
A canonical proof-theoretic approach to model
theory

Carlos G. Lopez Pombo1,2, Paula D. Chocrón1,2, Ignacio Vissani1,2, and
Tomas S.E. Maibaum3

1 Department of Computing, FCEyN, Universidad de Buenos Aires
2 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)

3 Department of Computing and Software, McMaster University

Logic has proved essential as a formal language for describing different aspects
of software artefacts. These formal descriptions, frequently called specifications,
have served not only as requirements documentation but also for proving prop-
erties, provided the logical language in which the specification is written has an
appropriate reasoning tool. Semantics is an integral part of logic, as providing
logical descriptions of real-world phenomena requires people to agree on how
these descriptions should be interpreted. In this sense, model theory has been
seen as providing the cornerstone for the satisfaction of this need. Model theory is
usually understood as the study of classes of mathematical structures satisfying
formulae in a formal language of choice. Model theory is a tool for characterising
semantic notions, like meaning and truth, associated to syntactic objects, like
formulae and proofs, of a corresponding language. From a category theory point
of view the model theory of a logic has been formalised as an institution [1]. An
institution is a structure 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 formed by: 1) a cate-
gory of signatures Sign, 2) a grammar functor Sen : Sign→ Set providing a set of
sentences for each signature, 3) a model functor Mod : Signop → Cat providing
a class of semantic structures for each signature, 4) a family of binary rela-
tions {|=Σ}Σ∈|Sign| such that given Σ ∈ |Sign|, |=Σ⊆ |Mod(Σ)|× |Sen(Σ)|, and
5) satisfying that for all σ : Σ → Σ′ ∈ ||Sign||, α ∈ Sen(Σ) andM∈Mod(Σ′),
M |=Σ′ Sen(σ)(α) if and only if Mod(σ)(M) |=Σ α.

In mathematical logic, given a logical system, we are forced to consider all
possible semantic structures that can interpret its sentences, while in computer
science we are mostly concerned about the analysability of the semantics as we
rely on it to prove properties of software artefacts (as well as meta properties
of the logic itself). Usually, we place trust only in those structures that can
be described resorting to a formal logical language; typically they are maximal
consistent theories in the language of choice, like those used in Henkin’s com-
pleteness proof for equational logic [2], or theories over some formalisation of
set theory. Our aim is to undertake a recasting of the notion of semantics in
syntactic terms to support this approach.

Behavioural specifications, such as those written in any dynamic logic [3],
temporal logics, both linear time [4], and branching time [5,6], etc., usually in-
volve the following common elements: 1) an interpretation of a subset of symbols
whose interpretation is fixed for all states usually referred to as rigid, 2) an or-
dering of states (for example, sequences of states in linear temporal logics, trees

of states in branching time temporal logics, a single state in dynamic logics, etc.)
such that each of the constituent states provide an interpretation of a different
subset of symbols, referred to as flexible symbols, and 3) a satisfaction relation
providing meaning for behavioural logic operators. Generally, the ordering of
states is obtained from a binary relation between them; for example, in dynamic
logics there is a set of atomic actions and regular programs defined over them; in
temporal logics, both linear time and branching time, there is a single transition
relation; in deontic logics there are events produced by actions, etc.

This paper addresses the question of whether such a class of structures can
be constructed in a canonical way so the definition of the functor Mod, in the
definition of institutions, can be given in concrete representable terms.

Equational logic extended with extra-logical predicate symbols has been
widely accepted as an appropriate specification language for describing the oper-
ations of abstract data types [7]. Equational theories can also be used to provide
interpretations, of extra-logical symbols by considering formulae of the form
f(t1, . . . , tn) = t and P (t1, . . . , tn) where t1, . . . , tn and t are ground terms of the
logical language of choice. On the other hand, we extend the Elementary The-
ory of Binary Relations [8] by incorporating the additional relational operators
of ω-closure fork algebras [9]. This class of relation algebras have been used to
reason about relations due to their complete (almost) equational calculus and
its easy-to-understand concrete semantics, build out of a set of binary relations.

In this work we propose a general framework that facilitates the definition of
the semantics of a logical system by identifying and properly characterising its
static and dynamic properties. To make the approach flexible, we propose the
use of a higher-order extension of equational logic to formalise the static aspects,
while the dynamic properties characterising the accessibility relations between
states are expressed by means of concrete models for fork algebraic terms.

References

1. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. Journal of the ACM 39(1) (1992) 95–146

2. Henkin, L.A.: The logic of equality. The American Mathematical Monthly 84(8)
(1977) 597–612

3. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. Foundations of Computing. MIT
Press.

4. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer-Verlag.
5. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-

poral logic of branching time. Jour. of Comp. and Syst. Sciences 30(1) (1985) 1–24
6. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th. Annual IEEE

Symposium on Foundations of Computer Science, Los Alamitos, CA, USA, IEEE
Computer Society, IEEE Computer Society (1977) 46–57

7. Ehrig, H., Mahr, B., Orejas, F.: Introduction to algebraic specification: Formal
methods for software development. Computer Journal 35(5) (1992) 468–477

8. Tarski, A.: On the calculus of relations. Jour. of Symb. Logic 6(3) (1941) 73–89
9. Frias, M.F.: Fork algebras in algebra, logic and computer science. Volume 2 of

Advances in logic. World Scientific Publishing Co., Singapore (2002)

