Completeness Results for Memory Logics

Carlos Areces®, Santiago Figueira®¢, Sergio Mera®:!

“INRIA Nancy Grand Est, France
b Departamento de Computacién, FCEyN
Universidad de Buenos Atres, Argentina
¢CONICET, Argentina

Abstract

Memory logics are a family of modal logics in which standard relational struc-
tures are augmented with data structures and additional operations to modify
and query these structures. In this paper we present sound and complete ax-
iomatizations for some members of this family. We analyse the use of nominals
to achieve completeness, and present one example in which they can be avoided.

Key words: Modal Logics, Hybrid Logics, Memory Logics, Completeness.

1. Modal Logics with Memory

Modal logics [1, 2] can be considered nowadays as languages specially de-
signed to describe properties of relational structures. They try to find a balance
between expressive power, easy of use, and computational complexity. Many
attempts have been made in recent years to increase modal logic expressivity
by adding some notion of state to standard relational structures. This is a nat-
ural need, since modal logics are used in many different scenarios as tools for
modeling behavior.

One example of such logics are epistemic logic with dynamic operators.
These languages are used to express the evolution of knowledge by means of
knowledge-changing actions. Such logics are often called Dynamic Epistemic
Logics (DEL) [3], and a large number of DELs has been proposed [4, 5, 6, 7].
These logics differ considerably in expressive power among themselves, but the
common idea is to represent knowledge evolution by accessing and changing the
model structure through logic operators. For example, representing the fact
that an agent obtains the information that ¢ is true in state w amounts to
eliminating all possible successor states where ¢ does not hold.

Other examples of logics which have the ability to model behavior are some of
the languages used by the software verification community. The logic XCTL of

Email addresses: carlos.areces@loria.fr (Carlos Areces), santiago@dc.uba.ar
(Santiago Figueira), smera@dc.uba.ar (Sergio Mera)
ISergio Mera is partially supported by a grant of Fundacién YPF.

Preprint submitted to Elsevier November 24, 2011

Harel et al. [8], for example, is a temporal logic with explicit global clocks which
are accessed and controlled through logic operators. Also from the software
verification community, we could mention the extension of temporal logic with
a concrete domain (e.g., the natural numbers with some operations like addition,
comparison, etc.) which is accessed via the so-called freeze operator [9, 10]. In
the extended language, we can model qualitative properties using the temporal
operators, and concrete properties —such as weight, temperature, etc.— using the
new machinery. To cite yet another example, concrete domains have also been
added to description logics, with much the same aims [11].

We would like to take a step back, and analyze some of the basic intuitions
that most of the formal languages mentioned above have in common. We want
to try to investigate the idea of adding an explicit state to a model, and being
able to access (and modify) it via logical operators. And we would like to take
this idea in its simplest form, in order to be able to understand it in detail.

We can take a standard relational structure and complement it with a data
structure, that will keep the state information we want to model. We will also
add to the logical language a collection of operations to modify and access the
data structure. Formally, given a relational structure (D, (R;.), cRe|, L) where D
is a non empty domain, (R,), Re| is a set of relations over D, and L : Atom —
2P is a labeling function that assigns atomic properties to elements of D, we
extend the structure with a set S C D. We can think of S as a set of states
that are ‘known’ to us, and it will represent our current ‘memory’. Even in this
simple setting we can define the following operators:

(D, (RT)TGRE|’ LS),wE@y iff (D, (RT)T€R€|7 L,SU{w}),wkE ¢
<D, (RT)TERG|’L7S>’W ': ® ifft wes.

As it is clear from the definition above, the ‘remember’ operator @ (a unary

modality) just marks the current state as being ‘known’ or ‘already visited’; by

storing it in our ‘memory’ S. On the other hand, the zero-ary operator ® (for

‘known’) queries S to check if the current state has already been visited. Notice

that the extension of S is dynamic and it can vary during the evaluation of a

formula; while the ‘concrete’ operation we can apply to S is simple membership.
Other operators can naturally be added, for example:

<D7 (Rr)reReh L, S), w): ®p iff <D7 (Rr)reReh L, S\{w}), w): ®
<D7 (R"')TER6|’ L, S)a w): @4,0 iff <D7 (RT)TGReh L, ®>aw ': ®-

L.e., we can use the forget operator @) to eliminate the current point of evalua-
tion from the memory S, while the erase operator (¢) completely wipes out the
memory S. We have introduced this family of logics, that we called memory
logics, and investigated its expressive power in [12, 13, 14].

The language we have just described is very flexible, and it can be used to
easily characterize model properties. For example if all states in the domain of
a model M satisfy the formula @@)(r)® then the relation R, is reflexive (we
wipe out the memory, memorize the current point of evaluation and verify that
it is accessible). Similarly, if they satisfy @@)r® then R, is symmetric.

Actually, using @), @, @ and & we can express properties similarly as how it
is done using binders in different hybrid languages [15, 16].

The two families of memory and hybrid logics are intimately related, but
there are differences among them. In [13; 14], for example, we have shown
that ML(®), ®)?, the modal language extended with @ and ®), is strictly more
expressive than the basic modal logic but strictly less expressive than the hybrid
logic HL(]). If we add the (e operator to ML(®@), ®), the resulting language is
still strictly less expressive than the hybrid logic HL(]). Furthermore, we also
know that if we add @ to ML(®,®) we have at most the expressive power
of HL({). It is an open problem whether this inequality is strict although we
believe it is. These two last results are not yet published. The former follows
using an argument similar to the proof of Theorem 6 of [13] and the latter
follows using a translation as the one used in the proof of Theorem 5 of [13].

In this article we are interested in providing complete axiomatizations for
memory logics. With this aim in mind, we will extend the language of memory
logics with further ingredients from the language of hybrid logics. In particular,
we will include nominals (atomic symbols which are true at a unique point in
the relational structure) and the @ operator (which allows us to control the
point of evaluation). As discussed in [17], the hybrid machinery can be used to
prove general completeness results, and to axiomatize logics which are otherwise
difficult to characterize.

The rest of the paper is organized as follows. In the next section we formally
introduce the different logics we will investigate. In Section 3 we present a sound
and complete axiomatization for HL(Q, @), ®), the basic modal logic extended
with nominals, @, and the) and & memory operators. In Section 4 we discuss
completeness for languages including the @) and () operators.

As it will be clear from the details that we present in the corresponding
sections, nominals and @ play a crucial role in these axiomatic characterizations.
Moreover, the axiomatizations we present are non-finite. On the other hand,
the results are fairly general, as they characterize not only the base case where
the languages are interpreted over the class of all possible models, but also when
we restrict ourselves to different subclasses (with the proviso that these classes
can be defined using ‘pure’ axioms).

In [13] we prove that the satisfiability problem of ML extended with (@
and ® is undecidable, and we introduce a decidable logic including @) and &
(strictly more expressive than ML) defining additional constrains on how the
modal and the memory operators interact. We will show a sound and complete
axiomatization for this logic in Section 5. Moreover, this axiomatization does
not require the hybrid machinery.

We conclude in Section 6 with some final remarks.

2Qur convention for naming logics is as follows. We call ML the basic modal logic, with
the standard operators; we use HL for the modal language extended with only nominals; and
we then list the additional operators included in the language. For example HL(Q, @), ©), ®)
is the modal language extended with nominals, and the @, @), ® and (¢) operators.

2. Syntax and Semantics of Memory Logics

In this section we formally introduce the languages mentioned above, to-
gether with some basic notation and notions related to completeness.

Definition 1 (Syntax). Let Prop = {p1,pa,...} (the propositional symbols),
Nom = {ny,ng, ...} (the nominal symbols) and Rel = {ry,rs,...} (the relational
symbols) be pairwise disjoint, countable infinite sets. Let Atom = Prop U Nom.
The set Forms of formulas in the signature (Prop, Nom, Rel) is defined as:

Forms =T [p|i|® |- |1 A2 | (r)e| Qo | @p | e | ©p,

where p € Prop, i € Nom, r € Rel and ¢, p1, 92 € Forms. We take [r]y as a
shorthand for —(r)—, and use the standard definitions for Boolean operators
like V, —, etc.

Definition 2 (Semantics). Given a signature S = (Prop, Nom, Rel), a model
for S is a tuple (D, (R;),cRel» L, S), satisfying the following conditions: (i)
D # 0; (ii) each R, is a binary relation on D; (iii) L : Atom — 2P is a labeling
function such that L(n) is a singleton whenever n € Nom; and (iv) S C D.

Given the model M = (D, (R;), cRe|, L, S) and w € D, the semantics for
the different operators is defined as follows:

M,wET always
M,w = p iff w € L(p) p € Atom
M, w = —p it MiwEe
MowEpAY iff M,w E pand M, w E ¢
Mw = (ryp iff there is w’ such that R, (w,w’) and M, w’ = ¢
M, w = Qp iff M,v = ¢ where L(i) = {v}
M, w | ©p iff (D, (RT)TGReIaLMgU {wh),wE ¢
MowE® iff wes
M, w ': ®p iff <D7 (RT)TEReh L, S\{w}>’w ': 4
M,w | @ iff (D, (RT)TGReIaL7®>7w E e

Given a model M, we say that ¢ is valid on M and write M = ¢ if for all
states w in the domain of M we have that M, w = ¢.

In the rest of the paper the following notation will be useful. Let M =
(D, (Rr),cRels L; S) be a model and w € D, then we define

M[+w] = <D’ (Rr)reRelv L: SU {w}>
M[-w] = (D,(R;),cRel> L, S\{w}).
For [o1w1, . .., 0nwy] a nonempty ordered list with w; € D and o; € {+, —},
let Mloqws,...,0pw,] = (Morwi])[osws, ..., onwy,], where M[] = M. We
will usually write [wy,...,w,] instead of [+wy, ..., +wy,].

Definition 3 (Satisfiability, Validity, Completeness). Let C be a class of
models. We say that ¢ is satisfiable in C if there is a model M € C and a state
w in the domain of M such that M, w = ¢. We say that ¢ is valid in C if —¢
is not satisfiable in C. The notions of satisfiability and validity can be extended
to set of formulas in the usual way. For example, we say that a set of formulas
I' is satisfiable in a class of models C if there is a model M € C and a state w
in the domain of M such that for all formulas ¢ € T' we have M,w | ¢. We
will note T'(C) the set of all valid formulas in C.

Given an axiomatization A, a formula ¢ is a theorem of A if it is an axiom
in A, or it can be obtained by a finite number of applications of inference rules
in A from axioms of A. We write T'(A) for the set of all theorems in A.

We say that a formula ¢ is consistent with respect to an axiomatization A
(or A-consistent) if —¢ is not a theorem of A. The notion of consistency can
be extended to a set of formulas I' by requiring that for no finite subset I'f, the
formula AT — =T be a theorem of A.

Given an axiomatization A and a class of models C we say that A is sound
for C if T(A) C T(C), and that it is complete for C if T(C) C T(A). Complete-
ness can be equivalently defined in terms of consistency and satisfiability: A is
complete for C if every formula consistent in A is satisfiable in C.

Finally, we say that an axiomatization A is strongly complete with respect
to C, if every A-consistent set of formulas is satisfiable in C.

In this article we will present a number of axiomatizations and prove them
(strongly) complete with respect to different classes of models. The different
logical languages involved will be defined in terms of the operators introduced
in Definitions 1 and 2; and we will be interested mainly in the class of all mod-
els, and the class {(D, (R,), cRel> L, S) | S = 0} of models with no previously
‘remembered’ states. This last class is a natural choice: in the absence of the (&
operator, evaluating formulas on such models provides additional expressivity,
and the intuitive meaning of the remember and known operators are naturally
captured. For example the formula @(r)® characterizes reflexivity of R, over
this class (that is, let M = (D, (R;),cRe|> L, S) be an arbitrary model, except
that S = 0, then M |E @(r)® if and only if R, is reflexive). This no longer
holds when S is arbitrary. See [13] for further details.

As we mentioned in the introduction, we will also be interested in a logic in
which the behavior of the remember operator is highly coupled with the modal
transitions to ensure decidability. In this logic, every time we make a modal
step, we are constrained to remember the current state. We change the semantic
definition of (r) to be:

(D, (Ry),cRels L, S),w = () iff Fw' € D, R, (w,w') and
(D, (Rr), cRels L, SU{w}),w' = ¢

We call this logic ML~ (HL™ for the hybrid case). As we proved in [14],
ML (®,®) is decidable and strictly more expressive than ML.

Axioms:

cT All classical tautologies Intro F@EAp) — Qp

Ka FQ;(p—q) — Q;p— Qiq Self-duale F Q;p <» -Q;—p

Ky FIrl(p = ¢) = ([rlp — [r]g) Ref F @i

Sym FQ;j « Qji Nom F (Qij AQjp) — Qip
Agree FQ;Q;p <> Q;p Back F(ry@Q;p — Q;p
Rem F Qi (@ ¢ »[®/(® Vi)])

Rules

MP If - and - ¢ — 2 then -9 Genjy If - ¢ then F [r]p
Name Fj— @ thent ¢ (j not in ¢) | Gena If F ¢ then F Q;¢
Paste If F (Q;(r)j A Qjp) — 9 then F (Q;(r)p) — 9

(j # ¢ and j is not in ¢ or ©)
SortedSuby If - ¢ then - ¢[p/+] for any p € Prop
SortedSuba If - ¢ then t ¢[i/j] for any i,57 € Nom

The expression ¢[a/b] is the result of uniformly replacing all occurrences of a in ¢ by b.

Figure 1: Axiomatization for HL(Q, @, ®).

3. Completeness for HL(Q, D, ®)

This section is devoted to prove a completeness result for HL(Q, @), ®). Our
axiomatization is shown in Figure 1. It is an extension of the axiomatization
for HL(Q) presented in [2].

The axiom characterizing the behavior of the memory operator is Rem. To
show soundness of the axiomatization, we only have to look at this new axiom.
Intuitively, the axiom says that, when standing in a state named by %, the act
of remembering the current state is equivalent to increase the extension of &
with ¢ throughout the formula. Formally:

Lemma 1. Let M be a model and w € M such that M,w = i. Then, for all
vEM, Mwl, v ¢ iff M,vEo[®/(® Vi)

ProOOF. By induction on ¢. For the base case, if ¢ is a proposition symbol or a
nominal, then since ¢ = p[®/(® V)] we have M[w],v = ¢ iff M, v = ¢. For
the ® case we have to prove M[w],v = ® iff M,v = ® V.

=) Assume that M[w],v = ®. If v = w, then M,v = i, and therefore
M,vE®Vi. Ifv#w,then M,vE ®, and hence M,v = ® V i.

<) Let’s assume that M,v = ® Vi. If v = w, then M[w],v E ®. On
the other hand, if v # w, then we know that M[w],v | —i, and therefore
M, v = ®. We conclude M[w],v E ®.

The conjunction, negation, diamond, @ and remember cases are straightfor-
ward, using the inductive hypothesis and the fact that the replacement operation
[®/(® V)] distributes over A, =, (r), @ and @.

Corollary 2. Rem is sound over the class of all models.

PROOF. Take an arbitrary model M and let w € M be such that M, w [i. By
definition M,v = @;@yp iff M[w],w = ¢. Applying the previous lemma, this
happens iff M, w = p[®/(® V i)] iff (by definition) M, v = Q;o[®/(® V)]

It is worth noting that having nominals in the language is a key feature
to describe the @/® interaction with modal operators, and the Rem axiom
strongly uses this feature. The possibility to identify with a nominal the state
in which a remember operation is taking place allows us to fully describe the
behavior of this interaction.

We now turn to completeness. We will build a Henkin model using named
maximal consistent sets (MCSs) for an arbitrary consistent set (see [2] for further
details).

Definition 4. An MCS is named if and only if it contains a nominal. We call
any nominal belonging to an MCS a name for that MCS. Also, if I' is an MCS
and ¢ is a nominal, then we call {¢ | @Q;p € T} a named set yielded by T.
Furthermore we say that a model is named if every state in the model is the
denotation of some nominal (for all w € D there is some nominal ¢ such that

L(i) = {w}).

The idea behind the construction presented in [2] is that we can extract all
the information we need to build a named canonical model from a single MCS.
We start by noting that hidden inside any MCS there is a collection of named
MCSs with a number of relevant properties:

Lemma 3. Let I' be an MCS. For every nominal i, let A; be {¢ | Q¢ €
I'}. Then, (i) for every nominal i, A; is an MCS that contains i; (i) for all
nominals i and j, if i € Aj, then A; = Aj; (i) for all nominals i and j,
Qo € A iff Qi € T'; and (w) if i is a name for T then T' = A,.

PrOOF. We only sketch the proof, the full details can be found in [2]. Claim
(i) can be proved using Ref (to guarantee that i € A;), Gena and Self-duala
(to prove that A; is an MCS). Claim (ii) is proved using Sym and Nom, Claim
(iii) follows by Agree. And Claim (iv) is obtained by Intro and Self-duala.

Given a consistent set of formulas ¥, we can always expand it to an MCS
YT using the standard Lindenbaum’s Lemma. The problem is that nothing
guarantees that this MCS will be named. In addition, as we want to extract
named MCSs from named sets yielded by X7, we have to ensure that there
are enough named MCSs to use as existential witnesses during the construction
of the Henkin model. Here is where the Name and Paste rules are useful.
Expanding the language with new nominals, the Name rule is going to solve
our first problem, and the Paste rule solves the second. We call an MCS I
pasted iff @Q;(r)p € T' implies that for some nominal j, @;(r)j A@Q;p € I'. Name
and Paste guarantee that any consistent set of formulas can be extended to a
named and pasted MCS.

Lemma 4 (Extended Lindenbaum Lemma). Let & = (Prop,Nom,Rel) be a
signature, let Nom’ be a countably infinite collection of nominals disjoint from
Nom, and let S’ be the signature obtained by extending S with Nom’. Then every
HL(Q, @, ®)-consistent set of formulas in S can be extended to a named and
pasted MCS in S'.

PRrROOF. Full details can be found in [2]. The proof follows the standard Lin-
denbaum’s construction with the following modifications. Take a consistent
set of formulas ¥, and name it by adding a new nominal k (use Name to
prove cousistency). Using an enumeration of all the formulas, we expand X
step-by-step with a formula that is consistent with the expanded set at each
point. Because we want the final MCS to be pasted, at the (m + 1)-th step,
when we are considering ¥™ and the formula @, y1, if ™ U {@n41} is in-
consistent, we set X! = Y™ Else, if ¢,,11 has the form @;{r)p, we set
Yl = 3 U {ppmi1} U{Q;(r)j A Q;(r)e}, where j is new (relying on the
Paste rule for consistency). If ,,11 does not have the form @Q;(r)¢, we set
Yl = $m U {p,41} as usual. Finally, we take the infinite union of all the .

Now we can define the model we need, using the named sets yielded by a
named and pasted MCS.

Definition 5. Let I" be a named and pasted MCS. The named model yielded
by Tis MY = (D", (Ry),Rel> L', S"). Here D' is the set of all named sets

yielded by T', RE(u,v) holds iff for all formulas ¢, ¢ € v implies (r)p € u,
LY (a) = {w € WY | a € w} for any atom a, and ST = {w | ® € w}.

Note that M is a well defined model, since by items (i) and (ii) of Lemma 3,
L assigns to every nominal a singleton subset of D'. Using the fact that I is
named and pasted, we can prove the following Existence Lemma

Lemma 5 (Existence Lemma [2]). Let ' be a named and pasted MCS, and let
M = (D, (R;),cRels L, S) be the named model yielded by T'. Suppose u € M
and (r)¢ € u. Then there is a v € M such that R,(u,v) and ¢ € v

Now we are ready to prove the Truth Lemma that will lead us to the desired
completeness result. Before that, to treat the @) case properly, we have to
redefine the complexity of the formulas, to be able to handle the substitutions
made by the Rem axiom.

Definition 6. We define the complexity of a formula as comp(¢) = 2(k+1)(r+
1)(d + 1) + v, where k, r and d are the number of occurrences of ®, @ and
(r) respectively, and v is the number of occurrences of all the other possible
operators.

Note that with this definition, comp(@p) > comp(p[®/(® V i)]).

Lemma 6 (Truth Lemma). Let M = (D, (R;), cRe|> L, S) be the named model
yielded by a named and pasted MCS, and let w € D. Then, for all formulas p,

pEu iff Myu = .

ProOF. By Induction on the complexity comp of ¢. The atomic, boolean and
modal cases are obvious (the Existence Lemma is used for the modal case,
and the ® case follows directly from the definition of ST). We analyze the
satisfaction operators. Suppose M, u = @;¢p. This happens iff M, A; = ¢ (by

items (i) and (ii) of Lemma 3, A; is the only MCS containing ¢, and hence,
by the atomic case of the present lemma, the only state in M where i is true)
iff v € A; (by inductive hypothesis) iff @;¢p € A; (using the fact that i € A;
together with Intro for the left-to-right direction and Intro and Self-duala for
the right-to-left direction) iff @;3) € u (by Agree).

To finish let’s analyze the case for @. Given u € M, we know that for some
nominal ¢ we have u = A;, so by definition, M,u = ¢ and i € u. Suppose
M,u = @. This happens iff M,u = Q;@y (because M, u = i) iff M,u |=
Q[®/(®Vi)] (by Corollary 2) iff M, u = ¢¥[®/(®Vi)] (again because M, u =
i) iff Y[®/(®Vi)] € u (by inductive hypothesis) iff @;[®/(®Vi)] € u (because
i € u, using Intro for the left-to-right direction, and Self-dualq and Intro for the
right-to-left direction) iff @;@y € u (by the Rem axiom) iff @y € u (because
i € u, applying again Intro and Self-duala).

Theorem 7 (Completeness for HL(Q, @, ®)). Every MCS in HL(Q, @, ®) is
satisfiable in a countable named model.

PROOF. Let ¥ be a consistent set of formulas from HL(Q, @), ®). We use the
Extended Lindenbaum Lemma to expand it to a named and pasted set ¥ in an
extended countable language. Let M be the named model yielded by ¥T. By
item (iv) of Lemma 3, because ¥ is named, 3T is an element in the domain of
M. By the Truth Lemma, M, %" = X. The model is countable because each
state is named by some nominal in the extended language, and there are only
countably many of these.

This establishes strong completeness as desired. But in fact, we have done
more. Because our Henkin model is named, we can prove a more general result.

Definition 7. If a formula ¢ contains no propositional symbols (that is, its
atoms are nominals or &), we say that ¢ is ®-pure. Furthermore, if ¢ is a
&r-pure formula, we say that i is a &-pure instance of ¢ if ¥ is obtained from
© by uniformly substituting nominals for nominals. A formula ¢ is pure if its
atomic subformulas are only nominals.

The axiomatization we presented in Figure 1 for HL(Q, @), ®) has the fol-
lowing property: for any set of pure formulas II, if P is the logic obtained by
adding the formulas in IT as axioms, then P is complete with respect to the class
defined by II.3> This result can be extended to ®-pure formulas for the case of
HLy(Q, @, ®), the logic obtained over the class {(D, (R,) L,S)|S =0}
of models with no previously remembered states.

We first state a property that will help us achieve the completeness result
for pure axioms.

reRel

Lemma 8. Let M = (D, (R;) L, S) be a named model.

r€RE|’

3These general completeness results are standard in hybrid logics (see [17]).

1. Let ¢ be a pure formula, and suppose that for all pure instances ¥ of p,
M = 1. Then for any L' and S', (D, (R;), Rels L', S") F ¢-

2. Let S = () and ¢ be a ®-pure formula. Suppose that for all ®-pure instances
Y of o, M =4, Then for any L', (D, (R;), cRel, L's S) E ¢-

PrROOF. We only discuss item 2. Suppose that the hypothesis holds, but for
some labeling L', (D, (R;), cRel, L', 0) # . We can take p, a ®-pure instance
of ¢, such that p is obtained from ¢ replacing each nominal ¢ by j, where
L'(i) = L(j). By an induction on the formula complexity, it is easy to see that

(D, (R;),cRel» L+ 0) [~ p. This is a contradiction.

With the help of Lemma 8, and since we showed that we can build named
models from HL(Q, @), ®)-MCSs, a wide range of strong completeness results
can be established (with the same proof as the one given in [2]).

Theorem 9. Let II be a set of pure formulas and let A be the axiomatization
obtained by adding formulas in I as azxioms to the axiomatization shown in
Figure 1. Then, every A-consistent set of formulas is satisfiable in a countable
named model in the class defined by II.

ProoOF. Given an A-consistent set of formulas €2, we can use the Extended
Lindenbaum’s Lemma to extend it to a named an pasted A-MCS Qt. The
named model M that QO gives rise to will satisfy Q at Q. In addition, as
every formula in II belongs to every A-MCS, we have that M |= II. Therefore,
by Lemma 8, M is in the class of models defined by II.

To finish this section we will discuss an extension of the axiomatization
presented above to characterize HLy(Q, @), ®).

Theorem 10. The system obtained by extending the axiomatization in Figure 1
with the axiom (Empty) - —®) is sound and strongly complete for HLy(Q, @, ®).

PROOF. Soundness of Empty is obvious for the class of HLy(Q, @), ®)-models.
The completeness proof is as the one for HL(Q, @), ®), but in addition, thanks
to Empty, all maximal consistent sets A; are such that =& € A;. Therefore, the
final model yielded by T', MY = (D', (RL) LY, ST is such that ST = 0,
and thus, it is a HLy(Q, @), ®)-model.

reReI’
Proposition 1. For the case of HLy(Q, @), ®), the result of adding I1, a set of
pure formulas, can be extended to a set 11 of ®-pure formulas

PRrROOF. Trivial, using Lemma 8, and the same proof as in Theorem 9.

4. Completeness for the Erase and Forget Operators

We now turn to languages containing the (¢) and (&) operators. We will first
discuss completeness for HL(Q, @), @), ®), then for HL(Q, @, ®), ®), and finally
for the language HL(Q, @, @, ®, ®).

10

Axioms:

All the axioms from HL(Q, @), ®) except Rem
Rem’ +@,(@¢ < ¢1)

Erase; F @ ®

Eraseas F @s<>s s € PropUNom
Erases F (®—p > —~@p

Erases @@ Aq) ¢ (@A @)
Erases F @©(r)p + (r)@©p

Erases F @Q;p <> Q;(@@p

Eraser Qi (@®@¢ < ©¢))

Rules:

All the rules from HL(Q, @, ®)

Figure 2: Axiomatization for HL(@, @), ®, ®).

4.1. Aziomatizing HL(Q, @), ©, ®)

We take as a starting point the axiomatization for HL(Q, @), ®) presented
in Figure 1. The first thing we should notice is that the Rem axiom is no longer
sound. For example, take the valid formula @;@(®V1) and use Rem to conclude
@;@®@®. This is clearly a contradiction, since after wiping out the memory,
& cannot be true. Observe that the problem lays in the interaction between
@® and (@. The replacement operation defined by Rem cannot be carried out
throughout the whole formula: it should avoid replacements within the scope of
an (e). More formally, for each formula ¢ and nominal i we define the formula
pr as follows:

pr = p p€PropUNom
®, = ®Vi
(—p); = —¢f
(p1A@2)i = @17 A2y
(©p); = ©¢;
(re); = (ref
(Qjp); = Qg5
(@p); = @

Analogously to Lemma 1, we can use (-)* to characterize the behavior of the
® operator and its interaction with the (g) operator.

Lemma 11. Let M be a model and w € M such that M,w |= i. Then
Mw = @ iff Mw = @7

This result naturally suggests an axiom Rem’ (shown in Figure 2) that
replaces Rem. To characterize the (¢) operator we should notice first that it
behaves globally and that it does not change the evaluation point. This implies
that there is no interaction between (© and —, A, (r) and @. To describe the
interaction between (@ and () we can again make use of the operation (-)*. The
detailed axiomatization is in Figure 2.

11

Soundness of this axiomatization is straightforward. The completeness proof
uses the same techniques introduced in Section 3. The proof of the Truth Lemma
is carried out by induction in the complexity of the formula, and the new axioms
handle the case for (&) by appropriately reducing the complexity in order to use
the inductive hypothesis, as it is done in Lemma 6.

So now we can give the strong completeness result for HL(Q, @), ©, ®). The
proof of this theorem follows exactly the same technique used in Theorem 7.

Theorem 12 (Completeness for HL(Q, @), @), ®)). Every MCS of formulas in
HL(Q, @, ©,®) is satisfiable in a countable named model.

Since it is clear that Lemma 8 still holds in HL(Q, @), @), ®), and the canoni-
cal model we built is named, it is easy to see that one can also establish a stronger
completeness result in terms of pure formulas for HL(Q, @), @, ®), in the same
way as stated in Theorem 9 and Theorem 10.

Theorem 13 (Completeness for HL(Q, @), @), ®)). Let II be a set of pure for-
mulas and let A be the axiomatization obtained by adding formulas in 11 as
axioms to the axiomatization shown in Figure 2. Then, every A-consistent set
of formulas is satisfiable in a countable named model in the class defined by 11.

4.2. Aziomatizing HL(Q, @, ®), ®)

Let’s consider an axiomatization for HL(@, @, ®, ®). The main complica-
tion, compared with the case we just discussed, is that the @ operator has a
local behavior, and clearly depends on the point of evaluation. Hence, describ-
ing its interaction with the () operator will be more involved. We will require
two rewriting functions ()" and (-)/. Using these two functions, we can obtain
a very simple axiomatization of HL(Q, @, ®, ®) (see Figure 3).

Axioms:

All the axioms from HL(@)
Rem F Q@;(@p < ¢])
Forg F@;(®p ¢ ©])
Rules:

All the rules from HL(Q)

Figure 3: Axiomatization for HL(@, @), ®, ®).

For each formula ¢ € HL(Q, @, @, ®) and nominal i, we define the formula
@l as follows:

12

p; = p p€PropUNom
® = (®VI)
(—@)i = ¢
(p1 A p2)i = (p1f Ap2i)

(©p); = @¢;

(M) = (re]

(Qp); = Qp}

(@) = @ = @) A (=i = ¢]))

Lemma 14. For every pointed model (M, w) such that M,w |= i, and for all
vEM, M+wl,v ¢ iff M,v = ¢l

PRrROOF. By induction on ¢. For the base case, if ¢ is a proposition symbol or
a nominal, say a, then since a = a we have M[+w],v = a iff M,v | a. For
the ® case we have to prove M[+w],v = ® iff M,v = ® V1.

=) Assume that M[+w],v E ®. If v = w, then M, v |= 4, and therefore
M,vE®Vi. Ifv#w,then M,v}E ®, and hence M,v = ® V i.

<) Let’s assume that M,v = ® Vi. If v = w, then M[+w],v = ®. On
the other hand, if v # w, then we know that M[+w],v = —, and therefore
M, v E ®. We conclude M[+w],v E ®.

Let’s analyze the ¢ = @n) case. Suppose that v = w, therefore M[+w], w |=
@y it M[+w, —w],w E ¢ iff M[—w],w = ¢ iff (because M[—w],w [= 7)
M[—w],w = (i =) A (=i — F) iff (by definition of ®) M,w = @((i = ¢¥) A
(=i — 7). On the other hand, suppose w # v. Therefore, M[+w],v = @y iff
M[+w, —v],v | ¢ iff (because v and w are different states) M[—v, +w,],v E
¢ iff (by inductive hypothesis) M[—v],v | ¢f iff (because M[—v],v = —)
M[—v],v = (i =) A (=i — 7) iff (by definition of @) M,v E ®((i —
B) A (=i = 40)

The conjunction, negation, diamond, @ and remember cases are straightfor-
ward, using the inductive hypothesis and the fact that the translation from ¢
to ¢! distributes over A, -, (r), @ and @).

Corollary 15. Let M by a model, and w € M. Then M,w = Q;(@®p < ¢F).

In the same way, we can define a formula <plf to deal with the @) case:

plf = p pé€ PropUNom
®§ = (®A-)
(ﬁ‘ﬂ)i = T¥;
(o1 A <P2)§ = (<P1{-; A 902{)

(@9‘7)1 = ®y;

(o)) = (el

(@) = @]

(@) = ®(— @) A (=i — @)

13

Lemma 16. For every pointed model (M, w) such that M,w =i, and for all
veM, M—wl,v @ iff Myv =l

ProOOF. By induction on . The only cases that are worth analyzing are &)
and @). The other cases are equivalent to the proof of Lemma 14. For the &
case we have to prove M[—w],v = ® iff M,v = ® A —i.

=) Assume that M[—w],v E ®. If v = w, this is an absurd, so v # w.
Therefore M, v = ®), and hence M, v = ® A —i.

<) Let’s assume that M, v = ® A —i. If v = w, then M, v = 4, so this is an
absurd. Therefore v # w, and then we know that M[—w], v = ®), and therefore
M[—w],v E ® A —i.

Let’s analyze the ¢ = @1 case. Suppose that v = w, therefore M[—w], w =
@y iff M[—w,+w],w E ¢ iff M[+w],w = ¢ iff (because M[+w],w [i)
M[+w],w (i =) A (=i — b)) iff (by definition of @) M, w = @((i —) A
(i — wlf)) On the other hand, suppose w # v. Therefore, M[—w],v |E @y iff
M[—w,+v],v = ¢ iff (because v and w are different states) M[+v, —w,],v |=
¥ iff (by inductive hypothesis) M[+v],v = %f iff (because M[+v],v = —i)
M+l = (i =) A (=i — pf) iff (by definition of @) M,v = @((i —
W) A (i = 6]))

Corollary 17. Let M by a model, and w € M. Then M,w = Q;(®p < cp{)

Soundness of Rem and Forg in the axiomatization of HL(Q, @, ®, ®) in
Figure 3 are a direct consequence of Corollaries 15 and 17.

To achieve completeness, we first have to give an adequate notion of com-
plexity of formulas in such a way that the Truth Lemma for this logic can be
shown. As in section 3, we look for a function comp : Forms — N such that
comp(@p) > comp(e[®/(® V i)]). But in this setting, to account for the new
axioms of Figure 3, we have stronger restrictions: we need to find a function
such that comp(®@yp) > comp(e]) and comp(@p) > comp(cp{). The complexity
given in Definition 6 is not suitable because the lengths of ¢} and aplf are much
larger than the length of . We next show some upper bounds for the lengths
of ¢ and gpzf and then we define a suitable complexity function.

Observe that some right-hand formulas in the definition of ¢} and gp{ are
abbreviations of formulas using A and — as the only boolean connectives. Having
this in mind, it can easily be shown the following equalities concerning |¢|, the
length of a formula :

(@0)i| = 15+ o] + ||
(@) = 15+]¢|+ ¢
Aw);]l = 3+|ofl+ ;| forx € {r,f}
(te);] = 1+|pi| forte{~,(r),@;} and * € {r, f}
® = 8
®/ = 6

14

It can be shown by induction in ¢ that max{|¢?|, |¢f|} < (J¢| +7)2 Let n,(p)
denote the nesting depth of @ in the formula ¢, i.e. the maximum number of
occurrences of (@ along the paths of the syntactic tree of . In the same way,
let ns(p) denote the nesting depth of @ in . Observe that n,.(¢) = n,(¢])

and ns(p) = ny(p]).
Let ¢(¢) : Forms — R be defined as

(o) = 93(nr (@) +ny(¢)) -log ¢l

The reader may verify that ¢(@p) > ¢(¢?) and ¢(®p) > c¢(¢!). Furthermore,
for all the subformulas ¢ of a formula ¢, c(¢) is strictly increasing in |4
Therefore, comp : Forms — N defined as

comp(ga) _ 2C(Lp) _ |w|23(nr(tﬁ>+nf(tﬂ))

is a suitable complexity function.

With the complexity function properly defined, strong completeness fol-
lows using the same techniques introduced in Section 3. As in the case for
HL(Q, @), @, ®), it is easy to see that the result holds for any pure axiomatic
extension.

Theorem 18 (Completeness for HL(Q, @, @, ®)). Let II be a set of pure for-
mulas and let A be the ariomatization obtained by adding formulas in 11 as
axioms to the axiomatization shown in Figure 8. Then, every A-consistent set
of formulas is satisfiable in a countable named model in the class defined by I1.

4.3. Aziomatizing HL(Q, @, ©, D, ®)

Finally, putting together the ideas from the previous two axiomatizations we
obtain a sound and complete axiomatization for HL(Q, @), @, ®, ®). The first
step is to extend the definition of ¢} and cpif to handle the case of ()

(@p); = @y
(@¢)] = @

Note that Lemmas 14 and 16 still hold. Now we only need to add the axioms
we used to characterize () with minor changes. Observe that the complexity
function defined in Subsection 4.2 is appropriate for this case also. The final
axiomatization is shown in Figure 4.

Theorem 19 (Completeness for HL(Q, @), ©®,), ®)). Let II be a set of pure
formulas and let A be the axiomatization obtained by adding formulas in 11 as
axioms to the axiomatization shown in Figure 4. Then, every A-consistent set
of formulas is satisfiable in a countable named model in the class defined by I1.

15

Axioms:

All the axioms from HL(Q)

Rem FQ;(@¢ < ¢])

Forg - @i (@p < @)

Erase; F @ ®

Erasea F (®s <> s s¢& PropUNom
Erases F (®—p > —@p

Erases F@(@Aq) < (@pAE©q)
Erases F @(r)p + (r)@p
Erases + ©@Q;p < Q;(©p

Erasel, + Q;(@®@¢ < @¢])
Erases F @@y < @¢

Rules:

All the rules from HL(Q)

Figure 4: Axiomatization for HL(Q, @, ®, ®, ®).

5. The Case for ML (@, ®)

The last logic that we are going to discuss is ML™ (@, ®). In the previous
section we mentioned the importance of nominals to describe the interaction
between memory and modal operators. In this section we will show that if
we restrict ourselves to the logic in which we are constrained to remember the
current state every time we make a modal transition, it is possible to define
a sound and complete axiomatization where nominals can be avoided. The
key ingredient to do this is that in this logic we can describe the interaction
between () and (¥K) at a propositional level. This is not a coincidence. Because
this logic has the tree model property [13, 14], we can assume that we evaluate
ML (@, ®)-formulas on trees, and since there are no cycles, the remember
operator has no real effect beyond the current state.

Given a formula ¢, we define the formula (* as the result of replacing all the
occurrences of ® that are in ¢ at modal depth zero by T. Formally:

pg = p pé€ Prop
® = T
(-t = -t
(¢1 (A@;OQ§§ = g}Aﬁs@g
© = ©
(re)t = (re

Lemma 20. M,w | @y iff M,w = .

ProoF. We proceed by induction. The case for (&), the propositional symbols
and boolean connectives are straightforward. We analyze the other cases. For
the case ¢ = @Y. M,w = @@y iff M,w = @ iff (by inductive hypothesis)
M, w = YF iff M,w = (¢%)F iff (by inductive hypothesis) M,w = @ (%) iff
M,w = (@)*. For the case ¢ = (r)yp. M,w = @(r)y iff (by definition)

16

Axioms:

cT All classical tautologies

Ky FIrl(p = q) = (Irlp — [r]g)

Rem™ F @p > !

Rules:

MP If -y and - ¢ — 1 then F ¢

Genpp If o then = [r]p

Sub If - ¢ then F ¢[p/v] for any p € Prop

Figure 5: Axiomatization for ML~ (@, ®).

Mwl,
[],

w < >1/) iff (by definition of (r)) there is a v € M, R,(w,v) such that
v |= o iff (by definition of (r)) M,w = (r)y iff (by definition of)
w k= ((r)y)

The axiomatization for ML™ (@), ®) (see Figure 5) is an extension of the
axiomatization for the basic modal logic [2], plus the axiom Rem™ F @¢ <+ ©F.

Soundness of Rem™ follows from Lemma 20. We will prove completeness
with respect to the class of acyclic models, and therefore for the class of all
models. We will use a step-by-step construction. l.e., instead of building the
entire canonical model, we will carry out a stepwise selection from MCSs of the
canonical model of ML~ (@, ®) as our basic building blocks.*

We define M° = (D¢, (Ry), cRel» L% S¢), the ML™ (®, ®) canonical model,
in the usual sense (see [2] for details). That is, D° is the set of all maximal
consistent sets of formulas of ML™(®), ®), RS(T, A) iff for all p € A, (ryp € T,
FeL(p)iff peT and S°={T|® e T}.

Definition 8. A network A" = (N, (Rr),cRels V) is a triple where NV is a count-
able non-empty set of elements, each R, is a binary relation on N, and v is a
function that maps elements in N to maximal consistent sets.

We say that a network is coherent if (C1) |, cge| 2 defines an acyclic graph
and (C2) RS(v(s),v(t)) for all s,¢t € N such that R,(s,t). A network is saturated
if whenever (r)y € v(s) for some s € N, then there is a t € N such that R,(s,t)
and ¢ € v(t).

We want networks to play the role of models, so we have to check that we
have imposed the right conditions on a network to achieve this.

Definition 9. Let N’ = (N

y(Rr),cRelsv) be a network. We define the in-
duced labeling La(p) = {s €
|

N | p € v(s)}, the induced set of remem-
bered states Sy = {s € N | ® € v
<N7 (R)TeRe|aLNaSN> Fn (
of NV.

(s)}, and the induced model My =
(N, (Ry),cRel) is called the underlying frame

4 Alternatively, one can take the standard canonical model and then unravel it to obtain a
tree, and therefore acyclic, model.

17

We are now ready to prove a Truth Lemma.

Lemma 21 (Truth Lemma). Let N = (N, (R;), .Rel:v) be a coherent and
saturated network. Then, for all ¢ and s € N,

My, s =@ iff ¢ €v(s).

PROOF. Before we prove this lemma, let us observe the following property: let
M = (D, (R;),cRel- L, S) be an acyclic model, and let w,v € D be such that
R, (w,v). Then for all formulas ¢, M[w],v |= ¢ iff M,v = ¢.

We now proceed by induction on ¢. The propositional case, the & case
and the boolean cases are straightforward, given the definition of Mjs. Let’s
suppose that My, s |= @. This happens iff (by Lemma 20) My, s = 9* iff
(by inductive hypothesis) ¥* € v(s) iff (by Rem™ axiom) @1 € v(s).

The (r) case: for the left-to-right direction, if Mys, s | (r)i, then there
exists ¢ € N such that R,(s,t) and My[s],t = 9. Therefore, My, t = 9. By
inductive hypothesis, ¥ € v(t). Because the network is coherent, and R,(s,t),
then RS(v(s),v(t)), and we conclude (r)1) € v(s). For the other direction, let’s
suppose that (r)iy € v(s). Because the network is saturated, there is a t € N
such that ¢ € ov(t) and R,(s,t). By inductive hypothesis, Mr,t = ¥, so
My[s],t E 1, and therefore by definition, M s, s = (r)e).

Summing up, we have reduced the problem of finding a model for an MCS
A to a search for a coherent and saturated network for A. The idea here is to
start with a coherent network and, one step at a time, remove the defects that
are preventing the network from being saturated.

Definition 10. Let N be a network. We say that N has a saturation defect if
there is a node s € N and a formula (r)y € v(s) such that there is not a t € N,
R(s,t) and ¥ € v(t).

Because a coherent network may have saturation defects, we have to say
more about what is the meaning of repairing a defect. We are going to extend
a network with a saturation defect with another where the defect is corrected.

Definition 11. Let Ny = (No, Ro, vo) and N7 = (N1, Ry, v1) be two networks.
We say that A7 extends N if Fp;, is a subframe of Fp, and vy agrees with v;
on No.

The following lemma states that a saturation defect of a finite coherent
network can always be repaired.

Lemma 22 (Repair Lemma). Let N be a finite and coherent network with a
saturation defect. Then there is a network N’ extending N' without that defect.

PROOF. Because N has a a saturation defect, there is a node s € N and a

formula (r)1) € v(s) such that there is not a t € N, R.(s,t) and ¢ € v(t). We
define N as

18

N = NuU{s} withs gN
R, = R.U{(s,5)}
v o= vU{(s,A)}

where A is an MCS containing ¢ such that RS(v(s), A) (the existence of such
A can be proved through an Existence Lemma similar to Lemma 5). Clearly,
N is a coherent network extending N and does not have the previous defect.

Now we can prove the desired strong completeness result. We start with a
singleton network, and we extend it step by step to a larger network using the
Repair Lemma. We obtain the saturated network we want by taking the union
of our sequence of networks.

Theorem 23. The axiomatization is strongly complete with respect to the class

of ML™ (@, ®) models.

PROOF. Let S = {s; | ¢ € w}. Enumerate the potential saturation defects
(the set S x Forms). Given a consistent set 3, expand it to an MCS X*. The
initial network is N° = ({so}, 0, (so, 7)), which is finite and coherent. Given
a network A%, 4 > 0, where the minimal saturation defect is D, we define N1
as the extension of N (following the Repair Lemma) without that defect. If
N has no saturation defects, then N*** = N, Let N* = (N, (R,), _Re|; V) be:

N=[JN" R.=U R wv=Jo"

new new new

It is clear that N'* is saturated. For suppose not; let d be the minimal
saturation defect (with respect to the enumeration) of N, say d = di. By
construction, there must be an approximation A of A of which d is also a
defect. There only can be k defects that are less than d, so d will be repaired
before the stage k + ¢ of the construction. This is a contradiction, so N¥ is a
coherent and saturated network, and therefore My, so = 2.

6. Conclusions

In this paper we presented several axiomatizations for some members of
the memory logic family. We showed how nominals can be an effective tool to
achieve completeness: by allowing to describe the precise interaction between (x)
and ® we could give a completeness result for HL(Q, @), ®). Small variations
of this axiomatization leads us to completeness results for other languages, as
we showed for HLy(Q, @, ®) and HL(Q, @), @, ®).

Our intention was to give the basic techniques to characterize memory opera-
tors using nominals, and not to exhaustively list all possible languages. Observe
that, for example, the logic HL™ (@, @), ®) can be easily axiomatized by replac-
ing the Back axiom presented in Figure 1 by F @Q;(r)Q,¢ — Q;¢[®/(® V)]
(and similarly with the Paste rule).

19

We also showed that nominals are not needed when we add constraints on
how (r) interacts with @), giving a completeness result for ML™ (@, ®). The
idea behind this result lays in the fact that ML™ (@), ®) has the tree model
property and hence, we can describe the interaction between () and & at a
propositional level, independently of the modal operators.

We have not yet found suitable axiomatizations for certain memory logics.
Languages without the tree model property, and which do not have nominals
seem to be particularly hard to axiomatize. For example, we have not yet been
able to devise complete axiomatizations for ML(®), ®) and MLy (©, ®).

References

[1] P. Blackburn, F. Wolter, J. van Benthem (Eds.), Handbook of Modal Log-
ics, Elsevier, 2006.

[2] P.Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University
Press, 2001.

[3] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic,
Kluwer academic publishers, 2007.

[4] J. Gerbrandy, Bisimulations on planet kripke, Ph.D. thesis, University of
Amsterdam, iLLC Dissertation series DS-1999-01 (1999).

[5] J. Plaza, Logics of public communications, in: 4th International Sympo-
sium on Methodologies for Intelligent Systems, 1989, pp. 201-216.

[6] J. van Benthem, Logics for information update, in: TARK’01: Proceedings
of the 8th Conference on Theoretical Aspects of Rationality and Knowledge,
Morgan Kaufmann Publishers Inc., 2001, pp. 51-67.

[7] J.van Benthem, J. van Eijck, B. Kooi, Logics of communication and change,
Information and Computation 204 (11) (2006) 1620-1662.

[8] E. Harel, O. Lichtenstein, A. Pnueli, Explicit clock temporal logic, in: Pro-
ceedings of LICS’90, 1990, pp. 402-413.

[9] R. Alur, T. Henzinger, A really temporal logic, in: Journal of the ACM,
IEEE Computer Society Press, 1989, pp. 164—-169.

[10] T. Henzinger, Half-order modal logic: How to prove real-time properties, in:
Proceedings of the Ninth Annual Symposium on Principles of Distributed
Computing, ACM Press, 1990, pp. 281-296.

[11] C. Lutz, The complexity of reasoning with concrete domains, Ph.D. thesis,
LuFG Theoretical Computer Science, RWTH Aachen, Germany (2002).

[12] C. Areces, Hybrid logics: The old and the new, in: Proceedings of LogKCA-
07, San Sebastian, Spain, 2007, pp. 15-29.

20

[13]

C. Areces, D. Figueira, S. Figueira, S. Mera, Expressive power and decid-
ability for memory logics, in: Logic, Language, Information and Computa-
tion, Vol. 5110 of LNCS, Springer Berlin / Heidelberg, 2008, pp. 56-68.

C. Areces, D. Figueira, S. Figueira, S. Mera, Expressive power and de-
cidability for memory logics, Journal of Computer and System Sciences.
Submitted. Extended version of [13].

C. Areces, B. ten Cate, Hybrid logics, in: Blackburn et al. [1], pp. 821-868.

P. Blackburn, Representation, reasoning, and relational structures: a hy-
brid logic manifesto, Logic Journal of the IGPL 8 (3) (2000) 339-625.

P. Blackburn, M. Tzakova, Hybrid completeness, Logic Journal of the IGPL
6 (4) (1998) 625-650.

21

