
Extending a Search-Based Test Generator with
Adaptive Dynamic Symbolic Execution

Juan Pablo Galeotti
Saarland University –

Computer Science
Saarbrücken, Germany

Gordon Fraser
University of Sheffield

Dep. of Computer Science
Sheffield, UK

Andrea Arcuri
Simula Research Laboratory

P.O. Box 134, 1325
Lysaker, Norway

ABSTRACT
Automatic unit test generation aims to support developers by alle-
viating the burden of test writing. Different techniques have been
proposed over the years, each with distinct limitations. To overcome
these limitations, we present an extension to the EVOSUITE unit
test generator that combines two of the most popular techniques for
test case generation: Search-Based Software Testing (SBST) and
Dynamic Symbolic Execution (DSE). A novel integration of DSE
as a step of local improvement in a genetic algorithm results in an
adaptive approach, such that the best test generation technique for
the problem at hand is favoured, resulting in overall higher code
coverage.

Video: http://youtu.be/te-LQxkemhM

Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools;

General Terms. Algorithms, Experimentation, Reliability

Keywords. Search based software engineering, dynamic symbolic
execution, unit testing, test generation, genetic algorithm

1. INTRODUCTION
Software testing is a difficult and expensive task [11]. Auto-

matic test generation tools aim at lowering the cost of writing tests
by enabling users to derive tests automatically. Among the avail-
able techniques for generating test cases at the unit-level, Search-
Based Software Testing [16] (SBST) and Dynamic Symbolic Ex-
ecution [12] (DSE) have both been demonstrated to be capable of
efficiently achieving high code coverage in some testing scenarios.
Nevertheless, limitations are present in both approaches.

SBST is based on heuristics that require frequent test execution,
and can therefore become very inefficient if test execution time
is high. For example, covering any of the string-based branches
in method coverMe in Figure 1 would require a search-based
approach to execute many candidate tests with slight variations in
the input strings, each time estimating how close the search is to
reaching the target branch for a new input string.

On the other hand, DSE can be very efficient when applied on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

class Foo {
private int x = 0;
private String str;
private String str2="bar";
public Foo(String str) {
this.str = str;

}
public void inc() {
x++;

}

public boolean coverMe() {
if (x==5)
if(!str.equals(str2))
if(str.equalsIgnoreCase(

str2))
return true; // target

return false;
}

Figure 1: SBST will quickly cover both branches for the first
if statement in method coverMe, but optimizing a string to
satisfies the two remaining conditions may take a significant
amount of time. Given a string constraint solver, DSE may gen-
erate “BAR” as an input value, but may not be able to call inc
five times, which is required to cover the target branch.

@Test
public void test0() {
Foo foo = new Foo("bar");
setFieldViaReflection(foo, "x", 5);
setFieldViaReflection(foo, "str2", "BAR");
foo.coverMe(); //invalid Foo instance

}

Figure 2: An unrealistic test case violating Foo’s implicit ob-
ject invariant — setting field values via reflection results in an
invalid object state.

problems which the underlying constraint solver is able to address,
yet its scope is much more limited. Despite tremendous recent
progress, DSE may still struggle with floating point arithmetics,
string datatypes, mixed constraints (e.g., floating points and strings
in the same constraint), and sequences of function calls.

To avoid some of these problems, DSE tools often resort to mech-
anisms such as reflection, where inputs are not created in terms of
the existing method interface, but by manipulating internal states
directly. This can lead to object states that are difficult to repro-
duce using the method interface, or even infeasible. Such infeasible
object states ultimately lead to test cases that are hard to read and
understand, and are useless for debugging purposes. For example, in
the Foo class in Figure 1, tools relying on reflection would explore
a single entry-point (in this case, method coverMe), and would
set the value of x to 5 without actually invoking the method inc
five times. A test case like the one shown in Figure 2 is not only
less elegant, it is also infeasible: Given the Foo class definition, no
instance of this class can have a value different than “bar”, which
makes the instance infeasible at the unit-level.

This paper describes a tool that implements the combination of
SBST and DSE proposed in detail in [10], which aims to overcome
these limitations. The tool extends the search-based EVOSUITE
unit test generation tool. The details of the original test generation

http://youtu.be/te-LQxkemhM

Figure 3: A screenshot of the Eclipse Java IDE with JUNIT test
cases automatically generated by the EVOSUITE plugin, for cov-
ering all branches of the Foo class.

and assertion generation is described in [3], and implementation
details can be found in [7]. In the new extension of EVOSUITE, the
genetic algorithm allows test suites to be optimized with a DSE-
like approach. This combination allows EVOSUITE to successfully
generate test cases for the example in Figure 1 as shown in Figure 3:
The sequence of method invocations properly handles the object
state, no unrealistic object state is ever built, yet high coverage is
achieved.

2. TEST GENERATION BACKGROUND
EVOSUITE is a search-based test generation tool that applies

whole test suite generation in order to find test suites that achieve
high code coverage on target units. In this section, we describe this
approach as well as DSE.

2.1 Whole Test Suite Generation
SBST describes the use of efficient search algorithms for the

task of generating test cases. Genetic algorithms (GA) are one
of the most commonly applied search algorithms. GAs mimic
the natural process of evolution: An initial population of usually
randomly produced candidate solutions is evolved using search-
operators that resemble natural processes. In the context of whole
test suite generation, this population is made of different test suites.
After the randomly produced candidates are ready, the fittest parents
are selected for reproduction, mimicing the natural phenomena
of survival of the fittest. Crossover combines different parents
to generate offspring. The offspring is then mutated with certain
probabilities (e.g., new statements are added, existing statements
are modified or deleted). Once reproduction is finished, a new
generation is ready to be used as new parents for selection. This
process continues until either the target coverage criterion has been
met (e.g., all branches are covered) or the search budget has been
exhausted (e.g., timeout or maximum number of generations).

The traditional approach to SBST is to optimize a test case for
each coverage objective in isolation. In this context, choosing how
to distribute a limited amount of computational resources over the
set of coverage objectives is paramount. What is more, the existence
of infeasible coverage goals (like unreachable code or infeasible
branches) means that any computational resources invested on try-
ing to achieve them are wasted. We bypass this problematic issue
by evolving whole test suites instead of individual test cases: Whole

test suite generation [8] optimizes an entire test suite at once to-
wards satisfying a coverage criterion, instead of considering distinct
test cases directed towards satisfying distinct coverage goals. This
means that the result is neither adversely influenced by the order nor
by the difficulty or infeasibility of individual coverage goals.

2.2 Dynamic Symbolic Execution
DSE is able to achieve high code coverage by intertwining con-

crete executions, collecting symbolic conditions and solving con-
straint systems. Typically DSE starts executing an initial input (e.g.,
default values for all program inputs). During the execution of the
program, DSE keeps a symbolic state mapping each program vari-
able to symbolic values, and a symbolic path condition representing
the logical constraints on the inputs forcing the program execution
to follow that particular path. Whenever a change to the concrete
program state occurs, the symbolic state is updated appropriately to
reflect those changes. This symbolic state is used to append branch
conditions to the symbolic path condition. Every time the concrete
execution follows a particular branch condition, the predicate is
evaluated symbolically using the symbolic state. This results in a
symbolic condition that is appended to the current path condition.
For example, if the statement x++ is executed, and the symbolic
value of x is X0, then the symbolic value of x after executing the
statement is update to X0 + 1. Similarly, if there is a branch on
the input variable x: if x == 5, and the symbolic value of x
is X0 + 1, then the path condition at this point will be extended
with either X0 + 1 == 5 or X0 + 1 6= 5, depending on the actual
evaluation of the predicate during the concrete run.

When the concrete execution is finished, DSE has produced a path
condition P = p1 ∧ p2 ∧ . . . ∧ pn for the initial input. By negating
an individual pi for i ≤ n DSE can produce a new path condition
P ′ = p1 ∧ . . . pi−1 ∧ ¬pi, such that an input that satisfies P ′ leads
to execution of a path different than P . This is done systematically
until no further branches can be negated, i.e., all paths have been
explored. This approach has been popularized in particular by the
recent development of powerful SMT solvers.

3. COMBINING SBST AND DSE
Our approach of combining SBST and DSE is based on the ob-

servation that DSE can be seen as a special case of local search. A
local search algorithm [1] explores the neighborhood of a candidate
solution during the search, whereas a global search algorithm (e.g.,
a genetic algorithm) uses a population-based approach to explore
larger parts of the search space. Harman and McMinn [13] analyzed
the effects of global and local search, and concluded that hybrid
approaches (known as memetic algorithms) achieve better perfor-
mance than global search and local search. Figure 4 depicts the
hybrid approach implemented in EVOSUITE: At a high level, the hy-
brid algorithm in EVOSUITE conducts global search in terms of sets
of sequences of method invocations, where search operators such
as crossover and mutation are applied to explore the search space.
In addition, however, individuals can be improved with a DSE step,
where DSE is applied as a local search step on the primitive values
contained in these sequences.

Technically, the integration of DSE into the search on test suites
works by choosing an individual test case on which to apply DSE,
and converting this test case to a parameterized test case. In a
parameterized test, the actual test code is separated from its inputs.
This means that any values that can be optimized with a constraint
solver directly (e.g., primitives such as float and int values, but
also String values) become parameters of the test. For example
in Figure 5 a parameterized unit test is obtained by replacing the
“bar” constant value with the argument string0. Then DSE is

C
rossover

Mutate
D

SE

Evaluate

(a) Random population (c) Final test suite(b) Genetic Algorithm

Figure 4: Genetic algorithm with an integrated DSE step: After
regular search operators such as crossover and mutation have
been applied, individuals can be improved using DSE, and the
search continues with these improved individuals.

@Test
public void parameterizedTest0(String string0)
{
Foo foo = new Foo(string0);
foo.inc();
foo.inc();
foo.inc();
foo.inc();
foo.inc();
foo.coverMe();

}

Figure 5: Parameterized test case generated from the test case
in Figure 3. All primitive values are converted to inputs.

applied using the parameterized unit test as the entry-point, trying
to find primitive values that cover previously uncovered branches.

One further central question in combining SBST and DSE is
when to apply which technique, and how much time to invest for
each of them. For example, if a particular branch condition depends
on numerical constraints on the inputs, applying DSE more often
is the right choice to achieve higher coverage. On the other hand,
if the challenge lies in creating complex objects through method
sequences, the time spent on DSE should rather be invested in the
global search. The integration of SBST and DSE requires three de-
cisions: (1) On which individuals of the population is DSE applied,
(2) when it is applied, and (3) how it is applied.

If computational resources were unlimited, one would ideally
apply DSE on every individual of the population at every generation.
However, this scenario does not hold in practice, and so we need
to avoid wasting our search budget. Limiting the application of
DSE to those cases where mutation of primitive values has been
shown to affect fitness prevents unnecessary applications of DSE.
Nevertheless, although the individual seems suitable for DSE, it
might also be the case that the DSE exploration is ineffective. For
example, this can be the case when the constraint solver is unable to
solve the collected constraint system, or the solution does not lead
to new coverage or better fitness. In those cases we might want to
minimize the impact of DSE on the overall test generation budget.

In order to integrate SBST and DSE we resort to parameter
control: If we observe that mutating a primitive value affects fitness,
we might apply DSE with a certain probability ρ. If DSE was
unsuccessful, we change ρ with a factor α > 1, e.g., setting it to
ρ/α. On the other hand, if DSE was successful, we increase DSE
applicability to ρ× α.

4. EVOSUITE: AN SBST+DSE TOOL
EVOSUITE is a unit test generation tool for Java that implements

the hybrid approach described in this paper. It is fully automated, i.e.,
it requires no manual test drivers, entry functions, or parametrized

EvoSuite/GA DSC EvoSuite+DSE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ov
er
ag
e

Figure 6: Branch coverage results [10] on Roops for EVOSUITE
in standard search mode, DSC, and EVOSUITE with DSE.

unit tests, and can be used with its command-line interface or as
an Eclipse plugin (see Figure 3). EVOSUITE is a mature research
prototype that has been successfully applied to many open source
projects [5], and has recently won the first two instances of the
SBST unit testing tool competition [6]. We have evaluated [10]
the performance of the hybrid approach on a set of 38 classes con-
sidered to be difficult (e.g., classes depending on complex string
input), demonstrating an increase of the branch coverage from 71%
of EVOSUITE using only search to 82% using the hybrid approach.
We compared different configurations in these experiments, and
determined that the best performance is achieved if DSE is applied
every 30s, optimizing all primitive values for which a previous mu-
tation has shown them to influence the fitness value. Figure 6 further
shows the performance of EVOSUITE on the Roops1 benchmark in
comparison to EVOSUITE with only search (GA) and the DSE tool
DSC. Finally, to reduce threats to external validity we have applied
EVOSUITE with DSE on the SF100 corpus of classes [4], where we
observed an overall coverage increase of 1.2%.

Besides the focus on achieving high coverage, EVOSUITE aims
to produce tests that are readable and effective at finding faults. To
improve readability, EVOSUITE uses a range of post-processing
steps after the search, for example in order to minimize sequences
of method calls and to minimize primitive values used inside these
sequences. In order to balance readability against fault finding
effectiveness, EVOSUITE tries to select only assertions that are
effective at detecting mutants [9].

4.1 Constraint Extraction
DSE is implemented in EVOSUITE using an instrumentation

approach, based on the bytecode instrumentation framework of the
DSC tool [14]2. To ensure platform independence and require no
installation beyond downloading a JAR file, EVOSUITE uses its own
constraint representation for which it supplies a solver. However,
we are experimenting with the integration of other well-established
SMT solvers such as Z3 [2].

4.2 Constraint Solving
One particular advantage of the solver provided in EVOSUITE

is that it can handle mixed constraints on integers, floating point
numbers, and strings. The solver applies the Alternating Variable
Method (AVM) [15], which optimizes each input variable in isola-
tion, guided by a fitness function which, in our case, estimates how
close a condition is to being satisfied. In traditional AVM, initially
the variables are set to random values; in our scenario, the starting
values are those provided by the global search algorithm. AVM con-
siders each variable in turn and applies a local search algorithm on it.

1http://code.google.com/p/roops/
2Available at http://ranger.uta.edu/˜csallner/dsc

Once the local search on a variable leads to no further improvement,
AVM moves on to the next variable, and so on, until none of the
variables lead to an improvement. If that is the case and no solution
has been found, then the variables are reset to random values and
the search starts over, until either a solution has been found or some
other stopping condition applies.

When optimizing an individual variable, the type of search applied
depends on the type of the value. In the basic case of an integer
value, the search starts with exploratory moves consisting of adding
and subtracting 1. If an exploratory move was successful (i.e.,
the fitness improved), then the search accelerates movement with
pattern moves, e.g., +2, then +4, etc. Once the pattern search does
not improve the fitness any further, the search on the variable goes
back to exploratory moves. If a new exploratory move is successful,
pattern search is again applied in the direction of the exploratory
move. Once no further optimization of the variable is possible, the
search moves on to the next variable.

A variant of this pattern search for floating point variables was
defined by Harman and McMinn [13]. Exploratory moves for float-
ing point values are performed for a range of precision values p,
where the precision ranges from 0–7 for float variables, and from
0–15 for double values. Exploratory moves are applied using
δ = 2I × dir × 10−p. Here dir denotes either +1 or −1, and I is
the number of the iteration, which is 0 during exploratory moves. If
an exploratory move was successful, then pattern moves are made
by increasing I when calculating δ.

Search on strings uses a set of simple search operators: First,
we attempt to remove characters at the end of the string until no
more fitness improvement is observed. Second, on the remaining
characters we apply AVM in sequence. As a character (char) can
be seen as a numerical value, we can apply the same pattern moves
we described for integer values above. Finally, we attempt to add a
random character at the back of the string and apply AVM on it. We
repeat this step as long as fitness improves.

The search is guided by a fitness function, which is a numerical
estimation of how far are we from satisfying a desired goal. The
distance for conditions that represent numerical comparisons is cal-
culated using standard branch distance calculation [16]. Distances
for string operators are calculated using adhoc functions.

A constraint set is satisfied if the overall distance is 0. In the
context of solving the collected constraints, the desired goal is to find
a valuation that makes all constraints valid. It is worth mentioning
that during the entire constraint solving process fitness is calculated
on the desired path condition – there is no need to execute any
tests. To calculate the distance for a given input valuation we simply
evaluate all symbolic expressions using the concrete values, and
calculate a condition-specific distance estimate for each condition.
For a given path, the constraint set is interpreted as a conjunction of
individual path conditions, thus the overall fitness of a constraint set
is the sum of the normalized (in [0, 1]) individual distances.

5. CONCLUSIONS
Creating a tool that combines SBST and DSE requires address-

ing several integration questions. In this work we focused on an
approach integrating these two very successful test generation tech-
niques in a single tool. In order to cope with limitations in current
constraint solving technology, we developed our own, search-based
constraint solver. As our experiments on thousands of Java classes
show [10], integrating SBST and DSE is beneficial in practice, and
has no significant negative effect.

The benefits of such an integration lie not only in coverage and
performance improvements: The combination retains the distinct
advantages of SBST such as the ability to optimize test suites to-

wards any coverage criterion as well as non-functional properties
such as size or execution time. Furthermore, the search in the space
of sequences of method calls guarantees that resulting test cases
only represent valid object states.

EVOSUITE as well as its Eclipse plugin are freely available on
the EVOSUITE web site at: http://www.evosuite.org
Acknowledgments. This project has been funded by a Google
Focused Research Award on “Test Amplification”, the Norwegian
Research Council, the ERC grant SPECMATE and and EU FP7
grant 295261 (MEALS).

6. REFERENCES
[1] A. Arcuri. Theoretical analysis of local search in software

testing. In Symposium on Stochastic Algorithms, Foundations
and Applications (SAGA), pages 156–168, 2009.

[2] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[3] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite
generation for object-oriented software. In Foundations of
Software Engineering (FSE), pages 416–419, 2011.

[4] G. Fraser and A. Arcuri. Sound empirical evidence in
software testing. In ACM/IEEE International Conference on
Software Engineering (ICSE), pages 178–188, 2012.

[5] G. Fraser and A. Arcuri. 1600 faults in 100 projects:
Automatically finding faults while achieving high coverage
with EvoSuite. Empirical Software Engineering (EMSE),
2013. (to appear).

[6] G. Fraser and A. Arcuri. Evosuite at the SBST 2013 tool
competition. In International Workshop on Search-Based
Software Testing (SBST), pages 406–409, 2013.

[7] G. Fraser and A. Arcuri. EvoSuite: On the challenges of test
case generation in the real world (tool paper). In IEEE
International Conference on Software Testing, Verification
and Validation (ICST), pages 362–369, 2013.

[8] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291, 2013.

[9] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. IEEE Transactions on Software Engineering,
28(2):278–292, 2012.

[10] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving
search-based test suite generation with dynamic symbolic
execution. In IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 360–369, 2013.

[11] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2nd edition, 2002.

[12] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In ACM Conference on
Programming language design and implementation (PLDI),
pages 213–223, 2005.

[13] M. Harman and P. McMinn. A theoretical and empirical study
of search based testing: Local, global and hybrid search. IEEE
Transactions on Software Engineering, 36(2):226–247, 2010.

[14] M. Islam and C. Csallner. Dsc+mock: A test case + mock
class generator in support of coding against interfaces. In Int.
Workshop on Dynamic Analysis (WODA), pages 26–31, 2010.

[15] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering, pages 870–879, 1990.

[16] P. McMinn. Search-based software test data generation: A
survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

http://www.evosuite.org

	Introduction
	Test Generation Background
	Whole Test Suite Generation
	Dynamic Symbolic Execution

	Combining SBST and DSE
	EvoSuite: An SBST+DSE Tool
	Constraint Extraction
	Constraint Solving

	Conclusions
	References

