
PIRSES-GA-2011-295261 /MEALS
February 18, 2013

Page 1 of 49

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 1.2 / 1

Title of Deliverable: A Compositional Modelling and Analysis Framework for
Stochastic Hybrid Systems

Contractual Date of Delivery to the CEC: 1-Apr-2013
Actual Date of Delivery to the CEC: 15-Mar-2013
Organisation name of lead contractor for this deliverable: UNC
Author(s): Ernst Moritz Hahn, Arnd Hartmanns,

Holger Hermanns, Joost-Pieter Katoen
Participants(s): SAU, RWT, TUD, TUE, UNC, UBA
Work package contributing to the deliverable: WP1
Nature: R
Dissemination Level: Public
Total number of pages: 49
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

The theory of hybrid systems is well-established as a model for real-world systems consisting of continuous behaviour
and discrete control. In practice, the behaviour of such systems is also subject to uncertainties, such as measurement
errors, or is controlled by randomised algorithms. These aspects can be modelled and analysed using stochastic hybrid
systems. In this paper, we present HModest, an extension to the Modest modelling language—which is originally
designed for stochastic timed systems without complex continuous aspects—that adds differential equations and inclu-
sions as an expressive way to describe the continuous system evolution. Modest is a high-level language inspired by
classical process algebras, thus compositional modelling is an integral feature. We define the syntax and semantics of
HModest and show that it is a conservative extension of Modest that retains the compositional modelling approach. To
allow the analysis of HModestmodels, we report on the implementation of a connection to recently developed tools for
the safety verification of stochastic hybrid systems, and illustrate the language and the tool support with a set of small,
but instructive case studies.

Note:

This deliverable is based on material that will be published in the International Journal of Formal Methods in System
Design.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 49 Public

Contents
1 Introduction 3

2 Syntax 5
2.1 Models, Processes and Declarations . 5
2.2 Expressions . 6
2.3 Process Behaviours . 8

2.3.1 Shorthands . 9
2.4 Properties . 10

3 Symbolic Semantics 11
3.1 Stochastic Hybrid Automata . 11
3.2 Semantics of a HModest Process . 13
3.3 Inference Rules . 14

4 Concrete Semantics 21
4.1 Stochastics Recap . 21
4.2 Nondeterministic Labelled Markov Processes 22
4.3 Component Semantics . 23
4.4 Continuous Concrete Semantics . 26
4.5 Discrete Concrete Semantics . 27
4.6 Semantics of a Stochastic Hybrid Automaton 28

5 Tool Support 30

6 Case Studies 35
6.1 Water Tank . 35
6.2 Thermostat . 36
6.3 European Train Control System . 39

7 Related Work 42

8 Conclusion 44

Bibliography 44

MEALS Partner Abbreviations 49

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 49 Public

1 Introduction
Embedded software [28, 47] is omnipresent: It controls pacemakers and satellites, drives the
climate control in our offices, is at the heart of our financial markets, supports the operation of
power and chemical plants, and makes our cars and TVs work. Embedded software is different
from traditional software in many respects. Most importantly, it is subject to complex and per-
manent interactions with its (mostly physical) environment via sensors and actuators. Typically,
software in embedded systems does not terminate and interaction usually takes place with multi-
ple concurrent processes at the same time. Reactions to the stimuli provided by the environment
should be prompt (timeliness or responsiveness), i.e., the software has to “keep up” with the
speed of the processes with which it interacts. As it is executed on (possibly battery-powered)
devices where several other activities may go on, nonfunctional properties including the efficient
usage of resources (such as power consumption) and robustness are important for dependable
operation. Indeed, high requirements are put on performance and dependability, since tuning
and maintenance is very difficult for embedded devices.

Embedded software is an important motivation for the development of modelling techniques
and tools that provide an easy migration path for design engineers and at the same time support
the description and evaluation of quantitative system aspects. This is rooted in the observation
that classical models of software that leave out “nonfunctional” aspects such as cost, efficiency
and robustness can at most partially address the critical features of embedded systems.

Software development for embedded systems must therefore during all design phases be sup-
ported by adequate formal methods to achieve strong results on correctness, performance, cost,
and efficiency. Modelling formalisms are needed that are easily accessible, highly expressive,
and supported by effective tools. In recent years, two major trends can be observed in this area:
On the one hand, we see broad efforts to push further the boundaries of tool-supported quanti-
tative evaluation of models of embedded systems, mostly rooted in model checking advances.
For real-time [10] and for probabilistic systems [44], tool support has already reached a con-
siderable degree of maturity, and model checking techniques are now being extended to cover
continuous dynamics—as in hybrid automata—or continuous probabilistic phenomena—as in
stochastic processes. On the other hand, various extensions of lightweight formal notations, such
as SDL (System Description Language), UML (Unified Modelling Language), AADL (Architec-
ture Analysis and Design Language) and SysML (Systems Modeling Language) are adapted to
encompass quantitative aspects. In addition, a whole range of more rigorous formalisms based
on, e.g., stochastic or hybrid process algebras [41, 42] or appropriate extensions of automata,
such as timed automata [7], probabilistic automata [58] and hybrid automata [4] are being inves-
tigated. Lightweight notations are typically closer to engineering techniques but lack a formal
semantics; rigorous formalisms do have such formal semantics, but their learning curve is typi-
cally too steep from a practitioner’s perspective and they mostly have a restricted expressiveness.

One of the most expressive languages with a rigorous formal semantics is Modest, the
modeling and description language for stochastic timed systems [17]. Modest is a descen-
dant of well-known process algebras, such as CSP and LOTOS, and is capable of expressing
not only functional, but real-time, stochastic and probabilistic aspects of embedded software.
The semantic domain associated with Modest is that of stochastic timed automata (STA), ba-

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 49 Public

sically timed automata [7] extended with data, discrete probabilistic branching, and clocks that
may have a random duration. Tool support for Modest and STA has flourished over the last
decade, and has led to applications of various nature such as evaluating and optimising schedul-
ing problems [50], the analysis of self-configuring networks [18], wireless sensor networks [62],
power consumption under drifting clocks [34], embedded transportation safety [8], and power
grid stability under substantial renewable energy infeed [13]. Despite the fact that Modest is a
very expressive language, the entirety of its STA model spectrum can by now be analysed by
quantitative evaluation.

In this paper we aim at taking up further advances on the evaluation side, in particular with
respect to hybrid automata verification [22, 31, 32, 39, 54, 55, 56]. The particular feature of a
hybrid system is that it superposes discrete state changes and continuously varying quantities.
The latter are usually described by differential equations or differential inclusions. From this
perspective, a timed automaton [7] is a hybrid automaton where each continuous variable c (a
clock in timed automata jargon) follows the simple differential equation ċ = 1. Conventional
hybrid systems [4] capture many characteristics of real systems (air traffic management, pressure
control, braking and acceleration maneuvers). However, in various application areas, the lack of
randomness hampers faithful modelling and analysis. This is especially true for wireless sens-
ing and control applications, where message loss probabilities and other random effects (such as
node placement, node failure, and battery drain) turn the overall control problem into a quantita-
tive one—the control objective can only be managed with a certain, hopefully sufficiently large,
probability.

The idea of combining probabilistic and hybrid systems is not new, and various different
models have been proposed, each from its own perspective, see e.g. [2, 3, 20, 21, 59]. The
most important difference lies in the place where to introduce randomness. One option is to re-
place deterministic mode transitions by probability distributions over mode jumps. Alternatively,
differential equations that describe the evolution of continuous variables within a mode can be
replaced by stochastic differential equations. More general stochastic hybrid models can be ob-
tained by mixing the above two choices, and by combining with memoryless timed probabilistic
jumps [14].

In this paper, we enrich stochastic timed automata (STA), the underlying semantical model
of Modest [17], with the possibility to describe continuous flows. This is similar in spirit to ideas
behind probabilistic hybrid automata [59], an extension of hybrid automata where mode transi-
tions are governed by discrete probability distributions. We present HModest, an extension of
Modest that adds differential equations and inclusions as an expressive way to describe the con-
tinuous system evolution. HModest is a high-level language with various convenient modelling
features that enables the compositional modelling of stochastic hybrid automata. We define the
syntax and semantics of HModest and show that it is a conservative extension of Modest. To
allow the analysis of HModest specifications, we report on the implementation of a connection
to recently developed tools for the safety verification of stochastic hybrid systems, and illustrate
HModest as well as the tool support with three case studies from the hybrid systems area: a
water tank, a thermostat that can randomly fail, and a model of headway control in the European
Train Control System (ETCS).
Organisation of the paper. The paper is organised as follows: Sections 2, 3 and 4 review the

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 49 Public

Table 1: Types of variables in HModest considered in this paper
syntax type domain continuous behaviour
bool Boolean variables {true, false} ẋ = 0
int unbounded integers Z ẋ = 0

int(e1..e2) bounded integers {e1, . . . ,e2} ẋ = 0
real static real variables R ẋ = 0

clock clocks R+
0 ẋ = 1

var continuous variables R according to invariants

syntax and semantics of Modest extended for hybrid systems. Section 5 describes first prototyp-
ical tool support, that is applied in Section 6 to a selection of challenging case studies. Section 7
discusses related work, and Section 8 concludes the paper.

2 Syntax
We start our discussion by giving the complete grammar for HModest processes and process
behaviours, extended and revised relative to the one of Modest [17].

2.1 Models, Processes and Declarations
A HModest specification consists of a sequence of declarations and a process behaviour. Dec-
larations are constructed according to the following grammar:

dcl ::= [patient | impatient] action act; | (actions)
exception excp; | (exceptions)
type var [= e] ; [der(var) = d;] | (variables)
process ProcName(t1 x1, . . . , tk xk) {dcl P } (processes)

where, for 0 < i ≤ k, act, excp, var, ProcName and xi are identifiers (names), type and ti are types
(see Table 1 for the list of types1) and P is a process behaviour. A HModest specification can
thus be treated as a process without parameters; when we refer to a process in the remainder of
this paper, we mean a declared process or the specification’s unnamed top-level process. The
declarations of a process and its parameters define the following (finite) sets associated to the
process:

• ActP = PActP] IActP]ExcpP]{τ,⊥, [}, the set of actions partitioned into patient and im-
patient actions, exceptions and the error action ⊥, the break action [, and the silent action
τ;

1Our implementation also supports fixed-size arrays and user-defined data structures, which are technical exten-
sions but not conceptually relevant for this paper.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 49 Public

action on, off;
var level = 6.5;

process Controller()
{

real measurement;

...

}

process Tank()
{

process On() { ... }

process Off() { ... }

Off()

}

par {
:: Tank()

:: Controller()

}

Figure 1: Structure of the HModest specification of the water tank system

• VarP, the set of variables, which contains both declared variables as well as the process’
parameters.

Example 1. As a running example, we will consider a standard hybrid system (originating
from [29], where it was used without a Modest specification): A water tank that has a con-
tinuous inflow of water, but is not supposed to overflow. To achieve this, a pump that pumps
water out of the tank (at a rate faster than the inflow) can be turned on or of. However, the pump
will be destroyed if it draws in air, so it must be turned off before the tank runs dry. Figure 1
shows the outline of the HModest specification for this system. It consists of two processes Tank
and Controller that model the tank, including the pump, and the (discrete) controller that re-
peatedly measures the water level to decide when to switch the pump on or off. The two actions
on and off are used by the controller to switch the state of the pump in the tank. The water level
in the tank is represented by the continuous variable level. This is a global variable (initially set
to 6.5) shared between Tank and Controller so as to allow its measurement in the controller.
The two processes Tank and Controller execute in parallel, i.e. asynchronously except when
they synchronise on the shared actions on or off. (A formal semantics of the par construct is
provided in Section 3.)

2.2 Expressions
Let Exp be the set of expressions containing variables in some set of variables Var. We dis-
tinguish four important subsets of Exp based on the expressions’ types and whether they can
contain references to a variable’s first derivative (using the der construct), whether subexpres-
sions with nondeterministic values (using the any construct) are allowed—we call such expres-
sions nondeterministic—and whether sampling of values according to probability distributions
is possible. The four subsets are

• Sxp: expressions that do not contain references to derivatives, but may be nondeterministic
and use sampling, for example x + Uniform(0,2) + any(y | x + y == z) where Uniform(x,y)
denotes sampling from the uniform distribution over the interval [x,y] and any(x | e) non-
deterministically selects a value v such that e[x/v] evaluates to true;

• Ixp: Boolean expressions, which evaluate to true or false, may be nondeterministic, and
may contain references to derivatives, e.g. der(x) ≤ 4 to specify the invariant that the first
derivative of x (also denoted ẋ) must not exceed 4;

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 49 Public

Table 2: Expression categorisation
category type derivatives nondeterministic sampling

Exp any 4 4 4

Sxp any 7 4 4

Ixp bool 4 4 7

Bxp bool 7 7 7

Axp R 7 7 7

• Bxp ⊆ Ixp: simple Boolean expressions such as i == 1, without derivatives, nondetermin-
ism or sampling, and

• Axp: arithmetic expressions such as 2.5+ x or ceil(y), which evaluate to values in R and do
neither contain derivatives, nor nondeterminism, nor sampling.

This categorisation of expressions is summarised in Table 2.
Variables can initially be assigned the value of an expression e ∈ Sxp explicitly; otherwise,

they are implicitly initialised to a default value, typically zero. The first derivative of a continuous
variable x, denoted der(x) in HModest or ẋ in this paper, can also be constrained as part of the
declarations, but this is merely a syntactic shortcut: der(x) = d;, where d is an expression that
does not contain sampling, is semantically equivalent to replacing the process behaviour P with
invariant(der(x) == d) {P }. Note that the der operator is only valid for continuous variables and,
in particular, cannot be used with variables of type clock or real.

We omit a full grammar for expressions in this paper and only point out the possibility of
including the any and der operators as well as probability distributions; other than that, Modest
expressions are mostly a subset of the expressions allowed in typical programming languages
like C, C# or Java.

Example 2. In the water tank example, the controller measures the water level in the tank in reg-
ular intervals. This measurement is subject to a measurement error: The actual value measured
by the controller is sampled according to a normal distribution with the actual value as mean and
a standard deviation of 1. The corresponding HModest code snippet is

measurement = Normal(level,1).

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 49 Public

2.3 Process Behaviours
The process behaviours are constructed according to the following grammar:

P ::= act | stop | abort | break | P1; P2 |

when(b) P | urgent(b) P | invariant(i) P | invariant(i) {P } |
alt { :: P1 . . . :: Pk } | do { :: P1 . . . :: Pk } | par { :: P1 . . . :: Pk } |

act palt { :w1: asgn1; P1 . . . :wk: asgnk; Pk } |

throw(excp) | try {P }catch excp1 {P1 } . . . catch excpk {Pk } |

relabel { I }by {G } {P } | extend {H } {P } |
ProcName(e1, . . . ,ek)

where, with Exp containing the expressions over VarP, act ∈ PActP∪ IActP∪{τ}, excp ∈ ExcpP,
excpi ∈ ExcpP, b ∈ Bxp, i ∈ Ixp, wi ∈ Axp, H ⊆ PActP∪ IActP is a set of observable actions, I and
G are vectors of equal length which have elements in ActP \{[,⊥} such that all elements in I are
pairwise different and not equal to τ, and the asgni are type-consistent2 assignments of the form

{= x1 = e1, . . . , xk = ek =}

with xi ∈ Var and ei ∈ Sxp for 1 ≤ i ≤ k. An assignment of the form described above represents
a function f = { x1 7→e1, . . . , xk 7→ek } ∈ Asgn, where Asgn = Var→ Sxp, that maps each xi to ei
and all other variables x to their original value (i.e. to the expression x). In particular, this means
that the values of several variables are changed in one atomic step by an assignment. In order to
simplify the semantics of process calls (ProcName(e1, . . . ,ek)), we assume that every process call
corresponds to a unique process declaration, which can be achieved by renaming in any case.

The most basic process behaviours are act, which simply performs an action and then termi-
nates, stop, which does not perform any activity (resulting in a deadlocked system), abort, which
indicates an unhandled error by performing action ⊥ in an infinite loop, and break, which issues
the special [action that is used to break out of a do loop. Process behaviours can be combined
in a sequential composition using the ; operator: As soon as the left-hand process behaviour ter-
minates successfully (such as act by performing its action), the right-hand behaviour takes over.
Process behaviours can be decorated with deadlines that restrict the passage of time using the
urgent keyword, with guards that represent enabling conditions using the when keyword, and
with invariants that control the passage of time and the evolution of continuous variables using
the invariant keyword. The alt construct allows the specification of nondeterministic choices
between different behaviours; the do construct is a variant of alt that restarts from the beginning
when the chosen behaviour terminates successfully as long as no [action is issued. The palt
construct assigns weights to process behaviours, resulting in a probabilistic choice. Using the
parallel composition par, a set of process behaviours can be specified to execute concurrently,
possibly synchronising on certain actions. The concept of exceptions, well known from program-
ming languages like Java or C#, is present in Modest through the throw and try-catch constructs.

2Since we omitted the details of the expression syntax, we assume type correctness in assignments, guards,
weights etc. instead of providing the (standard) type checking rules in detail.

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 49 Public

process On() { invariant(der(level) == -2) alt { :: on; On() :: off; Off() } }

process Off() { invariant(der(level) == 1) alt { :: on; On() :: off; Off() } }

Off()

Figure 2: Behaviour of the Tank process

In order to modify the alphabet of a process behaviour, which is relevant for synchronisation in
parallel compositions, the relabel construct can be used to rename actions or exceptions, includ-
ing hiding of actions by renaming them to τ, and the extend construct can be used to include
actions not actually present in a process behaviour to its alphabet. Finally, a named process can
be called using the ProcName(e1, . . . ,ek) syntax. A formal semantics for all process behaviours
will be given in Section 3.
Example 3. The process behaviour of the Tank process is given in Figure 2. It alternates between
waiting for the on signal while the pump is off (thus the water level increases at a rate of 1 unit
of water (e.g. 1 litre) per unit of time (e.g. seconds)) and waiting for the off signal while the
pump is on. We assume the pump to be able to pump off 3 l of water per second, so factoring
in the continuous inflow, the water level decreases at a rate of 2 l/s when the pump is on. If an
unexpected signal is received, e.g. signal onwhen the pump is already on, that signal is ignored—
this ensures input-enabledness on signals on and off, i.e. these signals can always be received
and are never blocked by the Tank process. Initially, the pump is off.

2.3.1 Shorthands

Two useful shorthands for more complex process behaviours are the hide and delay constructs.
Using hide, which is useful to modify the action alphabet and thus the synchronisation interface
of a process behaviour for parallel composition, is equivalent to relabelling a set of actions to the
silent action τ:

hide {H } {P } def
= relabel {H } by {τ, . . . , τ} {P }.

The idea behind the delay construct is to provide an easy way to specify that a certain process
behaviour should be executed after some precise amount of time. It can be expanded to a process
call to newly introduced processes D∗:

delay(edelay,econd) P def
= Decond (edelay)

where edelay is a deterministic expression in Sxp, econd ∈ Bxp and process Decond is implicitly
declared as

process Decond (real x) {clock c; when(c ≥ x∧ econd) urgent(c ≥ x∧ econd) P }.

Intuitively, delay(edelay,econd) P delays the initial behaviour of P until edelay time units have
passed and condition econd becomes true; at that point, the initial behaviour of P becomes urgent,
so that it is performed without further delay. Condition econd is part of the shorthand because it
cannot be added by hand since writing e.g. urgent(c ≥ x) urgent(econd) would be equivalent to
urgent(c ≥ x∨ econd).

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 49 Public

do {
:: delay(1.0) {= measurement = Normal(level, 1) =};

delay(0.1) alt {
:: when(measurement <= 5) off
:: when(measurement >= 8) on
:: when(measurement < 8 && measurement > 5) tau

}

}

Figure 3: Behaviour of the Controller process

Example 4. Consider again the water tank example. The Controller process uses the delay
shorthand to perform a measurement precisely 1 second after the last one was processed. In
addition, it specifies that reacting to a new value, i.e. deciding what signal to send to the tank,
needs an additional 0.1s. The resulting process behaviour is shown in Figure 3. The implemented
control strategy is simple: Once the measurement indicates that the tank contains at least 8 l of
water, the pump is switched on; it is switched off again as soon as a water level of at most 5 l is
measured. If the measured water level is between these two bounds, no signal is sent to the tank,
i.e. the pump is left in its current state (action tau).

2.4 Properties
Properties, quantities of interest to be computed for a HModest specification, may be included
as part of a declarations section. In this paper, the only kind of properties we consider are queries
for the probability of reaching a set of unsafe states, which can be expressed in Modest’s property
language as Pmax(^ e) where e is a deterministic expression that characterises the unsafe states.
The expression e may be of the form e′ ∧ time ≤ T to compute the probability of reaching the
states characterised by e′ within time bound T . Since our models may be nondeterministic, we
ask for Pmax, which denotes the maximum probability over all schedulers, i.e. the probability
over all possible resolutions of nondeterminism.

Example 5. In our water tank example, we want to make sure that the tank never overflows, and
that it never reaches a level so low that the pump is in danger of drawing in air. Due to the
normally distributed measurement error, the model is stochastic, so we consider the probability
that this happens. In addition, since measurements could, with a low probability, be very far from
the real value, we can be sure that for infinite runs of the system, the water will eventually reach
an unsafe level. However, the probability that this happens within the lifetime of the system
should be negligible, so for a time bound T , the property of interest is

Pmax(^ (level > 12∨level < 1)∧ time ≤ T),

assuming that the tank can hold 12 l of water and that 1 l is a safe lower level for operating the
pump.

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 49 Public

3 Symbolic Semantics
In this section, we will define the symbolic semantics of a given HModest process, which is
the first of two steps in defining a semantics for HModest. It consists in transforming the pro-
cess calculus constructs of a process into a stochastic hybrid automaton, a model described in
Section 3.1. In this stochastic hybrid automaton, the parts of the model not related to process-
calculus-based definitions, such as model variables or assignments, will still be maintained in
a symbolic form. In absence of non-tail-recursive process calls, the automaton will stay finite,
so that it is possible to build it explicitly. The transformation of this symbolic automaton into a
concrete, usually infinite, model will be the second step, presented in Section 4.

3.1 Stochastic Hybrid Automata
Stochastic hybrid automata represent the behaviour of a HModest process in a symbolic way.
This allows them to remain a finite model, yet represent infinite behaviour. The definition we use
is obtained from similar definitions of non-stochastic hybrid automata, like the ones in [38, 4, 31],
by adding stochastic behaviour to the edges of automata. Apart from the addition of transition la-
bels and urgency constraints, it equals the definition of [29], which in turn was extended from [63]
and [59].

Definition 1 (SHA). A stochastic hybrid automaton (SHA) is a tuple

(Loc, Inv, `0,Act,Var,v0,→)

where

• Loc is a finite set of locations,

• Inv : Loc→ Ixp maps each location to an invariant,

• `0 ∈ Loc is the initial location,

• Act = PAct] IAct]Excp]{τ,⊥, [} is a finite set of actions, partitioned as before,

• Var is a finite set of typed variables,

• v0 ∈ Var→ Sxp maps each variable to an expression describing its initial value, and

• → ⊆ Loc×Act×Bxp×Bxp×Wxp is the finite edge relation

with Wxp = Asgn×Loc→ Axp. The type of a variable v can be retrieved as type(v), which can
be extended to apply to expressions in the usual way.

An edge (`,a,g,d,W) ∈ → consists of a source location `, an action label a, a guard g
that determines when the edge is enabled (i.e. when it can be taken), a deadline (or urgency
constraint) d that imposes a condition on the passage of time (time cannot pass when a deadline
in the current location is satisfied), and a target W that symbolically represents a distribution

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 49 Public

over assignments and target locations. We will write `
a,g,d
−−−−→W to denote (`,a,g,d,W) ∈ →; if

W(A, `) = 1 andW(A′, `′) = 0 for all (A′, `′) , (A, `),W represents a Dirac distribution and we
take the liberty to writeW asD(A, `) for brevity.

SHA relates to a wide class of other hybrid formalisms. An overview of these models and
their restrictions compared to SHA is given in Table 3. We consider stochastic hybrid automata
(SHA, as in this paper, see also [29]), stochastic timed automata (STA [17]; for a similar model
also see [45]), the restriction to which we exemplify in definitions 2 and 3, probabilistic hybrid
automata (PHA [59, 63]), probabilistic priced timed automata (PPTA [11]), probabilistic timed
automata (PTA [46]), probabilistic automata (PA [57]), stochastic hybrid systems (SHS, in the
sense of a work by Hu et al. [43]), discrete-time stochastic hybrid systems (DTSHS [1]; note
that although the model itself does not have continuous dynamics, it is usually used to approxi-
mate systems with stochastic differential equations by step transitions with normally distributed
targets; there is also an extension with nondeterminism (control) [2]), and nondeterministic la-
belled Markov processes (NLMP [25, 61], as in Definition 5; there is also the restricted model
where nondeterminism occurs only between actions, but not within transitions of the same la-
bel [52, 27]). As seen from the table, these models are stricly less expressive than SHA. An
exception are the SHS by Hu et al., as they include stochastic differential equations. We did not
include these type of dynamics in our framework, because currently it does not allow for the
analysis of such models.

Definition 2 (Clock constraints). Consider a set of clock variables Ck ⊆Var, i.e. a set of variables
of type clock. Clock constraints are Boolean expressions of the form

CC ::= b | true | false | CC∧CC | CC∨CC | ¬CC | c ∼ e | c1 ∼ c2,

where b ∈ Bxp, e ∈ Axp, b and e do not contain clock variables, ∼ ∈ {>, ≥, <, ≤, =, ,} and
c,c1,c2 ∈ Ck. A clock assignment is an assignment A ∈ Asgn such that if x ∈ Ck, then either
A(x) = 0 or A(x) = x.

Definition 3 (STA). A stochastic timed automaton (STA [17]) is a stochastic hybrid automaton
(Loc, Inv, `0,Act,Var,v0,→) with Var = Ck]Dv where Ck is a set of clock variables and Dv is a
set of (non-continuous) real variables such that

• all assignments in→ are clock assignments,

• guards and urgency constraints are clock constraints,

• there is no occurrence of the any construct in expressions or assignments, and

• for all ` ∈ Loc, we have Inv(`) = true.

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 49 Public

Table 3: Models overview
SHA STA PHA PPTA PTA PA SHS DTSHS NLMP

discrete stochastics 4 4 4 4 4 4 4 4 4

continuous stochastics 4 4 7 7 7 7 4 4 4

discrete dynamics 4 4 4 4 4 4 4 4 4

real time 4 4 4 4 4 7 4 7 7

differential inclusions 4 7 4 7 7 7 7 7 7

stochastic differential eqs. 7 7 7 7 7 7 4 7 7

discrete nondeterminism 4 4 4 4 4 4 7 7 4

continuous nondeterminism 4 4 4 4 4 7 7 7 4

3.2 Semantics of a HModest Process
The original symbolic semantics of Modestwas given in terms of STA [17]. The main ingredient
for the extension to a SHA semantics, which we present here, is the addition of two first-level
invariant constructs that replace the previous shorthand of the same name. The shorthand mapped
invariant(i) P to

alt { ::when(i) P ::urgent(¬ i) when(false) throw(excpinvariant) }

where excpinvariant was a new exception only used for this purpose. The shorthand took advantage
of the fact that guards do not influence deadlines, so the deadline ¬ i would still take effect even
though the edge it is associated to is disabled. Since this construction simulated an invariant using
a deadline, it could not be used to represent all possible invariants: there are some invariants that
cannot be represented as deadlines [36], including the practically useful case of invariants with a
strict less-than comparison of a clock variable and a constant such as c < 3.

The semantics presented here also corrects several minor issues with the original STA se-
mantics; for example, assignments are composed using ◦ instead of ∪ in several places and the
semantics for par and palt no longer involves any exceptions, which originally led to the order
of the parallel behaviours being relevant for the semantics, which went against the intuition of an
associative and commutative parallel composition operator.

Definition 4 (Symbolic semantics). The symbolic semantics of a HModest process P with pro-
cess behaviour Q is the SHA (Loc, Inv, `0,Act,Var,v0,→) where

• Act and Var are the union of the sets ActP and VarP of P and the sets Act and Var given by
the symbolic semantics of the processes that are called from within P’s process behaviour,

• v0 = A(Q) ◦ vdecl where vdecl represents the initial values assigned to all variables in Var
according to their declarations, A is the assignment collecting function as defined in Table 5
and the ◦ operator denotes the sequential composition of assignments, defined as

(A2 ◦A1)(x) def
= A2(x)[x1/A1(x1), . . . , xn/A1(xn)]

for Var = {x1, . . . , xn}.

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 49 Public

Table 4: The invariant collection function.
I(P) = i∧ I(Q) if P = invariant(i) Q
I(P) = tt if P = act, P = act palt { :w1: asgn1; P1 · · · :wk: asgnk; Pk }, P = stop, P =

abort, P = break or P = throw(excp)
I(P) = I(P1) if P = P1; P2 or P = auxdo {P1} {P2}

I(P) =∧k
i=1 I(Pi)

if P = alt { :: P1 . . . :: Pk }, P = do { :: P1 . . . :: Pk } or P = par { :: P1 . . . :: Pk }

I(P) = I(Q) if P = when(b) Q, P = urgent(b) Q, P = relabel { I }by {G } Q,
P = extend {H } Q, P = try {Q } catch excp1 {P1 } . . . catch excpk {Pk }

or P = ProcName(e1, . . . ,ek) and process ProcName is declared as
process ProcName(t1 x1, . . . , tn xk) {Q }

Table 5: The assignment collecting function [17]
A(P) = ∅ if P has one of the following forms: act, stop, abort, throw(excp),

break or act palt { :w1: a1; P1 . . . :wk: ak; Pk}

A(P) = A(Q) if P has one of the following forms: Q; Q′, when(b) Q, urgent(b) Q,
invariant(i) Q, invariant(i) {Q}, try {Q} catch e1 {P1} . . . catch ek {Pk},
relabel {I} by {G} Q or extend {H} Q

A(P) =
⋃k

i=1 A(Pi) if P has one of the following forms: alt { :: P1 . . . :: Pk}, do { :: P1 . . . ::
Pk}, or par { :: P1 . . . :: Pk}

A(ProcName(e1, . . . ,ek)) = A(Q)◦ {x1 = e1, . . . , xk = ek}

if ProcName is declared as process ProcName(t1 x1, . . . , tn xk) {Q}

• `0 = Q,

• Inv(`) = I(`) as defined in Table 4,

• the edge relation→ is given by the inference rules presented below, and

• the set Loc of locations is the set of reachable process behaviours according to→.

Note that the SHA corresponding to a HModest process contains invariants for locations, via
the invariant collection function, as well as deadlines on edges, which will both be used in the
concrete semantics (Section 4) to control the passage of time.

3.3 Inference Rules
act, abort, break. The inference rules for performing an action, including the special action [
to break out of a loop with the break construct, are straightforward:

act
act,tt,ff
−−−−−→D(∅,X)

(act)

break
[,tt,ff
−−−−→D(∅,X)

(break)

abort
⊥,tt,ff
−−−−→D(∅,abort)

(abort)

The abort process, which can be specified syntactically but more usually occurs as the conse-
quence of an unhandled exception (see below), simply performs the unhandled error action ⊥

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 49 Public

over and over again. The successfully terminated process X is only used as part of the semantics
and cannot be specified syntactically. There is no inference rule for the stop process since its
semantics is precisely to do nothing.

Conditions. Any process behaviour can be decorated with a guard using the when construct,
with a deadline using the urgent construct, and with an invariant using the invariant construct.
Guards, deadlines and the invariant(i) P form of the invariant construct only affect the first,
immediate edges resulting from the decorated behaviour and then disappear—

P
a,g,d
−−−−→W

when(b) P
a,g∧b,d
−−−−−−→W

(when) P
a,g,d
−−−−→W

urgent(b) P
a,g,d∨b
−−−−−−→W

(urgent) P
a,g,d
−−−−→W

invariant(i) P
a,g,d
−−−−→W

(inv)

—while invariant(i) {P } is a static operator, i.e. it does not disappear after following one edge;
with Q(P) = invariant(i) {P } , its inference rule reads:

P
a,g,d
−−−−→W

Q(P)
a,g,d
−−−−→W◦M−1

inv

(sinv) where Minv(A,P′) def
=

{
〈A,Q(P′)〉 if P′ ,X
〈A,P′〉 if P′ =X.

The inference rules for invariant ignore the actual invariant expression i because it does not
become part of the edge relation, but is instead preserved as part of the function that maps each
location to an invariant.

Sequential composition. A process behaviour P′ can be performed only after another pro-
cess behaviour P has successfully terminated when they are composed using the ; operator for
sequential composition:

P
a,g,d
−−−−→W

P ; Q
a,g,d
−−−−→W◦M−1

;

(seq) where M;(A,P′)
def
=

{
〈A, P′; Q〉 if P′ ,X
〈A(Q)◦A,Q〉 if P′ =X.

Nondeterministic choice. A nondeterministic choice between several process behaviours is
provided by the alt keyword:

Pi
a,g,d
−−−−→Wi (0 < i ≤ k)

alt { :: P1 . . . :: Pk}
a,g,d
−−−−→Wi

(alt)

Loops. The semantics of the do construct is defined via the auxiliary auxdo construct, which
is not part of the Modest syntax. It is used to keep track of the original behaviour of the loop
which must be restored after each iteration:

do { :: P1 . . . :: Pk}
def
= auxdo {alt { :: P1 . . . :: Pk}} {alt { :: P1 . . . :: Pk}}

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 49 Public

Off()

der(level) == 1
On()

der(level) == −2

{level 7→6.5}
on, tt, ff , ∅

off, tt, ff , ∅

off, tt, ff , ∅

on, tt, ff , ∅

Figure 4: SHA for the Tank process

The semantics of auxdo is defined in two inference rules: The first one handles the case that the
break action is performed to jump out of the loop, while the second rule defines the semantics
of performing a step within the loop, including proceeding to the next iteration once the last step
has been performed.

P
[,g,d
−−−→W

auxdo {P } {Q }
τ,g,d
−−−→D(∅,X)

(breakout)
P

a,g,d
−−−−→W (a , [)

auxdo {P } {Q }
a,g,d
−−−−→W◦M−1

do

(auxdo)

where

Mdo(A,P′) def
=

{
〈A,auxdo {P′ } {Q }〉 if P′ ,X
〈A(Q)◦A,auxdo {Q } {Q }〉 if P′ =X.

Process calls. Let process ProcName be declared as

process ProcName(t1 x1, . . . , tn xk) {P}.

The process call ProcName(e1, . . . ,ek) then behaves like P where the variables x1, . . . , xk are as-
signed the values of the expressions e1, . . . ,ek. The assignment of variables is performed just
before the process call is executed, which is ensured by the assignment collecting function (see
Table 5). The inference rule for process calls is then

P
a,g,d
−−−−→W

ProcName(e1, . . . ,ek)
a,g,d
−−−−→W

(call).

We note that this rule does not include any renaming or stacking of variables, but this is only pos-
sible because of the assumption of unique process declarations for process calls in the previous
section, and it only works correctly for tail-recursive models. To give a semantics for arbitrarily
recursive models, we would need to extend the inference rule above and the assignment col-
lecting function to include the necessary renamings there. We would also have to account for
(countably) infinite sets of variables in the definition of SHA.

Example 6. The SHA corresponding to process Tank in our running example is shown in Fig-
ure 4, where each location is labelled by its process behaviour (first line) and the corresponding
invariant according to the invariant collection function I (second line). We see that the (sym-
bolic) semantics indeed matches the (intuitive) description of the tank’s behaviour that we gave

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 49 Public

P
true

P′

true

{x 7→1,d 7→0,
level 7→6.5}

τ, d ≥ x, d ≥ x, {x 7→0.1,d 7→0,
measurement 7→N(level,1)}

off, d ≥ x∧measurement ≤ 5,
d ≥ x, {x 7→1,d 7→0}

on, d ≥ x∧measurement ≥ 8,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x∧5 < measurement < 8,
d ≥ x, {x 7→1,d 7→0}

Figure 5: SHA for the Controller process

in Section 2.3. We can indeed prove the edges using the inference rules that we have seen so far;
the proof for the location-changing edge labelled on is as follows:

on
on,tt,ff
−−−−−→D(∅,X)

(act)

on; On()
on,tt,ff
−−−−−→D(∅,On())

(seq)

alt { ::on; On() ::off; Off() }
on,tt,ff
−−−−−→D(∅,On())

(alt)

invariant(der(level)==1) alt { ::on; On() ::off; Off() }
on,tt,ff
−−−−−→D(∅,On())

(inv)

Off()
on,tt,ff
−−−−−→D(∅,On())

(call)

The proofs for the other edges of the Tank process’ behaviour follow the same pattern.

Example 7. The SHA for the Controller process is shown in Figure 5, where P is the original
auxdo for the entire original loop, while P′ represents the remainder of the loop. We omit proofs
for the edges here since they are very similar to those in the previous example. Note, however,
how the expansion of the delay shorthand has introduced new variables, guards and deadlines
that together make sure that precisely 1 (0.1) time units elapse before a new measurement is
taken (before the reaction to the measurement is performed).

Probabilistic choice. The construct for probabilistic choice, palt, is action-prefixed: An action
act is performed and the target of the edge labelled act is then the (symbolic) probability distri-
bution over the weighted alternatives that make up the body of the palt. The inference rule thus
reads as follows:

act palt { :w1: asgn1; P1 . . . :wk: asgnk; Pk}
act,tt,ff
−−−−−→W

(palt)

where

W(A(Pi)◦asgni,Pi)
def
=

k∑
j=1

Ind(i, j) ·w j

and

Ind(i, j) def
=

{
1 if A(Pi)◦asgni = A(P j)◦asgn j∧Pi = P j
0 otherwise.

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 49 Public

Table 6: The alphabet of a process behaviour [17]
α(P) = {act} \ {τ} if P = act
α(P) = ∅ if P = stop, P = break, P = abort or P = throw(excp)
α(P) = α(Q) if P = when(b) Q, P = urgent(b) Q, P =

invariant(i) Q, P = invariant(i) {Q} or P =

ProcName(e1, . . . ,ek) and process ProcName is de-
clared as process ProcName(t1 x1, . . . , tn xk) {P}

α(P) = α(P1)∪α(P2) if P = P1; P2
α(P) =

⋃k
i=1α(Pi) if P = alt { ::P1 · · · ::Pk}, P = do { ::P1 · · · ::Pk} or P = par { ::

P1 · · · :: Pk}

α(P) = α(Q)∪
⋃k

i=1α(Pi) if P = try {Q} catch excp1 {P1} . . . catch excpk {Pk}

α(P) = α(Q)[a1/a′1, . . . ,ak/a′k] \
{τ}

if P = relabel {a1, . . . ,ak} by {a′1, . . . ,a
′
k} Q

α(P) = α(Q)∪{act1, . . . ,actk} if P = extend {act1, . . . ,actk} Q
α(P) = α(act)∪

⋃k
i=1α(Pi) if P = act palt { :w1: asgn1; P1 . . . :wk: asgnk; Pk}

Note thatW still is a symbolic function in Wxp = Asgn× Loc→ Axp. Two problems that are
not taken into account by this inference rule are that a weight wi may be negative, and that the
sum of all weights may be zero. These are considered modelling errors, i.e. the semantics of a
(syntactically valid) Modest model that contains one or more such errors is not defined. Tool
support will check for this and reject such models.

Exceptions. Once declared, an exception can be thrown. . .

throw(excp)
excp,tt,ff
−−−−−−→D(∅,abort)

(throw)

. . . and either be caught or ignored by enclosing try-catch constructs of the form Q(P) = try {P} catch excp1 {P1} . . . catch excpk {Pk};
if caught, the specified exception handler will be executed:

P
a,g,d
−−−−→W (a < {excp1, . . . ,excpk})

Q(P)
a,g,d
−−−−→W◦M−1

try

(try)
P

excpi,g,d
−−−−−−→ W (0 < i ≤ k)

Q(P)
τ,g,d
−−−→D(A(Pi),Pi)

(catch)

where

Mtry(A,P′) def
=

{
〈A,Q(P′)〉 if P′ ,X
〈A,X〉 if P′ =X.

Parallel composition. The process behaviours in a par construct run concurrently, synchronis-
ing on the actions in their common alphabet. The alphabet of a process is computed by function
α as defined in Table 6. A parallel composition terminates successfully whenever all its compo-
nents do so.

18

PIRSES-GA-2011-295261 / MEALS Page 19 of 49 Public

To define the semantics of parallel composition, we resort to the auxiliary operator ‖B, with
B ⊆ PAct∪ IAct. The par construct is then defined as

par { :: P1 . . . :: Pk}
def
= (. . . ((P1 ‖B1 P2) ‖B2 P3) . . .) ‖Bk−1 Pk

with

B j = (
j⋃

i=1

α(Pi))∩α(P j+1).

The behaviour of ‖B is then formally defined as follows:
Action a < B (which is not intended to synchronise) can be performed autonomously, i.e.,

without the cooperation of the other parallel component:

P1
a,g,d
−−−−→W (a < B)

P1 ‖B P2
a,g,d
−−−−→W◦M−1

par P2

(lpar)
P2

a,g,d
−−−−→W (a < B)

P1 ‖B P2
a,g,d
−−−−→W◦M−1

par P1

(rpar)

where
Mpar P(A,P′) def

= 〈A,P′ ‖B P〉 and X ‖B X =X.

Modest provides two synchronisation modes which depend on whether the action is patient
or impatient. A process that wants to synchronise on a patient action always waits for its partner
to be ready. Accordingly, its deadline needs to be relaxed to the requirements of the partner.
However, a process that intends to synchronise on an impatient action is not willing to wait for
the partner. Therefore, a deadline in an impatient synchronisation should be met as soon as one
of the components meets its deadlines. If we let ⊗a = ∧ if a ∈ PAct and ⊗a = ∨ if a ∈ IAct, the
inference rule for synchronisation thus reads:

P1
a,g1,d1
−−−−−→W1 P2

a,g2,d2
−−−−−→W2 (a ∈ B∩ (PAct∪ IAct))

P1 ‖B P2
a,g1∧g2,d1⊗ad2
−−−−−−−−−−−−→ (W1×W2)◦M−1

par

(sync)

where (W1×W2)(α1,α2) def
= W1(α1) ·W2(α2) for all α1 and α2—corresponding to the product

of two probability spaces—and

Mpar(〈A1,P′1〉, 〈A2,P′2〉)
def
= 〈A1∪A2,P′1 ‖B P′2〉 if A1 and A2 are consistent

where, as before, X ‖B X =X. The union of functions is defined as

(A1∪A2)(v) def
=

{
A1(v) if A2(v) = v
A2(v) if A1(v) = v

as long as A1 and A2 are consistent, i.e. Ai(x), x⇒ A(i mod 2)+1(x) = x for all x ∈Var. Inconsistent
assignments are considered a modelling error.

19

PIRSES-GA-2011-295261 / MEALS Page 20 of 49 Public

`1
der(level) == 1

`2
der(level) == 1

`3
der(level) == −2

`4
der(level) == −2

{x 7→1,d 7→0,
level 7→6.5}

τ, d ≥ x, d ≥ x, {x 7→0.1,d 7→0,
measurement 7→N(level,1)}

off, d ≥ x∧measurement ≤ 5,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x∧5 < measurement < 8,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x, d ≥ x, {x 7→0.1,d 7→0,
measurement 7→N(level,1)}

on, d ≥ x∧measurement ≥ 8,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x∧5 < measurement < 8,
d ≥ x, {x 7→1,d 7→0}

off,
d ≥ x∧measurement ≤ 5,
d ≥ x, {x 7→1,d 7→0}

on,
d ≥ x∧measurement ≥ 8,

d ≥ x, {x 7→1,d 7→0}

Figure 6: SHA for the the parallel composition of Tank and Controller

Example 8. The SHA given as the symbolic semantics for the parallel composition of the be-
haviours of the Tank and Controller processes3 is shown in Figure 6. For clarity, we have
omitted the process behaviours, labelling the locations only with their invariants and identifiers
`i. In locations `1 and `2 (`3 and `4), the pump in the tank is off (on); the controller is reacting to
a measurement in `2 and `3, while it waits before taking another measurement in the other two
locations.

Alphabet manipulation. The alphabet of a process can be modified with the extend and
relabel constructs. The extend construct merely extends the alphabet of a process (see Ta-
ble 6) and may affect behaviour only if it appears within the context of a par construct: For
Q(P) = extend {act1, . . . ,actk} P,

P
a,g,d
−−−−→W

Q(P)
a,g,d
−−−−→W◦M−1

ext

(extend) where Mext(A,P′)
def
=

{
〈A,Q(P′)〉 if P′ ,X
〈A,X〉 if P′ =X.

The semantics for the relabel construct is as in traditional process algebra: Observable actions
and exceptions are renamed according to a relabelling function, but the behaviour remains oth-
erwise unchanged. For Q(P) = relabel {a1, . . . ,ak} by {a′1, . . . ,a

′
k} P, the inference rule is thus

P
a,g,d
−−−−→W f = [a1/a′1, . . . ,ak/a′k]

Q(P)
f (a),g,d
−−−−−−→W◦M−1

rel

(relabel)

where

Mrel(A,P′)
def
=

{
〈A,Q(P′)〉 if P′ ,X
〈A,X〉 if P′ =X.

3The semantics of par { ::Tank() ::Controller() } itself contains additional locations because the two process
calls are not syntactically equal to the behaviours of the processes called. The semantics shown above can be
obtained as the semantics of the entire model by replacing the do construct in the Controller process by a (tail-
)recursive process call and the call Tank() in the parallel composition by a direct call to TankOff().

20

PIRSES-GA-2011-295261 / MEALS Page 21 of 49 Public

4 Concrete Semantics
The symbolic SHA semantics of the previous section defined the semantics of the process algebra
constructs of HModest. It did however not give a meaning to assignments to model variables,
and also did not consider the continuous behaviour of a HModest specification. In this section,
we will give a semantics to SHA which takes these parts into account, thus giving a meaning to
assignments and invariants. In contrast to the previous section however, which often gives a finite
semantic model, the concrete semantics will usually be uncountably large. This is especially the
case if non-trivial timed behaviour is specified. Thus, it is in general not possible to construct the
concrete semantics explicitly by applying the second step of the transformation. In Section 6, we
will give a sketch how to anyway prove properties of such models.

In the following, after a brief recap of the necessary definitions from stochastics, we will
introduce the concrete model of nondeterministic labelled Markov processes and consider the
semantics of types, variables and the expressions, including assignments and invariants, which
constitute a SHA. We will then specify the timed and untimed transitions of the NLMP semantics
based on these component semantics, and finally combine all of these steps to form a concrete
NLMP semantics for SHA.

4.1 Stochastics Recap
To define the concrete semantics, we need to shortly recap some notions and definitions from
stochastics. A family Σ of subsets of a set Ω is a σ-algebra, provided Ω ∈ Σ, and Σ is closed
under complement and σ-union (countable union). A set B ∈ Σ is then called measurable. Given
a family of sets A, by σ(A) we denote the σ-algebra generated by A, that is the smallest σ-
algebra containing all sets of A. The Borel σ-algebra over Ω is generated by the open subsets
of Ω, and it is denoted B(Ω). The pair (Ω,Σ) is called a measurable space.

A function µ : Σ→ [0,1] is called σ-additive if µ(
⊎

i∈I Bi) =
∑

i∈I µ(Bi) for countable index
sets I. We speak of a probability measure if µ(Ω) = 1. The Dirac probability measure D(ω) for
ω ∈ Ω is 1 only for {ω} ∈ Σ. A function f : Ω1→ Ω2 is Σ1-Σ2-measurable if every preimage of a
measurable set is measurable, i.e. f −1(B) ∈ Σ1 for all B ∈ Σ2.

We denote the set of probability measures on (Ω,Σ) by ∆(Ω). It can be endowed with the
σ-algebra ∆(Σ) [33] generated by the measures that, when applied to B ∈ Σ, give a value greater
than q ∈ Q∩ [0,1]:

∆(Σ) def
= σ({∆>q(B) | B ∈ Σ∧q ∈ Q}) where ∆>q(B) def

= {µ | µ(B) > q}.

Note that ∆(Σ) is a set of sets of probability measures. Together with ∆(Ω), it forms the measur-
able space (∆(Ω),∆(Σ)).

Given a σ-algebra Σ, we define the hit σ-algebra [61] over Σ by

H(Σ) def
= σ({HB | B ∈ Σ}) where HB

def
= {C ∈ Σ |C∩B , ∅}.

Thus, HB consists of all measurable sets C which have a nonempty intersection with B. H(Σ) is
then generated by all sets of sets {C1, . . . ,Cn} such that there is a set B which “hits” all Ci.

21

PIRSES-GA-2011-295261 / MEALS Page 22 of 49 Public

Given a finite index set I and a family (Σi)i∈I of σ-algebras, the product σ-algebra
⊗

i∈I Σi
is defined as ⊗

i∈I Σi
def
= σ({×i∈I Bi | ∀i ∈ I : Bi ∈ Σi}),

while for a family (µi)i∈I of measures on Σi, the product measure is the uniquely defined proba-
bility measure

⊗
i∈I µi ∈ ∆(

⊗
i∈I Σi) such that

(
⊗

i∈I µi)(×i∈I Bi)
def
=

∏
i∈I µi(Bi) for all Bi ∈ Σi, i ∈ I.

We extend this definition to families of sets of distributions (Mi)i∈I with Mi ∈ ∆(Σi) by⊗
i∈I Mi

def
= {

⊗
i∈I µi | µi ∈ Mi for all i ∈ I}.

We use ⊗ as an infix operator on two σ-algebras, probability measures or sets of probability
measures.

4.2 Nondeterministic Labelled Markov Processes
The semantics of a SHA is a nondeterministic labelled Markov process (similar to the definition
by Wolovick [61], extended from [25]).

Definition 5 (NLMP). A nondeterministic labelled Markov process (NLMP) is a tuple of the
form (S ,ΣS , s0,L,ΣL,T) where

• S is a (possibly uncountable) set of states,

• ΣS is a σ-algebra over S ,

• s0 ∈ ∆(ΣS) is the initial choice,

• L is a (possibly uncountable) set of labels,

• ΣL is a σ-algebra over L,

• T : S → (ΣL⊗∆(ΣS)) is the ΣS -H(ΣL⊗∆(ΣS))-measurable transition function.

By Ta for a ∈ L, we denote the function Ta : S → ∆(ΣS) with Ta(s) def
= T (s)|a.

Notice that in contrast to [61] and [25], we do not have a single initial state, but a set of
probability measures representing a nondeterministic choice over initial distributions. This is
necessary because the definition of HModest specifications allows for both nondeterministic as
well as stochastic assignments over the initial variable values.

We need to equip the labels with a σ-algebra to ensure measurability of T . Even if for all
labels a we have that Ta is measurable, it does not follow that their combination T is measurable,
if the set of labels is uncountably large. For an example of an NLMP in which each individual Ta
is indeed measurable, but T itself is not, see [61, Example 4.10]. However, from the measurabil-
ity of the transition function T it follows that each Ta is ΣS -H(∆(ΣS))-measurable [61]. Written

22

PIRSES-GA-2011-295261 / MEALS Page 23 of 49 Public

without measurability requirements, Ta is a function with signature S →P(∆(S)). Thus, for each
state s ∈ S we obtain a set of distributions in Ta(s). We write s

a
↪−→T µ if µ ∈ Ta(s) and s

a
↪−→T s′

if D(s′) ∈ Ta(s). We call the latter kind of transitions trivial. If T is clear from the context, we
write ↪−→ instead of ↪−→T .

In a previous publication [29], we considered measurability requirements on the components
of a SHA to ensure measurability of the automaton as a whole. We did however not base the
components on a process calculus, as we do here. As a semantical model, we used a model which
is almost equal to NLMP, except that transitions were not labelled. In the following, we will
consider similar measurability restrictions on the model components to ensure the measurability
of the SHA semantics of a given HModest specification.

4.3 Component Semantics
For the definition of the symbolic semantics in Section 3, it was sufficient to treat variables and
expressions as merely symbols. In this section, we give a meaning to these symbols and specify
some auxiliary functions on them.

Assume we are given a SHA (Loc, Inv, `0,Act,Var,v0,→), and let Var′ ⊆ Var. We start by
defining the semantics of types and thus the possible values that a variable in Var can take:

Definition 6 (Type semantics). Let Ty def
= {type(x) | x ∈ Var}. The type semantics ~t� is a set of

possible values for each t ∈ Ty. As a shortcut, the variable domain Dom for x ∈ Var is Dom(x) def
=

~type(x)�. We let Dom(Var) def
=

⋃
x∈Var Dom(x). We assume the existence of a σ-algebra Σx over

Dom(x) for each x ∈ Var which is equal to the corresponding σ-algebra Σt of its type t = type(x).
We let ΣVar′

def
=

⊗
x∈Var′ Σx. If the type of variable x is clock, var or real, we require Σx = B(R).

We can now use these definitions to specify the semantics of variable evaluations, which
assign values to variables in accordance with the variables’ types:

Definition 7 (Variable evaluation). A variable evaluation is a function v : Var′ → Dom(Var)
such that v(x) ∈ Dom(x) for all x ∈ Var′. By fixing an order on the variables, we can identify
variable evaluations with |Var′|-dimensional tuples. By Val(Var′) we denote the set of all variable
evaluations on Var′. We write Val for Val(Var).

The restriction of an evaluation v : Var→ Dom(Var) to Var′ is

v|Var′ : Var′→ Dom(Var′) where ∀x ∈ Var′ : v|Var′(x) def
= v(x).

Given two disjoint subsets Var1,Var2 ⊆Var of variables and the evaluations v1 : Var1→Dom(Var1),
v2 : Var2→ Dom(Var2), their combination is

(v1] v2) : (Var1]Var2)→ Dom(Var1]Var2) with (v1] v2)(x) def
= vi(x) if x ∈ Vari.

For the invariant semantics, we need to distinguish between continuous and discrete vari-
ables, where the values of continuous variables can change over time, the possible changes being
governed by invariants, while the values of discrete variables can only be changed explicitly
through assignments:

23

PIRSES-GA-2011-295261 / MEALS Page 24 of 49 Public

Definition 8 (Continuous and discrete variables). With Cont(Var′) ⊆ Var′ we denote the con-
tinuous variables of Var′, i.e. the variables which are of type clock or var. The complement of
Cont(Var′) is the set of discrete variables Disc(Var′) def

= Var′ \Cont(Var′). For Var′ = Var, we
only write Cont and Disc.

Expressions e ∈ Sxp are used in variable assignments. The semantics of such an expres-
sion maps variable evaluations to a set of distributions over the possible successor values of the
variable, thereby combining nondeterminism (from the any keyword) and stochastic choices.
Expressions e ∈ Axp are used as edge weights. Their semantics maps variable valuations to a
single nonnegative number. Expressions e ∈ Bxp simply map variable evaluations to Boolean
values, which will be used to decide the validity of guards, deadlines and invariants. Formally:

Definition 9 (Expression semantics). The semantics ~e� of an expression e over variables in Var
with type(e) = t is such that

• ~e� : Val→ ∆(Σt) is a ΣVar-H(∆(Σt))-measurable function if e ∈ Sxp,

• ~e� : Val→ R+
0 is a ΣVar-B(R+

0)-measurable function if e ∈ Axp, and

• ~e� : Val→ {true, false} is a ΣVar-P({true, false})-measurable function if e ∈ Bxp.

The semantics of an assignment combines all the possible distributions to the model’s vari-
ables. Notice that for each variable x ∈ Var we have that ~a(x)� : Val→ ∆(Σt) represents the val-
ues which the assignment can assign to variable x for a given variable valuation (cf. Section 2.3
and the expression semantics).

Definition 10 (Assignment semantics). The semantics ~a� of an assignment a ∈ Asgn is such
that ~a� : Val→ ∆(ΣVar), and it is defined by ~a�(v) def

=
⊗

x∈Var~a(x)�(v).

The measurability restrictions on the expressions guarantee that the semantics of an assign-
ment is ΣVar-H(∆(ΣVar))-measurable.

An invariant specifies the valid behaviours of the continuous variables for all combinations of
the remaining variables. Because we want to be able to specify systems in which the continuous
behaviour is dependent on non-continuous variables, the domain of an invariant semantics is
Val(Disc). As we want to be able to restrict both the values as well as the derivatives of the
continuous variables, the range of an invariant semantics is ΣCont ⊗ΣCont. The first component
of ΣCont⊗ΣCont will later on be used for the values of variables, whereas the second component
will handle their derivatives. The invariant semantics is formally defined as follows:

Definition 11 (Invariant semantics). The semantics ~e� of an invariant e ∈ Ixp is of the form
~e� : Val(Disc)→ ΣCont ⊗ ΣCont. We require ~e� to be ΣDisc-H(ΣCont ⊗ ΣCont)-measurable. If
~e�(v) =×xi∈Cont Ai××xi∈Cont A′i , for each xi ∈ clock we must have A′i = {1}.

The restriction A′i = {1} for xi ∈ clock is used to ensure that clock variables actually behave as
clocks, i.e. that their derivative is one, so if one waits for time t, their value increases by t.

24

PIRSES-GA-2011-295261 / MEALS Page 25 of 49 Public

The σ-algebras in the definitions above are needed to ensure that the complete NLMP seman-
tics, which we obtain in the end, is well-defined. For variables with real values, we use Borel
σ-algebras, as they suffice for all models and properties one might want to specify. For countable
data types, the same holds for the power sets of the domains. For more complex data types, like
records and arrays, the σ-algebra to be used depends on the model and properties to be specified.
We do not provide a detailed discussion here, but in general σ-algebras for complex data struc-
tures can be derived by combining the σ-algebras of the constituent elements. For instance, we
could use the σ-algebra σ(

⋃
n≥1

⊗n
i=1B(R)) for arrays with real-valued elements.

Example 9. Consider the SHA for the parallel composition of Tank and Controller in Figure 6.
We have Var = {x,d,level,measurement} with type(x) = real, type(d) = clock, type(level) =

var, type(measurement) = real and thus two continuous and two discrete variables: Cont =

{d,level}, Disc = {x,measurement}. We have Dom(·) = ~type(·)� = R for all variables, and the
σ-algebra used for all variables is Σ· = B(R), such that we have ΣVar =

⊗4
i=1B(R) = B(R4).

A possible variable evaluation to give concrete values to the variables is v : Var→ R with
v(x) = 0.1, v(d) = 2.3, v(level) = 7.9 and v(measurement) = 7.4, which can be written as v =

(0.1,2.3,7.9,7.4) in tuple form. We can then consider v|{x,d} : {x,d}→R, the restriction to the vari-
ables x and d, with v|{x,d} = (0.1,2.3). Given v′ : {level,measurement} → R with v′(level) =

11.8 and v′(measurement) = 12.1, we can define v′′ : Var→R as the combination v′′ = v|{x,d}]v′,
such that we have v′′(x) = 0.1, v′′(d) = 2.3, v′′(level) = 11.8 and v′′(measurement) = 12.1.

The semantics ~1� : Val→ ∆(B(R)) of the expression 1 ∈ Sxp is ~1�(v) = {D(1)} for all vari-
able evaluations v : Var→ R; if we considered 1 as an arithmetic expression instead, we would
have ~1�(v) = 1. The semantics of the right-hand side of the assignment that measures the water
level is ~N(level,1)�(v) = {N(v(level),1)} where N(x,y2) denotes a normal distribution with
expected value x and variance y2. For the deadlines, the semantics ~d ≥ x� : Val→ {true, false} is
such that ~d ≥ x�(v) = true iff v(d) ≥ v(x).

For the assignment

a = {x 7→1,d 7→0,measurement 7→N(level,1)}

we have ~a� : Val→B(R4) as follows:

~a�(v) = ~1�(v)⊗~0�(v)⊗{v(level)}⊗~N(level,1)�(v)
= {D(1)}⊗ {D(0)}⊗ {D(v(level))}⊗ {N(v(level),1)}.

Thus, the assignment sets x and d to constant values, level maintains its previous value, and
measurement is sampled according to a normal distribution with expected value level and
variance 1. Note that we treat all expressions as sampling expressions here, even those evaluating
to constant values, since Asgn = Var→ Sxp.

The semantics of the invariant

e′ = (der(level) == −2)

is such that ~e′� : Val(Disc)→ B(R4). We have ~e′�(v) = R2 × {(1,−2)} for all variable evalu-
ations v : Disc→ R, which means that in this example the flow of the continuous variables is

25

PIRSES-GA-2011-295261 / MEALS Page 26 of 49 Public

independent of the discrete variables. In the semantics of the invariant, there are no direct re-
strictions on the values that d and level may reach. The restriction of the derivative of level is
specified by the invariant, whereas the restriction of the derivative of d to 1 results from the fact
that d is a clock variable.

4.4 Continuous Concrete Semantics
Based on the previous definitions, the possible behaviours of the continuous flow that hap-
pens within one location as time advances can now be defined. We do this by introducing a
predicate Witness that precisely characterises those behaviours, the general idea being that if
Witness(v, `, t,v′) holds in the current location ` and variable evaluation v, it is possible to reach
variable evaluation v′ (in the same location) by waiting for t time units. As we allow differential
inclusions, there may be arbitrarily many v′ , v′′ for which Witness(v, `, t,v′′) also holds, such
that it is not clear where exactly one ends up by waiting for time t—this is another place where
nondeterministic decisions appear in our model.

Definition 12 (Continuous behaviour). Let (Loc, `0,Act,Var,v0,→) be a SHA, ` ∈ Loc a lo-
cation, v,v′ ∈ Val(Var) variable evaluations, and t > 0 a real-valued duration. The predicate
Witness(v, `, t,v′) holds if there exists a witness function f : [0, t]→ Val(Cont) such that

• f (0) = v|Cont,

• f (t)] v|Disc = v′,

• f is right (left) differentiable in 0 (t) and differentiable in t′ for all t′ ∈ (0, t),

• (f (t′), ḟ (t′)) ∈ ~Inv(`)�(v|Disc) for all t′ ∈ [0, t], and

• for all t′ ∈ [0, t), �∨
(`,a,g,d,W)∈→ d

�
(f (t′)] v|Disc) = false.

Witness functions are only defined over values of continuous variables Cont. This is done
to ensure that the values of discrete variables remain constant as time passes. The definition
of Witness(v, `, t,v′) establishes that the values of these variables in the successor evaluation v′

are indeed the same as in v. The requirement that ~
∨

(`,a,g,d,W)∈→ d�(f (t′)] v|Disc) is false for
t′ ∈ [0, t′) is used to ensure that time cannot pass when some edge’s deadline has become true,
forcing an edge—which will not necessarily be the one that has become urgent—to be taken
instead of letting time pass. Notice that in the definition we require t > 0 rather than t ≥ 0. This
is to ensure that the requirements of f being differentiable are well defined. Also, if t = 0 would
be allowed, timed steps (of length 0) would be possible even in situations in which a deadline is
fulfilled.

As before, some measurability restrictions are needed to guarantee the measurability of the
complete semantics of a SHA which is specified later on:

26

PIRSES-GA-2011-295261 / MEALS Page 27 of 49 Public

Measurability restrictions. For all `, v, t we require {v′ |Witness(v, `, t,v′)} ∈ ΣVar and {(t′,v′) |
Witness(v, `, t′,v′)} ∈ (B(R+

0)⊗ΣVar). We further require

h : (Val(Var)×Loc)→ (B(R)⊗ΣVar), h(v, `) def
= {(t,v′) |Witness(v, `, t,v′)}

to be (ΣVar⊗P(Loc))-(H(B(R+
0)⊗ΣVar))-measurable and, for all t ∈ R+

0 , we require

ht : (Val(Var)×Loc)→ ΣVar, ht(v, `)
def
= {v′ |Witness(v, `, t,v′)}

to be (ΣVar⊗P(Loc))-H(ΣVar)-measurable.

Example 10. Consider location `3 of the SHA in Figure 6 and let e = (der(level) == −2) be
its invariant. To show that Witness(v, `3, t,v′) holds, we have to find a corresponding witness
function f . As discussed in the previous example, we have ~e�(v) = R2 × {(1,−2)} for all val-
uations v of the discrete variables. This suggests to define f : [0, t] → R2 such that f (t′) =

(v(d) + t′,v(level)− 2t′) for all t′ with 0 ≤ t′ ≤ t. From the deadline d ≥ x, it follows that if
v(d) ≤ v(x) then v(d)+ t′ ≤ v(x) must hold for all t′ on which f is defined, yielding t ≤ v(x)−v(d).

Thus, for Witness(v, `3, t,v′) to hold there are two cases. If v(d) < v(x), we must have 0 < t ≤
v(x)− v(d), v′(x) = v(x), v′(measurement) = v(measurement), v′(d) = v(d) + t and v′(level) =

v(level)− 2t. In case v(d) ≥ v(x), there are no trajectories, because the requirements on the
deadlines cannot be fulfilled.

4.5 Discrete Concrete Semantics
The discrete transitions between locations, which do not take time to be performed, can be de-
scribed by a predicate Jump(v, `,W,µ), which asserts that in location ` and variable valuation v,
we can perform a discrete jump where the target location and variable evaluation is distributed
according to µ (which is derived fromW):

Definition 13 (Discrete behaviour). Consider a SHA (Loc, `0,Act,Var,v0,→), a location ` ∈ Loc,
a variable evaluation v ∈ Val, a set of weight expressions

W = {(a1, `1,w1), . . . , (an, `n,wn)} ⊆Wxp

(where ai ∈ Asgn is the assignment, li is the target location and wi ∈ Axp is the weight) and a
distribution µ ∈ ∆(Val(Var)×Loc). For 1 ≤ i ≤ n, we let

Mi
def
= ~ai�(v)⊗{D(`i)}

be the set of probability measures resulting from assignment ai, extended to include the target
locations. Let

w def
=

n∑
i=1

~wi�(v) ∈ R+

27

PIRSES-GA-2011-295261 / MEALS Page 28 of 49 Public

be the total sum of the weights. Then the predicate Jump(v, `,W,µ) holds if there are µ1 ∈

M1, . . . ,µn ∈ Mn such that µ is the weighted sum of the µi, i.e.

∀A ∈ ∆(ΣVar)⊗P(Loc) : µ(A) =

n∑
i=1

~wi�(v)
w

µi(A).

The distribution µ over the jump targets is specified such that the successor location is cho-
sen according to the relative weights of the weight expressions. For a fixed successor location
`i, the distribution over the variable assignments results from a nondeterministic choice between
the possible distributions represented by ai. Note that discrete jumps are not influenced by the
invariants of the target locations. It is therefore possible that a transition leads to states in which
the invariant is immediately violated, the only consequence being that no time can pass in such
states, just as if a deadline evaluated to true. This is a weak invariants semantics, which is more
natural for probabilistic systems—where transitions can have more than a single target state—
than a strong invariants semantics as employed in e.g. timed automata, which removes transitions
leading to states where the invariant immediately evaluates to false. If such a behaviour is in-
tended, it can be achieved with weak invariants by suitably strengthening the guards of the edges.
In well-formed specifications, where the guards of all edges imply the invariants of all possible
successor locations, these issues do not arise.

Example 11. Consider the SHA in Figure 6. In this example, there are no discrete probabilities,
such that all weight functions equal 1. In `1, there is a single edge to `2. For Jump(v, `1,W,µ)
to hold, we must have the following. At first, the guard of the only emanating transition must
be fulfilled, i.e. ~d ≥ x�(v) = true, which for the reachable states is the case if v(d) ≥ 1. Further,
µ : B(R4) ×P({true, false}) → [0,1] is the uniquely defined probability measure such that for
a,b ∈ R with a < b we have

µ({0.1,0,v(level), `2)}× [a,b]) =

b∫
a

exp
(
−

1
2

(x− v(level))2
)

dx.

4.6 Semantics of a Stochastic Hybrid Automaton
With these ingredients, we can define the behaviour of a SHA.

Definition 14 (Semantics of SHA). The semantics of a SHA A = (Loc, `0,Act,Var,v0,→) is the
NLMP ~A� = (S ,ΣS , s0,L,ΣL,T) where

• S = Val×Loc,

• ΣS = ΣVar⊗P(Loc),

• s0 = (×x∈Var~v0�, `0),

• L = Act]R+, and

28

PIRSES-GA-2011-295261 / MEALS Page 29 of 49 Public

• ΣL = σ(B(R+)]P(Act)),

and ↪−→T is the smallest relation satisfying the inference rules

`
a,g,d
−−−−→W Jump(v, `,W,µ) ~g�(v) holds

(v, `)
a
↪−→T µ

and
Witness(v, `, t,v′)

(v, `)
t
↪−→T D((v′, `))

.

As stated before, the measurability restrictions on the different parts used to construct the
NLMP ensure the validity of the measurability restrictions of the NLMP itself (shown in [29]
for a similar model). Definition 14 ensures that timed transitions are simple, as in TPTS (see
Definition 15). We also have a weak form of time additivity:

s
t+t′
↪−−→ s′⇒ s

t
↪−→ s′′∧ s′′

t′
↪−→ s′

As mentioned, because the invariants allow to specify differential inclusions and not only dif-
ferential equations, we might have several trajectories of the same duration starting in the same
state. Thus, in general, we do not have time determinism.

Example 12. The semantics of the SHA of Figure 6 is the NLMP (S ,ΣS , s0,L,ΣL,T) with

• S = Val×{`1, `2, `3, `4},

• ΣS = B(R4)×P({`1, `2, `3, `4}),

• s0 = {D(1,0,6.5,m, `1) | m ∈ R},

• L = {τ,off,on}]R+, and

• ΣL = σ(R+]{τ,off,on}).

As seen from Example 10 and 11, some of the transitions of this NLMP are

• (x,d,level,measurement, `3)
t
↪−→ (x,d + t,level−2t,measurement, `3)

if 0 < t ≤ x−d and

• (x,d,level,measurement, `1)
τ
↪−→ µ

if d ≥ x holds and µ is as described in Example 11.

As noted in Section 3, we previously considered a restricted version of Modest which was
restricted to specifying stochastic timed automata [17]. The semantics of such a restricted model
leads to a special case of NLMP:

Definition 15 (TPTS). ([17]) A timed probabilistic transition system (TPTS) is a NLMP (S ,ΣS , s0,L,ΣL,T)
where L = Act]R+ for a finite set of actions Act, Σ = B(S), and every transition labelled with
t ∈ R+ is trivial and satisfies

• s
t+t′
↪−−→ s′⇔ s

t
↪−→ s′′∧ s′′

t′
↪−→ s′ (time additivity) as well as

29

PIRSES-GA-2011-295261 / MEALS Page 30 of 49 Public

• s
t
↪−→ s′∧ s

t
↪−→ s′′⇒ s′ = s′′ (time determinism).

for t, t′ ∈ R+.

Theorem 1. Let A = (Loc, `0,Act,Var,v0,→) be a SHA resulting from a HModest specification
without variables of type var and in which the keywords invariant and any are not used. Then
the semantics of A is a TPTS, and it is equivalent to the semantics of Modest in [17].

5 Tool Support
The idea behind the Modest language is to provide a unifying modelling language for a most
general class of systems in such a way that interesting subclasses are easy to identify, ideally
on the syntactic level, and that existing tools that handle particular subclasses can be used for
analysis, where available. The aim of this single-formalism, multi-solution approach is to re-
duce the learning curve and modelling effort required from the end-user as well as to reduce
the implementation effort by leveraging existing and proven tools where possible. The Modest
Toolset currently consists of mcpta [36, 37], which allows the analysis of models corresponding
to the PTA subset of Modest using Prism [44] as a backend, and modes [16, 36], a discrete-event
simulator for deterministic STA that—in contrast to most other simulators—can also handle cer-
tain nondeterministic models in a sound way. A connection to the Uppaal model checker for
timed automata [7, 10] has recently been added as well [15], and all of these analysis tools are
integrated in mime, a graphical modelling and analysis environment.

In order to allow the analysis of HModest specifications, we have now rewritten ProHVer [29],
which computes safe upper bounds for probabilistic reachability probabilities, to use Modest as
its input language and be a part of the Modest Toolset. After extending the existing codebase for
parsing, syntax representation and symbolic semantics to support the language extensions intro-
duced in Section 2 (in particular, the der keyword and the promotion of the invariant shorthand
to a regular language construct) and the modifications in the symbolic semantics (Section 3), we
could reuse these features to transform, as a first step, a textual HModest specification into a
single SHA.

ProHVer will use existing tools for non-stochastic hybrid systems to analyse the SHA. How-
ever, several conversion steps are necessary to first obtain an input that can be used with such
an existing non-stochastic tool as well as the necessary information to reintroduce the stochastic
aspects into the tool’s output, and then a stochastic analysis has to be performed to actually com-
pute probabilities on the combined result. Currently, our analysis is based on PHAVer [31], but
the method can in principle be adapted to other solvers such as HSolver [56] or d/dt [24] as well,
the necessary modifications in the steps described in the remainder of this section depending on
the tool considered.

Typical hybrid solvers such as PHAVer support location invariants, but not deadlines, which
we thus convert into invariants as the next step. Deadlines are particularly powerful—and difficult
to transform into invariants—when synchronisation between the components of e.g. a network
of automata is involved. As we already start with a single SHA, these issues of composition do
not arise; however, there are still deadlines that cannot be expressed as invariants. For a detailed

30

PIRSES-GA-2011-295261 / MEALS Page 31 of 49 Public

N(level,1) :

level+

[−0.85,
−0.84]

level+

[−0.26,
−0.25]

level

level+

[+0.25,
+0.26]

level+

[+0.84,
+0.85]

=0.2 =0.2 =0.2 =0.2 =0.2

.

Figure 7: Overapproximation of a continuous distribution using a discrete one and nondetermin-
istic choices

`1
der(level) == 1

`2
der(level) == 1

`3
der(level) == −2

`4
der(level) == −2

{x 7→1,d 7→0,
level 7→6.5}

τ, d ≥ x, d ≥ x

1, {x 7→0.1,d 7→0,measurement 7→
any(y | y ≤ level−0.84)}

. . .

. . .

. . .

. . .

off, d ≥ x∧measurement ≤ 5,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x∧5 < measurement < 8,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x, d ≥ x

1, {x 7→0.1,d 7→0,measurement 7→
any(y | y ≤ level−0.84)}

. . .

. . .

. . .

. . .

on, d ≥ x∧measurement ≥ 8,
d ≥ x, {x 7→1,d 7→0}

τ, d ≥ x∧5 < measurement < 8,
d ≥ x, {x 7→1,d 7→0}

off,
d ≥ x∧measurement ≤ 5,
d ≥ x, {x 7→1,d 7→0}

on,
d ≥ x∧measurement ≥ 8,

d ≥ x, {x 7→1,d 7→0}

Figure 8: Overapproximation of the SHA of Figure 6 by discrete distributions

comparison of deadlines and invariants, we refer the interested reader to [36], where a transfor-
mation from deadlines to invariants is described as well. ProHVer uses this transformation.

We then use discrete probability distributions to overapproximate continuous ones by intro-
ducing additional nondeterminism: We divide the support (that is, the possible successor states)
of a continuous probability distribution into a number of intervals, such that the probability of
each interval is known, and replace the continuous distribution by a probabilistic choice over
the intervals, followed by a nondeterministic choice of where to move exactly within the chosen
interval. The exact method was described in [29].

Example 13. Consider again the SHA of Figure 6. We can overapproximate the normal distribu-

31

PIRSES-GA-2011-295261 / MEALS Page 32 of 49 Public

tion at the edge from `1 to `2, as depicted in Figure 7, by the edge `1
τ,d≥x,d≥x
−−−−−−−−→W with

W= { ({x 7→0.1, d 7→0, measurement 7→any(y | y ≤ level−0.84)}, `2,1),
({x 7→0.1, d 7→0, measurement 7→any(y | level−0.85 ≤ y ≤ level−0.25)}, `2,1),
({x 7→0.1, d 7→0, measurement 7→any(y | level−0.26 ≤ y ≤ level+ 0.26)}, `2,1),
({x 7→0.1, d 7→0, measurement 7→any(y | level+ 0.25 ≤ y ≤ level+ 0.85)}, `2,1),
({x 7→0.1, d 7→0, measurement 7→any(y | level+ 0.84 ≤ y}, `2,1) },

dividing the support of the distribution into equally likely parts. Notice that the parts here are
overapproximated and overlap with each other, as is allowed by our method. The same transfor-
mation can be applied to the edge from `4 to `3. The resulting probabilistic hybrid automaton is
given in Figure 8. In this model, we have Jump(v, `1,W,µ) if there are

s1 ∈ {(0.1,0,y,v(level)) | y ≤ level−0.84)},
s2 ∈ {(0.1,0,y,v(level)) | level−0.85 ≤ y ≤ level−0.25)},
s3 ∈ {(0.1,0,y,v(level)) | level−0.26 ≤ y ≤ level+ 0.26)},
s4 ∈ {(0.1,0,y,v(level)) | level+ 0.25 ≤ y ≤ level+ 0.85)} and
s5 ∈ {(0.1,0,y,v(level)) | level+ 0.84 ≤ y}

such that µ({s1}) = µ({s2}) = µ({s3}) = µ({s4}) = µ({s5}) = 1
1+1+1+1+1 = 0.2.

Since PHAVer only supports a set of modes (or locations) plus continuous variables, we
remove non-continuous variables by encoding the possible evaluations into modes. This is pos-
sible only if there are finitely many such evaluations. However, there are hybrid solvers which
are capable of handling complex discrete structures efficiently [30], thus this step might become
optional and solver-dependent in the future.

After these steps, the only kind of stochastic behaviour that remains are the finite-support
probability distributions represented by the targets of the edges. We currently require all weights
in these targets to be constants: probabilities depending on continuous variables are not yet
supported. The result of the transformations at this point is therefore a PHA.

We can now transform this PHA into a non-probabilistic hybrid automaton using the method
described in [63]: Each edge

l
a,g,d
−−−−→ {(a1, `1,w1), . . . , (an, `n,wn)}

induces a set of non-probabilistic edges

{`
a,g,d
−−−−→ (a1, `1), . . . , `

a,g,d
−−−−→ (an, `n)}.

We maintain a mapping between probabilistic and induced non-probabilistic edges. After trans-
forming the resulting non-probabilistic hybrid automaton into the PHAVer input language, PHAVer
can be used to analyse it. The result of such an analysis is a finite labelled transition system
(LTS) which overapproximates the behaviour of the non-probabilistic hybrid automaton. Using

32

PIRSES-GA-2011-295261 / MEALS Page 33 of 49 Public

HModest
code SHA SHA w/o

deadlines PHA
PHA w/o
integers

HA

prob.
mapping

LTS

MDP/PAprob.
bounds

symbolic
semantics

convert
deadlines

overappr.
distrs.

flatten
integers

value
iteration

ProHVer modified PHAVer∗

∗may be changed to other solver in the future

Figure 9: Overview of the tool chain

Table 7: Mapping of labels to distributions for hybrid automaton of Figure 10
label distribution probability

l0 0 1
l1, l2, l3, l4, l5 1 0.2
l6, l7, l8, l9, l10 2 0.2

l11 | l12 | l13 | l14 | l15 | l16 3 |4 |5 |6 |7 |8 1

the mapping of edge sets, we can construct a finite Markov decision process (MDP, essentially
equivalent to PA) which overapproximates the semantics of the original probabilistic model. Be-
cause of this, by analysing this model, we obtain safe upper bounds for probabilistic reachability
probabilities in the original semantics.

This chain of analysis steps, implemented in ProHVer, is summarised in Figure 9.

Example 14. Consider the PHA of Figure 8. By applying the steps described above, we obtain
the non-probabilistic hybrid automaton of Figure 10. Notice that we have already transformed
the deadlines into invariants. In Table 7, we give the mapping between probabilistic and non-
probabilistic edges in terms of a mapping between the edge labels in the PHA and the corre-
sponding distributions. In the left part of Figure 11, we give a part of a labelled transition system
which could result from computing an abstraction by a non-probabilistic hybrid solver. Initial
states are marked by an incoming arrow without a source state. Distribution 0 with the single
label l0 corresponds to the timed transitions t ∈ R+. The state drawn with double lines corre-
sponds to an abstract state containing some unsafe concrete states. In the right part, we give
the MDP obtained by using the mapping of Table 7 to convert the labels back to probability
distributions. The transformation of distribution 0 is trivial. For distribution 1, we obtain two
different probabilistic choices, because l1 occurs twice. Because l2, l3 and l4, l5 have the same
target state, we have to sum up their probabilities. The maximum probability of reaching the un-
safe abstract state 6 from the initial abstract state 1 in this MDP is 0.2. The paths in the abstract
model leading to this probability correspond to paths in the concrete model in which one first has
a severe measurement error (state 1 to 2), followed by an overflow of the tank (state 2 to 6). If
this abstract model was indeed a complete abstraction for the whole state space, we could derive
that the probability of an overflow (or underflow) of the tank is no larger than 0.2.

Aside from model-checking support for SHA via ProHVer, extending Modest to HModest

33

PIRSES-GA-2011-295261 / MEALS Page 34 of 49 Public

`1, d ≤ x∧
der(level) == 1

`2, d ≤ x∧
der(level) == 1

`3, d ≤ x∧
der(level) == −2

`4, d ≤ x∧
der(level) == −2

{x 7→1,d 7→0,
level 7→6.5}

l1 : d ≥ x, {x 7→0.1,d 7→0,
measurement 7→any(y | y ≤ level−0.84)}

l2 : . . .

l3 : . . .

l4 : . . .

l5 : . . .

l11 : d ≥ x∧measurement ≤ 5,
{x 7→1,d 7→0}

l12 : d ≥ x∧5 < measurement < 8,
{x 7→1,d 7→0}

l6 : d ≥ x, {x 7→0.1,d 7→0,
measurement 7→any(y | y ≤ level−0.84)}

l7 : . . .

l8 : . . .

l9 : . . .

l10 : . . .

l13 : d ≥ x∧measurement ≥ 8,
{x 7→1,d 7→0}

l14 : d ≥ x∧5 < measurement < 8,
{x 7→1,d 7→0}

l15 :
d ≥ x∧measurement ≤ 5,
{x 7→1,d 7→0}

l16 :
d ≥ x∧measurement ≥ 8,

{x 7→1,d 7→0}

Figure 10: Induced non-probabilistic hybrid automaton for the PHA of Figure 8

1

2

34

5 6

l1

l2, l3l4, l5

l1
l0

1

2
34

5 6

0.2
0.4

0.40.2 0.4
0.4 1

Figure 11: Part of the LTS abstraction of Figure 10 (left) and MDP after reconstruction of distri-
butions (right)

34

PIRSES-GA-2011-295261 / MEALS Page 35 of 49 Public

also benefits modes: A subclass of SHA that are amenable to and highly useful for discrete-
event simulation are models with rewards (or costs), in which continuous variables with constant
derivatives are allowed as long as the actual values of these variables are only references in
properties. Rewards allow a variety of new properties, such as throughput or availability, to be
analysed, and this is now fully supported by modes. As future work, we also consider extending
modes to—or providing a separate tool for—full hybrid simulation.

The Modest Toolset is available for download on its website, which also includes a list of
publications, case studies and documentation, at

www.modestchecker.net

It is cross-platform (tested on various versions of Windows, Linux, Mac OS as well as FreeBSD);
on Windows, it requires the Microsoft .NET Framework 4.0, which is available as a free down-
load and is also distributed via Windows Update, while a recent version of the Mono runtime4

(at least version 2.10.1) is required on other systems.

6 Case Studies
We have applied the tool chain discussed in the previous section on three case studies: Our
running example, the water tank, a thermostat that can fail, and a model of headway control
in the European Train Control System (ETCS). Since the underlying systems have already been
studied in previous publications [29, 63], we present them only briefly, focusing on the modelling
aspects with HModest instead. The three cases present a progression in terms of modelling and
analysis complexity: The water tank example relies on sampling from continuous probability
distributions, but the invariants are linear; the thermostat contains nonlinear invariants, but only
discrete, finite-support probabilistic decisions; the ETCS example finally combines all of these
aspects in a model with complex behaviour.

Since our current tool chain relies on PHAVer for part of the analysis, the invariants in all
examples are necessarily restricted to affine differential inclusions [31], that is conjunctions of
formulae of the form

c1 · x1(t) + d1 · ẋ1(t) + · · ·+ cn · xn(t) + dn · ẋn(t) � D

with ci,di ∈R for all i ∈ {1, . . . ,n}, D ∈R, and � ∈ {≤,<}, where the xi are the continuous variables.

6.1 Water Tank
The first case study [29] is based on our running example of a water tank with a pump, specified
as the parallel composition of a Tank and a Controller process as presented in the previous
sections. In this model, all invariants are linear, that is, they are conjunctions of formulae of the
form ci · ẋi(t) � di and linear formulae not containing derivatives ẋi(t) of continuous variables.
The probabilistic behaviour results from the measurement of the water level, which is given by a

4http://www.mono-poject.org/

35

PIRSES-GA-2011-295261 / MEALS Page 36 of 49 Public

Table 8: Water level control results
T prob. time states

20 s 0.04652 26 s 2354
30 s 0.06929 52 s 4904
40 s 0.09162 115 s 9357
50 s 0.11344 189 s 14106
60 s 0.13475 329 s 19794

continuous distribution. This imprecision of measurement might lead to an incorrect reaction of
the controller, which in turn is the reason why it is at all possible to reach an unsafe state.

We consider the property presented in Example 5: the maximum probability that an over-
or underflow of the tank (more than 12 l or less than 1 l of water)—this characterises the set of
unsafe states—occurs within a given time bound T . Table 8 shows the analysis performance
and results for this property. Column “prob.” gives the (upper) bound on the reachability prob-
ability computed by ProHVer, “time” indicates how much time was needed to construct the
abstraction by PHAVer5 (which consistently and significantly dominates the overall analysis
time) and “states” gives the number of states of the abstraction computed. To obtain these
figures, we have overapproximated the continuous distribution describing the measurements
of the filling level by a probabilistic one as described in Section 5. The intervals used were
w + {[−1.5,1.5], [−2,−1.5], [1.5,2], (−∞,−1.9], [1.9,∞)}, w being the actual water level. In this
case, a manual analysis has shown that it is only because of this overapproximation that the val-
ues provided are upper bounds on the reachability probability and not exact values. In general,
the computation of an abstraction of the hybrid behaviour by PHAVer can also lead to values
larger than the real probability.

6.2 Thermostat
As a second example, we consider a thermostat with failures, extended from a model by Alur et
al. [6]. For this system, we chose to highlight a method to transform a mode-based description
of a hybrid system into HModest code in a straightforward, mechanical way: Every mode is
represented as a process consisting of a nondeterministic choice (alt) over the outgoing edges. In
case there is only one edge, the alt construct can, of course, be omitted. The location invariant is
preserved through an invariant construct on that nondeterministic choice, while every outgoing
edge (`,a,g,d,W) can be encoded as when(g) urgent(d) a followed by a probabilistic choice
palt over the destination locations—i.e. tail-recursive calls to the respective processes—and as-
signments according to W. The process behaviour of the entire Modest specification is then
simply a call of the process corresponding to the initial mode.

The mode-based description of the thermostat is taken from [63] and shown in Figure 12.
There are four operational modes: Cool, Heat, Check and Error. The Error mode models the
occurrence of a failure, where the temperature sensor gets stuck at the last checked temperature.

5Computations were performed on an AMD Athlon II X4 620 system with 4 GB RAM.

36

PIRSES-GA-2011-295261 / MEALS Page 37 of 49 Public

Heat
ṫ = 2

t ≤ 10∧ c ≤ 3

Cool
ṫ = −t
t ≥ 5

Check
ṫ = −t/2

c ≤ 1

Error
ṫ = 0

t ≥ 9

t ≤ 6,c 7→0

c = 0, 9 ≤ t ≤ 10

c ≥ 2,
c 7→0

c ≥ 0.5
0.05: ∅

0.95: c 7→0

Figure 12: Mode-based description of the thermostat example

Table 9: Thermostat results
T prob. time states
2 0 0 s 11
4 0.05 0 s 48
5 0.098 0 s 65

20 0.370 15 s 1544
40 0.642 47 s 4861
80 0.884 151 s 16178
120 0.941 140 s 16130
160 0.986 720 s 55642
180 0.986 815 s 61405

The set of variables is {c, t} where t represents the temperature and c represents a local timer
whose derivative is implicitly 1 in all modes; we can consequently model c as a clock variable
in HModest. The invariants of the modes constrain the evolution of the temperature, which
increases linearly when the heat is on and decreases exponentially in the two other modes of
regular operation, as well as the passage of time (via c): The system cannot be continuously in
heating mode for more than three time units, and checking in mode Check takes between 0.5 and
1 time units. We see that the timed behaviour of this case study is more complex than in the
water tank example, as it contains affine dynamics which are not linear. On the other hand, the
only probabilistic decision occurs when leaving mode Check, where we move to the Error mode
with a probability of 0.05 but continue regular operation in mode Heat with probability 0.95.

The HModest code resulting from transforming the mode-based description as outlined above
is shown in Figure 13; the correspondence of modes to processes is readily visible except for the
Error mode: the case of an error occurring is modelled by throwing exception error. In order to
have no outgoing edges from the location reached after the error occurred, the exception is caught
and the exception handler is the stop behaviour. The property we are interested in, which is de-
clared right above process Heat, is the maximum probability of reaching mode error—which is
indicated by the Boolean variable err—within T time units.

37

PIRSES-GA-2011-295261 / MEALS Page 38 of 49 Public

exception error;
bool err;
clock c;
var t = any(x | 9 <= x && x <= 10); // temperature

const real T; // time bound
property P Unsafe = Pmax(<> err && time <= T);

process Heat()
{

invariant(der(t) == 2 && t <= 10 && c <= 3)
alt {
:: when(c >= 2) tau {= c = 0 =}; Check()
:: when(t >= 9) tau; Cool()

}

}

process Cool()
{

invariant(der(t) == -t && t >= 5)
when(t <= 6) tau {= c = 0 =}; Heat()

}

process Check()
{

invariant(der(t) == -t/2 && c <= 1)
when(c >= 0.5) tau palt {
:95: {= c = 0 =}; Heat()

: 5: {= err = true =}; urgent throw error
}

}

try { Heat() }
catch error { stop }

Figure 13: HModest code of the thermostat example.

38

PIRSES-GA-2011-295261 / MEALS Page 39 of 49 Public

In Table 9, we give the bounds for this probability computed by ProHVer and performance
statistics for different time bounds6. Again, the probabilities provided are not exact, but may be
larger than the reachability probabilities in the actual semantics. Because the model only con-
tains discrete distributions, we do not have to apply the step in which continuous distributions are
overapproximated. The imprecision in the model is thus only caused by the overapproximation
in the abstraction computed by PHAVer. The coarseness of the abstraction can be specified by a
parameter; a more precise abstraction (more abstract states, each of which subsumes fewer con-
crete states) usually results in better probability bounds, but also increases runtime and memory
usage.

6.3 European Train Control System
As an example of a stochastic hybrid system that contains both complex timed behaviour as well
as continuous and discrete distributions, we present a model of headway control in the railway
domain [29, 40]. In contrast to fully automated transport, which is in general simpler to analyse
(as the system is completely under the control of the embedded systems), our sample system
implements safeguarding technology that leaves trains under full human control provided safety
is not at risk.

Our model implements safe interlocking of railway track segments by means of a “moving
block” principle of operation. While conventional interlocking schemes in the railway domain
lock a number of static track segments in full, the moving block principle enhances traffic density
by reserving a section of track ahead of the train which moves smoothly with the train. This
moving block is large enough to guarantee safety even in cases requiring emergency stops, i.e.
the block length changes dynamically depending on the current speed of the train and its braking
capabilities. We use the European Train Control System (ETCS) Level 3 protocol, in which
train separation depends on the absolute braking distance (i.e. it should be safe even if the train
ahead comes to a standstill in no time from any speed, e.g. due to a collision) where the distance
between two trains must be larger than or equal to the braking distance of the second train plus
an additional safety distance (here given as sd = 400 m).

Our simplified model, the HModest specification of which is shown in Figure 14, consists of a
leader train (process Leader), a follower train (process Follower) and a moving-block control
regularly measuring the leader train position and communicating the corresponding movement
authority to the follower (process MovingBlock). The leader train is freely controlled by its
operator within the physical limits of the train (it is assumed not to move backwards, though),
while the follower train may be forced to perform a controlled braking if it comes close to the
leader. The control principle is as follows:

1. 8 seconds after communicating the last movement authority, the moving-block control
takes a fresh measurement m of the leader train position sl. This measurement may be
noisy.

6Computations were performed on an Intel Core i7 860 system with 8 GB RAM.

39

PIRSES-GA-2011-295261 / MEALS Page 40 of 49 Public

const real SIGMA; // standard deviation of position measurements

const real SD = 400; // safety distance
const real L = 200; // length of train
const real V MAX = 83.4; // maximum speed of train
const real A MAX = 0.7; // maximum acceleration of train
const real B OFF = -0.3; // switch-off threshold
const real B ON = -0.7; // normal braking deceleration of train
const real A MIN = -1.4; // maximum deceleration of train

var s l = 1400; // position of leader train

var s f = 200; // position of follower train

real auth = 800; // movement authority of follower train

const real T; // time bound
property P Crash = Pmax(<> (s f >= s l - L) && time <= T);

process Leader()
{

var a; // acceleration

var v = 0; der(v) = a; // speed

// The leader train can exhibit any behaviour that is within its

// acceleration and max. speed constraints, except for driving backwards

invariant(der(s l) == v
&& A MIN <= a && a <= A MAX && 0 <= v && v <= V MAX) stop

}

process Follower()
{

var a; // acceleration

var v = 0; der(v) = a; // speed

invariant(der(s f) == v && 0 <= v && v <= V MAX) {
do {
:: // train is running normally

invariant(A MIN <= a && a <= A MAX
&& v * V MAX <= 2 * B ON * (s f - auth))

when(v * V MAX >= 2 * B ON * (s f - auth)) tau;
// forced braking by ETCS system

invariant(a == A MIN
&& v * V MAX >= 2 * B OFF * (s f - auth))

when(v * V MAX <= 2 * B OFF * (s f - auth)) tau
}

}

}

process MovingBlock()
{

real m;

// measure position of leader train

delay(8) {= m = Normal(s l, SIGMA) =};

// update follower’s movement authority

urgent palt {
:9: {= auth = m - L - SD =}; MovingBlock()

:1: {= /* message lost */ =}; MovingBlock()

}

}

par { :: Leader()
:: Follower()

:: MovingBlock() }

Figure 14: HModest code of the European Train Control System case study

40

PIRSES-GA-2011-295261 / MEALS Page 41 of 49 Public

Table 10: Train control results
T probability (σ = 10,15,20) time states

60 s 7.110 ·10−19 6.216 ·10−9 2.141 ·10−5 65 s 572
80 s 1.016 ·10−18 8.879 ·10−9 3.058 ·10−5 169 s 1441

100 s 1.219 ·10−18 1.066 ·10−8 3.669 ·10−5 282 s 2399
120 s 1.524 ·10−18 1.332 ·10−8 4.587 ·10−5 1100 s 4537
140 s 1.727 ·10−18 1.509 ·10−8 5.198 ·10−5 2257 s 6569

2. Afterwards, a fresh movement authority derived from this measurement is sent to the fol-
lower. The movement authority is the measured position m minus the length l of the leader
train and further reduced by the safety distance sd. Due to an unreliable communication
medium (in practice: GSM-R), this value may reach the follower (in which case its move-
ment authority auth is updated to m− l− sd) or not. In the latter case, which occurs with
probability 0.1, the follower’s movement authority stays as is.

3. Based on the movement authority, the follower continuously checks the deceleration re-
quired to stop exactly at the movement authority. Due to PHAVer being confined to linear
arithmetic, this deceleration is conservatively approximated as areq =

v·vmax
2(s−auth) , where v is

the actual speed, vmax the (constant) top speed, and s the current position of the follower
train, rather than the physically more adequate, yet non-linear, areq = v2

2(s−auth) of the origi-
nal model [40]. Notice that areq is a negative value, because it describes a deceleration.

4. The follower applies automatic braking whenever the value of areq falls below a certain
threshold bon. In this case, the follower’s brake controller applies maximum deceleration
amin, leading to a stop before the movement authority as amin < bon. Automatic braking
ends as soon as the necessary deceleration areq exceeds a switch-off threshold boff > bon.
The thresholds bon and boff are separate to prevent the automatic braking system from
repeatedly engaging and disengaging in intervals of approximately 8 seconds when the
leading train is moving.

In the HModest code, points 1 and 2 can be seen implemented in the MovingBlock process,
while points 3 and 4 are part of the Follower process. For this case study, we chose not to use
any direct transformation from a mode-based description to build the model, but instead try to
make best use of the HModest language’s features in order to arrive at a concise, yet readable
model. For reference, the original mode-based description of this case study as shown in [29]
can be found in Figure 15.

We consider the probability to reach a state in which the trains have collided, i.e. the po-
sition of the follower train is greater than or equal to the position of the leader train minus its
length, within T seconds. In Table 10, we give the probability bounds and performance results
determined by ProHVer7. We modelled the measurement error using a normal distribution with
expected value sl, i.e. the current position of the leader train, and considered different standard

7Computations were performed on an Intel Core i7 860 system with 8 GB RAM.

41

PIRSES-GA-2011-295261 / MEALS Page 42 of 49 Public

Crash

FreeRun FreeRun

0.9

Send

0.1

AutoBrake

Idle

s = 200m, v = 0 m
s sl = 1400m, vl = 0 m

s

c′ = 0
auth′ = m− l− sd

v · vmax ≥

2bon(s−auth)
v · vmax
≤ 2boff (s−auth)

Follower

v ∈ [0 m
s ,vmax]

ṡ = v

v̇ = a

v · vmax ≤ 2bon(s−auth)

s ≥
sl − l

s ≥
sl − l

a ∈ [amin,amax]
vl ∈ [0 m

s ,vmax]

Leader

al ∈ [amin,amax]

ṡl = vl

v̇l = al

Moving Block

c′ = 0

ṁ = 0

c ≥ 8
m′ =N(sl,σ)

c ≤ 8

c ≥ 8

vmax=83.4 m
s , l=200m, sd=400m, amin=−1.4 m

s2 , amax=0.7 m
s2 , bon=−0.7 m

s2 , boff=−0.3 m
s2

v ∈ [0 m
s ,vmax]

ṡ = v
v̇ = a

a = amin

v · vmax ≥ 2boff (s−auth)

auth = 800m

ċ = 1
c ≤ 8

ċ = 1

Figure 15: Mode-based description of the European Train Control System case study [29]

deviations σ of the measurement. The abstraction used for each of them can be obtained using
structurally equivalent Markov decision processes, only with different probabilities. Thus, we
only needed to compute the abstraction once for all deviations, and just had to change the transi-
tion probabilities before obtaining probability bounds from the abstraction. We split the normal
distributions into the two intervals sl + {(−∞,91], [81,∞)} to obtain a discrete distribution.

7 Related Work
Various modular and hierarchical description formalisms for hybrid systems have been proposed.
A hierarchical and visual modelling language has been provided in [35], whereas the framework
of hybrid I/O automata allows for parallel composition, and supports a rather rich theory of re-
finement [49]. The language Charon [5] focuses on the hierarchical modelling of embedded
systems, and is supported by analysis tools such as simulators. In the field of process algebras,
the compositional specification frameworks for hybrid systems has received quite some attention.
Examples of such algebraic approaches are hybrid Chi [9], hybrid process calculus [19], and the
hybrid process algebra HyPa [23]. Whereas the work on HyPa and the hybrid process calculus
is mainly focused on bisimulation notions, congruence results with respect to parallel composi-
tion, as well as axiomatisations, hybrid Chi is intended as a user-friendly language for industrial
systems in the field of mechanical engineering. hybrid Chi has several features in common with
Modest, such as shared variables, patient and impatient actions, parallel composition using hand-
shaking, and process invocations. It has been equipped with a notion of (stateless) bisimulation,
which is a congruence [9]. One of the main differences with our approach is that hybrid Chi,
HyPa and the hybrid process calculus do neither support discrete probabilistic branching nor

42

PIRSES-GA-2011-295261 / MEALS Page 43 of 49 Public

random delays.
Extensions of the aforementioned with probabilistic branching, covering probabilistic hybrid

automata, or random delays, like in stochastic hybrid systems, have received scant attention. A
notable exception is stochastic Charon [12] by Bernadsky et al., an extension of Charon [5] in
which the continuous evolution is governed by stochastic differential equations (SDEs). This
modular modelling formalism allows for the parallel composition, hiding, and process instantia-
tion of agents, basically processes in our setting. Agents have local, output, and input variables,
and their behaviour is described using locations (called modes). As long as the location invariant
is satisfied, the evolution of continuous variables is governed by SDEs. On violating the location
invariant, a discrete transition is triggered that is specified by a discrete probability distribution
over the target locations—where weights may depend on state variables—and continuous distri-
butions (often referred to as resets) over the updated states. Communication between agents is es-
tablished using shared variables, i.e., handshaking is not supported. Due to the presence of SDEs,
stochastic Charon covers piecewise deterministic Markov processes (PDMPs, [26]), stochastic
diffusion processes, and stochastic hybrid systems in the sense of Hu et al. [43]. Platzer [54]
has developed a compositional approach for stochastic hybrid systems without nondeterminism
but with stochastic differential equations. He defines a notion of stochastic hybrid programs to-
gether with a corresponding stochastic logic to express required properties of these models. As
a solution method, he puts forward a proof calculus rather than model checking methods.

Modest does not support SDEs, but covers continuous nondeterminism, guards and deadlines
(in addition to invariants), and more importantly, is equipped with a compositional semantics
covering all modelling features. Whereas the tool support for stochastic Charon purely focuses
on simulation, we focus in addition on model checking of several sub-models as supported by
Prism (probabilistic timed automata), PHAVer (hybrid automata), and Uppaal (timed automata).
A related tool for the verification of discrete-time stochastic hybrid systems is FHP-Murphi [53].

A compositional modelling approach tailored to nondeterministic PDMPs has been proposed
in [60]. Their work extends interactive Markov chains with general continuous dynamics in the
continuous variables with time-dependent transition rates like in time-inhomogeneous Markov
chains, and stochastic resets of continuous state variables at transition times. Parallel composi-
tion of PDMPs is defined in a CSP-like manner while supporting active (controlling) and passive
(observing) actions and is extended (in the usual way) with value passing. Shared variables
and other composition operators such as hiding, alternative composition, etc. are not considered.
Strubbe and van der Schaft [60] define four semantical levels (as opposed to two in this paper);
their “lowest” semantical model closely resembles NLMPs.

Meseguer and Sharykin propose an object-based framework for the modelling and analysis
of (distributed) stochastic hybrid systems that interact using asynchronous communication [51].
Their modelling approach is based on the use of probabilistic rewrite rules. Models can be sim-
ulated by translating them into Maude rewriting logic specifications, and subsequently applying
statistical model checking [48]. The modelling language is based on rewriting, and has similar
expressiveness as stochastic Charon.

43

PIRSES-GA-2011-295261 / MEALS Page 44 of 49 Public

8 Conclusion
This paper has presented a modelling and analysis framework with a focus on the compositional
modelling of stochastic hybrid systems. Our approach is based on an extension of Modest [17],
a modular formalism for stochastic timed systems, with continuous variables whose evolvement
is described by ordinary differential (in)equations (specified as invariants in the language). The
paper presents a two-step semantics: a symbolic semantics using stochastic hybrid automata, and
a concrete semantics in terms of nondeterministic labelled Markov processes. The symbolic se-
mantics is a small twist of the semantics of Modest, indicating the straightforward extensibility
of its compositional operational semantics. Due to the more complex continuous evolvement of
variables, the concrete semantics is substantially more involved, but shown to be a conservative
extension of that for Modest. Three case studies show the usability of the modelling language,
and the link to safety verification of (classes of) stochastic and probabilistic hybrid systems. Fu-
ture work includes the treatment of stochastic differential equations, and the study of behavioural
congruence relations.

Acknowledgements The authors thank Pedro D’Argenio for discussions on the language design and
Nicolás Wolovick (both from University of Cordoba, Argentina) for his support in the development of the
concrete semantics.

Bibliography
[1] Abate, A., Katoen, J., Lygeros, J., Prandini, M.: Approximate model checking of stochastic

hybrid systems. European Journal of Control 16(6), 624–641 (2010)

[2] Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for
controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008)

[3] Altman, E., Gaitsgory, V.: Asymptotic optimization of a nonlinear hybrid system governed
by a Markov decision process. SIAM J. of Control and Optimization 35(6), 2070–2085
(1997)

[4] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comp. Sc.
138, 3–34 (1995)

[5] Alur, R., Dang, T., Esposito, J.M., Hur, Y., Ivancic, F., Kumar, V., Lee, I., Mishra, P.,
Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems. Proc.
of the IEEE 91(1), 11–28 (2003)

[6] Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid
systems. ACM Tr. on Embedded Comp. Sys. 5(1), 152–199 (2006)

[7] Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comp. Sc. 126(2), 183–235 (1994)

44

PIRSES-GA-2011-295261 / MEALS Page 45 of 49 Public

[8] Baró Graf, H., Hermanns, H., Kulshrestha, J., Peter, J., Vahldiek, A., Vasudevan, A.: A
verified wireless safety critical hard real-time design. In: IEEE Int. Symp. on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE (2011)

[9] van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and
consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2), 129–210
(2006)

[10] Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Formal Methods for the
Design of Real-Time Systems (SFM-RT), LNCS, vol. 3185, pp. 200–236. Springer (2004)

[11] Berendsen, J., Jansen, D.N., Katoen, J.P.: Probably on time and within budget: On reach-
ability in priced probabilistic timed automata. In: Quantitative Evaluation of Systems
(QEST), pp. 311–322. IEEE Computer Society (2006)

[12] Bernadsky, M., Sharykin, R., Alur, R.: Structured modeling of concurrent stochastic hybrid
systems. In: Formal Modelling and Analysis of Timed Systems, and Formal Techniques in
Real-Time and Fault-Tolerant Systems (FORMATS/FTRTFT), LNCS, vol. 3253, pp. 309–
324. Springer (2004)

[13] Berrang, P., Bogdoll, J., Hahn, E.M., Hartmanns, A., Hermanns, H.: Dependability re-
sults for power grids with decentralized stabilization strategies. Reports of SFB/TR 14
AVACS 83 (2012). ISSN: 1860-9821, http://www.avacs.org/

[14] Blom, H., Lygeros, J.: Stochastic Hybrid Systems: Theory and Safety Critical Applications,
Lecture Notes in Control and Information Sciences, vol. 337. Springer (2006)

[15] Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: mctau: Bridging the gap between
Modest and UPPAAL. In: SPIN, LNCS, vol. 7385, pp. 227–233. Springer (2012)

[16] Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial order methods for sta-
tistical model checking and simulation. In: Formal Techniques for Distributed Systems
(FMOODS/FORTE), LNCS, vol. 6722, pp. 59–74. Springer (2011)

[17] Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A composi-
tional modeling formalism for hard and softly timed systems. IEEE Tr. on Softw. Eng.
32(10), 812–830 (2006)

[18] Bohnenkamp, H.C., Gorter, J., Guidi, J., Katoen, J.P.: Are you still there? - a lightweight
algorithm to monitor node presence in self-configuring networks. In: Dependable Systems
and Networks (DSN), pp. 704–709. IEEE Computer Society (2005)

[19] Brinksma, E., Krilavicius, T., Usenko, Y.S.: A process-algebraic approach to hybrid sys-
tems. In: 16th IFAC World Congress. IFAC (2005)

45

http://www.avacs.org/

PIRSES-GA-2011-295261 / MEALS Page 46 of 49 Public

[20] Bujorianu, M.L.: Extended stochastic hybrid systems and their reachability problem.
In: Hybrid Systems: Computation and Control (HSCC), LNCS, vol. 2993, pp. 234–249.
Springer (2004)

[21] Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid
systems. In: Hybrid Systems: Computation and Control (HSCC), LNCS, vol. 3414, pp.
198–214. Springer (2005)

[22] Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification
of hybrid systems based on counterexample-guided abstraction refinement. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), LNCS, vol. 2619, pp.
192–207. Springer (2003)

[23] Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebr. Program. 62(2),
191–245 (2005)

[24] Dang, T., Maler, O.: Reachability analysis via face lifting. In: Hybrid Systems: Computa-
tion and Control (HSCC), LNCS, vol. 1386, pp. 96–109. Springer (1998)

[25] D’Argenio, P.R., Wolovick, N., Terraf, P.S., Celayes, P.: Nondeterministic labeled Markov
processes: Bisimulations and logical characterization. In: Quantitative Evaluation of Sys-
tems (QEST), pp. 11–20. IEEE Computer Society (2009)

[26] Davis, M.H.A.: Markov Models and Optimization. Chapman and Hall (1993)

[27] Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes.
Inf. Comput. 179(2), 163–193 (2002)

[28] Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embedded
systems: formal models, validation, and synthesis. Proc. of the IEEE 85(3), 366–390 (1997)

[29] Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety
verification for stochastic hybrid systems. In: Hybrid Systems: Computation and Control
(HSCC), pp. 43–52. ACM, New York, NY, USA (2011)

[30] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236
(2007)

[31] Frehse, G.: Phaver: algorithmic verification of hybrid systems past HyTech. STTT 10(3),
263–279 (2008)

[32] Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: Computer-
Aided Verification (CAV), LNCS, vol. 6806, pp. 379–395. Springer (2011)

46

PIRSES-GA-2011-295261 / MEALS Page 47 of 49 Public

[33] Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology
and Analysis, pp. 68–85. Springer (1982)

[34] Groß, C., Hermanns, H., Pulungan, R.: Does clock precision influence Zigbee’s energy
consumptions? In: Principles of Distributed Systems (OPODIS), LNCS, vol. 4878, pp.
174–188. Springer (2007)

[35] Grosu, R., Stauner, T.: Modular and visual specification of hybrid systems: An introduction
to HyCharts. Formal Methods in System Design 21(1), 5–38 (2002)

[36] Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In: FMCO,
LNCS, vol. 6957, pp. 372–391. Springer (2010)

[37] Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed au-
tomata. In: Quantitative Evaluation of Systems (QEST), pp. 187–196. IEEE Computer
Society (2009)

[38] Henzinger, T.A.: The theory of hybrid automata. In: IEEE Symp. on Logic in Computer
Science (LICS), pp. 278–292 (1996)

[39] Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems.
STTT 1(1-2), 110–122 (1997)

[40] Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using HySAT.
In: International Conference on Systems (ICONS), pp. 196–201. IEEE Computer Society
(2008)

[41] Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theor.
Comput. Sci. 274(1-2), 43–87 (2002)

[42] Hillston, J.: A compositional approach to performance modelling. Ph.D. thesis, Univ. of
Edinburgh (1994)

[43] Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Hy-
brid Systems: Computation and Control (HSCC), LNCS, vol. 1790, pp. 160–173. Springer
(2000)

[44] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Computer Aided Verification (CAV’11), LNCS, vol. 6806, pp. 585–591.
Springer (2011)

[45] Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of
continuous probabilistic timed automata. In: Concurrency Theory (CONCUR’00), LNCS,
vol. 1877, pp. 123–137. Springer (2000)

[46] Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-
time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150
(2002)

47

PIRSES-GA-2011-295261 / MEALS Page 48 of 49 Public

[47] Lee, E.A.: Embedded software. In: M. Zelkowitz (ed.) Advances in Computers, vol. 56.
Academic Press (2002)

[48] Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Runtime Verification (RV), LNCS, vol. 6418, pp. 122–135. Springer (2010)

[49] Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid i/o automata. Inf. Comput. 185(1),
105–157 (2003)

[50] Mader, A., Bohnenkamp, H.C., Usenko, Y.S., Jansen, D.N., Hurink, J., Hermanns, H.: Syn-
thesis and stochastic assessment of cost-optimal schedules. STTT 12(5), 305–318 (2010)

[51] Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based stochastic
hybrid systems. In: Hybrid Systems: Computation and Control (HSCC), LNCS, vol. 3927,
pp. 460–475. Springer (2006)

[52] Panangaden, P.: Labelled Markov Processes. World Scientific (2008)

[53] Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Finite horizon analysis of
Markov chains with the murphi verifier. STTT 8(4-5), 397–409 (2006)

[54] Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In:
N. Bjørner, V. Sofronie-Stokkermans (eds.) CADE, Lecture Notes in Computer Science,
vol. 6803, pp. 446–460. Springer (2011)

[55] Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.: An algorithm for the approxi-
mative analysis of rectangular automata. In: Formal Techniques in Fault Tolerant and Real
Time Systems (FTRTFT), no. 1486 in LNCS, pp. 228–240. Springer (1998)

[56] Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. ACM Tr. on Embedded Comp. Sys. 6(1) (2007)

[57] Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D.
thesis, MIT, Cambridge, MA, USA (1995)

[58] Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord. J.
Comput. 2(2), 250–273 (1995)

[59] Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Formal Tech-
niques in Real-Time and Fault-Tolerant Systems (FTRTFT), LNCS, vol. 1926, pp. 31–45.
Springer (2000)

[60] Strubbe, S., van der Schaft, A.: Compositional modelling of stochastic hybrid systems. In:
C.G. Cassandras, J. Lygeros (eds.) Stochastic Hybrid Systems, Control Engineering Series,
pp. 47–77. Taylor & Francis (2006)

[61] Wolovick, N.: Continuous probability and nondeterminism in labeled transition systems.
Ph.D. thesis, FaMAF - UNC, Córdoba, Argentina (2012)

48

PIRSES-GA-2011-295261 / MEALS Page 49 of 49 Public

[62] Yue, H., Bohnenkamp, H.C., Kampschulte, M., Katoen, J.P.: Analysing and improving
energy efficiency of distributed slotted aloha. In: Smart Spaces and Next Generation
Wired/Wireless Networking (NEW2AN), LNCS, vol. 6869, pp. 197–208. Springer (2011)

[63] Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.: Safety verification for proba-
bilistic hybrid systems. In: Computer Aided Verification, LNCS, vol. 6174, pp. 196–211.
Springer (2010)

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

49

	Introduction
	Syntax
	Models, Processes and Declarations
	Expressions
	Process Behaviours
	Shorthands

	Properties

	Symbolic Semantics
	Stochastic Hybrid Automata
	Semantics of a HModest Process
	Inference Rules

	Concrete Semantics
	Stochastics Recap
	Nondeterministic Labelled Markov Processes
	Component Semantics
	Continuous Concrete Semantics
	Discrete Concrete Semantics
	Semantics of a Stochastic Hybrid Automaton

	Tool Support
	Case Studies
	Water Tank
	Thermostat
	European Train Control System

	Related Work
	Conclusion
	Bibliography
	MEALS Partner Abbreviations

