Date of Delivery to the CEC: 30-Sep-2013
Actual Date of Delivery to the CEC: 30-Sep-2013
Organisation name of lead contractor for this deliverable: UNC
Author(s): Sergio Giro, Pedro R. D’Argenio,

Luis Marı́a Ferrer Fioriti
Participants(s): SAU, RWT, TUD, TUE, UNC, UBA
Work package contributing to the deliverable: WP1
Nature: R
Dissemination Level: Public
Total number of pages: 31
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Probabilistic model checking computes the probability values of a given property quantifying over all possible sched-
ulers. It turns out that maximum and minimum probabilities calculated in such a way are over-estimations on models
of distributed systems in which components are loosely coupled and share little information with each other (and hence
arbitrary schedulers may result too powerful). Therefore, we introduced definitions that characterise which are the
schedulers that properly capture the idea of distributed behaviour in probabilistic and nondeterministic systems mod-
eled as a set of interacting components.
In this article, we provide an overview of the work we have done in the last years which includes: (1) the definitions of
distributed and strongly distributed schedulers, providing motivation and intuition; (2) expressiveness results, compar-
ing them to restricted versions such as deterministic variants or finite memory variants; (3) undecidability results —in
particular the model checking problem is not decidable in general when restricting to distributed schedulers; (4) a coun-
terexample guided refinement technique that, using standard probabilistic model checking, allows to increase precision
in the actual bounds in the distributed setting; and (5) a revision of the partial order reduction technique for probabilistic
model checking. We conclude with an extensive review of related work dealing with similar approaches to ours.

Note:

This deliverable is based on material that will be published in Theoretical Computer Science
(http://dx.doi.org/10.1016/j.tcs.2013.07.017)

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 31 Public

Contents
1 Introduction 3

1.1 Unrealistic worst cases and distributed schedulers 3
1.2 Overview of the paper . 4

2 Interleaved Probabilistic Input/Output Automata 6

3 Schedulers 7
3.1 Distributed schedulers . 7
3.2 Strongly distributed schedulers . 9

4 Subclasses of distributed schedulers 12
4.1 Power of deterministic schedulers . 12
4.2 On the (in)existence of a scheduler yielding the supremum probability 14
4.3 Finite-memory (and Markovian) schedulers . 15

5 (Un)decidability and NP-hardness 16
5.1 General distributed schedulers . 17
5.2 Finite memory distributed schedulers . 18

6 Algorithms 19
6.1 Counterexample-guided refinements . 20

6.1.1 Detection of partial-information counterexamples 22
6.1.2 Refining a system for a conflict . 23
6.1.3 Convergence . 24

6.2 Partial order reduction for LTL\{next} . 24

7 Related work 27

Bibliography 29

MEALS Partner Abbreviations 31

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 31 Public

1 Introduction
Markov decision processes (MDPs) are widely used in diverse fields ranging from ecology to
computer science. They are useful to model and analyse systems in which both probabilistic and
nondeterministic choices interact. MDPs can be automatically analysed using quantitative model
checkers such as PRISM [24] or LiQuor [10].

Since MDPs contain nondeterministic choices (in addition to probabilistic steps), the model
checking problem is to find out the largest or smallest probability of reaching a goal under any
possible resolution of the nondeterministic choices, a concrete instance being “the probability
of arrival of a package is at least 0.95 no matter how the package is routed”. The resolution of
such nondeterminism is given by the so called schedulers (called also adversaries or policies –see
e.g. [4, 28]) which choose an enabled transition after each finite execution path of the system.

The available tools for model checking such as PRISM [24] or LiQuor [10] calculate the
worst-case probability considering all possible schedulers. However, in distributed systems,
some schedulers correspond to unrealistic resolutions of the nondeterminism (as we illustrate
below) thus resulting in overly pessimistic worst-case probabilities. A restricted class of sched-
ulers was proposed to cope with this problem in previous literature –see e.g. [13, 9, 8, 12, 16].
We call these schedulers distributed schedulers, since in these settings there is a local sched-
uler for each component and so the resolution of the nondeterminism is distributed among the
different components.

In this paper, we investigate different subclasses of distributed schedulers in order to answer
to which extent these subclasses are able to attain the worst-case probability. The subclasses we
consider are strongly related to the development of techniques for MDP analysis. As an example,
if the class of all schedulers is considered, worst-case probabilities of reachability properties
are attained by schedulers that are both Markovian –i.e. the decision is based on the current
state of the execution, disregarding the previous history– and deterministic –i.e. the schedulers
themselves have no probabilistic choices, see [4]. The existence of this subclass ensures that
the worst-case probability can be found by exhaustive search (notice that more efficient methods
exist [4]). Hence, one may like to know to which extent these results hold in case the schedulers
are restricted to be distributed.

1.1 Unrealistic worst cases and distributed schedulers
A scheduler is a function mapping paths to transitions (or, in the more general case, paths to
distributions on transitions). Given that the execution up to some state s is known (namely, the
history path), the scheduler “chooses” to perform one transition out of all transitions enabled in
state s.

The following example illustrates the problem that motivates the introduction of distributed
schedulers: a man tosses a coin and another one has to guess heads or tails. Figure 1 depicts
the models of these two men in terms of MDPs. Man T , who tosses the coin, has only one
transition which represents the toss of the coin: with probability 1

2 he moves to state headsT and
with probability 1

2 he moves to state tailsT . Instead, man G has two possible transitions, each
one representing his choice: headsG or tailsG. An all-knowing scheduler for this system may let

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 31 Public

initT initG

1/21/2

headsT tailsT headsG tailsG

T G

Figure 1: T tosses a coin and G has to guess

G guess the correct answer with probability 1 according to the following sequence: first, it lets
T toss the coin, and then it chooses for G the transition leading to heads if T tossed a head or
the transition leading to tails if T tossed a tail. Therefore, the supremum probability of guessing
obtained by quantifying over these all-knowing schedulers is 1, even if T is a smart player that
always hides the outcome until G reveals his choice. As a consequence, quantitative model
checkers based on [4], though safe, yield an overestimation of the correct value. In this example,
in which T and G do not share all information, we would like that the supremum probability of
guessing (i.e., of reaching any of the states (headsT , headsG) or (tailsT , tailsG)) is 1

2 .
This observation is fundamental in distributed systems in which components share little in-

formation with each other, as well as in security protocols, where the possibility of information
hiding is a fundamental assumption [6]. Similar phenomena to the one we illustrated have been
observed in [28] from the point of view of compositionality and studied in [12, 13, 9] in different
settings. Distributed schedulers are also related to the partial-information policies of [12].

In order to avoid considering these unrealistic behaviours, distributed schedulers were pro-
posed in previous literature. Local schedulers for each component of the system are defined
in the usual way (that is, the choices are based on the complete history of the component) and
distributed schedulers are defined to be the schedulers that can be obtained by composing these
local schedulers. We remark that the “all-knowing” scheduler of the example would not be a
valid scheduler in this new setting since the choice for G depends on information which is exter-
nal to (and not observable by) G. In contrast, a local scheduler for G takes the decision having
no information about the actual state of T , and so the choice cannot conveniently vary according
to the outcome of T .

Previous work in the area either deals with nondeterminism in a unique manner (regardless
whether it originates from local choices or from the interleaving) or simply focuses on local
choices avoiding the resolution of interleaving nondeterminism (either by assumming full syn-
chronization [13] or by model construction [9]; see Sec. 7 for a detailed comparison). If we allow
interleaving nondeterminism, the schedulers can also be restricted to handle this nondeterminism
in a realistic way. So, we motivate a restriction to distributed schedulers in this direction, and
define the strongly distributed schedulers as the schedulers complying with such restriction.

1.2 Overview of the paper
This article surveys the state of the art of model checking for distributed probabilistic systems
modeled as a network of interconnecting probabilistic I/O automata. It collects and summarizes
the work that we have done in the last years since we discovered the undecidability of the model

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 31 Public

checking problem in the general setting [16, 20, 17, 21, 18, 15, 22]. The article spans from the
basic motivations and definitions to expressiveness, undecidability issues and model checking
algorithms. More precisely:

(1) We introduce the concept of distributed scheduler which is constructed from two types of
schedulers: local schedulers, which randomly resolve the non-determinism of a single com-
ponent based only on the local knowledge of the execution, and the interleaving scheduler,
which randomly determines the next component to produce an output transition. We impose
restrictions on the interleaving scheduler to capture the exact notion of distributed behaviour.
Formal definitions, motivation and intuition are discussed.

(2) It is known that memoryless deterministic schedulers suffice to verify reachability properties
in classical probabilistic model checking. We show that this is not the case for (strongly)
distributed schedulers and analyze comparatively the expressiveness of restricted variants
including deterministic and finite memory schedulers.

(3) We discuss several undecidability issues. In particular the reachability problem under (strongly)
distributed schedulers is neither decidable nor approximable within a given error bound (and
hence neither is the model checking problem in general). Not even is decidable the problem
to verify if a set of states is reachable with probability 1. Besides, the problem of model
checking under bounded memory schedulers (i.e. schedulers that decide based on the last
nth steps, for a fix n) is shown to be NP-hard.

(4) We discuss a counterexample guided refinement algorithm based on classical techniques that
in each successive refinement increases the precision on the bounds of the actual probability
bounds of LTL and PCTL* properties under distributed schedulers. The algorithm verifies
the property using classical probabilistic model checking techniques [4]. If the property is
violated, the counterexample scheduler is analyzed. If it is a distributed scheduler then the
property is indeed false. If it does not meet the conditions to be distributed, the counterex-
ample is consider spurious and the model is refined accordingly.

(5) We present a revision of the partial order reduction technique for probabilistic model check-
ing. This technique was introduced in [2, 11] where Peled’s original conditions were ex-
tended with an extra condition that guarantees that the results of classical probabilistic model
checking are preserved. We show that this new condition is specially tailored to preserve the
values of non-distributed schedulers and can be weakened for distributed schedulers, or even
eliminated if we want to preserve only strongly distributed schedulers.

To have a complete overview, we also discuss related work, surveying on other approaches to
distributed schedulers or to partial information models, their use on security, and new algorithms
for model checking restricted sets of properties under (strongly) distributed schedulers.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 31 Public

A reactive structure with two transitionsA generative structure with two transitions

1/2
1/2

1/2
1/2

a?

2/3
1/3

a!

1/3
2/3

b!b!

b?a!

Figure 2: Reactive and generative structures

2 Interleaved Probabilistic Input/Output Automata
We present a framework based on the Switched PIOA [9] (see Sec. 7 for a detailed comparison).
It uses reactive and generative structures (see [23, 29]). For a finite set S , we denote by Dist(S)
the set of all the probability distributions over the set S . Given a set ActLab of action labels and a
set St of states, the set of generative transitions TG on (St,ActLab) is Dist(St×ActLab), and the
set TR of reactive transitions is Dist(St). A generative structure on (St,ActLab) is a function G :
St→ P(TG) and a reactive structure on (St,ActLab) is a function R : St×ActLab→ TR. Figure 2
depicts an example of these structures. Generative transitions model both communication and
state change. The component executing a generative transition chooses both a label a to output
(the ! indicates that the label is output) and a new state s according to a given distribution.
Reactive transitions specify how a component reacts to a given input (the ? represents input).
Since the input is not chosen, reactive transitions are simply distributions on states.

In our framework, a system is obtained by composing several probabilistic I/O atoms. Each
atom is a probabilistic automaton having reactive and generative transitions.

Definition 1. A probabilistic I/O atom is a 5-tuple (St,ActLab,G,R, init), where St is a finite
set of states, ActLab is a finite set of actions labels, and G and R are a generative and a reactive
structure on (St,ActLab), respectively. init ∈ St is the initial state. Since R : St×ActLab → TR

is a (total) function, an atom is input deterministic and input enabled.

An interleaved probabilistic I/O system (IPIOA) P is a finite set Atoms(P) of probabilistic
I/O atoms A1, · · · , AN . The set of states of the system is

∏
i Sti, and the initial state of the system

is init = (init1, · · · , initN). We often write Sti to denote the set of states of an atom Ai and similarly
for the other elements of the 5-tuple. In addition, we write TGi and TRi for the set of generative
and reactive transitions on (Sti,ActLabi), respectively.

In order to define how the system evolves, we define compound transitions, which are the
transitions performed by the system as a whole. In such compound transitions, all the atoms
having the same action label in their alphabet must synchronise and exactly one of them must
participate with an output (generative) transition (thus modelling multicasting). Formally, a com-
pound transition is a tuple c = (gi, a, r j1 , · · · , r jm) (we require i , jk and jk , jk′ for all k , k′)
where gi is a generative transition in the atom Ai (the active atom), a ∈ ActLabi is an action
label, the r jk are reactive transitions in the atoms A jk (the reactive atoms) and {Ai, A j1 , · · · , A jm}

is equal to the set {A j | a ∈ ActLab j}. We denote this set by Inv(c) and say that Ai, A j1 , . . . ,
A jm are the atoms involved in the compound transition. A compound transition (gi, a, r j1 , · · · , r jm)
is enabled in a given state (s1, · · · , sN) if gi ∈ Gi(si) and R jk(s jk , a) = r jk . The action label a
of a compound transition c is indicated by label(c). The probability c(s, s′) of reaching a state
s′ = (s′1, · · · , s

′
N) from a state (s1, · · · , sN) using a compound transition c = (gi, a, r j1 , · · · , r jm)

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 31 Public

is gi(s′i , a) ·
∏m

k=1 r jk(s′jk) if st = s′t for every atom not involved in the transition. Otherwise,
c(s, s′) = 0.

To avoid technical complications, we assume that at every state in the system P there is some
compound transition enabled. Therefore, for every reachable state s of P, there is an atom A j

such that G j(s j) , ∅.
A path σ of P is a sequence s1.c1.s2.c2 · · · cn−1.sn where each si is a (compound) state and

each ci is a compound transition such that s1 = init, ci is enabled in si and ci(si, si+1) > 0. A
path can be finite or infinite. For a finite path σ as before, the set of extensions (denoted by [σ])
contains all the infinite paths starting with σ. In addition, we define last(σ) = sn and len(σ) = n.

In the remaining of the paper, we suppose that input-enabled atoms A1, . . . , AN are given, and
we are considering the system P comprising all the atoms Ai. We call this system “the compound
system”. The states of the compound system are called global states and the states of each atom
are called local states. Similarly, we use the notion of global and local paths whenever we refer
to paths of the compound system or path of an atom, respectively.

3 Schedulers
The probability of a set of executions depends on how the nondeterminism is resolved. A sched-
uler transforms a nondeterministic choice into a probabilistic choice by assigning probabilities
to the available transitions. Given a system and a scheduler, the probability of a set of executions
is completely determined.

In the usual MDP setting, schedulers assign probabilities to the enabled transitions taking
into account the complete history of the system, and hence history-dependent schedulers are
defined as functions mapping paths to distributions on transitions. As we have seen it may be
unrealistic to assume that the schedulers are able to see the full history of all the components
in the system. In the following, we define a restricted class of schedulers in order to avoid
considering unrealistic behaviours.

3.1 Distributed schedulers
In a distributed setting as the one we are introducing, different kinds of nondeterministic choices
need to be resolved. We need to decide what is the next atom to execute a generative transition.
And each atom needs a corresponding output scheduler to choose among generative transitions
enabled. Notice that, since atoms are input enabled and input deterministic, there is no need to
schedule reactive transitions. They will only take place if another atom produces the correspond-
ing output. An output scheduler is able to make its decisions based only on the local history of
the atom. So, we need the notion of projection.

Given a path σ, the projection σ[i] of the path σ over an atom Ai is defined inductively
as follows: (1) (init1, · · · , initN)[i] = initi , (2) σ.c.s[i] = σ[i] if Ai is not involved in c, and
(3) σ.c.s[i] = σ[i] .label(c).πi(s), otherwise (where πi denotes the i-th projection of a tuple). The
set of all the projections of paths over an atom Ai is denoted by Proji(P). We say that these
projections are the local paths of Ai.

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 31 Public

An output scheduler for the atom Ai is a function Θi : Proji(P) → Dist(TGi) such that, if
Gi(last(σ[i])) , ∅ then Θi(σ[i])(g) > 0 =⇒ g ∈ Gi(last(σ[i])). Note that, if the output scheduler
Θi fixes a generative transition for a given local path σ, then the actions in the generative transi-
tion can be executed in every global path whose projection to i is σ, since we require the atoms
to be input-enabled.

We still need to resolve the nondeterministic choice concerning the next atom to perform an
output. An interleaving scheduler is a map that probabilistically chooses an active atom for each
(global) history. This atom will be the next to execute a generative transition (this transition,
in turn, is chosen according to the output scheduler). Formally, an interleaving scheduler is a
function I : Paths(P) → Dist({1, · · · ,N}) such that I(σ)(i) > 0 =⇒ Gi(last(σ[i])) , ∅. Note
that, even if interleaving schedulers are unrestricted, compound schedulers for the compound
system are still restricted, since the output schedulers can only see the portion of the history
corresponding to the component.

A scheduler for the compound system is obtained by the appropriate composition of the
interleaving scheduler and the output scheduler of each atom.

Definition 2. Given an interleaving scheduler I and output schedulers Θi for each atom i, the
distributed scheduler η obtained by composing I and Θi is defined as:

η(σ)(gi) = I(σ)(i) · Θi(σ[i])(gi)

Unless stated otherwise, when referring to schedulers for IPIOA we are considering these
distributed schedulers.

The probability of the sets of the form [σ] is inductively defined as follows:

Prη([init]) = 1
Prη([σ.c.s)] = Prη(σ) · η(σ)(gi) · c(last(σ), s) if c = (gi, a, r j1 , · · · , r jm)

Note that, if c = (gi, a, r j1 , · · · , r jm), then

η(σ)(c) · c(s, s′) = I(σ)(i) · Θi(σ[i])(gi) · gi(s′i , a) ·
∏m

k=1 r jk(s′jk) ,

which implies
∑

c,s′ η(σ)(c) · c(last(σ), s′) = 1. This probability can be extended to the least σ-
field containing all the sets of extensions in the standard way (see e.g. [4]). We say that the sets in
suchσ-field are measurable. Given a measurable set S , we are interested in the value supη Prη(S).
By calculating this amount it can be answered, for instance, whether or not “the probability of a
package loss is at most 0.05 no matter how the package is routed”. This property, in particular,
is what we call a reachability property: we are interested in the set of paths in which some states
are reached (namely, the states in which the package has been lost). Given a set U of states, we
denote by Prη(F U) the probability of reaching any state in U.

Deterministic schedulers We defined schedulers so that they map into distributions on tran-
sitions. We say that a scheduler is deterministic if all the choices in the interleaving and output
schedulers choose one atom and one generative transition with probability 1, respectively. A

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 31 Public

scheduler that is not deterministic is said to be randomized. That is, for all finite path σ and atom
Ai, Θi(σ[i])(gi) > 0 =⇒ Θi(σ[i])(gi) = 1, and I(σ)(i) > 0 =⇒ I(σ)(i) = 1.

Given a deterministic output scheduler Θ we write Θ(σ) = g to indicate that Θ(σ)(g) = 1,
and similarly for the interleaving scheduler.

Compared to general schedulers, deterministic schedulers are easier to manipulate in proofs.
Theorem 4 ensures that it suffices to consider deterministic schedulers. The proof of the theorem
uses limit schedulers, as defined below.

Limit schedulers Several properties of schedulers can be proven using limit schedulers. Given
a sequence Q = η1, η2, · · · of distributed schedulers, a limit for Q is a scheduler η∗ such that for
every N, there exist infinitely many k such that ηk and η∗ coincide for all paths σ with length less
than or equal to N, in symbols:

∀N : ∃k1, k2, · · · : ∀i : ∀σ : len(σ)≤N =⇒ ηki
(σ) = η∗(σ) . (1)

Theorem 1. Every sequence Q = η1, η2, · · · of deterministic schedulers has a limit.

Proof. We start by constructing a sequence Q1 = ηk1
, ηk2

, · · · such that there exists g such that
ηkx

(init) = g for all kx. The construction of Q1 shows how to construct a sequence QN+1 from QN .
Finally, these sequences are used to construct η∗.

To construct Q1, fix an atom A, and consider the output schedulers Θk
A corresponding to ηk.

In particular, consider the choices Θk
A(initA). Since there are finitely many generative transitions

enabled, there exists some gA and infinitely many kx such that Θkx

A (initA) = gA. We can take the
subsequence comprising all such kx, and repeat the same reasoning for each different atom thus
yielding a subsequence such that, for all atoms A we have Θkx

A (initA) = gA. We can repeat the
reasoning for the interleaving scheduler. As a result, we have a sequence Q1 such that ηkx

(init) =

gA for all x. Since init is the only path of length 1, we can use the sequence Q1 in Eqn. 1 for
N = 1, if we define η∗(init) = gA. Starting from Q1 we can construct Q2, which satisfies the
condition for N = 2 and in general, QN+1 is obtained from QN .

We define η∗ as η∗(σ) = ηlen(σ)(σ) where, for all N, ηlen(σ) is some scheduler in QN . The
condition for limits holds: for all N, the sequence QN provides the k1, k2, · · · for Eqn. 1. �

3.2 Strongly distributed schedulers
Distributed schedulers model the fact that components can only look at their local history to
choose the next transition to perform. However, under distributed schedulers, it is still possible
that the hidden state of a component affects the behaviour of an unrelated group of components.

We explain how this leak of information occurs using atoms depicted in Fig. 3. Consider the
system P having atoms T , Z, A, B. In this system, T is a process that tosses a coin. For the
labels h! and t! corresponding to heads and tails, we have h!, t! < ActLabZ ∪ActLabA ∪ActLabB.
So, according to this model, T keeps the outcome as a secret (coins whose output are assumed
to be secrets can be found in probabilistic security protocols such as the solution to the dining
cryptographers problem, see [7]). Atom Z models an attacker trying to guess the outcome of the
coin. Atoms A and B are two processes that Z is able to observe.

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 31 Public

a! b!

initAB

b! a!

AB

initBinitA

BAT

initT

headsT tailsT

1/2 1/2

t!h!

Z

headsZ tailsZ

initZ

a?, b?

a! b!

Figure 3: Motivating strongly distributed schedulers

Consider the maximum probability that attacker Z guesses the outcome (that is, the probabil-
ity of reaching a state of the form (headsT , headsZ, · · ·) or (tailsT , tailsZ, · · ·)). Since the attacker
is able to see only the actions of A and B (and these atoms cannot, in turn, see the outcome of T)
the attacker has no information about T , and so the maximum probability should be 1/2. Unfor-
tunately, there exists a distributed scheduler that yields probability 1: the interleaving scheduler
chooses T in the first place, and then it chooses either (A and then B) or (B and then A), according
to the outcome of the probabilistic transition. Finally, the interleaving scheduler chooses Z. The
order in which a! and b! were output is part of the local history of Z, so the output scheduler for
Z can always choose the transition agreeing with the outcome of the coin.

Note that the leak of information arises from the fact that the interleaving scheduler can look
at the complete history of the system. In the following we derive restrictions on interleaving
schedulers that prevent the leak presented above. Then, strongly distributed schedulers are de-
fined as distributed schedulers whose interleaving scheduler complies with such condition.

In the example above, the state of T affects the execution of atoms A and B. Distributed
schedulers were defined in such a way that the state of an atom cannot affect the execution of
another atom. Note that, if we regard the parallel composition between A and B as a single
component AB (with the composition as in, for instance, [8, p. 99]), we end up in a situation very
similar to the one depicted in Fig. 1: in the case in which the coin lands heads AB chooses to
perform the transition a!, while in the other case it chooses to perform the transition b!. In fact,
if we consider the system P′ such that Atoms(P′) = {T,Z, AB}, no output scheduler for AB can
be defined in such a way that the order of execution of a! and b! depends on the outcome of T
(since the outcome of T does not affect the state of AB). Then, there is no distributed scheduler
for P′ that can simulate the behaviour in P in which Z guesses all the time. Therefore, we would
like that the new scheduler works just like distributed schedulers would do when A and B are
considered as a single atom.

Let P be a compound system containing atoms A and B. Let AB be a single atom representing
the composition of A and B and P′ another compound system such that Atoms(P′) =

(
Atoms(P)\

{A, B}
)
∪ {AB}. In general, we want to restrict to interleaving schedulers such that, for every

distributed scheduler η on P complying to such restriction, there is a distributed scheduler η′ on
P′ that defines the same probabilistic behaviour.

To motivate the restriction, consider a scheduler for the system P with T , A and B in Fig. 3.
Consider a distributed scheduler η whose interleaving scheduler complies I(init) = (1

2T + 2
6 A +

1
6 B). We seek a restriction on I s.t. it is possible to find a distributed scheduler for P′ containing
atoms T and AB in Fig. 3. When AB is in state (initA, initB), the output scheduler ΘAB chooses

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 31 Public

a distribution on {a!, b!}. To respect the choice of I in P, it must hold that ΘAB(initAB)(a!) =

2 · ΘAB(initAB)(b!), since, according to I, the probability of executing a! is twice the probability
of executing b!. Then,

ΘAB(initAB)(a!) = 2
3 and ΘAB(initAB)(b!) = 1

3 . (2)

Consider the path σ = (initT , initA, initB)
t!
→ (headsT , initA, initB) in P. The corresponding path

in P′ is σ′ = (initT , initAB)
t!
→ (headsT , initAB).

Since σ′[AB] = initAB = (initT , initAB)[AB], we have that

ΘAB((initT , initAB)[AB])(a!) = ΘAB(σ′[AB])(a!) = ΘAB(initAB)(a!) = 2
3

and similarly for b!. Therefore ΘAB(σ′[AB])(a!) = 2ΘAB(σ′[AB])(b!). This relation has to be
maintained in P by I(σ). That is, whichever is the probabilistic choice in I(σ) w.r.t. other
atoms, the relation I(σ)(a!) = 2 · I(σ)(b!) has to be maintained.

This suggests that, in the general case, for two executions that cannot be distinguished by any
of the two atoms A and B, the relative probabilities of choosing A over B (or B over A) should
be the same. Or better stated: conditioned to the fact that the choice is between atoms A and B,
the probability should be the same in two executions that cannot be distinguished by any of the
two atoms.

Formally, given any two atoms A, B of a system P, for all σ, σ′ s.t. σ[A] = σ′[A] and
σ[B] = σ′[B], it must hold that

I(σ)(A)
I(σ)(A) + I(σ)(B)

=
I(σ′)(A)

I(σ′)(A) + I(σ′)(B)
(3)

provided that I(σ)(A) + I(σ)(B) , 0 and I(σ′)(A) + I(σ′)(B) , 0.

Definition 3. A scheduler η is strongly distributed iff η is distributed and equation (3) holds on
the interleaving scheduler I that defines η. The set of strongly distributed schedulers of P is
denoted by SDist(P).

We emphasize that strongly distributed schedulers are useful depending on the particular
model under consideration. In case we are analysing an agreement protocol and each atom mod-
els an independent node in a network, then the order in which nodes A and B execute cannot
depend on information not available to none of them, and so strongly distributed schedulers give
more realistic worst-case probabilities. However, in case the interleaving scheduler represents an
entity that is able to look at the whole state of the atoms (for instance, if the atoms represent pro-
cesses running on the same computer, and the interleaving scheduler plays the role of the kernel
scheduler), then the restriction above may rule out valid behaviours, and so general distributed
schedulers should be considered.

The following theorem is the generalization of the fact that, for every strongly distributed
scheduler η on P = {T,Z, A, B} as in Fig. 3 there is a distributed scheduler η′ on P′ = {T,Z, AB}
that defines the same probabilistic behaviour.

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 31 Public

Theorem 2. Let P be a IPIOA such that A, B ∈ Atoms(P). Consider the system P′ such that
Atoms(P′) =

(
Atoms(P)\ {A, B}

)
∪{AB}, where AB is the usual parallel composition of A and B

(as in, for instance, [8, p. 99]). Then, for every strongly distributed scheduler η for P, there exists
a strongly distributed scheduler η′ for P′ yielding the same probability distribution on paths as
η.

One may wonder what happens if, instead of considering two atoms A and B in (3), two
disjoint sets A,B of atoms are considered. The (apparently more general) condition on sets
holds whenever condition (3) on atom holds.

Theorem 3. Let A = {A1, · · · , An}, B = {B1, · · · , Bm} be disjoint sets of atoms. Then, if I is
the interleaving scheduler that defines a strongly distributed scheduler η (i.e., it satisfies Eqn. 3),
then ∑

i I(σ)(Ai)∑
i I(σ)(Ai) +

∑
j I(σ)(B j)

=

∑
i I(σ′)(Ai)∑

i I(σ′)(Ai) +
∑

j I(σ′)(B j)

holds whenever σ[A] = σ′[A] for all A ∈ A ∪ B, and the denominators are diferent from 0.

The proof of the theorem uses a standard argument for conditional probabilities, see [20].

4 Subclasses of distributed schedulers
Next, we discuss the expressive power of several subclasses of distributed schedulers. While the
results in this section are not exactly about model checking, they are useful to prove undecidabil-
ity and correctness of algorithms.

4.1 Power of deterministic schedulers
In the following, we investigate to which extent we can restrict to deterministic schedulers in
order to get worst-case probabilities. Fortunately, for every system P, the class of deterministic
distributed schedulers (denoted by DetDist(P)) is equally expressive as the class of all distributed
schedulers (denoted by Dist(P)) if we aim to find the supremum (or infimum) probability of a
given measurable set of infinite paths. This result holds for total information schedulers and
PCTL∗ formulae [4], and so the result for partial information schedulers. However, it holds
because of the way in which distributed schedulers restrict the use of the information. In fact,
we will see that the restriction we impose on the interleaving scheduler for strongly distributed
schedulers causes randomized schedulers to add extra power.

Theorem 4. For any set S of infinite traces, S being measurable, we have that

inf
η∈DetDist(P)

Prη(S) = inf
η∈Dist(P)

Prη(S)

and
sup

η∈DetDist(P)
Prη(S) = sup

η∈Dist(P)
Prη(S)

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 31 Public

Proof. (Sketch. For details see [20].) The proof of this theorem proceeds by first proving that

inf
η∈DetDist(P)

Prη(S) = inf
η∈Dist(P)

Prη(S)

whenever S is a finite-horizon set of the form:
n⊎

i=1

[σi] (4)

where {σi}
n
i=1 is a set of finite paths. The proof for these sets relies on the fact that the probability

of a finite-horizon set depends on a finite number of choices (the choices for the paths whose
length is greater than maxi len(σi) are irrelevant). It is possible to show that each choice of Θ(σi)
and I(σ) can be transformed into a deterministic choice without increasing the probabilities: an
optimal scheduler for a finite-horizon set is then constructed by changing finitely many choices.
Using these optimal schedulers, the proof then resorts to a limit argument: given any scheduler η,
the probability of a measurable set S under η can be approximated by the probabilities of finite-
horizon sets under η. Near-optimal schedulers for S are obtained as limits of optimal schedulers
for finite-horizon sets (the existence of limits being ensured by Theorem 1). �

Unfortunately, if in the statement of Theorem 4 we consider strongly distributed schedulers
the same claim is false. Consider the example in Fig. 4. Atoms A, B and C need to be “activated”
by labels eA, eB and eC, respectively. The atom E tosses a coin and activates A, B and C if the
output of the coin is l, or B and C if the output of the coin is r. The atom R “remembers” the
order in which the other atoms execute. The objective of the scheduler is to reach some state in R
marked with a smile. It is clear that any deterministic scheduler yields a probability of 0, 1/2 or
1. We verify that there is no deterministic strongly distributed scheduler η reaching a smile with
probability 1. Towards a contradiction, suppose η reaches a smile both after l and r. In order to
succeed in case the first output is l, η must choose the transitions whose outputs are eA, eB and
eC. Then, η should choose either a, b and c (in this order) or b, a and c. In order to succeed when
r is chosen, η must choose the transitions whose outputs are eB and eC. Note that the projections
of atoms A and B after r, eB and eC are the same as the projections after l, eA, eB and eC. Since
b must be chosen before c in case the first output is l, and η is strongly distributed, then η must
choose b before c in case the first output is r. After B, R should output w, and E should output
eA. At this point, both A and C are active, and the projections of these atoms are the same as in
case the first output is l. Since η is strongly distributed and a must be chosen before c in case the
first output is l, a must be chosen before c also when the first output is r. However, choosing a
before c does not lead to a state marked with a smile. Hence, there is no deterministic strongly
distributed scheduler yielding probability 1, and so the supremum quantifying over deterministic
strongly distributed schedulers is 1/2. Nevertheless, consider the scheduler in which:

1. If there is a transition enabled in E, then the transition in E is chosen (i.e. the interleaving
scheduler chooses E with probability 1)

2. If there is a transition enabled in R, then the transition in R is chosen (note that it cannot
be the case that there are transitions enabled in both E and R)

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 31 Public

l! r!

1/21/2

eA!

eB !

eC !

eB !

eC !

w?

eB? eC?

E

l? r?

c?

a?b?

c?

a? b?

b? c?

eA?

eB?

eC?

eB?

eC?

R

eA?

a!

A

b!

B

c!

C

a?

a?, b?

c?

b?

a?

w!

c?

a?

c?

c?

eA!

eA?

c?
c?

Figure 4: Example showing that randomization adds power to strongly distributed schedulers

3. If there are neither transitions enabled in E nor in R, then the scheduler chooses uniformly
among the transitions a, b and c. That is, if a, b and c are enabled, choose each one with
probability 1/3, and, if b and c are enabled, choose each one with probability 1/2.

This scheduler is strongly distributed, and yields the probability 13/24, which is larger than the
maximum probability over deterministic strongly distributed scheduler (which we have before
found to be 1/2). Therefore, this example shows that randomized choices add power to strongly
distributed schedulers.

The same example can be used to show that there are systems for which deterministic strongly
distributed schedulers cannot emulate rate schedulers. Such schedulers are introduced in [17],
and resolve non-determinism by assigning rates to each local path. Given a rate scheduler, prob-
abilities are then calculated as for continuous time Markov chains or the probabilistic automata
of [29]. For this same example, rate schedulers yielding probabilities arbitrarily close to 13/24
can be obtained by replacing arbitrarily high rates for the Dirac distributions (in which an atom
is chosen deterministically) and equal rates for the uniform distributions.

4.2 On the (in)existence of a scheduler yielding the supremum probability
For traditional all-knowing schedulers, for every reachability property there exists a Markovian
deterministic scheduler attaining the supremum probability. Consider the system comprising
atoms T and G in Fig. 5. For this system, we show that there is no distributed scheduler max-
imizing the probability of reaching sw. The behaviour of this system can be seen as a game: T
tosses a coin without communicating the outcome to G, but communicating that the coin has
been tossed (this is represented by t!). Atom T moves to state s2 once the coin lands tails. Atom
G can stop the game. The aim of G is to stop the game only if the coin has landed tails at least
once. If G outputs n, then the coin is tossed again and the game continues. If G believes that the
coin has landed tails sometime before, then it outputs g. If T is in state s2 and G outputs g, then
the objective state sw is reached. Otherwise, if T receives g in state s1, the undesirable state sl

is reached. In the following we calculate the supremum probability of reaching sw. If G waits

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 31 Public

0.5 0.5

t!t!

n?

g?

n?g? sw

t!

s2sl

T

s1 g!

t?n!

G

r!

l!

l? r?

s3 s4

r?l?

s1 s2

A B

l? r?

s3 s4

0.99

r?l?

s1 s2

s0

B
′

0.01

Figure 5: Atoms used in our examples

for one occurrence of t before communicating through g, then the probability of reaching sw is
1/2. However, G may decide to wait for two occurrences of t, thus having a probability of 3/4.
In general, waiting for k occurrences of t yields a probability of 1 − (1/2)k. In addition, it is easy
to see that there is no randomized scheduler yielding probability 1. In conclusion, although the
supremum is 1, there is no scheduler yielding such probability.

4.3 Finite-memory (and Markovian) schedulers
A scheduler is Markovian if it chooses the next transition according to the last state, regardless of
the past history. In case traditional all-knowing schedulers are considered, Markovian schedulers
attain the supremum probability for reachability properties [4].

In our setting, one may think of two types of Markovian distributed schedulers: a glob-
ally Markovian (distributed) scheduler should comply η(σ)(gi) = η(σ′)(gi) whenever last(σ) =

last(σ′), while a locally Markovian (distributed) scheduler should choose the same local tran-
sitions whenever the local states coincide. In order to define locally Markovian schedulers, we
say that an output scheduler is Markovian iff, for all g, it holds that Θ(σ)(g) = Θ(σ′)(g) when-
ever last(σ) = last(σ′). Similarly, an interleaving scheduler is Markovian iff I(σ)(A) = I(σ′)(A)
whenever last(σ) = last(σ′). We say that a scheduler is locally Markovian if it can be obtained by
composing Markovian schedulers. Markovian schedulers are a particular case of a more general
class: the N-Markovian schedulers. A scheduler is globally N-Markovian if η(σσ′) = η(σ′) for
all σ′ of length N. Note that globally Markovian schedulers coincide with globally 1-Markovian
schedulers. Similarly, locally N-Markovian schedulers can be defined. A simple example shows
that locally Markovian schedulers do not attain supremum probabilities. Consider the system
comprising atoms A and B in Fig. 5. First, we consider deterministic schedulers. A deterministic
locally Markovian scheduler must output the same label in every path. So, if we quantify over
deterministic locally Markovian schedulers, the supremum probability of reaching a smile is 0.
The supremum quantifying over locally Markovian schedulers is 0.25, and is obtained by the
scheduler that chooses l! with probability 0.5 and r! with probability 0.5 for all σ. This implies
that given a fixed amount of memory N, randomization adds power to N-Markovian schedulers.

For the same example, note that globally Markovian schedulers obtain probability 1. How-
ever, in the following we use atoms A and B′ in Fig. 5 to show an unnatural aspect of globally
Markovian schedulers. Again, the aim of the scheduler is to reach a smile. Consider any deter-
ministic globally Markovian scheduler η. In the initial state (s, s0), atom A must output l. The
label l must also be output in the path (s, s0).l!.(s, s0), since the scheduler is globally Markovian.

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 31 Public

Then, we have ΘA((s.l!.s)) = l!. This implies that l is also output in the path (s, s0).l!.(s, s1).
The same reasoning allows to conclude that ΘA(σ) = l! for every A-path σ. So, the existence of
the loop in s0 implies that the choices of the scheduler should coincide for every path. In con-
clusion, although the system comprising atoms A and B is very similar to the system comprising
atoms A, B′, the power of globally Markovian schedulers is significantly different.

We say that a scheduler has local (global, resp.) finite memory if it is locally (globally,
resp.) N-Markovian for some N. We denote the set of local (global, resp.) finite-memory
distributed schedulers of a system P by LFinMem(P) (GFinMem(P), resp.) and the set of de-
terministic finite-memory schedulers by DetLFinMem(P) (DetGFinMem(P), resp.) It is easy to
find examples showing the limitations of finite-memory schedulers: for instance, consider atom
A in Fig. 5. Suppose that we are interested in the probability of the path having the sequence of
labels lrlrrlrrr · · · , that is, each l is followed by a sequence of r’s, and the amount of r’s is exactly
the previous amount plus 1. There are no finite-memory schedulers yielding probabilities arbi-
trarily close to 1 for this path. Intuitively, an optimal scheduler should remember how much r’s
were in the previous sequence, and the amount of r’s grows arbitrarily. (Note that, since we are
considering a single atom, local finite-memory schedulers and global finite-memory schedulers
coincide.)

We have seen that locally Markovian schedulers cannot attain worst-case probabilities even
for simple reachability properties, and we have seen that finite-memory schedulers do not attain
optimal probabilities for every property. However, if we consider only reachability properties,
we obtain the following theorem.

Theorem 5. For any set of goal states U,

sup
η∈Dist(P)

Prη(F U)= sup
η∈DetLFinMem(P)

Prη(F U) .

Proof. Given, ε > 0, let ηs be a scheduler such that supη∈Dist(P) Prη(F U) − Prη
s
(F U) < ε/2. We

denote the set of paths reaching some element in U before the N-th step as FN(U). Let N∗ be such
that Prη

s
(F U)−Prη

s
(FN∗ U) < ε. The set FN∗ can be written as a disjoint union of set of extensions

[σk] where the length of the σk is at most N∗. Then, by Theorem 4, we know that there exists
a deterministic scheduler ηd yielding the supremum probability for FN∗ . Let Θd

i and Id be the
schedulers that define ηd. Then, we can consider the (uniquely defined) N∗-Markovian schedulers
Θm

i and Im that coincide with the schedulers for ηd upto the N∗. The scheduler ηm obtained by
composing Θm

i and Im is N∗-Markovian, and it holds supη∈Dist(P) Prη
m
(F U) − Prη

s
(F U) < ε. �

The statement of Theorem 5 is false in case strongly distributed schedulers are considered:
the example in Fig. 4 is also a counterexample for such a statement. Theorem 5 can also be
contrasted with the fact that, given a fixed amount of memory, nondeterministic schedulers are
needed, as we have seen for atoms A and B in Fig. 5.

5 (Un)decidability and NP-hardness
In this section we consider the complexity of model checking under different subsets of dis-
tributed schedulers. Unfortunately, the results are negative in the sense that we find the problems

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 31 Public

1/22/3 1/3
1/22/3

1/3 1/2
1/2

IPIOAProbabilistic finite state automata

α

α!

β

α?
β?

A

β!

BA

Figure 6: From PFA to IPIOA

undecidable or NP-hard.

5.1 General distributed schedulers
The probabilistic model checking problem is undecidable in case the schedulers are restricted to
be distributed, in the sense that the supremum probability of a reachability probability cannot be
approximated. This is stated in the following theorem.

Theorem 6. Given 0 < ε < 1, there is no algorithm such that, for all IPIOA P, for all sets U, the
algorithm computes r such that ∣∣∣ sup

η∈Dist(P)
Prη(F U) − r

∣∣∣ ≤ ε .
This theorem was proven in [16]. The proof just points out that Probabilistic Finite Automata

(PFA, for which the supremum probability is known to be undecidable [25]) are a special case of
IPIOA under deterministic schedulers. Since Theorem 4 establishes that the expressive power of
deterministic schedulers is the same as of distributed schedulers, undecidability for distributed
schedulers follows. In a PFA A, for each symbol α in the alphabet Σ, for each state s, there is
exactly one transition labelled with α in s. PFA semantics define the probability of accepting
a word α1 · · ·αn as the probability of reaching an accepting state by successively taking the
transitions labelled with α1 · · ·αn at each state.

Figure 6 shows a simple PFA and its corresponding IPIOA atoms. The IPIOA we construct
has two atoms A and B. The set of labels of both atoms is Σ. The sets of states of atom A is the set
of states ofA. Moreover, A encodes the transition function ofA using reactive transitions. Atom
B is the one that outputs labels and introduces the nondeterminism. Notice that A is deterministic
in the sense that, at every state, each label uniquely determines the transition to execute. Hence,
a word w over Σ is equivalent to the deterministic scheduler for B that chooses the symbols in w.
Let U = {(s, t) | s is accepting inA and t is the only state of B }. The probability of reaching a
state in U under a deterministic scheduler is the probability of reaching an accepting state inA.

Theorem 6 concerns the quantitative problem of approximating the supremum. The quali-
tative problems of computing whether the supremum is 1, and whether there exists a scheduler
yielding probability 1 are also undecidable (these problems are not necessarily equivalent, as we
have seen in Subsection 4.2).

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 31 Public

Theorem 7. There is no algorithm that, for all IPIOA P, for all sets U, the algorithm decides
whether or not

sup
η∈Dist(P)

Prη(F U) = 1 .

There is no algorithm that, for the same input as above, decides whether or not there exists
η ∈ Dist(P) such that Prη(F U) = 1.

This theorem, and versions of Theorems 6 and 7 for strongly distributed schedulers are proven
in [18].

5.2 Finite memory distributed schedulers
Theorem 5 implies that the model checking problem is undecidable even if we restrict to finite-
memory schedulers. Moreover, if we want to restrict to deterministic schedulers having at most
N memory, the amount of memory N needed in order to get a bounded approximation of the
probability cannot be calculated. Formally, let DetLFinMemN(P) be the set of deterministic
locally N-Markovian schedulers for P. Then:

Theorem 8. Given ε > 0, there is no algorithm computing N such that

sup
η∈Dist(P)

Prη(F U) − sup
η∈DetLFinMemN (P)

Prη(F U) < ε .

Proof. Suppose, towards a contradiction, that the problem is decidable. Since DetLFinMemN(P)
is finite, then there exists an algorithm to find a value r such that supη∈Dist(P) Prη(F U)−r < ε . Such
algorithm simply computes N and then performs an exhaustive search on DetLFinMemN(P).
However, the existence of such algorithm contradicts Theorem 6. �

Since Theorem 6 holds also if we restrict to systems in which only one atom has generative
transitions, we cannot compute N even under such restriction. Hence, the result holds also for
strongly distribute schedulers.

Even if a reasonable bound for the memory of the schedulers can be calculated somehow,
then the problem is still complex, as stated in the following theorem.

Theorem 9. For all

S ∈ {LFinMem1(P),DetLFinMem1(P),GFinMem1(P),DetGFinMem1(P)} ,

the problem of computing supη∈S Prη(F U) is NP-hard.

In [20] we prove this theorem by presenting a reduction of the 3SAT problem to the supre-
mum reachability problem. For every 3SAT instance, the system we construct has no cycles, and
so the reduction is valid regardless of the memory of the schedulers considered.

18

PIRSES-GA-2011-295261 / MEALS Page 19 of 31 Public

6 Algorithms
The algorithms we introduce in this section are based on classic algorithms for MDPs. We
present a simple MDP setting and show how it can be linked to the IPIOA we were considering
so far.

Given a system P comprised by atoms A1, . . . AN , the induced MDP of P is Pind = (St,T, en),
where St is the set of global states and T is a set of probabilistic transitions defined as fol-
lows: for each si ∈ Sti and gi ∈ Gi(si) there is a transition αsi,gi ∈ T such that αsi,gi(s, s′) =∑

a∈ActLabi
g(s′[i] , a)

∏N
j=0 j,i rs[j],a(s′

[
j
]
). Where rs[j],a = R(s

[
j
]
, a) if a ∈ ActLab j and 1s[j] other-

wise. en : St 7→ P(T) is the enabling function that satisfies αsi,gi ∈ en(s) iff s[i] = si. A sequence
σ = s0, α0, s1 . . . sn is a path in Pind if for all i, si ∈ St, αi ∈ en(si) and α(s, s′) > 0. We say that a
transition α is probabilistic if there exist s, s′ such that 0 < α(s, s′) < 1. A scheduler in Pind is a
function η from finite paths to transitions such that η(σ) ∈ en(last(σ)). The set of all schedulers
in an MDP P is written as Sched(P).

For simplicity, we assume that in a generative transition the state reached determines the label
uniquely (any atom in which this does not hold can be transformed by adding the last label as
part of the local state). Formally,

g(s, a) > 0 ∧ g(s, b) > 0 =⇒ a = b .

Given a scheduler η for P, it is easy to define a scheduler ηind for Pind:

ηind(s1.α1
g1
· · ·αn−1

gn−1
.sn)(αgi)

I(s1.g1 · · ·α
n−1
gn−1

.sn)(Ai) · Θi(s1[i] .a1 · · · an−1.sn[i])(gi) . (5)

The particular labels a1, · · · , an−1 are irrelevant because of the previous assumption.
There is a natural correspondence between P and Pind:

Prηind([s1.α1
g1
· · ·αn−1

gn−1
.sn])

= Prη(
⊎

a1,···an−1

[s1.(g1, a1, . . .) · · · (gn−1, an−1, . . .).sn]) . (6)

In other words, in the MDP semantics all the paths that differ only with respect to labels are
grouped together in a single path. Therefore, the analysis of properties that only concern states
can be carried out interchangeably on the IPIOA or on its induced MDP.

Given a transition αgi ∈ T the set of atoms that may be affected by the transition αgi is
Inv(αgi) = {A j | a ∈ ActLab j}. Notice that if the corresponding transition of αgi is executed in
P the only local histories that may change are the ones in Inv(αgi). In addition, we denote with
GenAtom(αgi) the only atom that produces the generative transition gi in αgi .

In the rest of this section we will use interchangeably α to denote a transition in the induced
MDP Pind or its corresponding generative transition. In addition, we assume that properties
depend only on states, that is, we are interested on the probabilities of sets S such that

s1.(g1, a1, . . .) · · · (gn−1, an−1, . . .).sn. · · · ∈ S

⇐⇒ ∀g′1, · · · , a
′
1, · · · : s1.(g′1, a

′
1, . . .) · · · (g

′
n−1, a

′
n−1, . . .).s

n. · · · ∈ S . (7)

19

PIRSES-GA-2011-295261 / MEALS Page 20 of 31 Public

��
s 1/2

((QQQQQQQQQ1/2
vvmmmmmmmmm

0
�� !!DD

DD 1
}}zz

zz
��

a0

=={
{

{
{

{
{

d0

FF�
�

�
�

a1

XX0
0

0
0

d1

aaC
C

C
C

C
C

��
s 1/2

��>
>>1/2

����
�

0

OO

CL �

�
�

1

OO

{r0
�
�

A B

Figure 7: Player A tries to guess if the outcomes agree

6.1 Counterexample-guided refinements
Given an IPIOA P and a property, one can obtain the probability under total information sched-
ulers by constructing Pind and using standard algorithms for MDPs such as [4].

The probabilities under total information can be seen as a safe (although overly pessimistic)
bound on the minimum/maximum probability. In this section, we present a technique to obtain
tighter safe bounds. This technique works through a series of refinements: it starts by veri-
fying the system as if total information were available, using standard algorithms for the total-
information case. If the system is deemed correct, then it is also correct under partial information,
as the set of schedulers under partial information is a subset of the ones under total information.
If the system is deemed as incorrect, it can be checked whether the counterexample obtained is
valid under partial information: that is, if all choices are resolved using only available informa-
tion. If the scheduler is indeed valid, then we can conclude that the system under consideration
is incorrect, and we can use the counterexample obtained as witness. For the case in which the
counterexample is not valid under partial information (that is, the case in which there is a de-
cision that is resolved according to information not available) we present a transformation that
produces a system in which the spurious counterexample is less likely to occur in a new analysis
under total information. We can analyse the resulting system by repeating this refinement each
time we get a spurious counterexample, in the hope that eventually we find the system correct
or we get a real counterexample. For infimum reachability probabilities, the refinements can be
carried out in such a way that the results converge to the actual value for all systems.

This technique has been introduced in [22]. Here, we adapt the notation to the one in this
paper and omit proofs. The reader is referred to [22] for details.

We illustrate the technique using the players A and B in Fig. 7. To simplify, we assume
that they play a turn-based game. When the game starts, player A tosses a coin whose sides are
labelled with 0 and 1. Then, B tosses a similar coin keeping the outcome hidden. In the next
turn, A tries to guess if both outcomes agree: in the state a0, the guess of A is that an agreement
happened, and the outcome of A has been 0 (the meaning of the other states is similar). After
the guess, a synchronized transition (depicted with a dashed line) takes both A and B to the
initial state, where another round starts. Player B wins if A fails to guess at least once. The
problem under consideration is to calculate the minimum probability that B wins. Note that,
since we are assuming that the game is turn based, except for the synchronized transition, there
is no interleaving nondeterminism and the only nondeterminism concerns the behaviour of A.
Intuitively we can think that player A wants to prevent the system from reaching one of the
states in which B wins. It is easy to see that, for every scheduler, B wins in the first round with
probability 1/2, and the probability that B has won after round N is 1 − (1/2)N . Hence, the

20

PIRSES-GA-2011-295261 / MEALS Page 21 of 31 Public

��
s | s

1/2

((QQQQQQQQQQQ1/2

vvmmmmmmmmmmm

0 | s
1/2

vvmmmmmmmmmmm 1/2
!!DDDDD

1 | s
1/2

}}zzzzz 1/2

((QQQQQQQQQQQ

0 | 0
�� !!DDDDD

0 | 1
}}zzzzz

��

1 | 0
�� !!DDDDD

1 | 1
��}}zzzzz

a0 | 0
?

S W Z \] ^ _ _ ` ` `

d0 | 0
5

N
W \] ^ _ ` `

a0 | 1
*

?
Q Z ^ ` `

d0 | 1

#

O a a

a0 | 1
�

�
o]]

d0 | 1
�

�md`^^

a1 | 1
	

pgba`_^^

d1 | 1
�

kgdba`__^^^

OO�
�
�
�
�
�
�
�
�
�
�
�

Figure 8: MDP obtained by composing A and B

��
s | s

1/2

((PPPPPPPPPP1/2

vvnnnnnnnnnn

0 | s
1/2
~~}}}}} 1/2

 AAAAA
1 | s

1/2
~~}}}}} 1/2

 AAAAA

0 | 0
��

0 | 1
��

1 | 0
��

1 | 1
��

a0 | 0
3

L
W \ ^ ` `

d0 | 1

#

O a a

d0 | 1
�

�
p]]

a1 | 1
�

rgb`^^

OO�
�
�
�
�
�
�
�
�
�
�
�

Figure 9: Unrealistic counterexample in the parallel composition

probability that B wins the game in some round is 1. The minimum probability that B wins,
quantifying over all distributed schedulers, is then 1.

If we construct Pind and analyse it under total information, a scheduler can simply guess an
agreement in case an agreement happened, and a disagreement otherwise. (Which is unrealistic,
since we assume that A is unable to see the outcome of B.) Pind and the unrealistic scheduler are
depicted in Figures 8 and 9, respectively. The probability under such scheduler is 0.

We can explain our counterexample-based transformation of P by following our previous
example: we first detect that, in the counterexample in Fig. 9, the player A performs a choice
using unavailable information while in state 0, by noticing that its choices differ for the state
(0, 0) and the state (0, 1) (the player also cheats in state 1, but can tackle one state at a time).
The transformation forces (the refined model of) A to choose beforehand what the move will
be in state 0, this choice being resolved during the coin toss. If the state reached is 0, player A
must adhere to its previous decision. The refined model of A (called A′) is shown in Fig. 10(a).
Roughly speaking, the non-determinism at state 0 has been “pulled backwards”. If we now
consider P′ind (the MDP induced by {A′, B}), we still have some unrealistic counterexamples, as
A can still cheat in state 1. One of such unrealistic counterexamples is shown in Fig. 10(b).
However, the minimum probability that B wins is now 1 for all schedulers (as eventually A
passes through state 0, in which A cannot cheat). Since our transformation ensures that 1 is
a lower bound for the minimum probability, we know that the result is 1 and the verification
finishes.

This verification, calculating the exact result after one refinement, can be contrasted with the
naı̈ve approach of computing the minimum probability pN that B wins before round N, increasing

21

PIRSES-GA-2011-295261 / MEALS Page 22 of 31 Public

��
s

1/2~~~~~~~~~~~1/2

ttiiiiiiiiiiiiiiiiiiiiiiiiii

1/2 AAAAAAAAA
1/2

**UUUUUUUUUUUUUUUUUUUUUUUUUUU

a′0

��

1

��~~}}}}}}}}} d′0

��

1

��~~}}}}}}}}}

a0
9

N S V X Z [\]] ^ ^

a1
-

@
O V Z] ^

d1
!

&
E

[^

d0
�

�
xc`

a1
�

|
ohda`

d1
�

pkhfdcbaa``

OO�
�
�
�
�
�
�
�
�
�
�
�

(a) Refined model of A

��
s | s

1/2

''OOOOOOOOOOO
1/2

wwnnnnnnnnnnn

a′0 | s
1/2

 BBBBBB
1/2

��

1 | s
1/2

��~~~~~~
1/2
��

a′0 | 0

��

a′0 | 1

��

1 | 0

��

1 | 1

��
a0 | 0

+
>

O X \ ^ _

a0 | 1

#
G ^ _

d1 | 0
�

�
y`_

a1 | 1
�

�pgb`_

OO�
�
�
�
�
�
�
�
�
�
�
�
�
�

(b) A counterexample after the first
refinement

Figure 10: Refined system and counterexample

N successively. These probabilities can be computed by considering each of the schedulers for
A up to round N. The value of pN is 1 − (1/2)N , and so this approximation never reaches the
actual value 1. In addition, as general schedulers depend on the local history of A, computing pN

involves computations for 22N
different schedulers.

6.1.1 Detection of partial-information counterexamples

Under total information, for minimum/maximum reachability it suffices to consider only globally
Markovian schedulers. Moreover, the verification of general LTL and PCTL∗ formulae is carried
out by reducing the original problem to problems for which globally Markovian schedulers are
sufficient [4].

We address the problem of checking whether a globally Markovian scheduler η for Pind corre-
sponds to a scheduler η′ in P, that is, whether η′ind = η. If such an η′ exists, then η corresponds to a
valid partial information scheduler P. Otherwise, the scheduler under total information cannot be
produced under partial information, and we apply the refinement described in Subsection 6.1.2.

The method for checking whether a scheduler complies with the partial information restric-
tions resembles the well-known technique of self-composition [3]. We denote by η>0(s) the value
of η(σ) for all σ such that last(σ) = s. Note that a scheduler η ∈ GMarkovian is completely
determined by the value of η>0(s) in the states s reachable in η, in the sense that if two schedulers
η, ζ reach the same states and η>0(s) = ζ>0(s), then they yield the same probabilities for all paths.

We reduce the problem to that of checking whether η has conflicting paths. Given a η ∈
GMarkovian, we say that two states s, t with s[i] = t[i] are η-conflicting for the atom Ai iff
η>0(s) = αgi and η>0(t) = αg′i for some gi , g′i .

We say that two paths are η-conflicting for Ai if σ[i] = σ′[i], last(σ) = s, last(σ′) = t and the
states s, t are η-conflicting. From the definition of η-conflicting we can prove:

∃η′ : η = η′ind ⇐⇒ η has no conflicting paths . (8)

Now we show how to check the (in)existence of conflicting paths for Ai. For all s, t ∈ St,
ri ∈ Sti, we define the relation s

ri
 t, that holds iff there exist paths σ, σ′ such that first(σ) = init,

22

PIRSES-GA-2011-295261 / MEALS Page 23 of 31 Public

last(σ) = s = first(σ′), last(σ′) = t and σ′[i] = ri. This relation can be extended naturally to the
local paths σi = r1

i · · · r
k
i , so we can write s

σi
 t. By the definition of , if s

σi
 t then there exists

a path σ from s to t in η such that σ[i] = σi. Consider the non-deterministic finite automaton
Nfai(η) that represents the relation

ri
 . In this automaton, each word starting in s and ending in t

corresponds to a σi such that s
σi
 t.

The problem of checking whether η has conflicting paths is now that of checking whether
init

σi
 s and init

σi
 t and for some η-conflicting s, t. This can be done by constructing the syn-

chronous product automaton

Nfa2
i (η) = Nfai(η) × Nfai(η) (9)

and checking whether it has a path from (init, init) to some η-conflicting (s, t).

6.1.2 Refining a system for a conflict

According to Eq. (8), if a counterexample η does not comply with the partial-information con-
straints, there exist two η-conflicting states s and t for a module Ai. Since these states are con-
flicting, we have that s[i] = t[i] and η>0(s) = αgi , η

>0(t) = αg′i for some gi , g′i . In words, two
different transitions gi, g′i are chosen in Ai while, because of the partial-information constraints
the choices must coincide. Next, we show how to refine the atom Ai. The refinement is modular,
in the sense that only Ai is affected.

As illustrated in the example in the introduction, the idea is to split s[i] in such a way that
gi and g′i are not enabled in the same state. We assume that no input transition reaches s[i] (we
can always insert an intermediate state after an input transition and a generative transition after
such state). This assumption is not needed in the original presentation of this technique: in the
setting of [22], atoms (or modules) are allowed to have input non-determinism; for simplicity,
we avoided such non-determinism in this paper, at the expense of introducing additional states.

Let si = s[i]. We call the new states s1
i and s2

i . Given a generative transition hi, we define
two new transitions h1

i , h2
2, in such a way that, if hi(si, a) > 0, then h1

i reaches s1
i and h2

i reaches
s2

i . We define h1
i (ti, a) = hi(ti, a) if ti , s1

i and ti , s2
i , h1

i (s1
i , a) = hi(si, a) and h1

i (s2
i , a) = 0. The

transition h2
i is defined similarly, but we have h2

i (s2
i , a) = hi(si, a) and h2

i (s1
i , a) = 0. Note that if

hi does not reach si, then h1
i and h2

i coincide.

Definition 4. Given an atom Ai, a local state si, and two generative transitions gi, g′i the refined
atom A′i is defined as:

• St′i = Sti \{si} ∪ {s1
i , s

2
i }

• G′i(ti) = {h1
i , h

2
i | hi ∈ Gi(ti)} if ti , s1

i and ti , s2
i

• G′i(s′i) = {h1
i , h

2
i | hi ∈ Gi(si)} if s′i = s1

i or s′i = s2
i

• R′i(ti, a) = Ri(ti, a)

23

PIRSES-GA-2011-295261 / MEALS Page 24 of 31 Public

Let P be the IPIOA comprising atoms Atoms(P) \ {A} ∪ {A′}. Given a set of paths S in P,
we can construct the corresponding set of paths S′ in P′ (S′ has the same paths but with s1

i or s2
i

instead of si).
We have then the following theorem:

Theorem 10. For all IPIOA P, and set of path S:

sup
η∈Dist(P)

Prη(S) = sup
η∈Dist(P′)

Prη(S′)

The theorem ensures that the probabilities under distributed schedulers do not change. How-
ever, as shown in the introduction, we might have that the total information probabilities in P′ind
are more realistic than in Pind. If in P′ we find an optimal scheduler that complies with the partial
information restrictions (as checked by the method in the previous sub-subsection), then the ver-
ification is finished. If the scheduler found in P′ is still unrealistic, the refinement can be carried
out on P′ and so on.

6.1.3 Convergence

A scheduler might have several conflicts, and the choice of the conflicts can affect the probabili-
ties in P′ind.

In [22] we show that the conflicts can be chosen in such a way that, if the refined systems are
P1, P2, · · · we have:

lim
n→∞

inf
η∈Sched(Pn)

Prη(F U) = inf
η∈Dist(P)

Prη(F U) .

That is, the infimum probability values in the refined systems under total information converge
to the probability values under partial information in the original system.

The criterion for conflicts that ensures convergence does not perform well in the systems we
analyzed. Another criterion (namely, to choose any conflict in one of the shortest local paths
having a conflict) offers better performance in the three systems we analyzed, but examples can
be constructed in which the probabilities do not converge to the infimum.

There is no similar convergence for upper bounds of supremum probabilities: together with
the computable lower bounds limN→∞ supη∈Dist(P) Prη(FN) (which converge to supη∈Dist(P) Prη(F U)),
such upper bounds would turn the approximation problem for the supremum decidable, thus con-
tradicting Theorem 6.

As explained in [22], the convergence of our technique does not imply decidability for the
case of the minimum, as in each step there is no way to know how close is the approximation to
the actual value. The decidability of the approximation problem for the minimum is thus open. In
the particular case of Probabilistic Finite Automata the problem is decidable [19], but we could
not find an extension of the proof for IPIOA, where information is hidden more selectively.

6.2 Partial order reduction for LTL\{next}

Given a system and a property, the technique of partial order reduction yields another system
with less transitions. The reduced system is constructed by traversing the state space. When

24

PIRSES-GA-2011-295261 / MEALS Page 25 of 31 Public

expanding a given state, not all the transitions enabled are considered. An ample set ample(s)
must be calculated for each state s, and only transitions in the ample set are considered during the
search. POR techniques impose restrictions on the ample sets to ensure that, for each property,
the reduced system complies with the property iff the original system does.

In this section, we show how the POR technique for probabilistic systems [11, 2] can be
improved under the assumption that the schedulers are (strongly) distributed.

The reduction technique we discuss in the following guarantees the preservation of proba-
bility bounds for LTL properties not containing the next operator. Given a set AP of atomic
propositions and a labeling function L : St→ P(AP), the set of LTL\{next} formulae are generated
by the following grammar.

φ ::= True | l | ¬φ | φ1 ∧ φ2 | φ1Uφ2 ,

where True is a constant and l ∈ AP. Intuitively, an infinite path ρ satisfies φ1Uφ2 (denoted by
ρ |= φ1Uφ2) iff there is position in ρ in which φ2 holds, and φ1 holds in all intermediate positions
of ρ from the beginning until the position in which φ2 holds. As usual, we write Fφ for True U φ,
and Prη(φ) for Prη({ρ | ρ |= φ}).

Restrictions to the ample sets are based on the notion of independence. We say that two
transitions α, β are independent iff their generative transitions affect different atoms. Formally,
Inv(α) ∩ Inv(β) = ∅.

Note that the order of execution is irrelevant and that neither of them can disable or enable
the other. Notice also that this definition is of a more structural nature than those in [2, 11]. This
is no surprise, since our improvements profit from the structure of the model.

We need some additional definitions before presenting the restrictions for POR. A transition
α is stutter iff for all s such that α ∈ en(s) and s′ such that α(s, s′) > 0 implies that L(s) = L(s′).

An end component (EC) is a pair (S̊ , T̊) where T̊ : S̊ → P(T) and S̊ is a set of states such
that: (1) ∅ , T̊ (s) ⊆ en(s) for all s ∈ S̊ , (2) α(s, s′) > 0 implies s′ ∈ S̊ for all s ∈ S̊ , α ∈ T̊ (s)
(3) for every s, s′ ∈ S̊ there exists a path from s to s′ using only actions in T̊ . Intuitively, an
end component induces an scheduler that stays in S̊ with probability 1 and moreover visits all its
states infinitely often.

The restrictions for the ample sets of [2] to preserve LTL\{next} properties under unrestricted
full-history dependent schedulers are listed below. Ŝt denotes the set of reachable states in the
reduced system P̂, which is constructed by taking ample(s) to be the set of enabled transitions in
s ∈ Ŝt.
(A1) For all states s ∈ St, ∅ , ample(s) ⊆ en(s),
(A2) If s ∈ Ŝt and ample(s) , en(s), then each transition α ∈ ample(s) is stutter,
(A3) For each path σ = s.α1.s1.α2. · · · .αn.sn.γ in P where s ∈ Ŝt and γ is dependent on ample(s)
there exists an index 1 ≤ i ≤ n such that αi ∈ ample(s),
(A4) If (S̊ , T̊) is an EC in P̂ and α ∈

⋂
s∈S̊ en(s), then α ∈

⋃
s∈S̊ ample(s)

(A5) If s.α1.s1.α2.s2. · · · .αn.sn.γ.sn+1 is a path in P where s ∈ Ŝt, α1, · · · , αn, γ < ample(s) and
γ is probabilistic then |ample(s)| = 1.

Conditions A1–A3 are originaly from POR on non-probabilistic systems [26]. A1 ensures
that the reduced model is a submodel of the original one, and that it does not introduce terminal

25

PIRSES-GA-2011-295261 / MEALS Page 26 of 31 Public

h! t!
1/2 1/2

gh?gt? gt?

initT initGgh? gt?

gh?

ch! ct!

gh! gt!

T G

Figure 11: T tosses a coin, G guesses heads or tails
GH GTT

initT

1/2 1/2

gh?gt? gt?gh?

h! t!

gh? gt?

ch?ct? ct!ch!

gt!gh!
sh st

initGH initGT

Figure 12: Two different guessers

init ‖

gh! gt!

1/2 1/2

ch! ct!

h! t!

Figure 13: A dubious scheduling

înit ‖
ch! ct!

t!
1/2

h!
1/2 t!

1/2
h!

1/2

gh! gt! gh! gt!

gt!gh!

Figure 14: A POR based reduction

states (since the original model does not have either). A3 enforces that any finite sequence of
transitions leaving a state s that does not contain a transition in ample(s) can be extended with
a transition from ample(s). Together with A2, they ensure that any execution in the original
system can be mimicked by an observational equivalent trace in the reduced system. Besides,
notice that A3 is the only condition that is concretely related to the notion of (in)dependence.
Condition A4 is a probabilistic variant of Peled’s cycle condition. Peled’s condition ensure that
if an action is enabled continuously along a path in the original system, then then that action
is eventually enabled in the reduced system. Condition A4 is weaker that Peled’s condition
and guarantees that the set of paths that disable actions forever has measure zero. Therefore,
condition A4 ensures that all fair paths are also represented in the reduced system. Condition
A5 is particular for probabilistic models. Contrarily to the other conditions, A5 is technical
and non-intuitive and has been introduced precisely to not eliminate the behaviour introduced
by (non-distributed!) schedulers like the one of the example in Fig. 13. A probabilistic action
can only be delayed only if the ample action in all the branches is the same. In case of the
total information schedulers, it is only possible if the ample is a singleton. We remark that the
fully expanded ample set ample(s) = en(s) trivially satisfies conditions A1–A5. We also remark
that if the model P is non-probabilistic, condition A5 has no effect and condition A4 reduces
to Peled’s original cycle condition. As a consequence, conditions A1–A5 behave exactly in the
same way as Peled’s original conditions for POR on non-probabilistic models.

In case we assume that the schedulers are distributed, we can replace A5 by
(A5′) If s.α1.s1.α2.s2 · · ·αn.sn.γ.sn+1 is a path in P where s ∈ Ŝt, α1,· · ·,αn,γ <ample(s) and γ is
a probabilistic transition, then GenAtom(β) = GenAtom(β′), for all β, β′ ∈ ample(s).
Condition A5′ relaxes condition A5. Contrarily to A5, A5′ does not requires ample(s) to be
a singleton; instead, ample(s) may contain several transitions as long as they are generated by
the same atom. The execution of probabilistic but independent transitions does not modify the
local history of the atom in the ample, thus the output scheduler always chose the same transition
regardless of the probabilistic behaviour.

26

PIRSES-GA-2011-295261 / MEALS Page 27 of 31 Public

The result is formalized in the following theorem.

Theorem 11. Let φ be an LTL\{next} formula and P be an interleaved probabilistic I/O automata.
Let P̂ be a reduction of P complying with conditions A1–A4, A5′. Then, supη∈Dist(P) Prη(φ) ≤
supη∈Sched(P̂) Prη(φ) .

In case we assume strongly distributed schedulers, A5 can be disregarded. The execution of
independent transitions does not modify the history of any generative and/or reactive atom in the
ample. Thus, the local histories coincide and it forces the interleaving scheduler to maintain the
same relative distributions for the atoms in the ample.

Theorem 12. Let φ, P be as in Theorem 11. Let P̂ be a reduction of P complying with conditions
A1–A4. Then, supη∈SDist(P) Prη(φ) ≤ supη∈Sched(P̂) Prη(φ).

As an example, recall atoms T and G in Fig. 11 and the non-distributed scheduler ηw in Fig. 13.
According to Theorem 11 the reduction in Fig. 14 is correct in case distributed schedulers are
assumed. However, in the original system P we have Prη

w
(F j

_¨) = 1, while in P̂ we have
Prη(F j

_¨) ≤ 1
2 for all η. This is due to the fact that ηw is not distributed. In fact, the supremum over

all distributed schedulers in P is 1
2 , which coincides with supη∈Sched(P̂) Prη(F j

_¨). Recall now the
example in Fig. 12 with atoms T , GH and GT . Notice that the scheduler of Fig. 13 is distributed
in this setting. Call this scheduler ηd. If we assume strongly distributed schedulers, the reduction
in Fig. 14 is allowed, and there is no scheduler yielding probability 1 in the reduced system. This
is correct, since the scheduler ηd is not strongly distributed. However, if we want to preserve all
distributed schedulers (even those that are not strongly distributed) then condition A5′ prevents
the reduction in Fig. 14, since ch! and ct! are generated by atoms GH and GT , resp. This is exactly
what we want, since the scheduler ηd is a valid distributed scheduler for T , GH and GT , and so a
corresponding scheduler yielding probability 1 must exist in the reduced system.

Experimental results [21] show that the reduction profits from the fact that the conditions are
weakened, saving up to 40% of verification time in a system with 4 × 109 states. A summary of
the proof of Theorems 11 and 12 can be found in [21]. A full proof can be found in [15].

7 Related work
Our definition of strongly distributed schedulers is an important contribution, since it exactly
captures the restrictions that the lack of information imposes to schedulers in asynchronous set-
tings. In previous frameworks, there are no nondeterministic choices concerning the interleaving.
In [12], the components are not specified explicitly (then, there are no interleaving issues) and
the schedulers are restricted by imposing the condition that they must observe only a portion of
every state in the history. In [13] a step of the whole system is obtained by taking a step in every
component (thus, no interleaving is needed). The main difference between our framework and
the PIOA framework in [9] is the concept of interleaving scheduler. In contrast, in the frame-
work presented in [9] the different components have only input and output local schedulers, and
a token is used in order to decide the next component to perform an output. The interleaving
among different components is not resolved by the schedulers, since the way in which the token

27

PIRSES-GA-2011-295261 / MEALS Page 28 of 31 Public

is passed is specified by the components. Note that, because of the internal nondeterminism, the
choice of the next component to execute is still nondeterministic, since there may be different
transitions passing the token to different components. However, since internal nondeterminism
is resolved according to the local history, the choice of the next component to execute is based
on the history of the component that passes the token. In [8] it is suggested that a fictitious ar-
biter component can be added in order to specify interleaving policies. The components pass the
token to the arbiter and the arbiter selects one of the components to which the token is passed.
Using this schema, the information used to choose the next component can be restricted simply
by restricting the information available to the arbiter. Although this approach is useful in order to
keep some information hidden, such approach cannot be used to represent the restriction we im-
pose to strongly distributed schedulers since, in our restriction, the lack of information depends
on each pair of components and there is no information completely hidden. In [17], a mechanism
is devised in such a way that the interleaving is determined using rates for each component, and
these rates depend solely on the information available to the component.

In [1] a deterministic variant of our distributed scheduler is used, taking also into account that
secret information needs to be hidden. The framework they present is simpler since components
are required to be deterministic, and therefore there is no need for something like our output
schedulers. Hence, the global scheduler can only choose components which are properly tagged
in the transition. Thus, their global scheduler is quite similar to our interleaving scheduler.

Though similar in nature, a somewhat different approach to distributed scheduler is developed
in [14]. The authors introduce a testing theory a la De Nicola-Hennessy that considers the
distributed nature of the components. Their technique is based on labelling each nondeterministic
transition considering only the local information of the component that produces it. This labelling
is what lately drives the choices of the scheduler.

The example used to show that Markovian schedulers cannot attain worst-case probabil-
ities resembles the well-known partially observable Markov decision processes (POMDPs).
POMDPs are MDPs in which the scheduler cannot distinguish the states: for each state, a dis-
tribution on the possible observations is defined, and the scheduler chooses according to these
observations. The way in which the information is hidden is a crucial difference with respect
to PIOA, since the lack of information in PIOA is not “state based” but “transition based”: in
the PIOA framework, an atom is not aware of a state change unless the atom has synchronized
in the transition leading to this state change. This difference suggests that care must be taken
to translate results from the POMDP setting to the PIOA setting. Similarly, the hardness result
in [12] is proved in a setting in which the lack of information is not necessarily a consequence of
the existence of several components.

Finally, we notice that [5] shows that the verification of bounded time reachability proper-
ties under distributed schedulers and strongly distributed schedulers are actually decidable. The
paper provides two algorithms that reduce the bounded reachability problem to a polynomial
optimization problem. This was expected for distributed schedulers since there are finitely many
deterministic distributed schedulers on finite systems not containing loops (which are sufficient
by Theorem 4). However, this was not obvious for strongly distributed schedulers since they
are strictly more expressive than its corresponding deterministic variant. (See Figure 4 and its
explanatory text. Notice that the reachability property in this example is actually bounded by the

28

PIRSES-GA-2011-295261 / MEALS Page 29 of 31 Public

number of transitions in the longest path of component R.) This work was later extended to deal
with information hiding in [27] aiming to analyse security protocols. This paper also provides
optimizations to the original algorithms, making the derived polynomial optimization problem
significantly more compact.

Acknowledgements We kindly thanks the recommendations and suggestions of the anony-
mous reviewers.

Bibliography
[1] Miguel E. Andrés, Catuscia Palamidessi, Peter van Rossum, and Ana Sokolova. Informa-

tion hiding in probabilistic concurrent systems. Theor. Comput. Sci., 412(28):3072 – 3089,
2011.

[2] C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for probabilistic systems. In
QEST ’04, pages 230–239, Washington, DC, USA, 2004. IEEE CS.

[3] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. In CSFW, pages 100–114. IEEE Computer Society, 2004.

[4] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In Proc. of FSTTCS 95, LNCS 1026, pages 288–299. Springer, 1995.

[5] Georgel Calin, Pepijn Crouzen, Pedro R. D’Argenio, E. Hahn, and Lijun Zhang. Time-
bounded reachability in distributed input/output interactive probabilistic chains. In Jaco
van de Pol and Michael Weber, editors, Model Checking Software, volume 6349 of LNCS,
pages 193–211. Springer, 2010.

[6] Konstantinos Chatzikokolakis and Catuscia Palamidessi. A framework for analyzing prob-
abilistic protocols and its application to the partial secrets exchange. Theor. Comput. Sci.,
389(3):512–527, 2007.

[7] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. J. Cryptology, 1(1):65–75, 1988.

[8] L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
Universiteit Nijmegen, 2006.

[9] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched Probabilistic PIOA: Parallel
composition via distributed scheduling. Theor. Comput. Sci., 365(1-2):83–108, 2006.

[10] F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear time analysis
of reactive systems. In Proc. of QEST’06, pages 131–132. IEEE CS Press, 2006.

29

PIRSES-GA-2011-295261 / MEALS Page 30 of 31 Public

[11] P. R. D’Argenio and P. Niebert. Partial order reduction on concurrent probabilistic pro-
grams. In QEST ’04, pages 240–249, Washington, DC, USA, 2004. IEEE CS.

[12] L. de Alfaro. The verification of probabilistic systems under memoryless partial-
information policies is hard. In Proc. of PROBMIV 99, pages 19–32. University of Birm-
ingham, 1999.

[13] L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic sys-
tems. In Proc. of CONCUR 01, LNCS 2154, pages 351–365. Springer, 2001.

[14] Sonja Georgievska and Suzana Andova. Retaining the probabilities in probabilistic testing
theory. In FOSSACS, volume 6014 of LNCS, pages 79–93. Springer, 2010.

[15] S. Giro. On the automatic verification of distributed probabilistic automata with partial
information. PhD thesis, FaMAF, University of Cordoba, 2010. Available at http://cs.
famaf.unc.edu.ar/˜sgiro/thesis.pdf.

[16] S. Giro and P. R. D’Argenio. Quantitative model checking revisited: neither decidable nor
approximable. In Proc. of FORMATS’07, LNCS 4763, pages 179–194. Springer, 2007.

[17] S. Giro and P.R. D’Argenio. On the verification of probabilistic I/O automata with unspec-
ified rates. In SAC ’09: Proceedings of the 2009 ACM symposium on Applied Computing,
pages 582–586, New York, NY, USA, 2009. ACM.

[18] Sergio Giro. Undecidability results for distributed probabilistic systems. In Marcel Vini-
cius Medeiros Oliveira and Jim Woodcock, editors, SBMF, volume 5902 of Lecture Notes
in Computer Science, pages 220–235. Springer, 2009.

[19] Sergio Giro. An algorithmic approximation of the infimum reachability probability for
probabilistic finite automata. CoRR, abs/1009.3822, 2010.

[20] Sergio Giro and Pedro R. D’Argenio. On the expressive power of schedulers in distributed
probabilistic systems. Electr. Notes Theor. Comput. Sci., 253(3):45–71, 2009.

[21] Sergio Giro, Pedro R. D’Argenio, and Luis Marı́a Ferrer Fioriti. Partial order reduction for
probabilistic systems: A revision for distributed schedulers. In Mario Bravetti and Gianluigi
Zavattaro, editors, CONCUR, volume 5710 of Lecture Notes in Computer Science, pages
338–353. Springer, 2009.

[22] Sergio Giro and Markus N. Rabe. Verification of partial-information probabilistic sys-
tems using counterexample-guided refinements. In Supratik Chakraborty and Madhavan
Mukund, editors, ATVA, volume 7561 of Lecture Notes in Computer Science, pages 333–
348. Springer, 2012.

[23] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified models
of probabilistic processes. Information and Computation, 121:59–80, 1995.

30

http://cs.famaf.unc.edu.ar/~ sgiro/thesis.pdf
http://cs.famaf.unc.edu.ar/~ sgiro/thesis.pdf

PIRSES-GA-2011-295261 / MEALS Page 31 of 31 Public

[24] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic
verification of probabilistic systems. In Proc. of TACAS’06, LNCS 3920, pages 441–444.
Springer, 2006.

[25] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.

[26] D. Peled. All from one, one for all: On model checking using representatives. In Proc. of
5th CAV, LNCS 697, pages 409–423. Springer, 1993.

[27] Silvia Pelozo and Pedro R. D’Argenio. Security analysis in probabilistic distributed pro-
tocols via bounded reachability. In Proceedings of the 7th International Symposium on
Trustworthy Global Computing (TGC 2012), 2012. To appear.

[28] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Laboratory for Computer Science, MIT, 1995.

[29] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci., 176(1-2):1–38, 1997.

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

31

	Introduction
	Unrealistic worst cases and distributed schedulers
	Overview of the paper

	Interleaved Probabilistic Input/Output Automata
	Schedulers
	Distributed schedulers
	Strongly distributed schedulers

	Subclasses of distributed schedulers
	Power of deterministic schedulers
	On the (in)existence of a scheduler yielding the supremum probability
	Finite-memory (and Markovian) schedulers

	(Un)decidability and NP-hardness
	General distributed schedulers
	Finite memory distributed schedulers

	Algorithms
	Counterexample-guided refinements
	Detection of partial-information counterexamples
	Refining a system for a conflict
	Convergence

	Partial order reduction for LTL{ `39`42`"613A``45`47`"603Anext}

	Related work
	Bibliography
	MEALS Partner Abbreviations

