
PIRSES-GA-2011-295261 /MEALS
November 16, 2015

Page 1 of 42

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 1.1 / 2

Title of Deliverable: Symbolic Counterexample Generation for
Large Discrete-Time
Markov Chains

Contractual Date of Delivery to the CEC: 31-Mar-2015
Actual Date of Delivery to the CEC: 31-Mar-2015
Organisation name of lead contractor for this deliverable: UNC
Author(s): Nils Jansen, Ralf Wimmer, Erika Ábrahám,

Barna Zajzon, Joost-Pieter Katoen, Bernd Becker,
Johann Schuster

Participants(s): RTW
Work package contributing to the deliverable: WP1
Nature: R
Dissemination Level: Public
Total number of pages: 42
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

This paper presents several symbolic counterexample generation algorithms for discrete-time Markov chains (DTMCs)
violating a PCTL formula. A counterexample is (a symbolic representation of) a sub-DTMC that is incrementally
generated. The crux to this incremental approach is the symbolic generation of paths that belong to the counterexample.
We consider two approaches. First, we extend bounded model checking and develop a simple heuristic to generate highly
probable paths first. We then complement the SAT-based approach by a fully (multi-terminal) BDD-based technique.
All symbolic approaches are implemented, and our experimental results show a substantially better scalability than
existing explicit techniques. In particular, our BDD-based approach using a method called fragment search allows for
counterexample generation for DTMCs with billions of states (up to 1015).

Note:

This deliverable appeared in Sci. Comput. Program. 91: 90-114 (2014).

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 /MEALS Page 2 of 42 Public

Contents
1 Introduction 3

2 Preliminaries 5
2.1 Discrete-time Markov Chains . 5
2.2 Probabilistic CTL and Critical Subsystems . 7
2.3 Symbolic Representation of DTMCs . 9

3 Symbolic Counterexample Generation Framework 11
3.1 The Framework . 12
3.2 Path Search Concepts . 14
3.3 Complexity of the Framework . 14

4 Searching Paths Using SAT Solving 15
4.1 Adapting Bounded Model Checking for Global Search 15
4.2 Adapting Bounded Model Checking for Fragment Search 16
4.3 A SAT Heuristics for Finding More Probable Paths 19

5 BDD-based Symbolic Path Search 19
5.1 Flooding Dijkstra Algorithm . 20
5.2 Adaptive Symbolic Global Search . 22
5.3 Symbolic Fragment Search . 25

6 Related Work 27

7 Case Studies 28
7.1 Implementation . 29
7.2 Models . 29
7.3 Experimental Setting . 30
7.4 Results . 31

8 Conclusion and Future Work 37

Bibliography 37

MEALS Partner Abbreviations 41

2

PIRSES-GA-2011-295261 /MEALS Page 3 of 42 Public

1 Introduction
Model checking is a very successful technique to automatically analyze the correctness of a system.
During the last two decades, a lot of work has been done to develop model checking techniques
for di↵erent kinds of systems like digital circuits and hybrid or probabilistic systems.

An important feature which made model checking for digital circuits a standard technology in
industry is the ability to deliver a counterexample if a desired property is violated. Counterex-
amples, which provide an explanation for the violation, are indispensable for reproducing and
fixing errors in the design. They are also crucial for so-called CEGAR (counterexample-guided
abstraction refinement) frameworks [1, 2, 3], where a system is verified on an abstraction, which is
gradually refined using (possibly spurious) counterexamples. The importance of counterexamples
was stated by the Turing award winner Edmund Clarke in his talk at the celebration of 25 years of
model checking [4]:

It is impossible to overestimate the importance of the counterexample feature. The
counterexamples are invaluable in debugging complex systems. Some people use
model checking just for this feature.

This paper addresses counterexample generation for probabilistic systems modeled as discrete-
time Markov chains (DTMCs) and properties formalized in probabilistic computation tree logic
(PCTL) [5]. PCTL model checking of DTMCs has been widely studied and has successfully been
employed for applications from distributed computing, security, hardware, and systems biology,
to mention a few. Standard model checking algorithms for PCTL properties of DTMCs are based
on probabilistic reachability analysis: the probability of reaching a given set of states is computed
by solving a linear equation system [6]. These methods are implemented in popular probabilistic
model checkers like Prism [7] or Mrmc [8].

However, if a PCTL property is violated, e. g., if the probability to reach a set of unsafe states
is larger than a certain value, these model checking algorithms are not able to provide further
information about this violation. Therefore, in the last years intensive research was carried out to
develop methods which allow to generate counterexamples for PCTL properties of DTMCs. For
digital circuits, a single execution that leads from an initial state to a safety-critical state su�ces as
a counterexample. Contrary, for DTMCs a set of such executions is required whose accumulated
probability mass exceeds the maximally tolerated value. Some of the available counterexample
generation methods [9, 10, 11, 12] represent counterexamples as sets of paths. Since the number
of paths can be extremely large (or even infinite), alternative representations have been devised
like regular expressions [12], winning strategies for probabilistic games [13, 14], or subsets of
the state space [15, 16, 17]. Some of these approaches have been implemented in tools like
DiPro [18], COMICS [19], and LTLSubsys [17], but scalability remains a serious issue.

Practically relevant systems are often too large to be represented explicitly, i. e., by enumer-
ating their states and transitions. To overcome this problem, symbolic model checking using a
representation by binary decision diagrams (BDDs) [20, 21] was introduced [22]. Sets of states
and transitions are encoded by acyclic directed graphs, representing the elements in a set by paths
in the graph. Symbolic model checking has been successfully established for DTMCs [23, 24].

3

PIRSES-GA-2011-295261 /MEALS Page 4 of 42 Public

For most of the available large case studies, as provided by Prism [7], symbolic representations
are smaller by orders of magnitude than explicit ones.

Given the enormous success of symbolic model checking techniques, our aim is to adopt these
techniques for counterexample generation for DTMCs. In order to take full advantage of e�cient
symbolic representations, the applied path search methods should make full use of symbolic
data structures, even for intermediate results. Some preliminary attempts towards this have been
done [9, 10, 11], but they still rely on explicit representations at some points. For very large
systems, these approaches are not scalable, as a counterexample may consist of a very huge or
even infinite number of paths.

These partially symbolic approaches can be divided into two groups: Wimmer et al. [9, 10]
apply bounded model checking [25] as path search method. Thereby the existence of a path of a
certain length leading from the initial state to a target state is formulated as a satisfiability problem,
which is solved by an appropriate solver. The drawback is that the computed paths are enumerated
explicitly. Thus this method scales only to large systems, if the number of paths required for a
counterexample is small. An alternative symbolic path search algorithm was introduced in [11].
This algorithm uses a BDD-based representation of the DTMC under consideration and calculates
the k most probable paths using an algorithm similar to Dijkstra’s shortest path algorithm [26].
The number k of paths is thereby adapted on the fly until a counterexample has been found. This
approach enables a fully symbolic counterexample generation, but su↵ers from an exponential
blow-up because the underlying graph essentially doubles for each found path by introducing two
new BDD variables per path. Therefore it is also restricted to counterexamples consisting of few
paths.

We show that also in counterexample generation, symbolic techniques can boost the scalability
by several orders of magnitude. The central contribution of this paper is thus the development of
fully symbolic algorithms, which overcome the main disadvantages of previous approaches:

• No explicit representation of states is needed during the counterexample generation.

• As in [15, 16], the counterexample is not represented by an enumeration of paths, but as a
subsystem of the input DTMC, which yields a counterexample that is smaller by orders of
magnitude.

• In comparison to other approaches we are now able to generate counterexamples for systems
with billions of states.

In detail our technical contributions are as follows:
We first adapt SAT-based bounded model checking to support the search algorithms presented

in [16] and suggest a heuristic for SAT-solving that allows to influence the SAT search to find
more probable paths first, without the need to invoke SMT-solving. Furthermore, we do not
restrict the search to paths of a fixed length as suggested by standard bounded model checking,
but search for paths whose length is between a given lower and upper bound.

As a second approach, we propose novel fully symbolic methods for the generation of
counterexamples for DTMCs and PCTL properties. Our methods take as input a DTMC which is
symbolically represented by BDDs. We propose a symbolic version of the so-called global search

4

PIRSES-GA-2011-295261 /MEALS Page 5 of 42 Public

approach [16] to compute a symbolically represented subsystem of the original DTMC, whose
paths form a counterexample. For this we adapt the symbolic k-shortest path search presented
in [11] to find most probable paths of a DTMC. As this method su↵ers from very high memory
consumption, we present an improved global search method which avoids the exponential blow-up
of the symbolic k-shortest path search [11]. As our best approach, we adapt the idea for fragment
search, also presented in [16]: Instead of searching for most probable paths from the initial state to
a target state, we search for most probable path fragments extending the current subsystem. This
scales as well as the improved global search, but yields typically more compact counterexamples.

We give a detailed experimental evaluation of all proposed algorithms. This includes a
comparison to explicit methods considering the quality of results, running times, and the memory
consumption. As the experiments will show, we were able to generate counterexamples for
DTMCs of up to 1015 states, which poses a very di�cult task even for mere model checking.

This paper is an extended version of the conference paper [27]. The extension encompasses
the more extensive treatment of the foundations and an ongoing example. Most importantly, we
present an improved version of the symbolic global search method which avoids an exponential
blow-up of the underlying graph as well as an improved version of the symbolic fragment search.
We give a more detailed experimental evaluation, comparing our approaches with the available
explicit methods.

In Section 2 we introduce some theoretical foundations. Section 3 describes the general framework
of our symbolic methods for counterexample generation. The usage of SAT-based path search is
described in Section 4 and the application of BDD-based graph search algorithms in Section 5.
Related work and connections or di↵erences to other approaches are discussed in Section 6. All
approaches are evaluated experimentally on a number of case studies in Section 7 including a
detailed comparison with other tools and methods. We conclude our work and discuss future work
in Section 8.

2 Preliminaries
We start with introducing some basic definitions and concepts used in this paper. For more details
we refer to, e. g., [6, Chapter 10].

2.1 Discrete-time Markov Chains
Discrete-time Markov chains are a widely used formalism to model probabilistic behavior in a
discrete-time model. State changes are modeled by discrete transitions whose probabilities are
specified by discrete probability distributions as follows.

Definition 1 A discrete-time Markov chain (DTMC) is a tuple M = (S , sI , P, L) with S being
a finite set of states, sI 2 S the initial state, P : S ⇥ S ! [0, 1] ✓ Q1 a matrix of transition

1In theory, the definition of a DTMC allows probabilities from [0, 1] ✓ Q. However, due to algorithmic reasons
we use only values from Q.

5

PIRSES-GA-2011-295261 /MEALS Page 6 of 42 Public

probabilities such that
P

s02S P(s, s0) 1 for all s 2 S , and L a labeling function with L : S ! 2AP

with AP a denumerable set of atomic propositions.

Please note that we generalize the standard definition and allow sub-stochastic distributionsP
s02S P(s, s0) 1 for all s 2 S . Usually, these sums of probabilities are required to be exactly

1. This can be obtained by defining the transformation ↵s? of M as the DTMC ↵s?(M) = M0 =
(S 0, s0I , P

0, L0) with

• S 0 = S [̇ {s?} for a fresh sink state s? < S ,

• s0I = sI ,

• P0(s, s0) =

8>>>>>>>><
>>>>>>>>:

P(s, s0) for s, s0 2 S ,
1 �P

s002S P(s, s00) for s 2 S and s0 = s?,
1 for s = s0 = s?,
0 otherwise (for s = s? and s0 2 S),

and

• L0(s) = L(s) for s 2 S and L0(s?) = ;.
According to the DTMC semantics below, the reachability probabilities in M and ↵s?(M) are equal
for the states from S . The advantage of allowing sub-stochastic distributions is that a subsystem
of a DTMC, determined by a subset of its states, is again a DTMC.

Assume in the following a DTMC M = (S , sI , P, L). We say that there is a transition (s, s0)
from a state s 2 S , the source, to a state s0 2 S , the target, i↵ P(s, s0) > 0. A path of M is a finite
or infinite sequence ⇡ = s0s1 . . . of states si 2 S such that P(si, si+1) > 0 for all i � 0. We say that
the transitions (si, si+1) are contained in the path ⇡, written (si, si+1) 2 ⇡. Starting with i = 0, we
write ⇡i for the ith state si on path ⇡; the position i is called its depth. The length |⇡| of a finite path
⇡ = s0 . . . sn is the number n of its transitions. The last state of ⇡ is denoted by last(⇡) = sn.

By PathsM
inf we denote the set of all infinite paths of M, by PathsM

inf (s) those starting in s 2 S .
Similarly, PathsM

fin is the set of all finite paths of M, PathsM
fin(s) those starting in s 2 S , and

PathsM
fin(s, t) those starting in s 2 S and ending in t 2 S . A state t 2 S is reachable from another

state s 2 S i↵ PathsM
fin(s, t) , ;.

We follow the standard way [28] to define for each state s 2 S a probability space (⌦M
s ,F M

s ,PrM
s)

on the infinite paths of a DTMC starting in s. The sample space ⌦M
s is the set PathsM

inf (s). The
set F M

s of events is defined as follows: The cylinder set of a finite path ⇡ of M is defined as
Cyl(⇡) = {⇡0 2 PathsM

inf | ⇡ is a prefix of ⇡0}. The set F M
s of events is the unique smallest �-algebra

that contains the cylinder sets of all finite paths in PathsM
fin(s). PrM

s (or short Pr) is the unique
probability measure on F M

s such that the probabilities of the cylinder sets are given by

Pr
�
Cyl(s0 . . . sn)

�
=

n�1Y

i=0

P(si, si+1) .

For finite paths ⇡ we set Prfin(⇡) = Pr
�
Cyl(⇡)

�
. For sets of finite paths R ✓ PathsM

fin(s) we
define Prfin(R) =

P
⇡2R0 Prfin(⇡) with R0 = {⇡ 2 R | 8⇡0 2 R. ⇡0 is not a proper prefix of ⇡}.

6

PIRSES-GA-2011-295261 /MEALS Page 7 of 42 Public

2.2 Probabilistic CTL and Critical Subsystems
Probabilistic computation tree logic (PCTL) [5] enriches CTL with an operator P arguing about
the total probability of paths satisfying some properties. The syntax of PCTL is given by the
following context-free grammar:2

� ::= true | p | ¬� | (� ^ �) | PC�(�U�)

for (state) formulae � with p 2 AP, � 2 [0, 1] ✓ Q, and C 2 {<, , �, >}. For a PCTL state
formula ' we define the “finally”-operator ⌃ as PC�(⌃') = PC�(true U ') and the “globally”-
operator ⇤ as PC�(⇤') = PB1��(true U¬') where B is >, �, , < if C is <, , �, >, respectively.

We define a state s of the DTMC M to satisfy a PCTL formula ', written M, s ✏ ', recursively
as follows:

M, s ✏ true always,
M, s ✏ p , p 2 L(s),
M, s ✏ ¬' , M, s 2 ',
M, s ✏ ('1 ^ '2) , M, s ✏ '1 and M, s ✏ '2,
M, s ✏ PC�('1U '2) , Pr

�{⇡ 2 PathsM
inf (s) |9i � 0. (M, ⇡i ✏ '2 ^ 80 j < i. M, ⇡ j ✏ '1)}� C � .

A DTMC M satisfies a PCTL-Formula ', written M ✏ ', if its initial state sI does, i. e., if M, sI ✏ '.

The model checking and counterexample generation problems forP�('1U '2) can be reduced
to a reachability problem as follows: We transform the DTMC M = (S , sI , P, L) to a DTMC
M0 = (S , sI , P0, L) by removing all outgoing transitions from states satisfying ¬'1 _ '2, i. e., for
all s 2 S we have P0(s, s0) = 0 if s satisfies ¬'1 _ '2 and P0(s, s0) = P(s, s0) otherwise. Then M
satisfies P�('1U '2) i↵ M0 satisfies P�(⌃'2). In the following we concentrate on this reduced
problem and also write P�(⌃T) instead of P�(⌃'2), where T = {s 2 S |M, s ✏ '2} is the set of
those target states that satisfy '2.

Checking propertiesP�(⌃T) consists of (1) computing the set of states T = {s 2 S |M, s ✏ '2}
which satisfy '2, and (2) computing for each state s 2 S the probability ps to finally reach a state
in T . These probabilities are the unique solution of the linear equation system [6, Theorem 10.19]:

ps =

8>>>>>><
>>>>>>:

1 if s 2 T ,
0 if T is unreachable from s,
P

s02S
P(s, s0) · ps0 otherwise,

(1)

containing one equation for each s 2 S .
Consider a DTMC M = (S , sI , P, L) and a PCTL property P�(⌃T) specifying an upper bound

on the probability that, starting from the initial state, a state from T will be reached. If this
property is violated, a counterexample is a set C ✓ PathsM

fin(sI) of finite paths starting in sI such
that all paths of the cylinder sets satisfy ⌃T and Prfin(C) > �. For P<�(⌃T), the probability mass

2In this paper we do not consider properties involving bounded reachability.

7

PIRSES-GA-2011-295261 /MEALS Page 8 of 42 Public

has to be at least �. We consider only upper bounds here; see [12] for the reduction of lower
bounds to this case.

In [16] we proposed to represent counterexamples as so-called critical subsystems instead
of large, possibly infinite, sets of paths. Intuitively, a critical subsystem is a part of the original
system in which the given probability bound is already exceeded, no matter what happens outside
the subsystem. The advantages of taking a subsystem instead of a set of paths as representation
of a counterexample concern both the computation time and the representation size: In [16] we
utilized the k-shortest path algorithm as proposed in [12] for the incremental construction of such a
subsystem. Thereby, every new path is added to the current subsystem. The probability mass of the
whole subsystem including all occurring loops is taken into account which significantly improved
the running times. In many cases, only a few paths are needed to form a critical subsystem while
a counterexample represented as a set of paths needs millions of paths. Furthermore, already
in [12] it was shown that the size of a counterexample may be double exponential in the problem
size, while the number of states of a critical subsystem is always bounded by the size of the input
system.

Definition 2 A subsystem of a DTMC M = (S , sI , P, L) is a DTMC M0 = (S 0, sI , P0, L0) such that
S 0 ✓ S , sI 2 S 0, P0(s, s0) 2 {P(s, s0), 0} and L0(s) = L(s) for all s, s0 2 S 0.
For a violated PCTL property ' with M, sI 6|= ', we call a subsystem M0 of M critical for ' i↵
M0, sI 6|= '.

Note that the set
S

t2T PathsM0
fin (sI , t) of all finite paths of a critical subsystem M0 from sI to a

target state forms a counterexample. We will conclude with an example illustrating the concepts
introduced so far.

Example 1 Consider the DTMC M depicted in Figure 1(a). The unique initial state is sI = s0,
indicated by the incoming arrow, and the only target state is s3. We are interested in the probability
of reaching s3 from the initial state, i. e., the probability of all paths leading from s0 to s3. Solving
the linear equation system (1) yields a reachability probability ps0 = 0.55. Therefore, the PCTL
property ' = P0.3(⌃s3) is violated in the initial state.

Collecting the most probable paths as in [12] to generate a counterexample yields the following
paths:

⇡1 = s0s1s3 probability: 0.25
⇡2 = s0s1s2s1s3 probability: 0.0625
⇡3 = s0s5s3 probability: 0.05

The set C = {⇡1, ⇡2, ⇡3} has probability pC = 0.3625 and forms a counterexample for '. Please
note that for a probability bound � = 0.55 � " for a small " > 0, the number of required paths
heads to infinity for "! 0. Most of these paths only di↵er in the number and order of iterations
of the same loops.

However, ⇡1 and ⇡2 already induce a subsystem M0 of M, depicted in Figure 1(b), inside which
the probability of reaching s3 from s0 is ps0 = 0.3̄. Therefore, M0 is a critical subsystem for M
and '.

8

PIRSES-GA-2011-295261 /MEALS Page 9 of 42 Public

s0 s1

s2 s4

s3 1

s5 s6 1

0.5

0.5

0.5

0.5

0.5

0.5

0.7
0.3

0.1
0.9

(a) Directed graph for DTMC M

s0 s1

s2

s3 1
0.5

0.5

0.5

0.5

(b) Subsystem M0 of M

Figure 1: The graph induced by a DTMC M and a subsystem M0 which violates P0.3(^ s3).

2.3 Symbolic Representation of DTMCs
In an explicit representation of Markov chains, the transition probabilities are stored as a sparse
matrix, which contains one entry per transition with non-zero probability. Its size is therefore
linear in the number of states and transitions. This representation is used, for instance, by the
probabilistic model checker Mrmc [8].

We use symbolic representations to encode state and transition sets, e. g., as paths in a graph or
as solutions of a certain formula. Symbolic representations are in practice often smaller by orders
of magnitude than explicit ones and allow to reduce not only the memory consumption but also
the computational costs for operations on the data structures.

As a symbolic data structure for the representation of DTMCs we choose binary decision
diagrams (BDDs) [20] and multi-terminal binary decision diagrams (MTBDDs) [21]. (MT)BDDs
have been applied very successfully for verification of digital circuits [22] and also play a role in
verification of probabilistic and stochastic systems [29, 30, 24]. However, they have the drawback
that for some systems the representation is large (e. g., for multiplier circuits [31]), and that their
size can strongly depend on the ordering of the variables. An optimal ordering, however, is hard
to find [32], but good heuristics are available [33, 24].

Definition 3 Let Var be a finite set of Boolean variables. A binary decision diagram (BDD) over
Var is a rooted, acyclic, directed graph B = (V, nroot, E) with a finite set V of nodes, a root node
nroot 2 V and edges E ✓ V ⇥V. Each node is either an inner node or a leaf node. Leaf nodes n 2 V
have no outgoing edges and are labeled with label(n) 2 {0, 1}. Inner nodes n 2 V have exactly
two successor nodes, denoted by hi(n) and lo(n), and are labeled with a variable label(n) 2 Var.

A multi-terminal binary decision diagram (MTBDD) is like a BDD but it labels leaf nodes
n 2 V with rational values label(n) 2 Q.

Let B be a BDD over Var andV(Var) =
�
⌫ : Var ! {0, 1} the set of all variable valuations.

Each ⌫ 2 V(Var) induces a unique path in B from the root to a leaf node by moving from each
inner node n to hi(n) if ⌫(label(n)) = 1 and to lo(n) otherwise. A BDD B represents a function
fB : V(Var) ! {0, 1} assigning to each ⌫ 2 V(Var) the label of the leaf node reached in B by
following the path induced by ⌫. We often identify B with fB and write B(⌫) instead of fB(⌫).
Analogously, each MTBDD B represents a function fB : V(Var)! Q.

9

PIRSES-GA-2011-295261 /MEALS Page 10 of 42 Public

n0

n1

n3 n4

n2

n5 n6

1 0 fB1(�1,�2,�3)

�3

�2

�1

(a) BDD B1 representing the state space of DTMC M0

n0

1 0 fB2(�1,�2,�3)

�3

�2

�1

(b) BDD B2, reduced version of B1

Figure 2: This figure shows two equivalent BDD representations of the state space of the subsystem
M0 of M, depicted in Figure 1.

An (MT)BDD is ordered if there is a linear order < ✓ Var ⇥ Var on the variables such that
for all inner nodes n either hi(n) is a leaf node or label(n) < label

�
hi(n)

�
, and the same for

lo(n). An (MT)BDD is reduced if all functions rooted at di↵erent nodes are di↵erent. For a
fixed variable order, reduced (MT)BDDs are canonical data structures for representing functions
f : V(Var)! {0, 1} resp. f : V(Var)! Q [20]. In the following we assume all (MT)BDDs to be
reduced and ordered with respect to a fixed variable order.

By Var0 we denote the variable set Var with each variable x 2 Var renamed to some x0 2 Var0

such that Var \ Var0 = ;. Our algorithms use standard BDD operations like ITE (if-then-else) to
implement union B1 [B2 and intersection B1 \ B2, variable renaming B[x! x0], and existential
quantification 9x.B for x 2 Var, x0 2 Var0. For MTBDDs additionally APPLY and ABSTRACT
are used to perform numerical operations. For details on these operations in the context of
symbolic path search we refer to [34].

BDDs and MTBDDs can be used to represent DTMCs symbolically as follows: Let M =
(S , sI , P, L) be a DTMC and Var a set of Boolean variables such that for each s 2 S there is a unique
binary encoding ⌫s : Var ! {0, 1} with ⌫s , ⌫s0 for all s, s0 2 S , s , s0. For s, s0 2 S we also
define ⌫s,s0 : Var [̇Var0 ! Q with ⌫s,s0(x) = ⌫s(x) and ⌫s,s0(x0) = ⌫s0(x) for all x 2 Var, x0 2 Var0. A
target state set T ✓ S is represented by a BDD T̂ over Var such that T̂ (⌫s) = 1 i↵ s 2 T . Similarly
for the initial state, Î(⌫s) = 1 i↵ s = sI. The probability matrix P : S ⇥ S ! [0, 1] ✓ Q is
represented by an MTBDD P̂ over Var [̇ Var0 such that P̂(⌫s,s0) = P(s, s0) for all s, s0 2 S . For an
MTBDD B over Var we use Bbool to denote the BDD over Var with Bbool(⌫) = 1 i↵ B(⌫) > 0 for
all valuations ⌫.

The transition matrices of practically relevant systems are usually sparse and well-structured
with relatively few di↵erent probabilities; therefore the symbolic MTBDD representation is in
many cases more compact by several orders of magnitude than explicit representations.

Example 2 In order to represent the 7 states of the DTMC M from Figure 1(a) symbolically, we
use the variable set Var = {�1,�2,�3} with �1 < �2 < �3. To represent its transitions, we extend
this set by a copy of itself: Var [̇ Var0 = {�1,�2,�3,�01,�

0
2,�

0
3}. A possible unique encoding of

the states as well as the transitions is given by the following assignments:

10

PIRSES-GA-2011-295261 /MEALS Page 11 of 42 Public

�1 �2 �3

s0 0 0 0
s1 0 0 1
s2 0 1 0
s3 0 1 1
s4 1 1 1
s5 1 1 0
s6 1 0 0

�1 �2 �3 �01 �
0
2 �

0
3

s0 ! s1 0 0 0 0 0 1
s0 ! s5 0 0 0 1 1 0
s1 ! s2 0 0 1 0 1 0
s1 ! s3 0 0 1 0 1 1
s2 ! s1 0 1 0 0 0 1
s2 ! s4 0 1 0 1 1 1
s3 ! s3 0 1 1 0 1 1
s4 ! s1 1 1 1 0 0 1
s4 ! s3 1 1 1 0 1 1
s5 ! s3 1 1 0 0 1 1
s5 ! s6 1 1 0 1 0 0
s6 ! s6 1 0 0 1 0 0

Based on the this encoding, the BDD B1 in Figure 2(a) represents the state space of the
subsystem M0 of M from Figure 1(b). Node n0 is labeled with the variable �1, n1 and n2 are
labeled with �2, and n3, n4, n5, n6 with �3. Thus each level corresponds to the choice of the
value for exactly one variable. The leaves labeled with 0 and 1 indicate whether the function
fB1(�1,�2,�3) is evaluated to 0 or 1. Dashed edges indicate that the variable at whose level the
edge starts, is set to 0, solid edges that it is set to 1.

Consider the path n0, n1, n3, 1 which results from choosing the low successor for each inner
node. This path is induced by the assignment ⌫s0 with ⌫s0(�1) = ⌫s0(�2) = ⌫s0(�3) = 0 and has
the evaluation fB1(0, 0, 0) = 1. Thus, state s0 is part of the set encoded by this BDD. Consider
furthermore the path n0, n2, n6, 0. As this corresponds to state s4 and evaluates to 0, the state s4 is
not included in this set.

The BDD B2 in Figure 2(b) encodes the same state set as B1 but it is reduced. Since in B1 the
choice of assignment for variable �1 already determines the evaluation of the whole function, all
intermediate nodes after n0 can be eliminated.

Finally, the transition matrix of the DTMC M0 can be encoded by the MTBDD B3 in Figure 3.
For each s, s0 2 S , the path induced by the assignment ⌫s,s0 leads to a leaf that is labeled with the
probability P(s, s0) to move from s to s0 in M0. For example, the path n0, n1, n2, n4, n8, n13, 0.5 is
induced by the assignment ⌫s0,s1 , which corresponds to the transition between the states s0 and s1

with probability 0.5. This MTBDD is already reduced. Please note, that in our implementation we
use an interleaved variable ordering for the transition MTBDD, i. e., the levels would be in the
order �1,�01,�2,�02,�3,�03. We refrained from this ordering as a transition is easier to read with
a non-interleaved ordering.

3 Symbolic Counterexample Generation Framework
In this section we present our framework for the generation of probabilistic PCTL counterexamples
using symbolic data structures.

11

PIRSES-GA-2011-295261 /MEALS Page 12 of 42 Public

n0

n1

n2

n4

n8

n13

n5

n9

n3

n6

n11

n16

n7

n12

n17

0.5 0 1

�03

�02

�01

�3

�2

�1

Figure 3: MTBDD B3 representing the transition matrix of the DTMC M0.

We provide an algorithm that computes, for the symbolic representation of a DTMC as input,
a critical subsystem, which is again symbolically represented. As the most significant ingredient,
this algorithm needs a symbolic path search method, which returns paths of the input DTMC.
The critical subsystem is initially empty and gets incrementally extended with the states of found
paths and the transitions between the (old and new) states. Symbolic implementations of the path
search method will be described in Sections 4 and 5.

3.1 The Framework
The algorithm for finding a symbolic counterexample is depicted in Algorithm 1. The parameters
specify the input DTMC symbolically by the MTBDD P̂ for the transition probability matrix, the
BDD Î for the initial state and the BDD T̂ for the target states, as well as a probability bound
� 2 [0, 1] ✓ R, which shall be exceeded by the resulting critical subsystem. The BDD States is
used to symbolically represent the set of states which are part of the current subsystem, while
NewStates is used to store the states occurring on a path or on a set of paths which shall extend the
current subsystem. The MTBDD SubSys stores the transition MTBDD of the current subsystem.
The algorithm uses the following methods:

ModelCheck(MTBDD P̂, BDD Î, BDD T̂) performs symbolic probabilistic model checking [23,

12

PIRSES-GA-2011-295261 /MEALS Page 13 of 42 Public

Algorithm 1 Incremental generation of critical subsystems

FindCriticalSubsystem(MTBDD P̂, BDD Î, BDD T̂ , double �)
begin

BDD States := 0, NewStates := 0; MTBDD SubSys := 0; (1)
if ModelCheck(P̂, Î, T̂) > � then (2)

while ModelCheck(SubSys, Î, T̂) � do (3)
NewStates := FindNextPath(P̂, Î, T̂ , SubSys); (4)
if NewStates , 0 then (5)

States := States [NewStates; (6)
SubSys := ToTransitionBDD(States) · P̂; (7)

end if (8)
end while (9)

end if (10)
return SubSys (11)

end

24] and returns the probability of reaching states in T̂ from states in Î via transitions in P̂.

FindNextPath(MTBDD P̂, BDD Î, BDD T̂, MTBDD SubSys) computes a set of states which
occur on a path leading through the DTMC represented by the transition MTBDD P̂, the
initial state Î, and the set of target states T̂ . Which path is found next depends on the current
subsystem SubSys and therefore on the set of previously found paths. The method can
return states occurring on one path or on a set of paths. Di↵erent symbolic implementations
of this method will be discussed in Sections 4 and 5.

ToTransitionBDD(BDD States) first computes the BDD States0 by renaming each variable
x 2 Var occurring in States to x0 2 Var0 and returns the transition BDD States \ States0

in which there is a transition between all pairs of states occurring in States, i. e., (States \
States0)(⌫s1,s2) = 1 i↵ States(⌫s1) = States(⌫s2) = 1. Intuitively, this yields a BDD inducing
the complete directed graph over States, i. e., all states are connected to each other. Mul-
tiplying this BDD with the transition probability matrix P̂ removes all transitions from P̂
which do not connect two states of the subsystem.

The algorithm proceeds as follows. First, the three empty objects States, NewStates, and
SubSys are created in line (1). If ModelCheck(P̂, Î, T̂) shows that � is exceeded, the reacha-
bility property is violated and the search for a counterexample starts (line 2). Otherwise, the
algorithm just terminates, returning an empty subsystem since no counterexample exists if the
property is not violated. The condition of the while-loop in line (3) invokes model checking
for the current subsystem SubSys and the initial states and target states. The loop runs until
ModelCheck(SubSys, Î, T̂) returns a value which is greater than �. In this case, the current
subsystem is critical. Please note that calling a model checking algorithm in each iteration is
quite costly. Depending on the input system, we search for a certain number of paths until we

13

PIRSES-GA-2011-295261 /MEALS Page 14 of 42 Public

invoke model checking. In every iteration, first the method FindNextPath(P̂, Î, T̂ , SubSys) in
line (4) returns a set of states which occur on a path or a set of paths through the system. If this
set is not empty, the current set of states is extended by these new states (line 6). Afterward, the
current subsystem is extended (line 7): ToTransitionBDD(States) generates a transition relation
between all found states. Multiplying the resulting BDD and the original transition MTBDD P̂
yields a probability matrix P0 ✓ P restricted to transitions between the states in States. These
transitions define the updated subsystem SubSys.

3.2 Path Search Concepts
We distinguish between two basic concepts of searching for paths: global search and fragment
search [16]. Global search finds paths that start in the initial state sI of the system and end in a
target state t 2 T . Fragment search searches for paths that connect already found states but visit
only new states in between. Each symbolic search method presented in this paper will follow one
of these concepts.

Example 3 Consider again the DTMC M in Figure 1(a). If we search for paths in decreasing
order of their probability, the following two most probable paths are found:

s0 s1 s3 1
0.5 0.5

s0 s1 s2 s1 s3 1
0.5 0.5 0.5 0.5

The second path contains a state repetition of s1 as it uses the corresponding loop. Note, that
for the global approach paths may di↵er only in the order and/or the number of loop iterations.
For instance, the second pat might occur many times with arbitrary many unrollings of the loop
s1s2s1.

The first two paths according to fragment search for most probable path fragments are as
follows:

s0 s1 s3 1
0.5 0.5 s1 s2 s1

0.5 0.5

The first path is the same as for global search, as initially only initial and target states can be
connected. The second path connects already found states: The most probable connection is the
loop between s1 and s2. In this example the global and the fragment search both build the same
subsystem presented in Figure 1(b).

3.3 Complexity of the Framework
The complexity of BDD-based algorithms strongly depends on the size of the BDDs. In terms of
variables, their size can in general only be bounded by O(2n

n) where n is the number of variables
the BDD depends on [35]. In terms of non-zero elements, every matrix of dimension m⇥m with k
non-zero elements can be represented—independently from the variable order—with O(k · log m)

14

PIRSES-GA-2011-295261 /MEALS Page 15 of 42 Public

nodes [21], which is even in the worst-case competitive to explicit sparse matrix representations.
For practical cases, which often contain many symmetries, the size is typically much smaller than
this upper bound.

The SAT problem, which we utilize to search for paths, is NP-complete [36], i. e., all available
algorithms have an exponential worst-case running time in the number of variables. Nevertheless,
practical problems inducing millions of clauses and hundreds of thousands of variables can be
often solved quickly using modern SAT solvers [37].

Due to the great gap between the worst case and the practically experienced complexity, a
worst-case analysis of these algorithms makes little sense. We will instead give an experimental
evaluation in Section 7.

4 Searching Paths Using SAT Solving
In this section we present two implementations for the method FindNextPath(...) (as invoked
by Algorithm 1) using bounded model checking and SAT solving. First, an existing method which
searches for paths of certain lengths is adapted to our symbolic framework, giving us a global
search procedure. Second, we present a new method which looks for path fragments that extend
a subsystem. Finally, we describe a new SAT-solving heuristic which guides the SAT solver to
prefer more probable path fragments.

4.1 Adapting Bounded Model Checking for Global Search
In [9], a bounded model checking (BMC) approach for DTMCs was developed. The input is
a symbolic representation of a DTMC M = (S , sI , P, L) and a set of target states, i. e., BDDs Î
and T̂ , and an MTBDD P̂ over a variable set Var = {�1, . . . ,�m} as described earlier. We assume
target states to be deadlock states, i. e., without outgoing transitions.

First, Tseitin’s transformation [38] is applied to generate formulae in conjunctive normal
form (CNF) for the BDDs Î, T̂ and P̂bool, where the latter represents the BDD for the induced
non-probabilistic transition relation for P̂ without any outgoing transitions from target states. We
denote the resulting CNF predicates by Ǐ(Var), Ť (Var) and P̌(Var,Var0), respectively. The BMC
formula is parametric in k 2 N and has the following structure:

BMC(k) = Ǐ(Var0) ^
k�1̂

i=0

P̌(Vari,Vari+1) ^ Ť (Vark) . (2)

The solution set of BMC(k) corresponds to the set of paths of length k from the initial to a target
state, where for each i = 0, . . . , k the set Vari = {�i,1, . . . ,�i,m} of Boolean variables is used to
encode the state at depth i on a path. That means, a satisfying assignment ⌫ :

Sk
i=0 Vari ! {0, 1}

encodes the ith state on the path by ⌫i : Vari ! {0, 1} with ⌫i(� j) = ⌫(�i, j) for each j = 1, . . . ,m.
If there is no satisfying assignment, there is no such path.

Usually multiple paths need to be found in order to form a counterexample, thus the solver
has to enumerate satisfying solutions for BMC(k), k = 0, 1, . . ., until enough probability mass

15

PIRSES-GA-2011-295261 /MEALS Page 16 of 42 Public

has been accumulated. Note that target states have no outgoing transitions in the encoding, i. e.,
paths end in the first target state that is reached and therefore two di↵erent paths from the initial
to a target state are never prefixes of each other. Therefore their corresponding cylinder sets are
disjoint and their joint probability is the sum of their individual probabilities.

To assure that a path is not considered several times, each time a solution is found it is excluded
from further search by adding new clauses to the SAT solver’s clause database. Assume that
the solver has found a solution ⌫ :

Sk
i=0 Vari ! {0, 1} for BMC(k). The found path is uniquely

described by the following conjunction:
k̂

i=0

m̂

j=1

�
⌫(�i, j)
i, j , (3)

where �1
i, j = �i, j and �0

i, j = ¬�i, j. To exclude the found path from the solution space of BMC(k),
the negation of the above conjunction is added to the solver’s clause database:

k_

i=0

m_

j=1

�i, j
1�⌫(�i, j) . (4)

This ensures that for a new path at least one state variable has to be assigned di↵erently as it is
done by ⌫.

Termination of the iterative construction of a critical subsystem is guaranteed, as the SAT
solver finds all paths of length k. Eventually, the subsystem will consist of all states that are
part of paths from initial to target states. This subsystem induces the whole probability mass of
reaching a target state in the original system. As the counterexample generation in Algorithm 1
only starts if the probability bound is exceeded, the probability mass of this system will also
exceed the bound. Therefore, the algorithm always terminates.

Example 4 Assume the symbolic representation of the DTMC M of Figure 1(a) as explained in
Example 2. We use the same set of variables Var = {�1,�2,�3} while we add another index for
the depth of the path at which each variable is used to encode a state. For example, the formula
�0

2,1 ^ �1
2,2 ^ �0

2,3 encodes state s2 at depth 2 of a path. As the shortest path that leads from
the initial state sI to the target state s4 has length 2, there will be no satisfying assignments for
BMC(0) and BMC(1). For k = 2, the formula

�0
0,1 ^ �0

0,2 ^ �0
0,3| {z }

s0

^ �0
1,1 ^ �0

1,2 ^ �1
1,3| {z }

s1

^ �0
2,1 ^ �1

2,2 ^ �1
2,3| {z }

s3

encodes the first path s0s1s3 of the global search in Example 3. The predicates P̌, Ǐ, and Ť are all
satisfied. Adding the negation of this formula to BMC(2) prevents the SAT solver from finding this
path again.

4.2 Adapting Bounded Model Checking for Fragment Search
The previously described approach of using a SAT solver to find paths leading from the initial
state of the DTMC to the target states is now extended according to the fragment search approach

16

PIRSES-GA-2011-295261 /MEALS Page 17 of 42 Public

as described in Section 3.2. We therefore aim at finding path fragments that extend the already
found system iteratively.

The intuition is as follows: In search iteration 0, the CNF formula given to the SAT solver
is satisfied if and only if the assignment corresponds to a path of arbitrary but bounded length
(by some predefined n 2 N which will be increased later if necessary) through the input DTMC
leading from the initial state sI to a target state t 2 T . This path induces the initial subsystem.
Subsequently, this system is extended by paths whose first and last states are included in the
current subsystem, while all states in between are fresh states.

For this we need to consider already found states for all possible depths d of a path, 0 d n.
For a state s let ⌫d

s : Vard ! {0, 1} be the unique assignment of Vard corresponding to state s.
We introduce a flag f d

s for each state s and each depth d. This flag is assigned 1 if and only
if the assignment of the state variables at depth d corresponds to the state s. Thereby, we can
“switch” the occurrence of a state s at level d by setting its flag f d

s to 0 or 1.

f d
s $ (�⌫

d
s (�d,1)

d,1 ^ · · · ^ �⌫ds (�d,m)
d,m) . (5)

The next variable Kd
j describes the whole set of states which have been found so far, namely in

the iterations 0, . . . , j of the search process (again in terms of the variables Vard for depth d).
Note, that these are exactly the states of the current subsystem SubSys after iteration j. We set
Kd
�1 := f d

sI
_V

t2T f d
t to allow for paths initially leading from the initial state to all target states.

Note that we assume all target states to have no outgoing transitions. Assume that in iteration j of
the search process the path ⇡ j = s0s1 . . . sn is found. We then define

Kd
j $

⇣
Kd

j�1 _
n_

i=0

f d
si

⌘
. (6)

All flags for the states s0 . . . sn can satisfy the right-hand side of this formula as well as the ones
hidden in Kd

j�1. Kd
j is thereby true i↵ the assignment corresponds to at least one of the states that

were encountered so far.
In the first search iteration j = 0 we need a formula which is true i↵ the variable assignment

corresponds to a path of arbitrary length—again bounded by n—leading from the initial state to a
target state of the DTMC.

Ǐ(Var0) ^
n_

i=0

Ť (Vari) ^ (7a)

n�1̂

i=0

h�¬Ť (Vari)! P̌(Vari,Vari+1)
� ^ �

Ť (Vari)! (Vari = Vari+1)
�i
. (7b)

Assume that ⌫ is an assignment corresponding to the path ⇡ = s0s1 . . . sn. Formula (7a)
states that the first state s0 is the initial state and that one of the states s0, . . . sn is a target state.
Formula (7b) ensures, that if a state si is not a target state, a valid transition will be taken to the
next state. On the other hand, if si is a target state, all following state variables will be assigned
si, which creates an implicit self-loop on this state. This is useful to detect when a target state is

17

PIRSES-GA-2011-295261 /MEALS Page 18 of 42 Public

reached, since otherwise the solver would be free to assign arbitrary values to the states following
a target state. The path returned to Algorithm 1 ends with the first target state sn.

For the following iterations j > 1 we require that each solution corresponds to a path fragment
that starts and ends in the current subsystem and contains at least one new state in between. For
this we need the previously defined variables K j

d:

K0
j�1 ^ P̌(Var0,Var1) ^ ¬K1

j�1 ^
n_

d=2

Kd
j�1 (8a)

^
n�1̂

d=1

h⇣
¬Kd

j�1 ! P̌(Vard,Vard+1)
⌘
^

⇣
Kd

j�1 ! Vard = Vard+1

⌘i
. (8b)

Formula (8a) ensures that the first state s0 of a solution path ⇡ j = s0 . . . sn is contained in the
set K0

j�1 of previously found states, that a transition is taken from this state to a not yet found state
s1 and that one of the following states sd, d � 2, is again contained in Kd

j�1. Formula (8b) enforces
valid transitions from all not yet found states si to si+1. If si was already included in previous
paths, then all following states are assigned to si, thereby again creating an implicit self-loop on
this state.

Termination is guaranteed, as the length of the paths is bounded by n. If no further satisfying
assignments are found, this number has to be increased. However, the diameter, i. e., the longest
cycle-free path of the underlying graph, is an upper bound on the length of loop-free paths from
sI to target states. Therefore, n needs to be increased only finitely many times, such that a critical
subsystem is always determined in finite time.

Example 5 Consider again the assignment �0,1 7! 0,�0,2 7! 0,�0,3 7! 0,�1,1 7! 0,�1,2 7!
0,�1,3 7! 1,�2,1 7! 0,�2,2 7! 1,�2,3 7! 1 which encodes the first path s0s1s3 for the fragment
search as in Example 3. Having this in iteration 0, (7a) is satisfied, as the assignment of the
variables in Var0 = {�0,1,�0,2,�0,3} encodes the initial state. The assignment of the variables in
Var2 = {�2,1,�2,2,�2,3} the corresponds to the target state. (7b) is also satisfied, as for the states
encoded by the variables Var0 and Var1, which are not target states, transitions are available
leading to the state at the next depth. As the variables from Var2 are assigned to a target state, all
following variable sets Varm with 2 m n will be assigned equally, thereby again encoding the
target state. This causes an implicit self-loop on the target state. According to (6), we build:

K0
0 $ (f 0

s0
_ f 0

s1
_ f 0

s3
), K1

0 $ (f 1
s0
_ f 1

s1
_ f 1

s3
), K2

0 $ (f 2
s0
_ f 2

s1
_ f 2

s3
) .

Intuitively, Kd
0 is true for 0 d 2 i↵ the variables at depth d are assigned to any of s0, s1 or s3.

For iteration 1, consider the assignment �0,1 7! 0,�0,2 7! 0,�0,3 7! 1,�1,1 7! 0,�1,2 7!
1,�1,3 7! 0,�2,1 7! 0,�2,2 7! 0,�2,3 7! 1. This encodes the second path s1s2s1 of the fragment
search (Example 3). First, (8a) is true: The variables from Var0 are assigned such that K0

0 is true
as f 0

s1
is true for �0,1 7! 0,�0,2 7! 0,�0,3 7! 1; a valid transition leads from s1 to s2; s2 satisfies

¬K1
0 , and at d = 2 again a state satisfying K2

0 is assigned, namely again s1. (8b) is also satisfied,
as for state s2—not satisfying K1

0—a valid transition is taken. Once Kd
0 for 0 < d n is satisfied,

all states at the following depths are assigned the same, again creating an implicit self-loop.

18

PIRSES-GA-2011-295261 /MEALS Page 19 of 42 Public

4.3 A SAT Heuristics for Finding More Probable Paths
A drawback of the SAT-based search strategies is that paths are found without considering their
probability beforehand. If paths or transitions with higher probabilities are preferred, the process
can be accelerated.

SAT solvers have e�cient variable selection strategies, i. e., strategies to decide which variable
should be assigned next during the solving process. We therefore modify only the choice of the
value the solver assigns to the selected variable, in order to prefer paths with higher probabilities.

The decision how to assign a variable is based on the transition probabilities. If a variable
�i+1, j is to be assigned at depth 0 < i + 1 n, its value partly determines si+1, being the target of
a transition with source si. We choose the value for �i+1, j which corresponds to the state si+1 to
which the transition with the highest probability can be taken (under the current assignment). This
can be applied for several consecutive transitions in the future up to the complete path. However,
as this computation is very expensive, we restrict the number of time steps we look ahead. For
our test cases, assigning variables for 3 possible consecutive transitions in one step led to the best
results.

Example 6 Consider the DTMC M from Figure 1(a). Assume the binary encoding as described
in Example 2. In the table below, a partial assignment ⌫part of the variables for a state si and
its successor si+1 is shown; “?” indicates, that this variable is not yet assigned, next, that this
variable will be assigned next.

si si+1

�i,1 �i,2 �i,3 �i+1,1 �i+1,2 �i+1,3

⌫part 1 1 ? next ? ?

The current assignment determines state si to be either s4 or s5. Assigning 1 to the next
variable �i+1,1, which is the first variable for the successor state si+1, would only lead to the
non-target absorbing state s6. As the most probable transition outgoing from s4 or s5 would be the
one leading to state s1 with probability 0.7, we guide the SAT solver to assign 0 here.

5 BDD-based Symbolic Path Search
In this section we present new BDD-based graph algorithms to implement the path search
procedure FindNextPath(...) as invoked by Algorithm 1. We first explain, how one can find
the most probable path through a symbolically represented DTMC using a set-theoretic variant
of Dijkstra’s algorithm, called Flooding Dijkstra [11]. This method is extended to allow the
computation of the k most probable paths of a DTMC. This procedure can be directly embedded
into the symbolic framework from Section 3, resulting in a symbolic global search. However, the
direct application leads to an exponential blow-up of the search graph. Therefore we introduce
an improved variant which—amongst other improvements—avoids this growth, called adaptive
global search. Afterward we present a new search method which symbolically searches for
the most probable path fragments that extend the current subsystem. We call this approach the
symbolic fragment search.

19

PIRSES-GA-2011-295261 /MEALS Page 20 of 42 Public

Algorithm 2 The Flooding Dijkstra algorithm for symbolic DTMCs

FloodingDijkstra(MTBDD P̂, BDD Î, BDD T̂)
begin

BDD UD := Î; (1)
MTBDD PR1 := Î, PR2 := 0, SP := 0, SPG := 0; (2)
while UD , 0 do (3)

PR2 := CalcProbs(UD,PR1, P̂); (4)
UD := GetStates(PR2,PR1); (5)
PR1 := UpdatePR(UD,PR1,PR2); (6)
SPG := UpdateSPG(UD, P̂, SPG); (7)

end while (8)
SP := GetPath(SPG, Î, T̂); (9)
return SP, SPG (10)

end

5.1 Flooding Dijkstra Algorithm
The Flooding Dijkstra algorithm was introduced in [11]. As it is used in all of our BDD-based
symbolic algorithms, we give a short explanation. The algorithm computes a shortest path, which
is in our context a most probable path, from the initial state of a DTMC to a target state. This is
done by a forward fixed point computation, iteratively improving for all states s of the DTMC
an under-approximation of the largest path probability from the initial state sI to s. Initially, the
under-approximation is 1 for the initial state and 0 for all other states. An update set, which
initially consists of the initial state, stores those states whose approximation was improved and
needs to be propagated to their successors. The di↵erence to the standard Dijkstra algorithm [26]
for computing shortest paths in a directed graph is that Flooding Dijkstra updates in each iteration
the approximations of the successors of all states from the update set, instead of restricting the
propagation to an optimal element with the minimal currently known cost (highest probability).
That means, in contrast to the depth-first search of the standard Dijkstra algorithm, the Flooding
Dijkstra algorithm operates in a breadth-first-style over sets of states. Therefore it can be e�ciently
implemented using MTBDD operations. For details on the di↵erences between the Flooding and
standard Dijkstra variant cf. [34, Section 5.2.1].

The Flooding Dijkstra algorithm is sketched in Algorithm 2. The parameters P̂, Î and T̂
specify the input DTMC with the target states. The BDD UD stores the update set of those states
that gained higher probabilities in the last iteration, whereas the probability approximations before
resp. after a propagation step are stored in the MTBDDs PR1 resp. PR2. A directed acyclic graph
(DAG) SPG (short for shortest path graph) is maintained to contain all most probable paths with
minimal length from the initial state to all other states (w. r. t. the current approximation). Please
note, that SPG is not a tree, as there may be two or more paths of the same highest probability
and length leading to the same state. After the fixed point has been reached, i. e., when the
approximation becomes exact, the last step of the algorithm extracts a single most probable path

20

PIRSES-GA-2011-295261 /MEALS Page 21 of 42 Public

(represented by the set SP of contained states) from the initial state to a target state. The following
methods are used:

CalcProbs(BDD UD, MTBDD PR1, MTBDD P̂) propagates the improved probability values
of states in UD to their successors. It calculates for all states s0 with at least one predecessor
s 2 UD the maximal currently known path probability to go from sI to a state in UD (as
stored in PR1) and from there in one step to s0 (according to P̂). The name “flooding”
indicates that hereby the maximum is formed over all states s 2 UD with P(s, s0) > 0.

Using (MT)BDD operations this is done as follows: PR1 stores the probabilities of the
most probable paths detected so far. Initially, only the initial state has probability 1 and
all other states 0. PR1 · UD restricts the probabilities to the states in UD. PR1 · UD · P̂
yields an MTBDD defined over Var and Var0. For an assignment ⌫s,s0 this MTBDD gives
the probability to go from sI to s (according to PR1) and then takes the direct transition
from s to s0. We quantify over the source states, i. e., the variables Var, taking the maximum
over all possibilities. Since the resulting MTBDD is defined over Var0, we rename these
variables to Var. This yields PR2.

GetStates(MTBDD PR2, MTBDD PR1) determines those states whose probability approxima-
tions were improved during the last propagation step. The resulting BDD contains those
states whose probability in PR2 is higher than in PR1. In detail, the operation APPLY(>,
PR2, PR1) is carried out.

UpdatePR(BDD UD, MTBDD PR1, MTBDD PR2) computes the maximum over PR1 and PR2,
where UD is assumed to contain those states whose values in PR2 are higher than in PR1.
This function is implemented using ITE(UD,PR2,PR1).

UpdateSPG(BDD UD, MTBDD P̂, MTBDD SPG) maintains the DAG according to the im-
proved probabilities for the update set UD. Those transitions of SPG that lead to a state
in UD, i. e., to a state whose probability was improved, are removed. The transitions that
cause the higher probabilities in PR2 are added.

GetPath(MTBDD SPG, BDD Î, BDD T̂) extracts one most probable path from the DAG SPG
by walking backward from T̂ to one of its predecessors until Î is reached. This is straight-
forward and will not be explained further.

When the while-loop terminates, the MTBDD SPG contains, for each state s, all most probable
paths with a minimal number of transitions from sI to s.

For both path search methods that we describe in the following, it is often beneficial not to
return only a single path, but all paths in SPG to a target state. Then we perform a backward
breadth-first search in SPG starting from T̂ in order to have only states from which the target state
is reached inside SPG. Therefore, the return statement of the Algorithm returns both SP and SPG.

Example 7 If the Flooding Dijkstra algorithm is run on the DTMC from Figure 1(a), a DAG
containing all paths of maximal probability from the initial state to all other states is computed.

21

PIRSES-GA-2011-295261 /MEALS Page 22 of 42 Public

This graph and the most probable path to the target state s3 of probability 0.25 and length 2 are
depicted below. The framed values above the nodes of the DAG show the computed probability
values from PR1.

s0

s1

s2 s4

s3

s5 s6

1

0.5

0.25

0.25

0.125

0.5 0.45
s0

s1

s3

The path is determined by invoking a backward breadth-first search from the target state.
Please note that in case there was another path of the same probability and length to the target
state s3 in the DTMC, there would be another path from s0 to s3 in the DAG. Please note also that
standard Dijkstra would compute the same result, only the way of computation di↵ers.

5.2 Adaptive Symbolic Global Search
In [11], a symbolic version of a k-shortest path search was presented. This corresponds to the k
most probable paths, leading from the initial state to a target state ordered by their probabilities.
Utilized for a counterexample search, the value of k is not fixed beforehand but the search termi-
nates if enough probability mass is accumulated [12]. The main components are the calculation
of a most probable path by the Flooding Dijkstra, see Section 5.1, and a transformation of the
DTMC such that the most probable path in the altered system corresponds to the second-most
probable path in the original system.

The adaption to our symbolic framework for the computation of critical subsystems is straight-
forward. Intuitively, for every new path the states on this path are available in BDD-representation
and returned to Algorithm 1 as the BDD NewStates. As long as still new states are needed to form
a critical subsystem, the k-shortest path search continues to deliver the next shortest path. This
adaption is shown in Algorithm 3.

Algorithm 3 The global search algorithm for symbolic DTMCs

SymbolicGlobalSearch(MTBDD P̂, BDD Î, BDD T̂ , BDD SP)
begin

if SP , 0 then (P̂, Î, T̂) := Change(P̂, Î, T̂ , SP); (1)
SP := ShortestPath(P̂, Î, T̂); (2)
return SP (3)

end

The parameters P̂, Î and T̂ represent the input DTMC and the target states, whereas SP stores

22

PIRSES-GA-2011-295261 /MEALS Page 23 of 42 Public

s0 s1

s2 s4

s3 1

s5 s6

s00 s01

s02 s04

s03 1

s05 s06 1

0.5 0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.7

0.3

0.1

0.9

Figure 4: Altered system.

the states of the shortest path. The following methods are used (for details on the MTBDD
operations we refer to the appendix of [11]):

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) is a symbolic implementation of the Flooding
Dijkstra algorithm described in Section 5.1. It returns a BDD that represents the states
occurring on a most probable path from the initial state represented by Î to a target state
from the set represented by T̂ .

Change(MTBDD P̂, BDD Î, BDD T̂, MTBDD SP) changes the DTMC (P̂, Î, T̂) such that the
most probable path in the new DTMC corresponds to the second-most probable path of the
original DTMC.

The idea is to use two copies of the DTMC. The initial state is in the first copy while the
target states are in the second copy. In the first copy, only edges of SP remain unchanged; all
other edges are redirected to the corresponding states in the second copy, in which all edges
remain unchanged. Then all paths—with the exception of SP—lead from the initial state to
a target state in this modified graph. As a consequence, every path to a target state needs to
take at least one transition at a certain depth that does not occur in SP at the same depth.
Therefore, the most probable path in the modified graph corresponds to the second-most
probable path in the original model. These modifications can be performed symbolically
by adding an additional state variable that indicates which copy is used. The MTBDD P̂ is
therefore extended by two variables: One for the source and one for the target state. The
adaptation of the transition relation is straightforward.

Example 8 To explain the procedure of altering the system using the above method, assume that
the first global path s0s1s3 of the DTMC shown in Figure 1(a) is found (the first global path in
Example 3). The altered system is depicted in Figure 4. The two copies of the DTMC are marked
by dashed rectangles. The initial state is still s0 while the new target state is the copy s03 of s3. Only

23

PIRSES-GA-2011-295261 /MEALS Page 24 of 42 Public

the transitions of the most probable path reside in the left copy. States, that are not reachable any
more are drawn gray and we omit the transitions. The dashed transitions are the ones that do not
belong to the most probable path and lead from the left to the right copy. The most probable path
in this altered system is now the path s0s1s02s01s03. This corresponds to the second-most probable
path of the original system as in Example 3. Note, that in order to find the next path, this whole
altered system is again copied.

As the whole modified system is copied again in every iteration (after each path), this procedure
leads to an exponential blow-up in the system size. The MTBDD resulting from the iterative
application of this altering grows also rapidly and renders this method inapplicable to systems
which require a large number of paths, as our test cases will show. A further drawback is that
many of the computed paths do not extend the subsystem and therefore do not lead to any progress.
We have implemented this approach in order to compare it to other ones, and call it symbolic
global search.

To present a symbolic global search approach that is usable for practical instances, we
developed a new improved variant. In comparison to the straightforward approach this on the one
hand avoids the exponential blow-up of the system size and on the other hand saves many search
iterations by adding sets of paths. Furthermore, the search algorithm uses an adaptive strategy in
order to find small counterexamples. We call this approach the adaptive symbolic global search,
depicted in Algorithm 4.

Algorithm 4 The adaptive global search algorithm for symbolic DTMCs

AdaptiveSymbolicGlobalSearch(MTBDD P̂, BDD Î, BDD T̂ , BDD SubSys)
begin

BDD SPG = 0; MTBDD P̂0; BDD Î0, T̂ 0; (1)
if SubSys = 0 then (P̂0, Î0, T̂ 0) := (P̂, Î, T̂); (2)
else (P̂0, Î0, T̂ 0) := Change(P̂, Î, T̂, SubSys); (3)
SPG := ShortestPath(P̂0, Î0, T̂ 0); (4)
return SPG (5)

end

Parameters are P̂, Î, T̂ and SubSys as well as an BDD SPG which stores the current DAG. The
methods di↵er from the ones for Algorithm 3 as follows.

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) returns the BDD representation of the DAG SPG
containing all most probable paths of minimal length from a state of Î to a state of T̂ . A
symbolic implementation of the Flooding Dijkstra algorithm as described in Section 5.1 is
used to obtain the DAG; a backward reachability analysis starting from T̂ yields SPG.

Change(MTBDD P̂, BDD Î, BDD T̂, MTBDD SubSys) In the improved version, the idea is to
not only exclude the most probable path from the system but all transitions from the current
subsystem. This is done by applying the transformation to the original DTMC and the

24

PIRSES-GA-2011-295261 /MEALS Page 25 of 42 Public

current subsystem SubSys instead of only the most probable path SP. In every step, we
redirect the transitions such that at least one transition not present in SubSys has to be found.

This avoids doubling the search graph after each path and therefore the exponential blow-up,
as in every step again the original system is used; the system size only increases linearly.
Furthermore, we always obtain a path having a transition that is not yet contained in the
subsystem at each time. Since the subsystem contains all transitions of the original DTMC
connecting two states in the subsystem, each new transition also contributes a new state.
Therefore the subsystem is extended in each iteration. Note that P̂ is always unmodified.

Returned to Algorithm 1 is SPG which represents not only a single shortest path but a set
of shortest paths. To further speed up the calculation, we add all states of this DAG to the
subsystem at once. As we will see in our experiments, the search process is accelerated by orders
of magnitude.

Adding many paths to the subsystem at once involves the risk that the computed counterexam-
ple has more states than needed and is of a probability that is not close to the probability bound.
We overcome this problem by using an adaptive search strategy: In case the current subsystem is
critical, i. e., its probability exceeds the probability bound, we measure the di↵erence of these
probabilities. If the di↵erence is higher than a predefined constant � > 0, we perform backtracking
to the state of the search procedure before the last spanning tree was added. We now add only a
single path at a time and terminate as soon as the probability bound is again exceeded.

5.3 Symbolic Fragment Search
In contrast to the previous approach, where we search for whole paths through the system, we
now aim at finding most probable path fragments as described in Section 3.2. This approach was
successfully implemented for explicit graph representations [16] and is now adapted to symbolic
representations, depicted in Algorithm 5.

Algorithm 5 The adaptive fragment search for symbolic DTMCs

AdaptiveSymbolicFragmentSearch(MTBDD P̂, BDD Î, BDD T̂ , MTBDD SubSys)
begin

BDD SPG, SubSysStates; (1)
if SubSys = 0 then (2)

SPG := ShortestPath(P̂, Î, T̂); (3)
else (4)

SubSysStates := ToStateBDD(SubSys); (5)
SPG := ShortestPath(P̂ \ SubSys, SubSysStates, SubSysStates); (6)

end if (7)
return SPG (8)

end

25

PIRSES-GA-2011-295261 /MEALS Page 26 of 42 Public

We need again a BDD SPG to store the DAG resulting from the Flooding Dijkstra algorithm.
The subsystem is now represented as an MTBDD SubSys, its states as a BDD SubSysStates. The
following methods are used:

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) returns again the DAG SPG describing all paths
of the highest probability leading to a target state.

ToStateBDD(MTBDD SubSys) computes for the transition MTBDD SubSys a BDD describing
all states that occur as source state or target state for one of the transitions of SubSys.
When SubSys is defined over the variables Var = {x1, . . . , xn} and Var0 = {x01, . . . , x0n},
this is done by first building the set OUT := 9x01, . . . , x

0
n. SubSysbool of all states with

an outgoing transition. Afterward, the set IN0 := 9x1, . . . , xn. SubSysbool of states with
incoming transitions is built. These resulting BDDs have to be defined over the same
variable set, therefore we perform variable renaming for the set of states with incoming
transitions: IN := IN0[x01 ! x1] . . . [x0n ! xn]. Building the union IN [OUT yields the
needed BDD.

The symbolic fragment search checks whether the parameter SubSys is empty, i. e., whether
this is the first search iteration. If this is the case, the base paths leading from the initial state
to a target state are computed by invoking the most probable path search. The resulting paths,
stored in the BDD SPG are returned to Algorithm 1. If SubSys is not empty, then a part of the
subsystem has already been determined. In this case we compute the state BDD SubSysStates
by invoking ToStateBDD(SubSys). The most probable path algorithm is called to find the most
probable paths from a state in SubSysStates to a state in SubSysStates inside the DTMC induced
by P̂ without using direct transitions from SubSysStates to SubSysStates. Note again that the
resulting DAG might describe a large number of such paths.

In contrast to the symbolic global search described in Section 5.2, the MTBDD for the transi-
tion relation needs no significant modification. We only need to exclude the current subsystem
from the further search in every iteration, which didn’t lead to any remarkable overheads in our
experiments. We also use the adaptive search algorithm in order to gain small critical subsystems
and call this the adaptive symbolic fragment search.

Example 9 To illustrate the advantages of the adaptive fragment search, consider the following
toy example DTMC with a single target state s3.

s0 s1

0.4

s2 s3 1

s4

s5

s6

0.8

0.2

0.6 0.5

0.25

0.251

1

1

26

PIRSES-GA-2011-295261 /MEALS Page 27 of 42 Public

Using the adaptive global search, first the path ⇡1 = s0s1s2s3 of probability 0.24 is found. The
self-loop on s1 is a transition starting and ending at states of the above path and will thus be
automatically contained in the DAG SPG. The next path is ⇡2 = s0s6s3 having probability 0.2.
Each of the next steps will extend ⇡1 by traversing the loops ⇡3 = s1s2s4s1 and ⇡3 = s1s2s5s1.

In contrast, the fragment search will first find the path ⇡1 and then the path fragments ⇡3 and
⇡4, both in one step. If the probability bound was not higher than � = 0.8, this su�ces to form a
critical subsystem. As in most of the available benchmarks such symmetric loop-behavior is very
common, this example is illustrative.

6 Related Work
This paper builds (amongst others) on the concepts used in [16, 11]. Jansen et al. [16] introduced
the global and fragment search techniques for the explicit generation of counterexamples. In
this paper, we adapted these techniques and developed both a SAT-based (cf. Section 4) and a
(MT)BDD-based (cf. Section 5) approach thereof. The experiments show a significant increase in
scalability over [16] by several orders of magnitude.

Günther et al. [11] presented a symbolic k-shortest path algorithm and exploited this in the
context of counterexample generation for DTMCs represented by MTBDDs. We adopted this
for the global search approach, but as opposed to [11] we do not obtain an MTBDD representing
a set of k shortest paths, but rather a representation as a critical subsystem of the DTMC (cf.
Section 5.2). In addition, we improved the running time of [11] by reducing the number of variable
shiftings for the transition MTBDD in our implementation.

The idea to use a k-shortest path algorithm in counterexample generation stems from Han
et al. [12]. They show that the k most probable paths in a DTMC (forming a counterexample)
correspond to the k shortest paths in a related weighted digraph. Using a k shortest path algorithm
by Jiménez and Marzal [39], the number of paths is not determined beforehand but on-the-fly by
an external condition. In this case that means that the search terminates once a counterexample has
been found. This avoids fixing some (arbitrary) k in advance, and allows for finding the smallest k
yielding a counterexample.

Aljazzar and Leue [15] exploit a best-first search for various search algorithms. The main
advantage is that this can be pursued in an on-the-fly manner, avoiding an a priori generation of
the state space. Using the simulation engine of Prism [7], a successor relation on states delivers
for one state exactly the explicit representation of its successors. Starting from an initial state
of the system, the system is thereby successively extended along most probable local paths.
Additionally, a heuristic function enables the user to use specific knowledge about benchmarks to
prefer or penalize certain states of the system. As there might be cases where it is be beneficial
to represent a counterexample by a subsystem instead of a set of paths, an extended best-first
search (XBF) is used, where for each node not only the predecessor inducing the optimal path is
stored but also the other connections. Thereby, a whole system instead of a single path is obtained.
The approaches are implemented in the tool DiPro [18]. Furthermore, the authors introduce an
on-the-fly algorithm called K? [40] for finding the k shortest paths, which is based on the similar
concepts.

27

PIRSES-GA-2011-295261 /MEALS Page 28 of 42 Public

Next we shortly discuss, how the approach implemented in DiPro could be adapted to the
symbolic setting. First of all, we always use subsystems as representations of counterexamples and
not sets of paths. As was already argued and evaluated in [15, 16], providing counterexamples in
form of subsystems is clearly superior to enumerating the paths in terms of running time and size
of the representation as well. Furthermore, having a subsystem, a path-based counterexample is
always induced as the set of all finite paths going from initial to target states inside the subsystem
forms a counterexample.

Adapting the best-first approaches as in [15, 40] to symbolic data structures is not directly
possible. Both our symbolic approach and the best-first approach tackle the state explosion
problem, the first one by using symbolic data structures, the second one by building the state space
successively. If the state space is already fully generated in form of an MTBDD representation,
it seems more reasonable to use search algorithms that take the whole system into account as
in our approach and not only locally optimal transition choices. Using heuristics for preferring
certain states as in these approaches could be adapted as follows: If a state is to be preferred or
penalized, the probability of its adjacent transitions can be scaled by a factor � 2 [0, 1] ⇢ Q, while
the probability of all other transitions is scaled by 1 � �. Thereby, a path leading through this state
becomes more probable or less probable, respectively, which would be taken into account by our
algorithms.

In [17], a method to compute a minimal subsystem inducing a counterexample was presented.
Unlike the path-based methods, solving techniques like SAT modulo theories (SMT) and mixed
integer linear programming (MILP) are used to encode and compute these minimal subsystems.
The implementation is available as part of the tool LTLSubsys. An adaption to the symbolic
setting poses the di�culty, that in order to minimize the number of states a variable for each
state needs to be introduced. With increasing explicit size of a system, these approaches become
infeasible.

Finally, in [41] the strongly connected components (SCCs) of the graph induced by a DTMC
are abstracted to single transitions leading through these SCCs. This is achieved by using Tarjan’s
algorithm [42] for finding SCCs and computing the overall probabilities of walking through
SCCs and exiting them at certain states. In [16], this concept was extended to arbitrarily nested
connected components combined with path search on abstract systems. Adapting these approaches
would be possible, as e�cient symbolic algorithms for finding strongly connected components
exist [43]. However, while this is straightforward for [41], defining a nested abstraction scheme as
in [16] is not obviously feasible for MTBDD representations and needs to be investigated further.

7 Case Studies
In this section we present an experimental evaluation of the approaches introduced in this paper.
We compare them with existing methods, which all rely on an explicit representation of the state
space. Measuring how useful counterexamples in practice are is di�cult. Obviously the size of a
counterexample plays a crucial role: If the counterexample is much larger than necessary, it will
be of little help for debugging. Therefore we focus on comparing the sizes of the counterexamples
computed by di↵erent tools. Additionally we measure the time for their computation and the

28

PIRSES-GA-2011-295261 /MEALS Page 29 of 42 Public

memory consumption of the tools. We will see that our novel symbolic methods can handle much
larger state spaces than all tools relying on explicit representations.

7.1 Implementation
We have implemented a prototypical tool in C++ for the approaches presented in this paper. It
uses the model checker Prism 4.0.3, the BDD package Cudd 2.5.0 [44], and the SAT solver
MiniSAT 2.2.0 [45].

We are going to compare our tool with DiPro [18], COMICS [19], and LTLSubsys [17], which
are—to the best of our knowledge—the only tools that support counterexample generation for
DTMCs in form of critical subsystems. In order to obtain comparable results, we use the same
Prism models for all tools. For COMICS and LTLSubsys, which cannot read Prism models, we use
Prism to convert the state spaces into Mrmc’s input format, which is essentially a list of reachable
states and transitions. DiPro, on the other hand, internally calls Prism to generate the state space.
For our tool chain, we modified Prism such that it is able to write its (MT)BDD representation of
the reachable states, the initial and target states, and the transition probability matrix into a file
that can be read by our tool.

Regarding the variable order of the BDDs, we use the order generated by Prism: state and next
state variables are interleaved, the Boolean variables which encode a certain integer variable of
the Prism model are kept together. For more information on Prism’s model representation, we
refer to [24]. Furthermore we did not use dynamic reordering [33] to reduce the size of the BDDs
during computations since the improvement in terms of running times due to slightly smaller
BDDs did not compensate the additional overhead for sifting.

For the SAT-based approaches, we also use the MTBDD of the transition probability matrix.
As described in Section 4.1, to obtain a SAT formula, we map all leaves with a positive value to 1.
This results in a BDD describing the possible transitions of the system. By applying Tseitin’s
transformation [38] we obtain a propositional formula in conjunctive normal form whose length
is linear in the number of nodes of the BDD.

For solving the formulae, we use MiniSAT. We extended it with a callback function which is
called each time a satisfying assignment has been found. This way the solver can continue its
search after reporting a solution without performing a restart from the beginning.

7.2 Models
We present results for the Probabilistic Contract Signing protocol [46], the Crowds protocol [47],
and a synchronous leader election protocol [48]. We used the Prismmodels [49] of these protocols,
which are publicly available at the Prism web page [50].

Probabilistic Contract Signing is a network protocol targeting the fair exchange of critical
information between two parties A and B. In particular, whenever B has obtained A’s commitment
to a contract, B should not be able to prevent A from getting B’s commitment. The PCTL property
P0.5

�
^ [knowA^¬knowB]

�
we are investigating describes an unfair situation where A knows B’s

secrets while B doesn’t know A’s secrets. The target states in our model are those states which

29

PIRSES-GA-2011-295261 /MEALS Page 30 of 42 Public

Model N-K States Transitions Probability �

crowds

5-6 18 817 30 158 0.426153 0.25
8-15 50 445 495 88 120 216 0.850540 0.20
10-20 4 163 510 716 10 172 513 716 0.931304 0.40
20-30 10 173 177 100 089 080 38 403 575 234 221 120 ?? 0.20

contract

5-2 33 790 34 814 0.515625 0.50
5-8 156 670 157 694 0.515625 0.50
7-2 737 278 753 662 0.503906 0.50
7-4 1 654 783 1 671 166 0.503906 0.50

leader 4-8 12 302 16 397 1.000000 0.50
8-4 458 847 524 382 1.000000 0.50

Table 1: Model statistics. Prism was not able to compute the reachability probabilities for
crowds20-30 within 2 hours.

carry the label knowA, but not the label knowB. The model is parametric in the number N of data
pieces to exchange and in the size K of each data piece.

The Crowds Protocol aims at anonymous communication in networks, where a crowd of n
users is divided into good members and bad members. A good member delivers a message to its
destination with probability 1 � pf and forwards it to another member, randomly chosen, with
probability pf . This guarantees that no bad member knows the original sender of the message.
Each session describes the delivery of a message to a sender. If a user is identified twice by a bad
member as the sender of a message, we assume that anonymity is no longer guaranteed. This is
called positively identified (Pos). The PCTL property we consider is P�(^Pos). The models are
parametric in the size N of the crowd and in the number K of sessions.

The synchronous Leader Election Protocol is run on a ring-structured network of N identical
nodes. The goal is to randomly elect a leader node, which can later serve, e. g., as a coordinator.
For the election, each node randomly draws a number in the range from 1 to K. If at least one node
draws a unique number, the one with the highest unique number becomes the leader. Otherwise
a new round starts. We investigate the property whether the probability to finally elect a leader
exceeds the bound �.

The three benchmark classes have di↵erent structures: while the Crowds protocol contains
nested loops, the protocol for contract signing is completely acyclic. The leader benchmark
contains non-nested loops which correspond to the rounds of the protocol. This will also be
reflected in the results.

Table 1 contains information about the di↵erent instances. The first column contains the
benchmark class, the second the values of the parameters N and K. The next three columns list
the number of states, transitions, and the actual probability (computed by Prism [7]) to reach a
state satisfying property ' from the initial state. The column titled “�” contains the upper bound
on the allowed probability.

7.3 Experimental Setting
All experiments were performed on an Intel Xeon E5-2643 CPU (3.3 GHz) with 32 GB RAM
running Ubuntu Linux 12.04. The timeout (TO) for counterexample generation was defined as

30

PIRSES-GA-2011-295261 /MEALS Page 31 of 42 Public

2 hours. We made 30 GB of memory available to the program, leaving 2 GB for the operating
system.

We do a comparison of the methods described in this paper with the following three tools:

The developers of DiPro [18] provided us with the most recent version of DiPro, which con-
tains a series of improvements and bug fixes compared to the published version. For comparison
with our tool we used three di↵erent algorithms, supported by DiPro on DTMCs: eXtended
Best First search (XBF), Eppstein’s k-shortest paths algorithm [51], and the K* algorithm by
Aljazzar and Leue [40] with X optimization (-kxsol switch). Model checking is performed every
50 iterations to check whether the computed subsystem is already critical, which is the default
setting of DiPro.

It is possible to extend DiPro with user-defined heuristics, which can considerably speed-up
the search. Such a heuristic, however, has to exploit the user’s knowledge about the structure
of the model under consideration. Since all other approaches work for arbitrary models without
knowing their internals, we did not develop any heuristics for DiPro to make the comparison fair.
As mentioned in Section 6, we could extend our approaches to use a heuristic like in DiPro.

The tool LTLSubsys can be used to compute minimal critical subsystems for DTMCs. It uses
mixed integer linear programming (MILP) to obtain a critical subsystem with a minimum number
of states [17]. It allows to add redundant constraints, which often speed up the solution process by
strengthening the linear relaxation of the MILP. We use the default settings which add forward
and backward cuts as well as SCC input cuts. The MILPs are solved using the commercial solver
Cplex 12.4 by IBM. Although Cplex supports multi-threading, we ran LTLSubsys only with a
single thread since all other tools work sequentially.

COMICS [19] is able to construct hierarchical, refineable counterexamples by abstracting
strongly connected components as well as critical subsystems of the DTMC. It can apply both
global search, i. e., the explicit-state counterpart of the method described in Section 5.2 using
the k-shortest paths algorithm by Jiménez and Marzal [39], and an explicit-state variant of the
fragment search method described in Section 5.3. We use both global and fragment search on the
non-abstracted system for our experiments.

Using COMICS and our symbolic algorithms, model checking is invoked for every 10th found
path. If the probability mass of the subsystem has reached around 95% of the needed mass, the
probability is checked for every new path. Using the adaptive strategy as explained in Section 5.2,
the number of subsequent iterations is heuristically determined with respect to the probability of
the paths contained in the spanning tree.

7.4 Results
In Table 2 we have collected a number of results we achieved with our symbolic methods on the
di↵erent instances of the described case studies with properties of the form P�(^').

We tested the methods for symbolic counterexample generation described in this paper as well
as the original bounded model checking approach [9], which computes a set of paths. We provide
results for the following symbolic algorithms:

31

PIRSES-GA-2011-295261 /MEALS Page 32 of 42 Public

c

r

o

w

d

s

5

-

6

c

r

o

w

d

s

8

-

1

5

c

r

o

w

d

s

1

0

-

2

0

l

e

a

d

e

r

4

-

8

l

e

a

d

e

r

8

-

4

c

o

n

t

r

a

c

t

5

-

2

c

o

n

t

r

a

c

t

5

-

8

c

o

n

t

r

a

c

t

7

-

2

c

o

n

t

r

a

c

t

7

-

4

10

1

10

4

10

7
#

S
t
a
t
e
s
/
#

N
o
d
e
s

States (original system)

#States (subsystem)

#Nodes of

ˆP (system)

#Nodes of

ˆP (subsystem)

Figure 5: Number of states and MTBDD nodes of the original system and the computed subsystem.
¡

Table 2: Results using symbolic methods (TO > 2 h, MO > 30 GB).

• BDD global: The naive BDD-based symbolic global search approach without optimizations,
described in Section 5.2.

• Adaptive BDD global: The BDD-based symbolic global search with optimizations also
described in Section 5.2.

• Adapt. BDD fragment: The BDD-based symbolic fragment search approach from Sec-
tion 5.3 with adaptive strategy and adding sets of paths at one time.

• SAT global: The global search approach using SAT solvers, see Section 4.1.

• SAT fragment: The fragment search approach using SAT solvers, Section 4.2.

• SAT fragment + H: The SAT-based fragment search approach together with the SAT
heuristic preferring more probable paths, Section 4.3.

• BMC classic: The original bounded model checking approach for DTMCs as described
in [9].

For the resulting subsystems we present their number of states (# states) and the number of
performed path searches (# paths) or the number of iterations (# iter.) for the symbolic adaptive
strategies. Additionally we report the reachability probability within this subsystem (prob.), the
computation time (time) in seconds, and memory consumption (memory) in megabytes.

The classic BMC-approach of [9] does not compute a subsystem, but a set of acyclic paths
which are annotated with loops. In order to make its result comparable with the subsystems
computed by the other approaches, we give the total number of involved states, which occur on
any of the computed paths or loops (# inv. states).

32

PIRSES-GA-2011-295261 /MEALS Page 33 of 42 Public

COMICSCOMICSCOMICS COMICSCOMICSCOMICS DiPro DiPro DiPro
Model N-K LTLSubsysLTLSubsysLTLSubsys global fragment XBF Eppstein K* w. X opt.

states # states # states # states # states # states
lower bound # paths # paths # vertices # vertices # vertices

prob. prob. prob. prob. prob. prob.
time time time time time time

memory memory memory memory memory memory
crowds 5-6 487 2038 803 1114 2076

457.19 55369 487 3051 8549
0.25 0.25 0.25 0.254 TO 0.292
TO 0.30 7.54 14.04 193.88

2382 56 32 333 4142
crowds 8-15 3274 3877

11390 25413
MO MO MO 0.211 TO 0.202

33.64 237.79
1392 3523

crowds 10-20

MO MO MO TO TO TO

contract 5-2 6683 6832 6684 6683 6770 7015
— 513 513 15911 23863 23863

0.501 0.501 0.501 0.501 0.501 0.516
0.21 0.12 3.98 1060.70 34.58 99.49

24 31 164 5770 999 1056
contract 5-8 37463 37674 37464 37463 37610 38755

— 513 513 77342 115123 115123
0.501 0.501 0.501 0.501 0.501 0.516

1.12 1.25 53.89 5363.96 163.27 622.36
106 141 904 28087 4805 5117

contract 7-2 139302 140050
— 8193

0.501 0.501 TO TO TO TO
8.29 62.14
411 642

contract 7-4 368705
—

0.501 TO TO TO TO TO
301.12

1032
leader 4-8 6150 6160 6426 6221 6160 7342

— 2049 2137 12302 12302 12302
0.50 0.50 0.50 0.505 0.505 0.596

61.94 0.70 22.29 23.75 18.62 52.08
123 16 565 1306 630 720

leader 8-4

TO TO TO TO TO TO

Table 3: Results using explicit methods (TO > 2 h, MO > 30 GB).

33

PIRSES-GA-2011-295261 /MEALS Page 34 of 42 Public

With the exception of LTLSubsys, all tools extend the subsystem until its probability measure
exceeds the bound �. LTLSubsys, however, starts with the whole DTMC as critical subsystem
and tries to reduce it, until a minimal critical subsystem (MCS) is obtained. At the same time it
maintains a lower bound on the size of the MCS which is successively improved. Optimality is
detected as soon as the lower bound and the size of the computed subsystem coincide. While
LTLSubsys computes the smallest possible critical subsystem, all other tools apply heuristics to
e�ciently compute small, but not necessarily minimal critical systems.

All results which were finished within the resource limits of 2 hours and 30 GB of main
memory are printed in boldface. For unfinished cases we give, if possible, the results that
were achieved so far. Note that the probability for these unfinished benchmarks lies under the
probability threshold. TO means that the time limit was exceeded, MO stands for exceeding the
memory limit.

We first demonstrate the e↵ectiveness of the BDD-based representation of the original system,
which is the starting point for both the SAT-based and the BDD-based methods, and of the
computed subsystem. In Figure 5 we show for the considered benchmarks the number of states
both of the original DTMC and of the subsystem computed by the adaptive global search approach.
Additionally the figure contains the number of MTBDD nodes of the transition probability matrix
P̂ of the original DTMC and of the subsystem. Note that the vertical axis is logarithmically scaled.

We can observe that the number of MTBDD nodes is often smaller by orders of magnitude
than the represented state space. In particular for the crowds instances the di↵erence between the
number of states and the number of MTBDD nodes spans several orders of magnitude. This is
because practical benchmarks are not random, but exhibit regularities in their system structure,
which is exploited by the BDD-based representation. Exceptions are possible, e. g., only for quite
large instances of the leader election protocol the BDD-based representation pays o↵.

Comparing the size of the original system and the size of the computed subsystem, we can see
that in most cases the subsystem is so small that it can easily be represented in an explicit way,
which opens the possibility to post-process it using exact minimization, e. g., using LTLSubsys, or
further heuristic minimization using COMICS, DiPro, or a greedy approach.

The results in Table 2 show that the adaptive BDD-based global and fragment search signifi-
cantly outperform all other symbolic approaches on our benchmarks sets. We can compute critical
subsystems for benchmarks consisting of billions of states. The memory consumption stays below
250 MB for all instances in Table 2 with the exception of leader8-4, while BDD-based global
search used up to 429 MB and the SAT-based approaches more than 4.7 GB.

For the leader instances, all paths corresponding to one successful election round have the
same probability and length. Therefore the adaptive strategies find all these paths in a single
iteration. For leader8-4 this yields a subsystem with a probability of 0.76 in about 2 seconds.
Since this probability exceeds the bound by more than 10 %, this step is undone, and the search
continues from scratch by computing a single path at a time. This explains the large number of
iterations and the relatively high running times for the leader election protocol. Additionally the
large BDD representation contributes to the high running times.

To evaluate the limits of adaptive BDD-based search strategies, we generated the instance
crowds20-30 with more than 1016 states and 3.8 · 1016 transitions. Adaptive BDD-based fragment

34

PIRSES-GA-2011-295261 /MEALS Page 35 of 42 Public

search computed, for a probability bound � = 0.2, a subsystem with 76 007 states, probability
0.208446 within 2972.36 seconds using less than 873 MB of main memory. It needed 96 iterations
for this. The adaptive global search returns a subsystem with 82 944 states and probability
0.207726 within 2497.89 seconds, using roughly the same amount of memory. It needed 43
iterations.

None of the explicit-state tools was able to handle this instance: COMICS and LTLSubsys
failed because we were not even able to store the explicit state space on hard disk. DiPro did
not immediately fail due to the limited memory, but ran into a timeout with all three search
methods. DiPro was able to at least start the search on this large instance. As the state space is not
constructed fully but on the fly using the extended best-first search, often relatively little memory
is required in spite of the explicit representation of the state space.

The adaptive BDD-based fragment search is superior to the adaptive BDD-based global search:
The former yields typically smaller subsystems than the latter. This is due to the fact that most
probable local extensions of the current subsystem are added, while the global search finds paths
that can traverse completely di↵erent parts of the state space. Nevertheless, depending on the
problem at hand this might also be of advantage.

We also measured the di↵erence between the original BDD-based global search and the
improved variant which does not need to double the graph after each iteration. While the former
is hardly able to handle any of the instances besides the smallest ones, the improved version
succeeds also when we only insert a single path at a time instead of all most probable paths of
minimal length. The reason for this behavior can be seen in Figure 6. The horizontal axis shows
the number of paths computed by the two variants of BDD-based global search. The vertical axis
of the graph on the left-hand side contains the computation time of each path in seconds, the graph
on the right-hand side the number of nodes of the BDD representation. We can observe that, for
the original global search, the computation time per path rapidly grows during the search process
and at the same time the number of BDD nodes increases substantially. This e↵ect is caused by
the strategy used to exclude the already found paths from the search space: each time a path has
been found, the state space is doubled and the transition relation adapted to exclude the found
path. This makes the introduction of two additional BDD-variables necessary. Thus the size of
the transition BDD grows, making the operations thereon more expensive. Our improved variant
does not su↵er from this e↵ect. It only needs to maintain two copies of the DTMC. Therefore the
size of the BDD for the graph on which the shortest path computation is performed and the time
per path stay almost constant.

When comparing the SAT- and the BDD-based approaches one can recognize that the former
performs much worse—in particular in comparison with the adaptive BDD-based search strate-
gies. The SAT-based approaches ignore the actual transition probabilities, while the BDD-based
approaches always compute the most probable paths. Therefore the BDD-based methods need in
general fewer paths to reach a critical subsystem. Additionally, the Flooding Dijkstra algorithm
computes not only one path at a time but all most probable paths of minimal length. Therefore the
adaptive strategies need few iterations to reach the probability bound. Not only the computation
time is higher for the SAT-based approaches, but also the memory consumption: for each found
path an additional clause has to be added to the solver’s clause database to exclude it from the
search space. Moreover a large number of conflict clauses is computed by the solver during the

35

PIRSES-GA-2011-295261 /MEALS Page 36 of 42 Public

0 200 400 600 800

0

5

10

15

20

Path number

T
i
m
e
p
e
r
p
a
t
h
(
s
e
c
o
n
d
s
)

original global search

improved version

0 200 400 600 800

0

5 · 105

1 · 106

1.5 · 106

Path number

N
o
d
e
s
i
n
t
h
e
t
r
a
n
s
i
t
i
o
n
M
T
B
D
D

Figure 6: Evaluation of the symbolic global search on crowds5-6.

search process, which significantly contribute to the memory consumption.

Table 3 shows the experimental results for the following explicit algorithms and tools:

• LTLSubsys [17] computes the smallest possible critical subsystem (in terms of states) using
an approach based on mixed integer programming.

• COMICS [19] using both global and fragment search on explicitly represented state spaces.

• DiPro [18] using three di↵erent methods: extended best first search (XBF) [15], Eppstein’s k
shortest path algorithm [51], and the K* algorithm [40], with X optimizations enabled [52].3

We provide the following data: the number of states contained in the subsystem (# states), the
number of paths (# paths) for COMICS, and the number of expanded vertices (# vertices) for DiPro.
For LTLSubsys we give—if the computed solution was not proven optimal—a lower bound
on the size of the optimal subsystem. Additionally we give the reachability probability within
the subsystem (prob.), the computation time (time) in seconds, and the memory consumption
(memory) in megabytes.

The approaches implemented in COMICS and DiPro are fast on small or medium-sized in-
stances. Since they represent the state space by enumerating all transitions, their memory
consumption is at least linear in the size of the DTMC. As DiPro does not construct the whole
state space beforehand, it su↵ers far less from this problem than COMICS.

The sizes of the subsystems computed by COMICS and DiPro are similar to those of the
symbolic approaches. The adaptive BDD-based search strategies return slightly larger subsystems
since they add several paths at once and perform model checking with a di↵erent frequency than
DiPro. This can delay when the tool recognizes that the subsystem has become critical. The
frequency of model checking has a great impact on the overall computation time since repeatedly
computing the reachability probability for the subsystem makes up more than 50 % of the total
running time.

3We omit the K* algorithm without X optimizations because it performed worse on all of our instances.

36

PIRSES-GA-2011-295261 /MEALS Page 37 of 42 Public

c

r

o

w

d

s

5

-

6

c

r

o

w

d

s

8

-

1

5

c

r

o

w

d

s

1

0

-

2

0

c

o

n

t

r

a

c

t

5

-

2

c

o

n

t

r

a

c

t

5

-

8

c

o

n

t

r

a

c

t

7

-

2

c

o

n

t

r

a

c

t

7

-

4

l

e

a

d

e

r

4

-

8

l

e

a

d

e

r

8

-

4

50

100

150

0

TO

MO

T
i
m
e
(
s
)

Adaptive BDD-based global search

Adaptive BDD-based fragment search

COMICS global search

COMICS local search

DiPro XBF search

" 1061 " 5363 " 1325

Figure 7: Comparing the running times of di↵erent tools.

The large di↵erences in computation times of the most e�cient methods are illustrated in
Figure 7. We can clearly see that the two adaptive BDD-based approaches are much faster than
the other methods, in particular for large instances.

LTLSubsys is restricted to small systems. In contrast to the other tools, it focuses on computing
optimal counterexamples. Although the complexity of this problem is unknown, it seems to be
hard. Therefore LTLSubsys is often not able to prove the optimality of its solution, but yields a
relatively small subsystem when the time limit is exceeded. It is the only tool which can give
information about the quality of the returned subsystem compared to the optimal one. LTLSubsys
can be used to improve the heuristic solutions of the other tools by applying it to the returned
subsystems. This will not yield a globally optimal counterexample, but a locally optimal one in
the sense that it is the smallest critical subsystem which is contained in the heuristic subsystem.

8 Conclusion and Future Work
In this paper we presented a new framework for the symbolic generation of probabilistic counterex-
amples for discrete-time Markov chains. We suggested several methods; thereby the symbolic
fragment search turned out to be the best alternative. Our experiments showed that using our
framework the size of input systems feasible for counterexample generation is increased by orders
of magnitude, compared to other approaches.

Binaries and source code of our COMICS tool and the benchmark sets used in this paper
are available at the COMICS-web page http://www-i2.informatik.rwth-aachen.de/i2/
comics/.

37

http://www-i2.informatik.rwth-aachen.de/i2/comics/
http://www-i2.informatik.rwth-aachen.de/i2/comics/

PIRSES-GA-2011-295261 /MEALS Page 38 of 42 Public

Bibliography
[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction

refinement, in: Proc. of CAV, Vol. 1855 of LNCS, Springer-Verlag, 2000, pp. 154–169.

[2] H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in: Proc. of CAV, Vol. 5123 of
LNCS, Springer-Verlag, 2008, pp. 162–175.

[3] R. Chadha, M. Viswanathan, A counterexample-guided abstraction-refinement framework
for Markov decision processes, ACM Transactions on Computational Logic 12 (1) (2010)
1–45.

[4] E. M. Clarke, The birth of model checking, in: 25 Years of Model Checking – History,
Achievements, Perspectives, Vol. 5000 of LNCS, Springer-Verlag, 2008, pp. 1–26.

[5] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Aspects of
Computing 6 (5) (1994) 512–535.

[6] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.

[7] M. Z. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: Verification of probabilistic real-time
systems, in: Proc. of CAV, Vol. 6806 of LNCS, Springer-Verlag, 2011, pp. 585–591.

[8] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, D. N. Jansen, The ins and outs of the
probabilistic model checker MRMC, Performance Evaluation 68 (2) (2011) 90–104.

[9] R. Wimmer, B. Braitling, B. Becker, Counterexample generation for discrete-time Markov
chains using bounded model checking, in: Proc. of VMCAI, Vol. 5403 of LNCS, Springer-
Verlag, 2009, pp. 366–380.

[10] B. Braitling, R. Wimmer, B. Becker, N. Jansen, E. Ábrahám, Counterexample generation for
Markov chains using SMT-based bounded model checking, in: Proc. of FMOODS/FORTE,
Vol. 6722 of LNCS, Springer-Verlag, 2011, pp. 75–89.

[11] M. Günther, J. Schuster, M. Siegle, Symbolic calculation of k-shortest paths and related
measures with the stochastic process algebra tool Caspa, in: Proc. of DYADEM-FTS, ACM
Press, 2010, pp. 13–18.

[12] T. Han, J.-P. Katoen, B. Damman, Counterexample generation in probabilistic model check-
ing, IEEE Transactions on Software Engineering 35 (2) (2009) 241–257.

[13] M. Kattenbelt, M. Huth, Verification and refutation of probabilistic specifications via games,
in: Proc. of FSTTCS, Vol. 4 of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2009, pp. 251–262.

[14] H. Fecher, M. Huth, N. Piterman, D. Wagner, PCTL model checking of Markov chains:
Truth and falsity as winning strategies in games, Performance Evaluation 67 (9) (2010)
858–872.

38

PIRSES-GA-2011-295261 /MEALS Page 39 of 42 Public

[15] H. Aljazzar, S. Leue, Directed explicit state-space search in the generation of counterex-
amples for stochastic model checking, IEEE Transactions on Software Engineering 36 (1)
(2010) 37–60.

[16] N. Jansen, E. Ábrahám, J. Katelaan, R. Wimmer, J.-P. Katoen, B. Becker, Hierarchical
counterexamples for discrete-time Markov chains, in: Proc. of ATVA, Vol. 6996 of LNCS,
Springer-Verlag, 2011, pp. 443–452.

[17] R. Wimmer, N. Jansen, E. Ábrahám, B. Becker, J.-P. Katoen, Minimal critical subsystems
for discrete-time Markov models, in: Proc. of TACAS, LNCS, Springer-Verlag, 2012, pp.
299–314.

[18] H. Aljazzar, F. Leitner-Fischer, S. Leue, D. Simeonov, DiPro – A tool for probabilistic
counterexample generation, in: Proc. of SPIN, Vol. 6823 of LNCS, Springer-Verlag, 2011,
pp. 183–187.

[19] N. Jansen, E. Ábrahám, M. Volk, R. Wimmer, J.-P. Katoen, B. Becker, The COMICS tool –
Computing minimal counterexamples for DTMCs, in: Proc. of ATVA, Vol. 7561 of LNCS,
Springer-Verlag, 2012, pp. 349–353.

[20] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Transactions
on Computers 35 (8) (1986) 677–691.

[21] M. Fujita, P. C. McGeer, J. C.-Y. Yang, Multi-terminal binary decision diagrams: An e�cient
data structure for matrix representation, Formal Methods in System Design 10 (2/3) (1997)
149–169.

[22] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic model
checking: 1020 states and beyond, Information and Computation 98 (2) (1992) 142–170.

[23] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, M. Ryan, Symbolic
model checking for probabilistic processes, in: Proc. of ICALP, 1997, pp. 430–440.

[24] D. Parker, Implementation of symbolic model checking for probabilistic systems, Ph.D.
thesis, University of Birmingham (2002).

[25] E. M. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability
solving, Formal Methods in System Design 19 (1) (2001) 7–34.

[26] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik
1 (1959) 269–271.

[27] N. Jansen, E. Ábrahám, B. Zajzon, R. Wimmer, J. Schuster, J.-P. Katoen, B. Becker,
Symbolic counterexample generation for discrete-time Markov chains, in: Proc. of FACS,
Vol. 7684 of LNCS, Springer-Verlag, 2012, pp. 134–151.

39

PIRSES-GA-2011-295261 /MEALS Page 40 of 42 Public

[28] J. G. Kemeney, J. L. Snell, A. W. Knapp, Denumerable Markov Chains, Springer-Verlag,
1976.

[29] M. Z. Kwiatkowska, G. Norman, D. Parker, Probabilistic symbolic model checking with
PRISM: A hybrid approach, in: J.-P. Katoen, P. Stevens (Eds.), Proc. of TACAS, Vol. 2280
of LNCS, Springer-Verlag, 2002, pp. 52–66.

[30] H. Hermanns, M. Z. Kwiatkowska, G. Norman, D. Parker, M. Siegle, On the use of MTBDDs
for performability analysis and verification of stochastic systems, Journal of Logic and
Algebraic Programming 56 (1–2) (2003) 23–67.

[31] R. E. Bryant, On the complexity of VLSI implementations and graph representations
of boolean functions with application to integer multiplication, IEEE Transactions on
Computers 40 (2) (1991) 205–213.

[32] B. Bollig, I. Wegener, Improving the variable ordering of OBDDs is NP-complete, IEEE
Transactions on Computers 45 (9) (1996) 993–1002.

[33] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in: Proc. of
ICCAD, IEEE Computer Society, Santa Clara, CA, USA, 1993, pp. 42–47.

[34] J. Schuster, Towards faster numerical solution of continuous time Markov chains stored
by symbolic data structures, Ph.D. thesis, Universität der Bundeswehr München, http:
//d-nb.info/102057920X/34 (2012).

[35] Y. Breitbart, H. B. Hunt III, D. J. Rosenkrantz, On the size of binary decision diagrams
representing boolean functions, Theoretical Computer Science 145 (1&2) (1995) 45–69.

[36] S. A. Cook, The complexity of theorem-proving procedures, in: Proc. of STOC, ACM Press,
1971, pp. 151–158.

[37] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press,
2009.

[38] G. S. Tseitin, On the complexity of derivations in the propositional calculus, Studies in
Mathematics and Mathematical Logic Part II (1968) 115–125.

[39] V. M. Jiménez, A. Marzal, Computing the k shortest paths: A new algorithm and an
experimental comparison, in: Int’l Workshop on Algorithm Engineering (WAE), Vol. 1668
of LNCS, Springer-Verlag, 1999, pp. 15–29.

[40] H. Aljazzar, S. Leue, K⇤: A heuristic search algorithm for finding the k shortest paths,
Artificial Intelligence 175 (18) (2011) 2129–2154.

[41] M. E. Andrés, P. D’Argenio, P. van Rossum, Significant diagnostic counterexamples in
probabilistic model checking, in: Proc. of HVC, Vol. 5394 of LNCS, Springer-Verlag, 2008,
pp. 129–148.

40

http://d-nb.info/102057920X/34
http://d-nb.info/102057920X/34

PIRSES-GA-2011-295261 /MEALS Page 41 of 42 Public

[42] R. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (2)
(1970) 146–160.

[43] R. Gentilini, C. Piazza, A. Policriti, Computing strongly connected components in a linear
number of symbolic steps, in: SODA, ACM/SIAM, 2003, pp. 573–582.

[44] F. Somenzi, Cudd: Cu decision diagram package release 2.5.0 (2013).

[45] N. Eén, N. Sörensson, An extensible SAT-solver, in: Proc. of SAT, Vol. 2919 of LNCS,
Springer-Verlag, 2003, pp. 502–518.

[46] G. Norman, V. Shmatikov, Analysis of probabilistic contract signing, Journal of Computer
Security 14 (6) (2006) 561–589.

[47] M. K. Reiter, A. D. Rubin, Crowds: Anonymity for web transactions, ACM Transactions on
Information and System Security 1 (1) (1998) 66–92.

[48] A. Itai, M. Rodeh, Symmetry breaking in distributed networks, Information and Computation
88 (1) (1990) 60–87.

[49] M. Kwiatkowska, G. Norman, D. Parker, The PRISM benchmark suite, in: Proc. of QEST,
IEEE Computer Society, 2012, pp. 203–204.

[50] PRISM Website, http://prismmodelchecker.org (Aug. 2013).

[51] D. Eppstein, Finding the k shortest paths, SIAM Journal on Computing 28 (2) (1998)
652–673.

[52] H. Aljazzar, M. Kuntz, F. Leitner-Fischer, S. Leue, Directed and heuristic counterexam-
ple generation for probabilistic model checking – a comparative evaluation, in: Proc. of
QUOVADIS, ACM Press, 2010, pp. 25–32.

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

41

http://prismmodelchecker.org

PIRSES-GA-2011-295261 /MEALS Page 42 of 42 Public

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

42

	Introduction
	Preliminaries
	Discrete-time Markov Chains
	Probabilistic CTL and Critical Subsystems
	Symbolic Representation of DTMCs

	Symbolic Counterexample Generation Framework
	The Framework
	Path Search Concepts
	Complexity of the Framework

	Searching Paths Using SAT Solving
	Adapting Bounded Model Checking for Global Search
	Adapting Bounded Model Checking for Fragment Search
	A SAT Heuristics for Finding More Probable Paths

	BDD-based Symbolic Path Search
	Flooding Dijkstra Algorithm
	Adaptive Symbolic Global Search
	Symbolic Fragment Search

	Related Work
	Case Studies
	Implementation
	Models
	Experimental Setting
	Results

	Conclusion and Future Work
	Bibliography
	MEALS Partner Abbreviations

