
Taint Analysis of Security Code

in the KLEE Symbolic Execution Engine

Ricardo Corin1,2 and Felipe Andrés Manzano1,3

1 FaMAF, UNC, Argentina
2 CONICET

3 Binamuse, Inc.
rcorin@famaf.unc.edu.ar, feliam@binamuse.com

Abstract. We analyse the security of code by extending the KLEE sym-
bolic execution engine with a tainting mechanism that tracks information
flows of data. We consider both simple flows from direct assignment op-
erations, and (more subtle) indirect flows inferred from the control flow.
Our mechanism prevents overtainting by using a region-based static anal-
ysis provided by LLVM, the compiler infrastructure machine on which
KLEE runs. We rigorously define taint propagation in a formal LLVM
intermediate representation semantics, and show the correctness of our
method. We illustrate the mechanism with several examples, showing
how we use tainting to prove confidentiality and integrity properties.

1 Introduction

Analysis methods based on symbolic execution (developed initially by King [8])
have been proved to scale very well to real life code. For instance, KLEE [3],
a symbolic execution engine running on top of the LLVM low-level virtual ma-
chine [9], has been used to identify subtle bugs in the popular GNU COREUTILS
library, covering over 430K lines of C code.

In symbolic execution, the program is dynamically explored through all its
branches looking for implementation bugs like memory manipulation errors. In
order to avoid trying the entire (arbitrarily large) input space, program inputs
are assumed to be symbolic variables that remain uninstantiated (but become
constrained) at execution time.

Unfortunately, existing symbolic execution tools can’t deal with code that
uses cryptography: the search space blows up when exploring the insides of such
functions, as they are specifically designed to avoid being invertible (e.g., hash
or encryption operations), and hence the underlying constraint solver of the
symbolic execution engine (e.g., STP [6] for KLEE) is unable to find suitable
inputs in a reasonable time.

In order to cope with this problem, recent work [5] extends KLEE by introduc-
ing “symbolic” functions that replace concrete ones (e.g., a symbolic encryption
function symbol replacing a OpenSSL’s AES implementation), and prevent their
exploration. In order to specify the behaviour of symbolic functions and allow
the analysis to progress, symbolic functions are endowed with rewriting rules

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 264–275, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Taint Analysis of Security Code in the KLEE Symbolic Execution Engine 265

that detail abstractly their functional properties (e.g., that decryption inverts
encryption). The advantage is that these symbolic functions can be efficiently
implemented using lookup tables, enabling the symbolic execution of the whole
protocol.

1 unsigned char K[]
2 = ”SECRETSECRET” ;
3

4 void
5 o ra c l e (){
6 int i ;
7 unsigned char IV [2 5 6] ;
8 unsigned char C[2 5 6] ;
9 unsigned char P[2 5 6] ;

10

11 read (IV , 256) ;
12 read (C, 256) ;
13

14 decrypt (P, C, K) ;
15

16 //XOR wi th prev i ous b l o c k /IV
17 for (i =0; i <256; i++)
18 P[i] ˆ= IV [i] ;
19 //Check padding . .
20 i f (i s v a l i d (P))
21 wr i t e (‘ ‘ v a l i d ’ ’ , 5) ;
22 else
23 wr i t e (‘ ‘ i n v a l i d ’ ’ , 7) ;
24 }

1 int i s v a l i d (unsigned char ∗ P){
2 int i ;
3 // v a l i d paddings in [1 , 256]
4 for (i=256−P[2 5 5] ; i <255; i++)
5 // a l l pads = pad l eng th
6 i f (P[2 5 5] != P[i])
7 return 0 ;
8 return P[2 5 5] != 0 ;
9 }

Fig. 1. Is this code secure?

Taint analysis [12] is a powerful method for discovering security violations.
The analysis is used typically to identify dangerous flows from untrusted inputs
into sensitive destinations, in order to detect, for instance, code or SQL injec-
tion attacks. This is an integrity property that tells whether untrusted values can
reach and modify trusted placeholders. One may also be interested in the dual
property of confidentiality, i.e., whether sensitive values can leak to untrusted
sinks (e.g., whether secret information is disclosed to the network). We rely on
tainting to formally justify the usage of symbolic function abstractions for re-
placing concrete cryptographic primitives. In order to show it is safe to perform
such an abstraction, we need to reason about which information needs to be kept
secret. For instance, consider an encrypted message that is sent on the network;
the encryption key has been established off-band and is meant to be secret. We
can only replace this encryption by a symbolic (black box) message that is totally

266 R. Corin and F.A. Manzano

opaque to an attacker when the key is actually verifiably secret to the attacker.
That is, we can trust an eavesdropped message will not be decrypted (nor any
information will deduced from it) by an attacker only if no information about
the encryption key was (inadvertently) leaked by the program itself.

Let us illustrate the kind of code we wish to analyse. Consider the oracle C
function of Figure 1. It represents a last word oracle used in the classic padding
oracle attack [13,10]. Two 256-byte long blocks are input in lines 11 and 12,
the initialization vector IV and the ciphertext C. Line 14 decrypts C into P
using secret key K. Then, lines 17 and 18 xor the result with IV (since this is
using CBC encryption mode for block ciphers). Finally, the padding is checked
with function is valid() in line 20. This function, shown in the right hand-side of
Figure 1, checks the padding method is valid (using PKCS#5), i.e., that the last
bytes are either 1, or 22, 333, and so on. This code illustrates the confidentiality
concerns we are interested in analysing: Can an attacker obtain information
about P from observing just the output?

As shown in [13], an attacker providing a random IV and observing the answer
(that is, “valid” or “invalid” depending on the output of is valid(P)) can infer
the last byte of P. In this paper, we develop a mechanism to detect subtle leaks
of information of this class. Briefly, in our analysis, the decrypted P of line 13 is
secret and thus marked high (by specification), with security level H. Then, at
runtime, the analysis detects information being output under a high guard (i.e.,
the conditional in line 19 of the result of function is valid()). At that point our
analysis would issue a security warning.

The above example illustrates our interest in detecting all potential leaks,
including partial information. So even a 1-bit leak of P constitutes a valid attack
in our setting. We aim at formal results, thus we formalize the LLVM semantics
on which KLEE runs. Previous work describes the standard LLVM semantics [5],
and we extend it here to model taint propagation. This enables us to show
formally that tainting works as desired. More precisely, our contributions are as
follows:

– We illustrate, via examples, the challenges in implementing different tainting
mechanisms in the LLVM virtual machine (Section 2).

– We define three LLVM semantics to model taint propagation, each one more
precise than the previous (Section 3):

1. A basic tainting semantics for modelling direct, assignment-based flows.
2. A more advanced tainting semantics for both direct and indirect flows

arising from branching operations.
3. A region-based tainting semantics that prevents overtainting, and is thus

more precise than the previous case while still correct.

We show security for both (2) and (3) above (Theorems 1 and 2,
respectively).

Even though our development of tainting is aimed towards analysing crypto-
graphic protocol implementations, it can of course be used in analysing regular,
non-protocol code, in order to detect dangerous flows of data.

Taint Analysis of Security Code in the KLEE Symbolic Execution Engine 267

Related Work. To our knowledge, this is the first tainting/information flow ap-
proach specific for the LLVM virtual machine and KLEE, which combines both a
working prototype and rigorous semantics with formal security results. However,
of course there exist lots of work for tracking information in programming lan-
guages. First, more applied taint analyses [2]: tainting has been used for unknown
vulnerability detection, automatic input filter generation, malware analysis, and
test case generation (see the survey in [12] and the references therein). Second,
more theoretic information flow works [11], both for static and dynamic settings,
and for higher and lower level languages.

The first work we are aware on defining formal semantics for LLVM is [5].
There is more recent work [14] that also gives semantics, and focuses in mecha-
nized formalizations of LLVM for proving intermediate optimizations correct in
the Coq theorem prover.

2 Information Flow and Tainting in the LLVM

In order to understand the semantic rules needed to implement tainting in Sec-
tion 3, in this section we consider some simple examples that illustrate the kind
of issues we run into when dealing with tainting. Our examples are purposely
simple, since we work at the level of LLVM IR (intermediate representation)
code, which is considerably more verbose than C.

LLVM IR code is organized as a collection of function definitions, each one con-
taining a sequence basic blocks. Each basic block is tagged with an entry label, to
which other blocks can jump into. Basic blocks typically end when control needs
to be transferred elsewhere. LLVM provides “local variables” (registers), which
are identified by starting with a ’%’ character. Registers are used thoroughly,
since they are often needed by the compilers in order to generate code that re-
spects static single assignment (SSA), a property that simplifies LLVM’s static
analysis and optimizations (e.g., constant propagation). The complete LLVM
language contains many instructions; in this paper we use and illustrate the
main ones, like arithmetic, branching, routine call and return, and memory ma-
nipulation operations. The complete list is available elsewhere [9].

We assume given an arbitrary set of taint levels that we use to taint variables,
be them registers or memory cells. Initially, the memory (which contains data
as well as the executable code) is untainted. Tainted data is introduced from the
external environment of the program, and once inside the program starts propa-
gating through variables and memory cells during execution. We allow different
sources of data, which may be potentially tainted with different levels. We model
the sources as files (in the UNIX sense, so that files can also be IO devices and
network connections) that the code reads from and writes to. We then assign
taint levels to files. Taint levels are (partially) ordered. For simplicity, and with-
out loss of generality, we present our examples assuming just two levels: L (for
low) and H (for high), with L < H. In these examples, the experiment we run
is as follows: we assume H as the taint level for the inputs from the standard
input (0 in POSIX systems), and then check that the taint level of data written

268 R. Corin and F.A. Manzano

to the standard output (1 in POSIX systems) is L. If we ever see an output H,
we declare that there is a dangerous flow, and conclude the code is insecure.

Direct Flows. Figure 2 shows the simplest form of information flow: an as-
signment that transfers taint from a source variable to another variable. On the
left we see C code and on the right we show equivalent LLVM code. The C code
declares two variables of one byte, of type char, named input and output. We
then input a byte from the the standard input (which we assign taint level H),
using function read. The input byte is saved on input. Then we assign input to
output, and finally send output to the standard output using function write. It is
clear that data flows from variable input to output, hence, there is a (dangerous)
flow, since H data is being leaked.

On the right hand side of Figure 2 we see the LLVM IR code, which it’s more
verbose and complex; it uses registers as well as memory accesses, and types are
explicit (i8 for a byte, i32 for 4-byte integer; the types for constants 0 and 1 are
ommitted).

C variables input and output correspond to different memory locations re-
served by the LLVM operation alloca (lines 1–2). Pointers %input p and %output
(respectivelly) reference both variables. Line 3 reads a byte into memory location
pointed by %input p, and line 4 loads that char into register %input. The rele-
vant flow occurs at line 5, where local register %input is assigned a value loaded
from memory using operation load. The memory pointer used, %input p, is used
in function read with file descriptor 1 (which has taint level H). Line 6 uses an-
other memory operation, store, to save in memory the value of %input into
memory location %output p. This example shows the need to propagate taint
levels both from and back memory cells into registers, something we address in
the semantics developed in next section.

Being able to capture direct flows is already quite useful, and many taint
techniques do just that [12], since each flow may potentially lead to a dangerous
bug.

Indirect Flows. Figure 3 shows a more subtle flow. As we can see in the C
code on the left, a H variable input is used to switch and assign to variable
output different values. The effect is that at the end of execution, output holds
the value of input, even though there is no direct flow from input to output. So
tainting input would not directly taint output. This is a classical indirect flow
arising from the control flow: input controls a conditional (the switch) in the
code that has an impact on output. On the right hand side of Figure 3 we see
the equivalent LLVM IR code. LLVM has a primitive switch operation as well
(see line 5), so the mapping is quite direct, as each branch is implemented via
jumps to entry labels of the different basic blocks (e.g., bb0 in line 11).

The standard way of detecting these flows is to taint the control flow of the
program under execution, so any following operation and its resulting memory
or register modifications gets tainted with the control flow taint. In this case,
the switch statement of line 5 causes the control flow to be tainted with H
since we have a condition on variable input which is itself H. Then all following

Taint Analysis of Security Code in the KLEE Symbolic Execution Engine 269

instructions inherit the taint level H, effectively tainting the result of any in-
struction, including the assignment to output. This works, but has the potential
problem of overtainting, since the H level is now carried on forever, unless one
can somehow turn it off at some point (see Section 3). Nevertheless, thanks to
the static analysis facilities provided by the LLVM framework, we will be able
to compute regions where each branch under the influence of the switch termi-
nates and merges into a common point (bb256 at line 26 in the example); this
information is going to be used in Section 3 to prevent overtainting, by knowing
when to stop carrying the control flow taint introduced in H branches.

1 char input ;
2 char output ;
3 read (H, &input , 1) ;
4 output = input ;
5 wr i t e (L,&output , 1) ;

1 %input p = alloca i 8
2 %output p = alloca i 8
3 ca l l i 32 @read (1 , i 8 ∗ %input p , 1)
4 %input = load i 8 ∗ %input p
5 store i 8 %input , i 8 ∗ %output p
6 ca l l i 32 @write (0 , i 8 ∗ %output p , 1)

Fig. 2. Direct flow example: C code (left), LLVM IR code (right)

1 char input ;
2 char output ;
3 read (H, &input , 1) ;
4

5 switch (input){
6 case 0 :
7 output = 0 ;
8 case 1 :
9 output = 1 ;

10 . . .
11 case 255 :
12 output = 255 ;
13 }
14 wr i t e (L , output , 1) ;

1 %input p = alloca i 8
2 %output p = alloca i 8
3 ca l l i 32 @read (0 , i 8 ∗ %input p , 1)
4 %input = load i 8 ∗ %input p , a l i gn 1
5 switch i 8 %input , l a b e l %bb256 [
6 i 8 0 , l a b e l %bb0
7 . . .
8 i 8 255 , l a b e l %bb255]
9 bb0 :

10 store i 8 0 , i 8 ∗ %output p
11 br l a b e l %bb256
12 . . .
13 bb255 :
14 store i 8 255 , i 8 ∗ %output p
15 br l a b e l %bb256
16 bb256 :
17 ca l l i 32 @write (1 , i 8 ∗ %output p , 1)

Fig. 3. Indirect flow via conditionals example: C code (left), LLVM IR code (right)

Pointer Arithmetic and Memory. Figure 4 shows another subtle situation.
We only show the C code for simplicity. This code copies the value of variable
input into output in a special way: it initializes an array with zeroes, and then
stores a 1 into the position given by input. Then the array is traversed until a 1
is found; while it is not 1, output is incremented. At the end of the loop, output
holds the value of input, and this constitutes a dangerous flow since output is
sent to the environment in line 7. Unfortunately the prevention mechanism we

270 R. Corin and F.A. Manzano

hinted above to deal with indirect flows in the last subsection does not work
here: marking the control as H at the branch does not help in identifying this
flow, as execution is not under a branch depending on input: the loop uses
array[0] . . . array[input− 1] but never reaches array[input].

The problem here is in line 5: since we have a H index (input) accessing the
array, the whole array is potentially H. If we could mark all the array as H, output
would become tainted immediately entering the loop, and then the problem
would disappear, as array[0] would already be H. At the C code, we could
mark the whole array as H if one element has been marked H. Unfortunately
at the LLVM IR level we do not have arrays anymore, only memory cells. The
conservative decision we make in our semantics in next section is to mark the
whole memory as H, for this particular case. This can be made more precise in
the future, although it is enough for our current needs. (For instance, memory
reserved afterwards is unaffected.)

3 Taint Semantics

Our semantics is an extension of earlier work [5]. Besides that work, one can also
refer to the original (informal) semantics of LLVM [9].

Semantic rules describe formally how an LLVM machine executes, i.e., how
it evolves from state to state depending on the current instruction. State is
represented by a tuple 〈pc,M,G, fs〉, where pc is the program counter, M the
memory, G the global identifiers, and fs the stack of activation frames.

The specific details on how LLVM works for each instruction are not crucial
for the understanding of this paper, though, since our addition of tainting does
not change the semantics of [5], only builds on it.

Direct Flow Semantics. We tag LLVM registers and memory cells with taint
levels H and L, and use metavariable tl to range through them. Given two levels
tl1 and tl2 we use lattice join operation ∨ that operates as usual: tl1 ∨ tl2 = L
when tl1 = tl2 = L, and tl1 ∨ tl2 = H otherwise.

To illustrate the semantics, we show rule ADD for arithmetic addition:

opM(pc) = id = add t op1, op2 v(op1,L) = (tl1, t, vop1)v(op2,L) = (tl2, t, vop2)

〈pc,M,G, (rslt,L, ret,A) :: fs〉 −→
〈nxtM(pc),M,G, (rslt,L{id → (tl1 ∨ tl2, t, xop1+txop2)}, ret,A) :: fs〉

ADD

It starts by looking up the instruction pointed by the program counter pc, using
auxiliary function opM(pc) (in this rule, opM(pc) = id = add t op1, op2). This
gives two operands op1 and op2, of type t. The actual values of op1 and op2 are
looked up using auxiliary function v() (the value can be either a constant with
taint level L, or a local binding in L, or a global value in G). For op1, for instance,
we have v(op1,L) = (tl1, t, vop1). Here we get a triple indicating the taint level tl1,
the type t, and finally the value vop1 . (Similarly for op2.) We can then update the
context with the new value for identifier id with triple (tl1∨tl2, t, vop1+tvop2) The

Taint Analysis of Security Code in the KLEE Symbolic Execution Engine 271

remaining arithmetic rules (for subtraction, multiplication, bit manipulation,
and so on) are similar.

This semantics is concrete: bytes input are concrete bytes, and conditions in
branching rules are deterministically evaluated. A symbolic semantics changes
input values to symbolic variables, and branching rules may depend on actual
assignments to the symbolic variables. A symbolic semantics of LLVM is provided
in [5]; we could do it here, although for our purposes is not needed: the changes
we do for tainting are completely orthogonal (under the assumption that the pc
is always concrete, that is, there’s no dynamic code).

1 char array [256]={0} ; //256 zeros
2 char input ;
3 char output ;
4 read (H, &input , 1) ; // read a char from a H f i l e
5 array [input]=1;
6 for (output=0; ! array [output] ; output++); //Count zeros
7 wr i t e (L , output , 1) ; // wr i te output to a L f i l e

Fig. 4. Indirect flow via array indexing example (C code)

Indirect Flow Semantics. In order to account for indirect flows, we need
to modify contexts and carry on a taint level of the execution. We call this
the taint level of the program counter, noted by tpc, and add it to regular
contexts: 〈pc, tpc,M,G, fs〉. Initially tpc is L, and it evolves when H conditions
are evaluated in branches. The rules of interest are conditionals (BRT) and
(BRF); next we show rule (BRT):

opM(pc) = br c labelt l1 labelt l2 v(c,L) = (ts, i1, 1)

〈pc, tpc,M,G, (rslt,L, ret,A) :: fs〉 −→ 〈l1, tpc ∨ tl,M,G, (rslt,L, ret,A) :: fs〉BRT

Here, we can see that the condition c is evaluated into a taint level ts, and
this taint level is used to update the taint level of the program counter, which
becomes tpc ∨ tl. This is analogous in rule (BRF).

We conclude this subsection by noting that all regular direct-flow semantics
have the control flow taint added in their results; for instance, the new rule
ADD includes the taint level control flow tpc added to the result taint level of
id, assigning to it the taint level of tpc ∨ tl1 ∨ tl2.

Analysis Methodology. Armed with any of the above semantics, we can check
integrity and confidentiality by querying the program at specific places to check
the taint level of certain variables of interest.

In the following we focus on confidentiality (integrity is analogous). We let an
execution trace tr(h1, . . . , hn) → o1, . . . , ok stand for a chain of semantic rules
from the initial context (as defined in [5]), with n input READ rules from H
applied assigning byte hi, in order. Analogously, the trace contains k WRITE

272 R. Corin and F.A. Manzano

rules, and each output value is oi, in order. (The READ and WRITE rules may
be interleaved.) The output values oi come from applications of rule WRITE of
Figure 3: its taint value is tpc ∨ tl, for taint level tl of the written byte joined
with the control flow taint level tpc.

Definition 1. A trace tr(h1, . . . , hn) → o1, . . . , ok is no-taint when the taint
level of every oi is L. A program satisfies no-taint when every possible execution
trace is no-taint.

Definition 2 (Attacker model). Our notion of security is derived from a
game experiment. Assume the program is run with high inputs h1, . . . , hn chosen
uniformly (i.e. randomly with uniform distribution) from the space of possible
inputs M . Then, an attacker is given the outputs o1, . . . , ok of the execution
trace tr(h1, . . . , hn) → o1, . . . , ok, and is asked which inputs were used. We say
the program is secure if the probability of guessing the inputs is 1/|M | for every
trace.

This notion of security is related to the classical definition non-interference [1];
for convenience, we took a probabilistic setting in which security is defined as
a game since it simplifies the reasoning w.r.t. our byte-granulated memory and
low-level machine representation.

Theorem 1. If a program satisfies no-taint then it is secure.

Note that its converse does not hold in general. For instance, consider the code of
Figure 1 modified such that it writes “valid” instead of “invalid”. In that case,
all tainted outputs are the same and thus the code is actually safe, although
no-taint is not passed. As such, this specific case must be handled manually in
our current setting.

Region-Based Semantics. The C code of Figure 1 does not pass no-taint:
after the for loop in is valid(P), there is a H control flow taint tpc, and hence
the output gets an H as well.

The first step into extending the above semantics to prevent overtainting is to
construct a control flow graph. For simplicity, we assume there is a single function
defined, so that there is only one sequence of basic blocks. LLVM’s control flow
graph is then a directed, connected graph that contains the different basic blocks
of a program. It has a single start and end node, from which other nodes are
reached. Control flow graphs for the examples in the paper are shown in Figure 5.
In each case we can see the entry block and exit blocks.

The following are standard graph theory and compilers concepts [7]. A basic
block bb0 dominates basic block bb1 when every path from the entry to bb1
contains bb0. Also, bb1 postdominates bb0 if every path from bb0 to the exit
passes trough bb1. A region is a connected subgraph of the control flow graph
that has exactly two connections to the remaining graph: an entry and an exit
(this is why they are also known as single-entry-single-exit (SESE) regions). We
can then characterize an SESE region by a pair of blocks: the entry and exit

Taint Analysis of Security Code in the KLEE Symbolic Execution Engine 273

blocks to the region. The entry basic block of a region is passed through when
entering the region; it is considered part of the region, and dominates all basic
blocks in the region. Similarly, the exit basic block is passed through after leaving
the region; it is not considered part of the region.

Figure 5 shows the control graphs as computed by LLVM. In the control flow
graph shown in Figure 5(a), corresponding to the code of Figure 3, there are
several regions: a large region containing all basic blocks with entry and exit
bb256 (which is not part of the region, and singleton blocks with entry bbX (for
X < 256) and exit bb256. (In practice, LLVM static analysis ignores singleton
regions, as they are always contained in a larger region.) In the control flow
graph shown in Figure 5(b), corresponding to the code of Figure 4, there are
two regions: one with entry entry and exit out, and one with entry loop and exit
out.

Fig. 5. Control flow graphs of basic blocks. (a) Graph for code of Figure 3, (b) Graph
for code of Figure 4.

The important point is that control flow information (e.g., information that
was added in a H branch to the control flow taint) has a region as its scope: the
scope is pushed when entering a region (i.e., entering its entry basic block), and
cleared (i.e., popped) once exiting the region (that is, we pass through its exit
basic block), so we are free to reset the control flow taint to the previous state,
since no information can be leaked anymore. In order to implement regions in
the semantics, we need to add a stack of control flow taints. The rule is that
whenever we enter a new region, we need to push a L value in the stack; whenever
we exit, we pop the head of the stack. We use the following auxiliary function,
that manipulates the stack:

region(pc, s, tl) =

⎧
⎪⎪⎨

⎪⎪⎩

push(s, head(s) ∨ tl)
if pc = entry into new region

pop(s) if pc = exit current region
s otherwise

This function is built using a previous pass of the code through LLVM’s static
analysis to compute regions. Initially, stack s is empty. As we enter into new
regions, we push new control flow taint levels.

The new method, called precise-no-taint, is similar to no-taint of the pre-
vious section but operates in the new semantics, and is thus more precise. We
show this more precise semantics is as secure as the previous one.

274 R. Corin and F.A. Manzano

Theorem 2. If a program satisfies precise-no-taint then it is secure.

The proof is similar to that of Theorem 1, although it now requires modularizing
per region; H information that happened in a closed region in the past does not
influence L outputs.

4 Conclusions

Tainting is an important technique to find dangerous information flows. Our ad-
dition of a dynamic tainting mechanism to KLEE is natural and complementary
to the safety checks done by KLEE alone, like memory errors and overflows.

Our method can be used in isolation or coupled with previous work in order
to verify code that uses cryptography; this framework is promising for analysing
complex and long cryptographic protocol implementations. A longer version with
more details, prototype code (as a patch to the latest KLEE distribution), and
proof sketches can be found on our project website [4].

As future work, we intend to:

– Analyze larger, real-life code with subtle manipulation of sensitive data, in
a similar vein to the toy example of Figure 1.

– Use the present analysis to prove secrecy of cryptographic materials like
encryption keys; this will enable us to abstract away from concrete crypto-
graphic primitives and use abstract, symbolic counterparts, as done in [5].

– Finally, we also we want to investigate more precise memory pointer tainting,
as discussed in Section 2.

This work has been supported by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the PICT-PRH
316 project.

References

1. Barthe, G., Rezk, T.: Non-interference for a jvm-like language. In: TLDI 2005, pp.
103–112. ACM, New York (2005)

2. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic
discovery of deviations in binary implementations with applications to error de-
tection and fingerprint generation. In: USENIX, SS 2007, pp. 15:1–15:16. USENIX
Association, Berkeley (2007)

3. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of OSDI, pp.
209–224 (2008)

4. Corin, R., Manzano, F.: Dynamic taint analysis for the klee symbolic execution
engine (extended version), http://cs.famaf.unc.edu.ar/~rcorin/kleecrypto

5. Corin, R., Manzano, F.: Efficient Symbolic Execution for Analysing Cryptographic
Protocol Implementations. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.)
ESSoS 2011. LNCS, vol. 6542, pp. 58–72. Springer, Heidelberg (2011)

http://cs.famaf.unc.edu.ar/~rcorin/kleecrypto

Taint Analysis of Security Code in the KLEE Symbolic Execution Engine 275

6. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531.
Springer, Heidelberg (2007)

7. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing
control regions in linear time, pp. 171–185 (1994)

8. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

9. Lattner, C., Adve, V.: The LLVM language reference manual,
http://llvm.org/docs/LangRef.html

10. Rizzo, J., Duong, T.: Practical padding oracle attacks. In: Proceedings of the 4th
USENIX Conference on Offensive Technologies, WOOT 2010, pp. 1–8. USENIX
Association, Berkeley (2010)

11. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE
JSAC 21(1), 5–19 (2003)

12. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask) (2010)

13. Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

14. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the llvm
intermediate representation for verified program transformations. In: Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, pp. 427–440. ACM, New York (2012)

http://llvm.org/docs/LangRef.html

	Taint Analysis of Security Code in the KLEE Symbolic Execution Engine
	Introduction
	Information Flow and Tainting in the LLVM
	Taint Semantics
	Conclusions

