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1 Introduction
Plotkin’s approach to operational semantics [21] is the standard way to give semantics to specifi-
cation and programming language in terms of transition systems. It has been formalized with an
algebraic flavor as Transition Systems Specifications (TSS) [8,9,12,13,20, etc.]. Basically, a TSS
contains a signature, a set of actions or labels, and a set of rules. The signature defines the terms
in the language. The set of actions represents all possible activities that a process (i.e., a term
over the signature) can perform. The rules define how a process should behave (i.e., perform
certain activities) in terms of the behavior of its subprocesses, that is, the rules define compo-
sitionally the transition system associated to each term of the language. A particular focus of
these formalizations was to provide a meta-theory that ensures a diversity of semantic properties
by simple inspection on the form of the rules. Thus, there are results on congruences and full
abstraction, conservative extension, security, etc. (see, e.g., [1, 2, 20] for overviews).

In this paper we focus on congruence and full abstraction. A congruence theorem guarantees
that whenever the rules of a TSS are in a particular format, then a designated equivalence relation
is preserved by every context in the signature of such TSS. Thus, for instance, strong bisimulation
equivalence [19] is a congruence on any TSS in the ntyft/ntyxt format [12]. Full abstraction is
somewhat a dual result: an equivalence relation is fully abstract with respect to a particular format
if it is the largest relation s.t. no context definable in the format can exhibit di↵erent behavior
when applied to two equivalent processes. For example, strong bisimilarity is fully abstract w.r.t.
the ntyft/ntyxt format [12] but not w.r.t. the tyft/tyxt format [13] or the GSOS format [8].

The introduction of probabilistic process algebras [4, 14, 25, etc.] motivated the need for
a theory of structural operational semantics to define probabilistic transition systems. A few
results have appeared in this direction [6, 7, 16, 17] and, to our knowledge, only these works
present congruence theorems for (probabilistic) bisimilarity [18], but no full abstraction result.
All previously mentioned studies consider transitions in the form of a quadruple denoted by
t

a,q��! t0, where t and t0 are terms in the language, a is an action or label, and q 2 (0, 1] is
a probability value. A transition of that form denotes that term t can perform an action a and
with probability q continue with the execution of t0. Moreover, it is required that ⇡t,a, defined by
⇡t,a(t0) =

P

t
a,q�!t0

q, is a probability distribution. (This interpretation corresponds to the reactive
view, it varies under the generative view [25].) This notation introduces several problems. The
first one is that the transition relation cannot be treated as a set because two di↵erent derivations
may yield the same quadruple. This requires artifacts like multisets or bookkeeping indexes. The
second one is that formats need to be defined jointly on a set of rules rather than a single rule to
ensure that ⇡t,a is a probability distribution. (Notice that ⇡t,a depends on a set of transitions which
are obtained using di↵erent rules.)

Rather than following this approach, we directly represent transitions as a triple t
a�! ⇡t,a.

Thus, a single triple contains the complete information of the probabilistic jump. Moreover,
this representation also allows for non-determinism in the sense that if t

a�! ⇡ and t
a�! ⇡0 not

necessarily ⇡ = ⇡0 as requested by reactive systems. Hence, our probabilistic transition system
specifications (PTSS) define objects very much like Segala’s probabilistic automata [22]. So,
each probabilistic transition t

a�! ⇡ is obtained by a single derivation in our PTSSs, and hence
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formats focus on single rules (as it is the case for non-probabilistic TSSs). This significantly
eases the inspection of the format. In addition, a byproduct of this choice is that the proof
strategies for the majority of the lemmas and theorems of this paper are much the same as those
for their non-probabilistic relatives. We observe that this way of representing transitions in rules
for process algebra has already appeared in [5], it is also used in the Segala-GSOS format [7]
and it is pretty much related to bialgebraic approaches to SOS [7, 15].

In this paper we introduce PTSS with negative and quantitative premises which also allow
for lookahead. We use stratification [9, 12] as means to define probabilistic transition systems
and prove the existence and uniqueness of models for stratifiable PTSSs (Sec. 3). We also pro-
pose a format, which we call ntµf⌫/ntµx⌫, that is very much like the ntyft/ntyxt format in non-
probabilistic TSS and show that bisimilarity is a congruence for any operation defined under
this format (Sec. 4). Besides, we give a definition for the modular construction of PTSSs and
give su�cient conditions to ensure that one PTSS conservatively extends another (Sec. 5). We
finally show that bisimilarity is fully abstract with respect to the ntµf⌫/ntµx⌫ format, that is, it is
the coarsest congruence w.r.t. any operator defined in ntµf⌫/ntµx⌫ PTSSs that is included in trace
equivalence (Sec. 6).

2 Preliminaries
We assume the presence of an infinite set of (term) variables V and we let x, y, z, x0, x0, x1, . . .
range overV. A signature is a structure ⌃ = (F, r), where (i) F is a set of function names disjoint
withV, and (ii) r : F ! N0 is a rank function which gives the arity of a function name; if f 2 F
and r( f ) = 0 then f is called a constant name. Let W ✓ V be a set of variables. The set of
⌃-terms over W, notation T (⌃,W) is the least set satisfying: (i) W ✓ T (⌃,W), and (ii) if f 2 F
and t1, · · · , tr( f ) 2 T (⌃,W), then f (t1, · · · , tr( f )) 2 T (⌃,W). T (⌃, ;) is abbreviated as T (⌃); the
elements of T (⌃) are called closed terms. T (⌃,V) is abbreviated as T(⌃); the elements of T(⌃)
are called open terms. Var(t) ✓ V is the set of variables in the open term t.

Since our aim is to deal with languages that describe probabilistic behavior, apart from sig-
natures, variables, and terms, we also need to introduce probability distributions on terms and
variables to run on these distributions. Let �(T (⌃)) denote the set of all (discrete) probability
distributions on T (⌃). We let ⇡, ⇡0, ⇡0, ⇡1, . . . range over �(T (⌃)). As usual, for ⇡ 2 �(T (⌃))
and T ✓ T (⌃), we define ⇡(T ) =

P

t2T ⇡(t). For t 2 T (⌃), let �t denote the Dirac distribu-
tion, that is, �t(t0) = if (t=t0) then 1 else 0. Moreover, the product measure

Qn
i=1 ⇡i is defined

by (
Qn

i=1 ⇡i)(t1, . . . , tn) =
Qn

i=1 ⇡i(ti). In particular, if n = 0, (
Q

j2; ⇡ j) = �() is the distri-
bution that assigns probability 1 to the 0-ary tuple. Let g : T (⌃)n ! T (⌃) and recall that
g�1(t0) = {~t 2 T (⌃)n | g(~t) = t0}. Then (

Qn
i=1 ⇡i) � g�1 is a well defined probability distribution on

closed terms. In particular, if g : T (⌃)0 ! T (⌃) and g(()) = t, then (
Q

j2; ⇡ j)�g�1 = �() �g�1 = �t.
A distribution variable is a variable that takes values on �(T (⌃)). LetM be an infinite set of

distribution variables and let µ, µ0, µ0, µ1, . . . range overM. For a term variable x 2 V we let �x

be an instantiable Dirac distribution. That is, �x is a symbol that takes value �t whenever variable
x takes value t. Let D = {�x : x 2 V} be the set of instantiable Dirac distributions according to
the variable setV.
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A substitution is a mapping that assigns terms to variables. In our case we need to extend
this notion to probabilistic variables and instantiable Dirac distributions. A (closed) substitution
⇢ is a mapping in (V [M) ! (T (⌃) [ �(T (⌃))) such that ⇢(x) 2 T (⌃) whenever x 2 V, and
⇢(µ) 2 �(T (⌃)) whenever µ 2 M. A substitution ⇢ extends to open terms and sets as usual and
to instantiable Dirac distributions by ⇢(�x) = �⇢(x).

Example 1. We introduce the signature of a probabilistic process algebra that includes many of
the most representative operators. We assume the existence of a set L of action labels. Then, our
signature (which is the base of our running example) contains: two constants, 0 (stop process)
and " (skip process); a family of n-ary probabilistic prefix operators a.([p1] � · · · � [pn] ) with
a 2 L, n � 1, p1, . . . , pn 2 (0, 1] s.t.

Pn
i=1 pi = 1 (we usually write a.

Pn
i=1[pi]ti for given terms

t1, . . . , tn); binary operators + (alternative composition or sum), ; (sequential composition),
and, for each B ✓ L, ||B (parallel composition); and a unary operator U( ) that we call unreach.
The intended meaning of a.

Pn
i=1[pi]ti is that this term can perform action a and move to term ti

with probability pi. The unreach operation U(t) can perform an action a and stop if there is a
probabilistic execution (or scheduler) from t in which action a is never performed (or properly
speaking, it is not performed with probability 1). Finally, t ||B t0 is a CSP-like parallel compo-
sition where actions in B are forced to synchronize and all other actions should be performed
independently. The rest of the operators have the usual meaning.

3 Probabilistic Transition System Specifications
A (probabilistic) transition relation prescribes what possible activity can be performed by a term
in a signature. Such activity is described by the label of the action and a probability distribution
on terms that indicates the probability to reach a particular new term. We will follow the proba-
bilistic automata style of probabilistic transitions [22] which are a generalization of the so called
reactive model [18]. So, let ⌃ be a signature and A be a set of labels. A transition relation is a
set �! ✓ PTr(⌃, A), where PTr(⌃, A) = T (⌃) ⇥ A ⇥ �(T (⌃)). We denote (t, a, ⇡) 2 �! by t

a�! ⇡.
Transition relations are usually defined by means of structured operational semantics in

Plotkin’s style [21]. Algebraic characterizations of this style were provided in [9, 12, 13] where
the term transition system specification was used and which we adopt in our paper. In fact, based
on these works, we define probabilistic transition system specifications.

Definition 1. A probabilistic transition system specification (PTSS) is a triple P = (⌃, A,R)
where ⌃ = (F, r) is a signature, A is a set of labels, and R is a set of rules of the form:

{tk
ak��! µk : k 2 K} [ {tl

bl��!6 : l 2 L} [ {µ j(Wj) ? j q j : j 2 J}
t

a�! Pi2I pi(
Q

ni2Ni ⌫ni) � g�1
i

where K, L, J are index sets, I is a denumerable index set, each Ni is a finite index set, t, tk, tl 2
T(⌃), a, ak, bl 2 A, µk, µ j 2M, Wj ✓ V, ? j 2 {>,�, <,}, pi, qj 2 [0, 1] with

P

i2I pi = 1, each gi

is a function s.t. gi : T (⌃)Ni ! T (⌃), and ⌫ni 2M [D.
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"
p
�! �0 a.

Pn
i=1[pi]xi

a�! Pn
i=1 pi�xi

x
a�! µ

x + y
a�! µ

y
a�! µ

x + y
a�! µ

x
a�! µ

x; y
a�! µ; �y

a ,
p x

p
�! µ y

a�! µ0

x; y
a�! µ0

x
a�! µ y

a�! µ0

x ||B y
a�! µ ||B µ0

a 2 B\{p}

x
a�! µ

x ||B y
a�! µ ||B �y

a < B [ {p} y
a�! µ

x ||B y
a�! �x ||B µ

a < B [ {p} x
p
�! µ y

p
�! µ0

x ||B y
p
�! �0

x
a�!6

U(x)
a�! �0

x
b�! µ µ(Y) � 1 {U(y)

a�! µ0y | y 2 Y}
U(x)

a�! �0

b , a, x < Y

Table 1: Rules for our probabilistic process algebra (Y ✓ V is a countably infinite set)

An expression of the form t
a�! ⇡, (t

a�!6 , ⇡(T ) ? p) is a positive literal (negative literal,
quantitative literal, resp.). For any rule r 2 R, literals above the line are called premises, nota-
tion prem(r); the literal below the line is called conclusion, notation conc(r). We denote with
pprem(r) (nprem(r), qprem(r)) the set of positive (negative, quantitative, resp.) literals of the
rule r. A rule r is called positive if there are no negative premises, i.e., nprem(r) = ;. A PTSS is
called positive if it has only positive rules. A rule r without premises is called axiom. In general,
we allow that the sets of positive, negative, and quantitative premises are infinite.

Substitutions provide instances to the rules of a PTSS that, together with some appropriate
machinery, allow us to define probabilistic transition relations. Given a substitution ⇢, it ex-
tends to literals as follows: ⇢(t

a�! µ) = ⇢(t)
a�! ⇢(µ), ⇢(t

a�!6 ) = ⇢(t)
a�!6 , ⇢(µ(W) ? p) =

⇢(µ)(⇢(W)) ? p, and ⇢(t
a�! Pi2I pi(

Q

ni2Ni ⌫ni)�g�1
i ) = ⇢(t)

a�! Pi2I pi(
Q

ni2Ni ⇢(⌫ni)) � g�1
i . Then,

the notion of substitution extends to rules as expected. We say that r0 is a (closed) instance of a
rule r if there is a (closed) substitution ⇢ so that r0 = ⇢(r). We say that ⇢ is a proper substitution
of r if for all quantitative premise ⇢(µ(W)) ? p of r it holds that ⇢(µ(w)) > 0 for all w 2 W. Thus,
if ⇢ is proper, all terms in ⇢(W) are in the support set of ⇢(µ). Proper substitutions avoid the
introduction of spurious terms. This is of particular importance for the conservative extension
theorem (Theorem 5).

Example 2. The rules for the process algebra of Example 1 are defined in Table 1. We consider
the set of actions A = L[{p}where

p
< L. In the table we use the following shorthand notations

for the target of the conclusion which we also adopt along the paper. We omit the summation
if I is a singleton and, if g(()) = t, we write �t instead of (

Q

ni2; ⌫ni) � g�1. Thus, in the rules
of " and U(x), we write �0 instead of

P

i2{1} 1(
Q

ni2; ⌫ni) � g�1
0 with g0(()) = 0. If g = id is the

identity function, we only write µ instead of µ � id�1 as it is the case in the conclusion of rules
for +. Finally, for an n-ary operator f , we write f (⌫1, . . . , ⌫n) instead of (⌫1 ⇥ · · · ⇥ ⌫n) � f �1. For
instance, in the first rule of the sequential composition, we write µ; �y instead of (µ ⇥ �y) � (;)�1.

6
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We give some examples of closed instances of rules to understand the notation in the target of
the conclusion. Take the closed instance a.

P3
i=1[pi]ti

a�! P3
i=1 pi�ti of the rule of the probabilistic

prefix operator and assume that t1 , t2 = t3. Then, (
P3

i=1 pi�ti)(t1) = p1 which is what we
expect. Moreover (

P3
i=1 pi�ti)(t2) = (p2 + p3) which is also what we expect, since we need

(
P3

i=1 pi�ti)({t1, t2, t3}) = 1 (and {t1, t2, t3} = {t1, t2}!).
Now, take the same term a.

P3
i=1[pi]ti and the closed instance of the first rule of sequential

composition a.
P3

i=1[pi]ti
a�!⇡

(a.
P3

i=1[pi]ti);"
a�!⇡;�"

with ⇡ =
P3

i=1 pi�ti . Notice that (⇡; �")(t2; ") = (⇡ ⇥ �")({(t2, ")}) =
(p2 + p3). Instead, for example, (⇡; �")(t2; 0) = (⇡⇥ �")({(t2, 0)}) = ⇡(t2)�"(0) = 0, and (⇡; �")(t2 +

") = (⇡ ⇥ �")((;)�1({t2 + "})) = (⇡ ⇥ �")(;) = 0.

As has already been argued many times (see, e.g., [9, 12, 24]), transition system specifica-
tions with negative premises do not uniquely define a transition relation and di↵erent reasonable
techniques may lead to incomparable choices. In any case, we expect that a transition relation
associated to a PTSS P (i) respects the rules of P, that is, whenever the premises of a closed
instance of a rule of P belong to the transition relation, so does its conclusion; and (ii) it does not
include more transitions than those explicitly justified, i.e., a transition is defined only whenever
there is a closed rule whose premises are in the transition relation. The first notion corresponds
to that of model, and the second one to that of supported transition.

Before formally defining these notions we introduce some notation. Given a transition rela-
tion �! ✓ PTr(⌃, A), a positive literal t

a�! ⇡ holds in �!, notation �! |= t
a�! ⇡, if (t, a, ⇡) 2 �!. A

negative literal t
a�!6 holds in �!, notation �! |= t

a�!6 , if there is no ⇡ 2 �(T (⌃)) s.t. (t, a, ⇡) 2 �!.
A quantitative literal ⇡(T ) ? p holds in �!, notation �! |= ⇡(T ) ? p precisely when ⇡(T ) ? p.
Notice that the satisfaction of a quantitative literal does not depend on the transition relation. We
nonetheless use this last notation as it turns out to be convenient. Given a set of literals H, we
write �! |= H if 8� 2 H : �! |= �.

Definition 2. Let P = (⌃, A,R) be a PTSS. Let �! ✓ PTr(⌃, A) be a probabilistic transition
system. Then �! is a supported model of P if it satisfies that:  2 �! i↵ there is a rule H

� 2 R and
a proper substitution ⇢ s.t. ⇢(�) =  and �! |= ⇢(H).

Notice that the form of the target of the conclusion of a rule guarantees that if  = t
a�! ⇡

then ⇡ is indeed a probability distribution (and hence, ⇡(T (⌃)) = 1).
We have already pointed out that PTSSs with negative premises do not uniquely define a

transition relation. In fact, a PTSS may have more than one supported model. For instance,
the PTSS with the single constant f , set of labels {a, b} and the two rules f

a�!µ
f

a�!� f
and f

a�!6
f

b�!� f
, has

two supported models: { f a�! � f } and { f b�! � f }. We will not dwell on this problem which has
been studied at length in [9] and [24] in a non-probabilistic setting. We will only focus on the
stratification method [12] which has been widely used to give meaning to TSS with negative
premises. A stratification defines an order on closed positive literals that ensures that, in the
stratified PTSS, the validity of a transition does not depend on the negation of the same transition.

7
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Definition 3. Let P = (⌃, A,R) be a PTSS. A function S : PTr(⌃, A)! ↵, where ↵ is an ordinal,
is called stratification of P (and P is said to be stratified) if for every rule

r =
{tk

ak��! µk : k 2 K} [ {tl
bl��!6 : l 2 L} [ {µ j(Wj) ? qj : j 2 J}

t
a�! Pi pi(

Q

ni2Ni ⌫ni) � g�1
i

and substitution ⇢ : (V [M) ! (T (⌃) [ �(T (⌃))) it holds that: (i) for all k 2 K, S (⇢(tk
ak��!

µk))  S (conc(r)), and (ii) for all l 2 L and µ 2 M, S (⇢(tl
bl��! µ)) < S (conc(r)). Each set

S � = {� | S (�) = �}, with � < ↵, is called stratum. If for all k 2 K, S (⇢(tk
ak��! µk)) < S (conc(r)),

then the stratification is said to be strict.

A transition relation is constructed stratum by stratum in an increasing manner by transfinite
recursion. If it has been decided whether a transition in a stratum S �0 , with �0 < �, is valid or not,
we already know the validity of the negative premise occurring in the premises of a transition '
in stratum S � (since all positive instances of the negative premises are in strictly lesser stratums)
and hence we can determine the validity of '.

Definition 4. Let P = (⌃, A,R) be a PTSS with stratification S : PTr(⌃, A) ! ↵ for some
ordinal ↵. For all rule r, let D(r) be the smallest regular cardinal greater than |pprem(r)|, and
let D(P) be the smallest regular cardinal such that D(P) � D(r) for all r 2 R. The transition
relation �!P,S associated with P (and based on S ) is defined by �!P,S =

S

�<↵ �!P� , where each
�!P�=

S

jD(P) �!P�, j and each �!P�, j is defined by

�!P�, j =
n

 
�

�

� S ( ) = � and 9r 2 R and proper substitution ⇢ s.t.  = conc(⇢(r)),
(
S

�<� �!P�) [ (
S

j0< j �!P�, j0 ) |= qprem(⇢(r)) [ pprem(⇢(r)) and
(
S

�<� �!P�) |= nprem(⇢(r))
o

The PTSS with the only two rules f
a�!µ

f
a�!� f

and f
a�!6

f
b�!� f

(given before) can be stratified by a

function S such that S ( f
a�! � f ) = 0 and S ( f

b�! � f ) = 1. Using S , the model associated with

the PTSS is { f b�! � f }. More interestingly, a stratification for our running example is given by
S (t

a�! µ) = ⇣(t) where ⇣(0) = ⇣(") = ⇣(a.
Pn

i=1[pi]ti) = 0, ⇣(t1 + t2) = ⇣(t1; t2) = ⇣(t1 ||B t2) =
max{⇣(t1), ⇣(t2)}, and ⇣(U(t)) = ⇣(t) + 1. Notice that this stratification is not strict.

The existence of a stratification guarantees the existence of a supported model. In fact, such
model is the one in Def. 4 (Theorem 1) and it is the only possible one defined via stratification
(Theorem 2). Moreover, if it is defined using a strict stratification, the supported model is unique
(Theorem 3).

The proofs of the following theorems follow closely the proofs of their non-probabilistic
counterparts in [12] (Theorem 2.15, Lemma 2.16 and Theorem 2.18, respectively). The only
actual di↵erence lies on the quantitative premises, which do not pose any particular problem
since their validity only depends on the substitution. For the next theorems, let P = (⌃, A,R) be
a PTSS with stratification S .

8
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Theorem 1. The transition relation �!P,S is a supported model of P.

Theorem 2. If S 0 is another stratification for P, �!P,S = �!P,S 0 .

Theorem 3. If S is strict, then, �!P,S is the only supported model of P.

4 The ntµf⌫/ntµx⌫ format and the congruence theorem
In this section we present one of the main results of our paper: we introduce a general format that
ensures that bisimulation equivalence is a congruence for any operator defined in this format. The
importance of the theorem is that congruence of bisimilarity is guaranteed by mere inspection of
the rules. We first define the notion of bisimulation on probabilistic transition system [18]. We
use a more modern (but equivalent) definition.

Given a relation R ✓ T (⌃) ⇥ T (⌃), a set Q ✓ T (⌃) is R-closed if for all t 2 Q and t0 2 T (⌃),
t R t0 implies t0 2 Q (i.e. R(Q) ✓ Q). If a set Q is R-closed we write R-closed(Q). It is easy to
verify that if two relation R,R0 ✓ T (⌃) ⇥ T (⌃) are such that R0 ✓ R, then for all set Q ✓ T (⌃),
R-closed(Q) implies R0-closed(Q).

Definition 5. A relation R ✓ T (⌃) ⇥ T (⌃) is a bisimulation if R is symmetric and for all t, t0 2
T (⌃), ⇡ 2 �(T (⌃)), a 2 A,

t R t0 and t
a�! ⇡ imply that there exists ⇡0 2 �(T (⌃)) s.t. t0

a�! ⇡0 and ⇡ R ⇡0,

where ⇡ R ⇡0 if and only if 8Q ✓ T (⌃) : R-closed(Q) ) ⇡(Q) = ⇡0(Q). We define the relation
⇠ as the smallest relation that includes all other bisimulation. It is known that ⇠ is itself a
bisimulation relation and an equivalence relation.

Before introducing the ntµf⌫/ntµx⌫ format, we give a first approach to extend the ntyft/ntyxt
format with probabilities that considers a very restrictive form of quantitative premise. It can
also be seen as a generalization of Segala-GSOS format [7] with terms in the premises as well as
lookahead. This first approach considers rules of the form

{tm
am��! µm : m 2 M} [ {tn

bn��!6 : n 2 N} [ {µl(zl) > 0 : l 2 L}
f (x1, . . . , xr( f ))

a�! Pi2I pi(
Q

ni2Ni ⌫ni) � g�1
i

(F)

where M, N, and L are index sets, µm, zl, xk (1  k  r( f )) are all di↵erent variables, f 2 F,
tm, tn 2 T(⌃), and pi and gi are like in Def. 1. Notice that all rules in Table 1 respond to this
format except for the last one which has a quantitative premise comparing to a number di↵erent
from 0. (It can be proved that bisimilarity is a congruence for any operator defined in format
(F).)

In the following we present several counterexamples justifying the restrictions imposed by
format in eq. (F). We consider a signature with a unary operator f and three constants b, c and d,
together with a label a. We will also consider axioms c

a�! �c and d
a�! (0.5 · �c + 0.5 · �d), and

9
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no rule associated to constant b. (We write ⇡d for (0.5 · �c + 0.5 · �d)). Notice that c ⇠ d. In the
following we concentrate in rules for f .

The need that the source of the conclusion of a rule has a particular format has already been
shown by several counterexamples in [12, 13] for the tyft/tyxt format. We adapt an example
form [12] to motivate the need. Consider the axiom f (b)

a�! � f (b). Then f ( f (b)) ⇠ b since none
of them perform any action. But f ( f ( f (b))) and f (b) are not bisimilar since f (b) can perform an
action but f ( f ( f (b))) cannot. Similarly, the requirement that all variables µm, zl, xk are di↵erent is
inherited from the tyft/tyxt format. Examples from [13] should be easily adaptable to our setting.

The next example shows that the target of a positive premise cannot be a distribution on a
particular (shape of) term. Consider rule x

a�!�c

f (x)
a�!�c

. Then, despite that c ⇠ d, f (c) and f (d) are not

bisimilar since d
a�! �c is not a valid transition in the (unique) supported model. A similar e↵ect

has rule x
a�!µ µ(d)>0
f (x)

a�!�c
, which shows that quantitative literals cannot enquire over arbitrary terms:

note that f (c) and f (d) are not bisimilar since c
a�! �c and �c(d) = 0.

Allowing for a quantitative literal that compares with a value di↵erent from 0 is also prob-
lematic. Consider rule x

a�!µ y
a�!µ0 µ(y)�1

f (x)
a�!�c

. Again f (c) and f (d) are not bisimilar since d
a�! ⇡d,

and there is no single term t in which ⇡d(t) � 1.
This example suggest that quantitative premises should have the form µ(Y) > p or µ(Y) � p

where Y is a set of variables. So the previous rule could be recast as x
a�!µ y

a�!µ0 µ({y,z})�1
f (x)

a�!�c
. However,

the same problem repeats if we introduce a new constant e with e
a�! (0.4 · �c+0.3 · �d +0.3 · �e).

In fact, it turns out that Y needs to be infinite (consider the case in which a new infinite set of
constants {en}n2N0 is defined with en

a�! (
P

i2N0
1

2i+1 · �ei)). Moreover, it is necessary that all terms
that substitutes some variable in Y have symmetric behavior. Notice that the term substituting z
is not required to perform action a, which was not the originally intended behavior. Moreover,
symmetry is also necessary for the congruence result as we will see later.

After the previous considerations, we extend format (F) with quantitative premises of the
form µ(Y) > p or µ(Y) � p. We call this format ntµf⌫/ntµx⌫ following the nomenclature of [12,
13]. Later we give more examples justifying our restrictions.

Let {Yl}L be a family of sets of variables with the same cardinality. Given a tuple ~y, the l-th
element of ~y is denoted by ~y(l). Fix a set Diag{Yl}L ✓

Q

l2L Yl so that:

(i) for all l 2 L, ⇡l(Diag{Yl}L) = Yl (here, ⇡l indicates the l-th projection); and

(ii) for all ~y, ~y0 2 Diag{Yl}L, (9l 2 L : ~y(l) = ~y0(l))) ~y = ~y0.

Notice that if each set Yl = {y0
l , y

1
l , y

2
l , . . .}, a possible definition for Diag{Yl}L may be Diag{Yl}L =

{(y0
0, y

0
1, . . . , y

0
L), (y1

0, y
1
1, . . . , y

1
L), (y2

0, y
2
1, . . . , y

2
L), . . .}.

Definition 6 (ntµf⌫/ntµx⌫). Let P = (⌃, A,R) be a stratifiable PTSS. A rule r 2 R is in ntµf⌫
format if it has the form

S

m2M{tm(~z)
am��! µ~zm : ~z 2 Z} [Sn2N{tn(~z)

bn��!6 : ~z 2 Z} [ {µ~zl (Yl) Dl ql : l 2 L,~z 2 Z}
f (x1, . . . , xr( f ))

a�! Pi2I pi(
Q

ni2Ni ⌫ni) � g�1
i

10
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with Dl 2 {>,�}, for all l 2 L, satisfying the following conditions:

1. Each set Yl should be at least countably infinite, for all l 2 L, and the cardinality of L
should be strictly smaller than that of the Yl’s.

2. Z = Diag{Yl}L ⇥
Q

w2W{w}, with W ✓ V\Sl2L Yl.

3. All variables µ~zm, with m 2 M and ~z 2 Z, are di↵erent.

4. For all ~z, ~z0 2 Z, m 2 M, if µ~zm = ⌫ni and µ~z0m = ⌫nh for some ni 2 Ni, nh 2 Nh, i, h 2 I, then
~z = ~z0.

5. For all l 2 L, Yl \ {x1, . . . , xr( f )} = ;, and Yl \ Yl0 = ; for all l0 2 L, l , l0.

6. All variables x1, . . . , xr( f ) are di↵erent.

7. f 2 F and for all m 2 M and n 2 N, tm, tn 2 T(⌃). In all cases, if t 2 T(⌃) and Var(t) ✓
{w1, . . . ,wH}, t(w01, . . . ,w

0
H) is the same term as t where each occurrence of variable wh (if

it appears in t) has been replaced by variable w0h, for 1  h  H.

A rule r 2 R is in ntµx⌫ format if its form is like before but with the conclusion having instead
the form x

a�! Pi2I pi(
Q

ni2Ni ⌫ni) � g�1
i . It satisfies the same conditions as above only that x < Yl

for all l 2 L instead of Yl \ {x1, . . . , xr( f )} = ; in item 5.
P is in ntµf⌫ (resp. ntµx⌫) format if all its rules are in ntµf⌫ (resp. ntµx⌫) format. P is in

ntµf⌫/ntµx⌫ format if all its rules are either in ntµf⌫ format or ntµx⌫ format.

We define notation tm(~Zm)
am��! µm as an abbreviation for {tm(~z)

am��! µ~zm : ~z 2 Z} where
~Zm = Diag{Yl}L0 ⇥

Q

w2W0{w} with L0 ✓ L and W 0 ✓ W, where the number of variables of tm is
exactly the dimension of ~Zm (i.e. |Var(tm)| = |L0| + |W 0|). Similarly, we define tn(~Zn)

bn��!6 as an
abbreviation for {tn(~z)

bn��!6 : ~z 2 Z}, and µl(Yl) Dl ql for the set {µ~zl (Yl) Dl ql : ~z 2 Z}. Thus,

rule y
a�!µ

x+y
a�!µ

is the notational rewriting of rule {y
a�!µi |i�0}

x+y
a�!µ0

and rule x
b�!µ µ(Y)�1 {U(y)

a�!µ0y |y2Y}
U(x)

a�!�0
b,a can

be rewritten to x
b�!µ µ(Y)�1 U(Y)

a�!µ0

U(x)
a�!�0

b,a. In fact, notice that all rules of our running example (see
Table 1) are in ntµf⌫ format.

Restrictions 3, 5, 6 and 7 are basically the same requirements present in the format of eq. (F).
Hence, all examples given before also apply to the ntµf⌫/ntµx⌫ format. Besides, notice that
rule x

a�!µ y
a�!µ0 µ(y)�1

f (x)
a�!�c

given before is not in ntµf⌫/ntµx⌫ format, but the intended behavior can be

encoded as the ntµf⌫ rule x
a�!µ Y

a�!µ0 µ(Y)�1
f (x)

a�!�c
.

The next example shows that quantitative literals cannot check for upper bounds (or equality).
Consider the rule x

a�!µ Y
a�!µ0 µ(Y)0.5

f (x)
a�!�c

with c and d defined as before. f (c) and f (d) are not bisim-

ilar because f (d)
a�! �c by taking the substitution ⇢ such that ⇢(y) = c for all y 2 Y , but f (c)

a�!6
since there is no set of terms T such that properly substituted in Y (i.e., such that �c(t) > 0 for all
t 2 T ), �c(T )  0.5.

11
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Finally, if symmetry of behavior on variables in Yl were not enforced, it would also be pos-
sible to distinguish distributions that are equivalent. Consider now a signature with constants c,
d, and {n, n0 | n 2 N0}, unary operator f and rules n

n�! �n, n0
n�! �n, c

a�! ⇡, and d
a�! ⇡0with

⇡ =
P

i2N0
1

2i+1 · �n and ⇡0 =
P

i2N0(
1

2i+2 · �n +
1

2i+2 · �n0), and x
a�!µ {yk

k�!µk |k2N0} µ({yk}k2N0 )�1

f (x)
b�!µ

. Notice that

c ⇠ d; nonetheless, f (c)
b�! �c but f (d)

b�!6 since d
a�! ⇡0 but there is no way to match both n

and n0 to two di↵erent variables yk1 and yk2 (for all n 2 N0), and hence ⇡0(⇢({yk}k2N0)) = 0.5 for
any substitution ⇢ satisfying the positive premises. We finally mention that conditions 1 and 4 in
Def. 6 are more technical and their justification only becomes apparent in the proof of Theorem 4.

The strategy of proof for the congruence theorem follows the lines of the proof of Theo-
rem 4.14 in [12] though some considerable rework is needed to manipulate quantitative premises.
Notice, however that we do not require well-foundedness.

Theorem 4. Let P be a stratifiable PTSS in ntµf⌫/ntµx⌫ format. Then ⇠ is a congruence relation.

5 Modular properties
Often, one wants to extend a language with new operations and behaviors. This is naturally done
by adding new functions and rules to the original PTSS. In other words, given two PTSSs P0 and
P1, one wants to combine them in a new PTSS P0 � P1, where we generally assume that P0 is
the original PTSS and P1 is the extension. A desired property is that the extension does not alter
the behavior of the terms in the original language. That is, one expects that for every old term
t 2 T (⌃0), the set of outgoing transitions defined by P0 is exactly the same that those defined by
P0 � P1. In this case we say that P0 � P1 is a conservative extension of P0.

Definition 7. Let ⌃0 = (F0, r0) and ⌃1 = (F1, r1) be two signatures s.t. f 2 F0 \ F1 ) r0( f ) =
r1( f ). The sum of ⌃0 and ⌃1, notation ⌃0 � ⌃1, is the new signature (F0 [ F1, r) where r( f ) =
if f 2 F0 then r0( f ) else r1( f ) for all f 2 F0 [ F1.

Given two PTSS P0 = (⌃0, A0,R0) and P1 = (⌃1, A1,R1) s.t. ⌃ = ⌃0 � ⌃1 is defined, the
sum of P0 and P1, notation P0 � P1, is the PTSS P0 � P1 = (⌃0 � ⌃1, A0 [ A1,R0 [ R1). We
say that P0 � P1 is a conservative extension of P0 and that P1 can be added conservatively to
P0 if P0 � P1 is stratifiable and for all t 2 T (⌃0), a 2 A0 [ A1 and µ 2 �(T (⌃0 [ ⌃1)) it holds
t

a�! µ 2 �!P0�P1 , t
a�! µ 2 �!P0

Basically, a rule is well-founded if there is no circular dependency of variables in its set of
premises. We adapt the definition of well-founded from [13] to our setting. Besides, we also
require that distribution variables in the premises appear always bound.

Let W be a set containing positive and quantitative literals. The variable dependency graph
of W is a directed graph with (i) set of nodes

S{Var( ) :  2 W}, and (ii) edges {hx, µi :
x 2 Var(t), (t

a�! µ) 2 W} [ {hµ, xi : x 2 X, (µ(X) D p) 2 W}. W is well-founded if any backward
chain of edges in the variable dependency graph is finite and every distribution variable has a
predecessor. A rule is well-founded if the set of all its premises is well-founded. A PTSS is

12
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well-founded if all its rules are well-founded. A rule r is called pure if it is well-founded and
does not contain free variables. A PTSS P is called pure if all of its rules are pure.

Theorem 5 gives su�cient conditions to ensure that a PTSS can be extended conservatively
and its similar to Theorem 4.8 in [10]. Theorem 6 gives su�cient conditions to ensure that the
sum PTSS P0 � P1 is stratifiable, knowing that the original PTSSs P0 and P1 are also stratifiable.
Its proof follows closely that of Theorem 5.8 in [12].

Theorem 5. Let P0 = (⌃0, A0,R0) be a PTSS in pure ntµf⌫/ntµx⌫ format and let P1 = (⌃1, A1,R1)
be a PTSS such that for all rule r 2 R1 with conc(r) = t

a�! µ, t < T(⌃0). Let P = P0 � P1 be
defined and stratifiable. Then P1 can be added conservatively to P0.

Theorem 6. Let ⌃0 = (F0, r0) and ⌃1 = (F0, r1) be two signatures with constants a0 2 F0 and
a1 2 F1, such that ⌃0�⌃1 is defined. Let P0 = (⌃0, A0,R0) and P1 = (⌃1, A1,R1) be two stratifiable
PTSS. If for all substitutions ⇢0 and ⇢1 and rules r0 2 R0 and r1 2 R1, it holds that ⇢0( ) , ⇢1(�)
with � = conc(r1) and  2 pprem(r0) or  = t

a�! µ with t
a�!6 2 nprem(r0), then P0 � P1 is also

stratifiable.

6 Tracing Bisimulation
Two terms are (possibilistic) trace equivalent if they can perform the same sequences of actions
with some positive probability (but not necessarily the same). In this section we show that
the trace congruence induced by the ntµf⌫/ntµx⌫ format is exactly a “finitary” version of the
bisimulation equivalence. This relation, which we called bounded bisimilarity, agrees with ⇠ on
image finite probabilistic transition systems. (�!P is image-finite i↵ for all t 2 T (⌃) and a 2 A,
the set {µ | t a�!P µ} is finite.)

Definition 8. Let P = (⌃, A,R) be a stratifiable PTSS with associated relation �!P. Given
t 2 T (⌃), a sequence a1 . . . an 2 A⇤ is a trace from t i↵ there are terms t0, . . . , tn 2 T (⌃) and
distributions ⇡1, . . . , ⇡n s.t. t0 = t, ti

ai+1���! ⇡i+1 and ⇡i+1(ti+1) > 0 for 0  i < n. Let Tr(t) be the set
of all traces from t. Two terms t, t0 2 T (⌃) are trace equivalent with respect to P, notation t ⌘T

P t0,
i↵ Tr(t) = Tr(t0).

We say that C[x1, . . . , xn] is a context if C[x1, . . . , xn] is an open term in which at most the
distinct variables x1, . . . , xn appear. As usual, C[t1, . . . , tn] denotes the term obtained by replacing
all occurrences of variables xi by ti.

Definition 9. Let P = (⌃, A,R) be a stratifiable PTSS in ntµf⌫/ntµx⌫ format. Two terms t, t0 2
T (⌃) are trace congruent with respect to ntµf⌫/ntµx⌫, notation t ⌘T

ntµf⌫/ntµx⌫ t0, i↵ for all PTSS
P0 = (⌃0, A0,R0) in ntµf⌫/ntµx⌫ format which can be added conservatively to P and for every
context C[x] it holds that C[t] ⌘T

P�P0 C[t0].

Let P = (⌃, A,R) be a stratifiable PTSS with associated relation �!P. The relations 'n
P ✓

T (⌃) ⇥ T (⌃) for n 2 N are inductively defined by:

'0
P = T (⌃) ⇥ T (⌃)

'n+1
P = {(t, t0) | (t a�!⇡) 9⇡0 : t0

a�!⇡0 ^ ⇡ 'n
P ⇡
0) ^ (t0

a�!⇡0 ) 9⇡ : t
a�!⇡ ^ ⇡ 'n

P ⇡
0)}

13
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Given t, t0 2 T (⌃), t and t0 are n-bounded bisimilar i↵ t 'n
P t0. We say that t and t0 are bounded

bisimilar, notation t 'P t0, if t 'n
P t0 for all n 2 N.

Bounded bisimilarity and bisimulation equivalence agree on image-finite probabilistic tran-
sition systems [5, Lemma 3.5.8]. That is, if �!P is image-finite, then ⇠ = 'P.

We now define the bisimulation tester, that is, a PTSS PT that can be added conservatively
to another PTSS and introduce contexts that are able to distinguish non-bisimilar terms. More
precisely, PT introduces two family of functions, binary functions Bn, (k + 1)-ary functions Prk

n
(n, k 2 N), and a trivial constant ?. Their intended meaning is as follows. Bn(t, u) can de-
tect whether t and u are n-bounded bisimilar by showing transition Bn(t, u)

yes��! �?. Otherwise,
Bn(t, u)

no��! �?. In this way, two non-bisimilar terms t and u can be distinguished by the con-
text Bn(t, ) for some appropriate n. Prk

n is used as an auxiliary operator to test the measures of
k (not necessarily di↵erent) (n � 1)-bounded bisimulation equivalence classes. More precisely,
Prk

n(t, u1, · · · , uk)
(a,q1,...,qk)��������! �? if there is a transition t

a�! ⇡ such that ⇡([u1]'n�1) � q1, . . . , ⇡([uk]'n�1) � qk,
where q1, . . . , qk are some rational numbers.

Definition 10. Let P = (⌃, A,R) be a PTSS. The bisimulation tester of P is a PTSS PT =

(⌃T, AT,RT) where ⌃ ✓ ⌃T and ⌃T contains binary functions Bn and functions Prk
n with arity

k + 1, n 2 N and a constant ?, AT = A [ (
S

i>0(A ⇥Qi)) [ {yes, no}, and R contains the following
rules (for all n, k > 0, a 2 A and q 2 Q):

(1) B0(x, y)
yes��! �?

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)��������! µ Prk
n(y, z1, . . . , zk)

(a,q1,...,qk)��������!6
Bn(x, y)

no��! �?
(3)

(2) x
a�! µ {Bn�1(zi,Zi)

yes��! µi, µ(Zi) � qi}ki=1

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)��������! �?

Bn(x, y)
no��!6 Bn(y, x)

no��!6
Bn(x, y)

yes��! �?
(4)

The idea behind functions Prk
n explained above becomes apparent in rule (2). Besides, notice

that distinction between two non n-bounded bisimilar terms is revealed by rule (3) where the
negative premise indicates that it is is not able to find an a-transition for y that measures more
than qi in each equivalence class [zi]'n�1 (in the appropriate instance of zi) while the positive
premise is able to do it for x.

Observe that PT is in ntµf⌫ format but is not pure. Though this is not necessary, it is quite
convenient in our case: the non-pure rule (3) allows for instances of arbitrary terms (and hence
arbitrary (n � 1)-bounded bisimulation equivalence classes) which is in the core of the definition
of the n-bisimulations. Nevertheless, the fact that PT is not pure is not a problem to ensure that it
extends conservatively a given PTSS in a well behaved manner using Theorems 5 and 6.

It is not too di�cult to find a stratification for PT (it can be obtained in a similar manner
to [12, Lemma 6.8]). The following lemma is the core of Theorem 7 below.

Lemma 1. Let P = (⌃, A,R) be a stratifiable PTSS in pure ntµf⌫/ntµx⌫ format containing at least
one constant in its signature. Moreover, yes, no < A and ⌃ does not contain function names Bn

and Prk
n for all n, k 2 N. Then, Bn(t, t0)

yes��! �? 2 �!P�PT , t 'n
P t0, for all t, t0 2 T (⌃).

14
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Theorem 7 states that bisimulation equivalence is fully abstract with respect to the ntµf⌫/ntµx⌫
format and trace equivalence. That is, it states that bisimulation equivalence is the coarsest
congruence with respect to any operator whose semantics is defined through ntµf⌫/ntµx⌫ rules and
that is included in trace equivalence. Its proof is a direct consequence of Theorem 4, Lemma 1
and [5, Lemma 3.5.8].

Theorem 7. Let P = (⌃, A,R) be a stratifiable PTSS in pure ntµf⌫/ntµx⌫ format containing at
least one constant in ⌃. Moreover, �!P is image-finite, yes, no < A and ⌃ does not contain function
names Bn and Prk

n for all n, k 2 N. Then, for all t, t0 2 T (⌃), t ⌘T
ntµf⌫/ntµx⌫ t0 , t 'P t0 , t ⇠ t0

7 Concluding Remarks
Related Work. SOS for probabilistic systems have received relatively little attention. To our
knowledge, only [6, 7, 16, 17] study rule formats to specify probabilistic transition systems, and
in [7, 15] they are embedded in general bialgebraic frameworks.

Both RTSS format [17] and PGSOS format [6, 7] consider transitions with the form t
a,q��!

t0 as already explained in the introduction. They allow for the specification of only reactive
probabilistic systems (i.e. they should satisfy that if t

a�! ⇡ and t
a�! ⇡0, then ⇡ = ⇡0). Moreover,

these formats are very much like GSOS [8] in the sense that premises are of the form xi
ai,qi���! yi

or xi
bi��!6 where each xi is a variable appearing on the term f (~x) at the source of the conclusion.

Moreover, qi needs to be a variable, so there is no possibility of testing for a particular probability
value. In addition, RTSS allows for a restricted form of lookahead: only one step ahead from
variable yi can be tested and moreover probabilities should be appropriately combined in the
conclusion of the rule. We remark that both RTSS and PGSOS formats can be encoded in the
ntµf⌫/ntµx⌫ format. Segala-GSOS format [7] allows for rules like in eq. (F), with the restriction
that terms tm and tn can only be any of the variables xk. Therefore, lookahead is not permitted.
Clearly this format can also be encoded in the ntµf⌫/ntµx⌫ format.

Bialgebras present an abstract categorical framework to study structured operational seman-
tics and, in this setting, general congruence theorems have been presented [15, 23]. They in-
troduce the so called abstract GSOS and abstract safe ntree [15, 23]. In fact, Segala-GSOS is
derived as an instance of abstract GSOS [7]. In a recent and yet unpublished work, we showed
that the ntµf⌫/ntµx⌫ format reduces to a form of probabilistic ntree format, just like the ntyft/ntyxt
format reduces to ntree format [11]. As in the non-probabilistic case, negative premises are not
reducible to the form x

a�!6 and retain the form t
a�!6 with t being an arbitrary term. Precisely be-

cause of this, our format (like the ntyft/ntyxt format) cannot be instanced as an abstract safe ntree.
Moreover, it is also not fully clear to us how to encode quantitative premises in the bialgebraic
framework.

Notice that none of the previously mentioned formats can encode the bisimulation tester
of Def. 10 since it needs lookahead, negative premises of the form f (~x)

a�!6 , and quantitative
premises testing against any possible probability value and none of the previous formats allow
for all these simultaneously. In fact, to the authors knowledge no full abstraction result for
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rule formats has been presented before for PTSS. However, related to this result, we should
remark that testers for bisimulation of deterministic probabilistic transition systems were already
introduced in [18].

We also remark that the ntµf⌫/ntµx⌫ format should be considered as a probabilistic extension
of the tyft/tyxt and ntyft/ntyxt formats [12,13]. These formats can be encoded in ntµf⌫/ntµx⌫ format
if non-probabilistic transitions t

a�! t0 are considered as a probabilistic transition in the usual
way, i.e., as t

a�! �t0 . Finally, we observe that there is a rule format for generative probabilistic
systems [16, 17] which is not covered by our format since it is very di↵erent in nature to the
model we use.
Conclusion. In this article we have introduced PTSSs and the ntµf⌫/ntµx⌫ format for rules
that specify probabilistic transition systems. We proved that bisimilarity is a congruence for
all operators definable in this format and that it is also the least congruence relation preserved
by all such operators included in possibilistic trace equivalence. We have also presented several
standard theorems that ensure definability and uniqueness of models and conservative extensions,
among others.

We highlight the introduction of our quantitative premises which, in combination with looka-
head, permits the constructions of powerful operators. An example is the tester of Def. 10. An-
other one, more interesting, is a deadlock measuring operator dk where dk(t)

q�! ⌫ i↵ t reaches a
deadlock state with probability larger or equal to q in any possible resolution of nondeterminism.
The rules are as follows

n

x
a�!6 | a 2 A

o

dk(x)
1�! �?

n

Bn(x, y)
yes���! µn | n 2 N0

o

B(x, y)
yes���! �?

x
a�! µ

n

dk(zi)
pi��! µi, µ(Zi) � qi, B(zi,Zi)

yes���! µ0i , B(zi, z j)
yes���!6
o

i, j2I
i, j

dk(x)
P

i2I qi pi�������! �?

I is a countable
index set and
P

i2I qi  1

The last rule appropriately collect the probabilities by looking ahead on disjoint (non-bisimilar)
terms (notice the use of the bisimulation tester). Operation dk is somehow related to the zero
process of [3] that allows for detection of inevitable deadlock.

We remark that the congruence theorem also holds for PTSs with subprobability distributions
(i.e. distributions such that ⇡(T (⌃)) < 1). However, we do not know whether the full abstraction
result remains valid in this setting: our tester would fail to distinguish c from d where c

a�!
(0.5 · �c + 0.5 · �?), c

a�! (0.5 · �c), and d
a�! (0.5 · �c + 0.5 · �?).
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