
PIRSES-GA-2011-295261 /MEALS
November 28, 2015

Page 1 of 20

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 5.1 / 3

Title of Deliverable: Reasoning about Triggered Scenarios in Logic Programming

Contractual Date of Delivery to the CEC: 31-Mar-2015
Actual Date of Delivery to the CEC: 31-Mar-2015
Organisation name of lead contractor for this deliverable: IMP
Author(s): D. Alrajeh, R. Miller, A. Russo, S. Uchitel
Participants(s): IMP,UBA
Work package contributing to the deliverable: WP5
Nature: R
Dissemination Level: Public
Total number of pages: 20
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

This document presents a logic programming approach, based on the Event Calculus (EC), for representing and
reasoning about triggered scenarios (TS), an expressive dialect of message sequence charts widely employed in software
requirements engineering to specify system behaviour. We introduce a sound translation for triggered scenarios into an
EC-based Answer Set Programming (ASP) representation, and demonstrate how this formalisation allows for the use
of ASP as an alternative verification method capable of overcoming known limitations of current TS analysis methods.

Note:

This deliverable is based on work presented at the International Conference on Logic Programming 2013.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 /MEALS Page 2 of 20 Public

Contents
1 Introduction 3

2 Motivating Example 3

3 Triggered Scenarios 4

4 An Event Calculus Formalisation of Triggered Scenarios 7

5 Bounded verification in ASP 11

6 Discussion and Related Work 14

7 Conclusions and Future Work 15

A Translation of Triggered Scenarios into ASP 16

MEALS Partner Abbreviations 19

2

PIRSES-GA-2011-295261 /MEALS Page 3 of 20 Public

1 Introduction
Requirements Engineering is the set of activities concerned with identifying and communicating
the purpose of a software-intensive system, and the contexts in which it will be used. The
elicitation and analysis of stakeholders’ requirements for a system’s behaviour are of paramount
importance. To facilitate the direct involvement of stakeholders, requirements are often conveyed
through sequence charts — intuitive narrative-style descriptions of desirable and undesirable
system behaviours — for which UML interaction diagrams and in particular message sequence
charts [?] are a widely accepted notation. Triggered Scenarios (TS) [?, ?] are an expressive
variant of sequence charts that allow the user to di↵erentiate between the circumstances (or
triggers) under which particular system behaviours should be facilitated. and the resultant
behaviours themselves. They also allow a di↵erentiation between behaviours that should be
required after a trigger, described with universal triggered scenarios (uTS), and behaviours
that should just be made possible within the system-to-be, described with existential triggered
scenarios (eTS). Though frameworks supporting the automated analysis of TSs exist (e.g. [?]),
they are ‘incomplete’ with respect to the behaviours they aim to cover.

In this paper we show how Event Calculus (EC), a standard logic-based AI framework for
reasoning about actions and change, can be extended to provide a representation for a collection
of TSs, and show how this representation corresponds to the existing semantics for TSs, which
is expressed in terms of computation trees and state functions. We also demonstrate how the
formalisation allows for the use of Answer Set Programming (ASP) solvers to perform various
verification tasks on TSs.

2 Motivating Example
Consider the requirements engineering task of eliciting behaviour for an Air Tra�c Control
(ATC) system in which flight plans, radar information and aircraft must be coordinated to
support flexible, safe passage through airspace [?]. Assume that we have been provided with
the two examples of expected system behaviour in TS notation shown in Fig. 1. Intuitively, their
intended meanings are as follows. Fig. 1.A indicates that if the ATC receives a request to change
a flight path, approves it, and then receives a signal from the radar, then the ATC must send
instructions to the aircraft and the radar must scan for other flights before any other event in the
scenario’s “scope” occurs. In other words, send instructions and scan must occur before further
occurrences of request change, approve or send signal. Fig. 1.B states that if the ATC receives
details of a plan and then a radar signal, and afterwards the condition labelled [l4] is true, then
the ATC must update details of the approved plan before send details, send signal or changes to
Change Requested or Approved happen again. Because send instructions and scan are not part
of the scope of the second TS while update details is not part of the scope of the first, the two TSs
may be interleaved. For example, system executions would be possible in which request change,
approve, send details, send signal occur in turn, followed either by send instructions, scan and
update details, or by update details, send instructions and scan.

3

PIRSES-GA-2011-295261 /MEALS Page 4 of 20 Public

In [?], an automatic translation of TSs such as these into modal transition systems (MTS) [?]
is provided, and a model checker [?] can be used to automatically verify consistency of TSs
as well as validity of temporal properties in possible system implementations that satisfy the
TSs. However, the translation is incomplete as it relies on MTS conjunction (MTS are known
not to be closed under conjunction) and hence the MTS model checker may return unsound
results. In this particular example, we may conclude that the specification is inconsistent with
an additional safety requirement stating that send instructions may not be followed immediately
by update details. This is because MTS cannot model precisely what is specified in Fig. 1:
that either order for send instructions and update details would be acceptable as a response to
the triggering sequence. The best approximation that can be made using MTS is to assume
one particular order must be present in the final system. In contrast, the EC-based techniques
presented in this paper allow for TSs to merge in a correct way that preserves the intended
meaning of each component.

Aircraft ATC Radar

A)

T1 :

[l2]
request change

[l3]
approve

[l4]
send signal

M1 :
[l7]

send instructions [l8]
scan

Planner Aircraft ATC Radar

B)

T2 :

[l2]
send details

[l3]
send signal

[l4] Change Requested ^ Approved

M2 : [l7]
update details

Figure 1: Triggered Scenarios A) uTS SendInstructionsAndScan and B) uTS UpdateDetails.

3 Triggered Scenarios
We identify both the TSs in Fig. 1 as uTSs (not eTSs) because their main charts, the regions
M1 and M2, are enclosed in continuous (not dotted) lines. In a TS, the region T above M is
the trigger. Intuitively, a uTS means that if a part of an execution trace matches a linearisation
(compatible total ordering) of T ’s actions, then all possible continuations of that part must start
by matching a linearisation of the main chart M. An eTS means that if a part of an execution trace
matches a linearisation of T , then there must be at least one possible continuation of that part that
starts by matching a linearisation of M. Moreover, for both uTSs and eTSs, every linearisation
of M must be a possible continuation of any given linearistion of T .

In Fig. 1.B, the uTS has four vertical dotted lifelines (Planner, Aircraft, ATC and Radar) that
represent di↵erent components of an ATC system. The arrows represent actions (e.g. messages)
between lifelines, and the labels send details, send signal and update details identify the action
type. Change Requested and Approved are fluents used to compose conditions (fluent formulae)
that are true where they appear in the trigger. Points where actions or conditions meet lifelines
are called locations. For explanatory convenience, locations have labels (e.g., “[l2]”)1. In

1These labels are not part of the TS itself, and the indices on the labels are arbitrary with no semantic implication.

4

PIRSES-GA-2011-295261 /MEALS Page 5 of 20 Public

triggered scenarios, time flows from top to bottom along each lifeline, independently save for
the constraints implied by the positions of the locations on each line. For example, in Fig. 1.A
send signal must occur after approve because [l4] is below [l3] on ATC’s lifeline. But scan
can occur either before or after send instructions. The fluent formula Change Requested ^
Approved in Fig. 1.B must be true immediately after the occurrence of send signal. In addition
to the diagrams, a TS specification includes background information on (i) the initial truth values
of all fluents and which actions change these values, and (ii) which actions are relevant to
each TS and therefore can only occur where (if at all) they appear in the diagram (this set of
actions is called the scope of the TS). To provide a semantics, TSs have been given a symbolic
representation [?] in terms of labelled partial orders with conditions (LPOCs). We summarise
this next. We assume a finite, universal set Act of action labels (for our example {approve,
request change, send signal, send instructions, scan, send details, update details, change ack}).
Definition 1. A fluent F is a triple hIF ,TF , InitFi such that IF [TF ✓ Act, IF \ TF = ; and
InitF 2 {>,?}. IF and TF are the set of initiating and terminating actions respectively of F, and
InitF is the initial value. Given ⌃ ✓ Act, F is defined over the alphabet ⌃ if IF [TF ✓ ⌃.

We assume a finite, universal set Fls of fluent labels each of which uniquely identifies a
fluent. In our example, Fls = {Change Requested,Approved }, where Approved = h{approve},
{update details},?i and Change Requested = h{request change}, {change ack},?i. For ease of
exposition, we restrict fluent formulae to be conjunctions of fluent literals, although our approach
is easily generalisable to disjunctions of such formulae as well:

Definition 2 (Fluent Propositional Logic (FPL) Formula). Let F be the set of all fluents defined
over ⌃ ✓ Act that have a fluent label in Fls. A fluent propositional logic (FPL) formula over ⌃
is an expression of the form �1 ^ . . . ^ �n, where n � 1 and each �i is either f or ¬f for some
f 2 F .

In the following, l � l0 if and only l0 appears immediately after l on a TS instance line. For
example, in Fig. 1.A l2 � l3 but l2 ⌃ l4.

Definition 3 (LPOC). A labelled partial order with conditions (LPOC) is a tuple hL,�, �,⌃, i
where

• L is a finite set of locations,

• �✓ L⇥ L is an antisymmetric, irreflexive, antitransitive relation such that �✓ for at least
one total ordering over L,

• ⌃ ✓ Act, and is a set of FPL formulae such that each fluent appearing in a formula in
is defined over the alphabet ⌃, and

• � : L! ⌃ [.

� is referred to as the labelling function, and ⌃ as the scope or alphabet of the LPOC. L⌃ refers
to the set of action label locations {l | l2L and �(l)2⌃}, and L to the set of fluent label locations
{l | l2L and �(l)2 }.

5

PIRSES-GA-2011-295261 /MEALS Page 6 of 20 Public

In a TS, the trigger and main chart are each represented as LPOCs, where the main chart LPOC
has an empty .

Definition 4 (Triggered Scenario (uTS/eTS)). A universal triggered scenario (uTS) is a tuple
U = ⇤(T,M,⌃) and an existential triggered scenario (eTS) is a tuple E = ⌃(T,M,⌃), where the
trigger T and the main chart M are LPOCs with alphabet ⌃.

For example, the uTS of Fig. 1.A is ⇤(T1,M1,⌃1) where
⌃1 = {request change, approve, send signal, send instructions, scan},
T1 = h{l2, l3, l4}, {(l2, l3), (l3, l4)}, {�(l2)= request change, �(l3)=approve,

�(l4)= (send signal)},⌃1, {}i and
M1 = h{l7, l8}, ;, {�(l7)=send instructions, �(l8)=scan},⌃1, {}i.

The semantics of TSs is expressed in [?] in terms of words and computation trees. A word
is a (possibly empty or infinite) sequence of actions in Act. For any A✓ Act, A⇤ denotes the set
of all finite words constructed from A, including the empty word ✏. For example (send details
send signal) and (send signal send details) are both members of {send signal, send details}⇤.
For a given ⌃ ✓ A, the projection of a word w 2 A⇤ onto the set ⌃, denoted w |⌃, is the word
constructed from w by removing actions that are not included in ⌃ without otherwise altering the
ordering of w. Note that ✏|⌃= ✏. If w, u and v are words such that w=uv, then u is called a prefix
of w. A computation tree is a transition system represented as a tree structure in which each node
corresponds to a word, the root being the empty word.

Definition 5 (Computation Tree). A computation tree is a transition system (V, A,�, v✏), where
A ✓ Act, V is a set of nodes each of which is uniquely indexed by a single element of A⇤ (so that
the set of node indices is a subset of A⇤), v✏ is the initial node (indexed with the empty word ✏),
and � is a transition relation, �✓V⇥A⇥V , such that (vw,↵, vw0)2� if and only if w0=w↵.

Note from Def. 5 that any set VI ✓ A⇤ of node indices identifies a unique computation tree.
Moreover, if for every w2VI there is an ↵, � 2 A and w0 2 VI such that w↵ 2 VI and (for w 6= ✏)
w=w0�, then the computation tree associated with VI is a classical tree structure with root node
v✏ such that every path from v✏ is infinite. Such computation trees are called deadlock-free. A
branch of a computational tree is a (possibly infinite) sequence b= (vw, ↵, vw↵)(vw↵,↵0, vw↵↵0) . . .
of transitions in �, that can start at any node (not just v✏).

To define when a computation tree satisfies a given triggered scenario [?] defines the notions
of state function, linearisation and satisfaction of an LPOC by a word. A state function Fls,
denoted ⇣, captures the valuation of fluents at (the end of) a given word. In other words, given
a fluent F 2 Fls and a word w, the state function at w, ⇣(w), maps the fluent to (i) false
(respectively true) if one of its terminating (respectively initiating) actions appears in w after
all (if any) occurrences of its initiating (respectively terminating) actions, and (ii) its initial value
otherwise.

A word w is a linearisation of an LPOC if the location labels L⌃ can be (re)indexed into a
sequence l0, ..., ln such that, for all 1 i, j n, if li � l j then i < j, and the sequence matches w
(i.e. w = �(l0)...�(ln)). For instance, the word (scan send instructions) is a linearisation of M1 in
Fig. 1.A. The FPL formula � is at prefix w0 of w with respect to an LPOC i↵ there is a location

6

PIRSES-GA-2011-295261 /MEALS Page 7 of 20 Public

l0 2 L such that �(l0) = � and either (i) for some 0 k n, lk � l0 and w0 = �(l0)...�(lk), or (ii)
w0 = ✏ and there is no l 2 L⌃ such that l � l0.

A word w satisfies an LPOC C, written w |= C, if there is a decomposition w = uv such that
(i) v|⌃ is a linearisation of C, and (ii) for every prefix v0 of v and FPL formulae � such that � is at
prefix v0|⌃ of v|⌃ with respect to C, the FPL � is true under the interpretation ⇣(uv0).

Definition 6 (Satisfaction of a eTS). A computation tree satisfies the eTS E = ⌃(T,M,⌃) i↵ (i)
it is deadlock-free and (ii) whenever a word w defined by a finite branch b that starts at the tree’s
initial node is such that w |= T , then for every linearisation z of M there exists a branch b0 starting
at the ending node of b that defines a word w0 such that w0|⌃= z.

Definition 7 (Satisfaction of a uTS). A computation tree satisfies the uTS U = ⇤(T,M,⌃) i↵ (i)
it satisfies the eTS E = ⌃(T,M,⌃) and (ii) whenever a word w defined by a finite branch b that
starts at the tree’s initial node is such that w |= T , then any infinite branch b0 that starts at the
ending node of b defines a word of the form uv for some u 2 Act⇤ such that u|⌃ is a linearisation
of M.

Finally, we say that a computation tree satisfies a set of TSs if it satisfies each member of the set.

4 An Event Calculus Formalisation of Triggered Scenarios
The EC formalisation of Triggered Scenarios is in ASP and models time as a set of parallel
runs, each representing an execution trace (i.e. a linear sequence of actions) of a system. The
axiomatisation is based on a version of the EC in [?], customised for the special case where
the domain is deterministic and the initial state is completely specified. This uses a sort action
for actions (with variables A, A1, A2, . . .), a sort fluent for fluents (with variables F, F1, F2, . . .),
a sort run for runs (with variables R, R1, R2, . . .) and a sort position for positions within a
run (with variables P, P1, P2, . . .). The main predicates are happens(A, R, P), holdsAt(F, R, P),
initiates(A, F, R, P) and terminates(A, F, R, P). It is convenient to also define an auxiliary
predicate clipped(R, P1, F, P2) which means that, in a given run R, an action occurs which
terminates F between positions P1 and P2. The corresponding definitions are:
clipped(R, P1, F, P2) happens(A, R, P), P1P, P<P2, terminates(A, F, R, P). (EC1)
holdsAt(F, R, P2) happens(A, R, P1), P1<P2, (EC2)

initiates(A, F, R, P1), not clipped(R, P1, F, P2).
holdsAt(F, R, P2) holdsAt(F, R, P1), P1<P2, not clipped(R, P1, F, P2). (EC3)

These axioms formalise a commonsense law of inertia: in any run R, a fluent that is either
initially true (resp. false) or has been initiated (resp. terminated) by an action occurrence
continues to hold (resp. not to hold) until a terminating (resp. initiating) action occurs.
Information about which actions a↵ect which fluents is provided by domain-dependent axioms
for the predicates initiates and terminates, together with information about which fluents are
initially true.

As we shall see, to capture the semantics of TSs we need to be able to express that two
runs contain the same sequence of actions up to a given position. We do this with a predicate

7

PIRSES-GA-2011-295261 /MEALS Page 8 of 20 Public

sameHistory(R1, R2, P) defined as follows:
sameHistory(R1, R2, P) not differentHistory(R1, R2, P). (EC4)
differentHistory(R1, R2, P) P0 < P, happens(A, R1, P0), not happens(A, R2, P0). (EC5)
Furthermore, because runs represent system executions, exactly one action must occur at each
position of each run. This is captured by the integrity constraints (EC6) and (EC7), with the
predicate occurs providing the necessary existential quantification of the action argument:
 happens(A1, R, P), happens(A2, R, P), A1 , A2. (EC6)
 not occurs(R, P). (EC7)
occurs(R, P) happens(A, R, P). (EC8)

We define the EC formalisation of a TS-based system specification by describing a translation
function �[...] for each of its components. �[Act] is simply {action(a)|a 2 Act}. �[Fls] includes
a set of atoms of the form fluent(f) for each f 2 Fls, a set of atoms holdsAt(f, R, 0), for
each fluent f that is initially true (i.e., Initf = >), and, for each f, atoms initiates(a, f, R, P)
for each a 2 If and atoms terminates(a, f, R, P) for each a 2 Tf. So in our example
�[Fls] includes initiates(request change, change Requested, R, P), terminates(change ack,
change Requested, R, P), etc.

Each TS in a system specification has an overall name, and names for its trigger and
main chart, captured by the sort predicates trigger scenario, trigger and main. We use
the predicate scope to state which actions are in each TS’s scope, the predicate is in to state
that a trigger or main chart belongs to a particular TS and the predicate uni to state that the
TS is universal. For instance, our example includes trigger scenario(uTS UpdateDetails),
uni(uTS UpdateDetails), trigger(t2), main(m2), is in(t2, uTS UpdateDetails), etc, along
with atoms scope(send details, uTS UpdateDetails), etc.

The translation of an FPL formula � is with respect to a given position and run and is
expressed in terms of holdsAt. So given a fluent f, fluent literals �1, . . . , �n, a position P and
a run R, �[f, R, P] is holdsAt(f, R, P), �[¬f, R, P] is not holdsAt(f, R, P), and �[�1 ^ . . .^ �n, R, P]
is �[�1, R, P], . . . ,�[�n, R, P].

To translate the LPOC C = hL,�, �,⌃, i we need some extra notation related to �. The
relation �⌃ is analagous to � but completely disregarding any locations of fluent formulae: l �⌃ l0

i↵ l, l0 2 L⌃ and either (i) l � l0, or (ii) there is a set {x0, ..., xn} ✓ L , such that l � x0, xn � l0,
and xi�1 � xi for each 1 i n. The relation � identifies the location of the last action (if
there is one) before a given fluent formula along each of the instance time lines in C. Formally,
l � l0 i↵ l 2 L⌃, l0 2 L and either (i) l � l0, or (ii) there is a set {x0, ..., xn} ✓ L , such that
l � x0, xn � l0, and xi�1 � xi for each 1 i n. Thus for the trigger in Fig. 1.B, �⌃= {(l2, l3)} and
� = {(l2, l4), (l3, l4)}.

Our translation of LPOCs into EC formulae converts locations to position variables whose
ordering is appropriately constrained by consideration of �⌃ and � :

Definition 8 (Translation of LPOCs). Let the LPOC c = hL,�, �,⌃, i be either the trigger or
the main chart of a TS s. Without loss of generality, assume the locations in L are (arbitrarily)
indexed using all but the first and last of a consecutive sequence start, ..., k, end of natural
numbers, i.e. L = {lstart+1, ..., lk}. The translation makes use of variables Pstart, . . . , Pk, Pend of

8

PIRSES-GA-2011-295261 /MEALS Page 9 of 20 Public

sort position. Let �!P be a shorthand for the sequence of variables Pstart+1, . . . , Pk. The translation
�[c] of c is given by the following two clauses2:
lpoc(c, Pstart, Pend, R) Pstart < Pend,�init[c],��[c],�minmax[c],�hap[c],�holds[c],

not scoped action happens(c, Pstart, Pend, R,
�!
P).

scoped action happens(c, Pstart, Pend, R,
�!
P) action(A), is in(c, s), scope(A, s),

position(PA),�noteq[c, PA], Pstart PA, PA < Pend, happens(A, R, PA).
where:

- �init[c] is the conjunction of {�[�(lm), R, Pstart] | lm 2 L and ¬9 l j 2 L s.t. l j � lm }
- ��[c] is the conjunction of {(P j < Pm) | l j �⌃ lm}
- �minmax[c] is the conjunction of {(Pstart P j), (P j < Pend) | l j 2 L⌃}
- �hap[c] is the conjunction of {happens(�(l j), R, P j) | l j 2 L⌃}
- �holds[c] is the conjunction of {�[�(lm), R, succ(P j)] | l j � lm}
- �noteq[c, PA] is the conjunction of {PA , P j | l j 2 L⌃}

�LPOC denotes the set of all clauses �[c] for some trigger or main chart c. To translate main
charts we need a representation of each linearisation, identified by an l-ordering. We say
that �+ is a l-ordering of �⌃ if (i) it is antisymmetric, irreflexive and antitransitive, (ii) its
reflexive and transitive closure (denoted �rtc

+) is a total order over L⌃, and (iii) �⌃ ✓ �rtc
+ .

Thus for the main chart of the TS in Fig. 1.A there are two l-orderings: {(l7, l8)} and {(l8, l7)}.
We use a sort linearisation id for l-ordering identifiers l0, l1, etc and define a predicate
linearisation of(l, m) for each l-ordering of a main chart m.

Definition 9 (Translation of LPOC with respect to �+). Let c = hL,�, �,⌃, i be an LPOC and
let �+ be an l-ordering of �⌃ with identifier l. As for Definition 8, assume L = {lstart+1, ..., lk}.
The translation makes use of variables Pstart, . . . , Pk, Pend of sort position. Let �!P be a shorthand
for the sequence of variables Pstart+1, . . . , Pk. Let ��+[c] be the conjunction of the set {(P j <
Pm) | l j, lm 2 L⌃ and l j �+ lm}. The translation of c with respect to �+, denoted �[c,�+], is given
by the following clause:
linearisation(c, l, Pstart, R) ��+[c],�minmax[c],�hap[c], (L1)

not scoped action happens(c, Pstart, Pk, R,
�!
P).

�L denotes the set of all clauses �[sm,�+] for some l-ordering �+ of some main chart sm3. We
next describe when a run R contains an occurrence of a main chart SM starting at position Pi:
main chart(SM, Pstart, R) Pstart < Pend, lpoc(SM, Pstart, Pend, R). (EC9)
Recall that an eTS expresses that if a part of an execution trace of the system matches its trigger,
then, for each main chart linearisation, there must exist a possible continuation of that trace that

2For simplicity some type predicates have been omitted from the body of these clauses.
3See Appendix A for an example of the EC translation from the triggered scenario Fig 1.A.

9

PIRSES-GA-2011-295261 /MEALS Page 10 of 20 Public

starts by matching the linearisation. Additionally, a uTS expresses that no other continuations of
the trace are possible. These requirements are captured by the following constraints and clause:
 trigger(ST), main(SM), is in(ST, S), is in(SM, S), lpoc(ST, Pstart, Pend, R), (EC10)
linearisation id(L), linearisation of(L, SM),
not exists linearisation with same history(SM, L, Pend, R).

 trigger(ST), main(SM), is in(ST, S), is in(SM, S), uni(S), (EC11)
lpoc(ST, Pstart, Pend, R), not main chart(SM, Pend, R).

exists linearisation with same history(SM, L, P, R1) main(SM), (EC12)
linearisation id(L), sameHistory(R1, R2, P), linearisation(SM, L, P, R2).

To compensate for the finiteness of ASP, our representation includes an additional integrity
constraint (EC13) below, stating that the end point of each run must match with a “system state”
already reached further back in the same or another run. Additionally, from this other matching
run position, progress must be made through each main chart that has already started. Informally,
a system state is characterised by both the fluents that hold, and by the current position on each
“pathway” through each TS, where a pathway is a linearisation of the trigger concatenated with
a linearisation of the main chart. Each possible pathway position in each TS is identified with a
unique constant (e.g. e23) of sort execution state. These notions are captured in the following
constraint and accompanying clauses:
 max position(P), not has matching earlier point(R, P). (EC13)
has matching earlier point(R, P) run(R1), position(P1), P1 < P,

same Execution(R, P, R1, P1), same Fluents(R, P, R1, P1), progress from(R1, P1).
progress from(R1, P1) not non progressor at(R1, P1).
non progressor at(R1, P1) holds execution state(ES, R1, P1),

trigger complete(ES), not progresses(ES, R1, P1).
progresses(ES, R1, P1) position(P2), P1 < P2, not holds execution state(ES, R1, P2).
same Execution(R, P, R1, P1) not different Execution(R, P, R1, P1).
different Execution(R, P, R1, P1) holds execution state(ES, R, P),

not holds execution state(ES, R1, P1).
different Execution(R, P, R1, P1) not holds execution state(ES, R, P)

holds execution state(ES, R1, P1).
same Fluents(R, P, R1, P1) not different Fluents(R, P, R1, P1).
different Fluents(R, P, R1, P1) holdsAt(F, R, P), not holdsAt(F, R1, P1).
different Fluents(R, P, R1, P1) not holdsAt(F, R, P), holdsAt(F, R1, P1).
Space limits prevent us from giving a general recipe for generating holds execution state
clauses from a TS specification. Instead, we give an example holds execution state clause
for the execution state identified by the constant e23 of the TS in Fig 1.A, where the run has
passed l2 and l3 but not yet passed l4. Note that in this example �!P denotes the sequence P1, P2.
holds execution state(e23, R, P) Pstart P1, P1 < P2, P2 P,

happens(request Change, R, P1), happens(approve, R, P2),
not scoped action happens(t1, Pstart, P, R,

�!
P).

10

PIRSES-GA-2011-295261 /MEALS Page 11 of 20 Public

�ES denotes the set of all holds execution state clauses for all execution states arising from all
pathways in all TSs in the specification.

The full translation of a set of triggered scenarios is defined as follows.

Definition 10 (Translation of a Set of Triggered Scenarios). Let U be a finite set of uTSs, E
be a finite set of eTSs and S = U [E a given system specification. The EC-based answer set
programming representation of S with respect to a bound N, denoted �[S, N], is the set of clauses:

{(EC1), . . . , (EC13)} [�[Act] [�[Fls] [�LPOC [�L [�ES
together with clauses defining auxiliary and sort predicates, and the following aggregate:

N [happens(E,R,P) : action(E): run(R): position(P)] N.

The value of N depends on the type of verification task in hand. Examples of such tasks are
given in Section 5. Any completeness result of our translation would have to be with respect
to a lower bound for N, and we leave this for future work. In this paper we rely instead on
the soundness of our translation, as stated in Proposition 1 below, and focus on corresponding
verification tasks.

Definition 11. Let r be a run, p be a position, and H = {happens(a0, r, 0)...happens(ap, r, p)}.
The word wH defined by H is the finite sequence a0,, ap.

Proposition 1. Let S = U [E whereU is a finite set of uTSs and E is a finite set of eTSs. Let �
be an ASP solution of �[S, N] for some N. Then there exists a computation tree CT that satisfies
S such that, for each H ⇢ � which is of the form {happens(a0, r, 0)... happens(ap, r, p)} for some
run r and position p, the word wH defined by H is a node index of CT, and, for each fluent f,
holdsAt(f, r, p) 2 � if and only if ⇣(wH)(f) = true.

5 Bounded verification in ASP
Verification in software engineering refers to the process of automatically checking whether a
system satisfies some given desirable property. It takes as input a description D, specified in a
formal or semi-formal language (e.g., scenario notation), and a property typically expressed
in a temporal logic formalism. The task is to check that the behaviour captured in the semantics
of D satisfies , denoted as D |= , for some given notion of satisfiability. If the verification
procedure finds (at least) one behaviour that violates the property, a system execution (either in
the form of a trace or tree depending on whether the semantics of the property is of a linear or
branching nature) is produced illustrating how such a violation may be reached.

In this paper, we are interested in checking whether a description D, comprised of a set of
universal and existential TSs, satisfies a class of properties referred to as safety properties [?]. A
safety property expresses the notion that no ‘bad’ action or state will ever happen or be reached
respectively. We focus our attention on safety properties that can be violated by a single word
in computation tree. A violation of a safety property occurs when is false at an index of a
computation tree satisfying D. We demonstrate below how the ASP solver iclingo [?] may be
used to detect vacuity and violations to single-state fluent properties. However, our approach can
be generalised to handle other forms of temporal safety properties.

11

PIRSES-GA-2011-295261 /MEALS Page 12 of 20 Public

Vacuity Detection

Though formalisms such as TSs are useful in capturing conditional behaviour of a system, they
are liable to being satisfied vacuously. A vacuous implementation satisfies a set of TSs by
never satisfying any of the TSs’ triggers. For instance, in the case of our running example,
a computation tree which never executes the action approve would satisfy both scenarios in
Fig. 1 according to the notion of satisfiability given in Definition 7. The problem with accepting
implementations that vacuously satisfy TSs is that such models may conceal inconsistency
between the TSs, e.g., where two scenarios with the same scope require incompatible main
charts to be executed. Detecting vacuity involves verifying a computation tree that satisfies the
TSs against the property “the trigger of each TS is never exhibited” [?], i.e., there is no index
that satisfies the trigger. Hence a violation to this property is a run showing how the system may
execute a trigger.

This task can be formulated in terms of ASP. Given a finite set of triggered scenarios
S = U [E, the task is to find solutions to the program �[S, N] for some N in which there is
at least one atom lpoc(s, p1, p2, r) that is true for each trigger s in the set. We therefore extend
our ASP representation with the following aggregate constraint for each trigger t in a TS in S:
 0 [lpoc(t,P1,P2,R):position(P1):position(P2):run(R)] 0

The above aggregates ensure that for each trigger any ASP solution includes at least one
run where that trigger is executed. If no solution is found then this means that the TSs cannot
be satisfied non-vacuously and therefore the specification will need to be revised. For instance,
suppose the triggered scenarios in Fig. 1 have been modified so that the action send details
in the trigger of Fig. 1.B no longer appears and so that both scenarios share the same scope, i.e.
⌃1 = ⌃2 = {approve, send signal, request change, change ack, update details, send instructions,
scan}. We refer to the modified scenarios as s1 and s2 and S = s1 [s2 . Running iclingo on the
program {�[S, N]} results in a number of ASP solutions including a solution that contains:
H1 = { happens(approve,r1,0) happens(approve,r1,1)
happens(send signal,r1,2) happens(send signal,r1,3)

happens(change ack,r1,4) happens(change ack,r1,5)

happens(update details,r1,6) happens(send signal,r1,7)

happens(change ack,r1,8)}
H2 = { happens(request change,r2,0) happens(send signal,r2,1)
happens(send signal,r2,2) happens(approve,r2,3)

happens(change ack,r2,4) happens(approve,r2,5)

happens(update details,r2,6) happens(request change,r2,7)

happens(update details,r2,8)}
Note that H1 and H2 correspond to two words in which the triggers for both scenarios are not
executed and hence both s1 and s2 are vacuously satisfied. Augmenting the same program with
the constraints:
 0 [lpoc(t1,P1,P2,R):position(P1):position(P2):run(R)] 0.

 0 [lpoc(t2,P1,P2,R):position(P1):position(P2):run(R)] 0.

12

PIRSES-GA-2011-295261 /MEALS Page 13 of 20 Public

results in no solutions in which both triggers may be non-vacuously satisfied. The reason no
solution can be found is because s1 and s2 are inconsistent in a specification that forces the
triggers to be executed. The scenario s1 requires either scan or send instructions to occur after
the sequence request change, approve, send signal and before any other action in the scope can
occur, whereas s2 requires update details to be executed after the same sequence and before any
other action in the scope can occur. Since {update details, scan, send instructions} are in the
scope of both scenarios, none of them may be executed, and hence the main charts for both
scenarios may not be satisfied, violating constraints (EC10) and (EC11).

Single-state Fluent Properties

Single-state fluent properties are assertions that are required to hold in every state of a system.
They are well-formed Boolean expressions � preceded by the “always” temporal operator,
i.e., ⇤�. For example, suppose we are interested in ensuring that our system will only allow
behaviours where instructions are sent to aircraft only if flight detail changes have been approved.
This can be expressed as ⇤� = ⇤(Instructions Sent ! Approved) where Instructions Sent =
h{send instructions}, {instructions ack},?i. A violation to such a property is a computation tree
with a node index w such that ⇣(w)(⇤�) = false.

Given a finite set of triggered scenarios S = U [E, an ASP solver can be used to detect
violations of single-state fluent properties (⇤�) by searching for solutions to the program ⇧ =

�[S, N][{ not violated., violated violated(R, P).}[�[⇤ �, violated] where �[⇤�, ✓] is
given by the following translation which makes use of predicates ✓ that are uniquely introduced
for each fluent subformula in �:

- �[⇤ f , ✓] is the clause ✓(R,P) not holdsAt(f,R,P).
- �[⇤¬ f , ✓] is the clause ✓(R,P) holdsAt(f,R,P).
- �[⇤(� _), ✓] is the clauses {✓(R, P) ✓i(R,P),✓ j(R,P).} [�[⇤�, ✓i] [�[⇤ , ✓ j]

- �[⇤(� ^), ✓] is the clauses {✓(R, P) ✓i(R,P).} [{✓(R, P) ✓ j(R,P).} [�[⇤�, ✓i] [
�[⇤ , ✓ j].

- �[⇤(�!), ✓] is the clauses {✓(R, P) ✓i(R,P), ✓ j(R,P).} [�[⇤¬�, ✓i] [�[⇤ , ✓ j].

A solution � to the above program represents a computation tree where the formula � is
violated by at least one word wH defined by H ⇢ � where ⇣(wH)(�) = false. For instance the
property ⇤(Instructions Sent ! Approved) is represented as:
q1(R,P) holdsAt(instructions sent,R,P).
q2(R,P) not holdsAt(approved,R,P).
violated(R,P) q1(R,P),q2(R,P).
Running the ASP solver on ⇧ results in a number of solutions including one which contains the
atoms violated(r2,8), violated(r2,7) and violated(r1,8) and the runs:
H1 = {happens(request change,r1,0) happens(approve,r1,1)
happens(send details,r1,2) happens(send signal,r1,3)

13

PIRSES-GA-2011-295261 /MEALS Page 14 of 20 Public

happens(scan,r1,4) happens(instructions ack,r1,5)

happens(send instructions,r1,6) happens(update details,r1,7)

happens(update details,r1,8) }
H2 = { happens(request change,r2,0) happens(approve,r2,1)
happens(send details,r2,2) happens(send signal,r2,3)

happens(send instructions,r2,4) happens(scan,r2,5)

happens(update details,r2,6) happens(send signal,r2,7)

happens(change ack,r2,8) }

6 Discussion and Related Work
As discussed in Section 2, existing TSs analysis algorithms and tools [?] perform analysis
of a collection of TSs using a modal transition system (MTS) [?] that is generated via an
incomplete translation. The generated MTS is a transition system that represents a collection
of possible computation trees that satisfy the given TSs. Returning to our example, the algorithm
in [?] results in an MTS that includes computation trees in which update details can only be
executed before send instructions. This is because it produces an MTS which represents a
collection of computation trees where the action update details must occur after the execution
of send instructions action. Although further extensions of MTSs have recently been developed
(e.g., DMTS [?]), these are still not complete in the general case. Our approach overcomes these
di�culties.

The modularity of our EC representation allows us to easily adjust our translation to
accommodate various alternative interpretations that have been suggested for TSs. In particular,
our translation distinguishes between uTSs and eTSs only by the constraint (EC11). In [?] a
weaker interpretation of a uTS is proposed that does not require all linearisations of the main
chart to be exhibited by the system. This can be accommodated for in our translation simply
by a weaking of (EC10) with the condition not uni(S). This weaker interpretation (and other
variations proposed) cannot be captured using MTSs.

The EC representation used in this paper supports partial specifications that use both
existential and universal narratives under linear and branching time. Thus, not only can it support
reasoning about languages such as Message Sequence Charts, Sequence Diagrams and LSCs,
but also extensions of them, including extensions that support use-case-like constructs that are
existential and branching in nature.

Our representation of the basic EC axioms in ASP follows the spirit of the work presented in
[?, ?] but di↵ers in that we introduce a notion of parallel runs. Bounded verification in ASP has
been explored previously in [?, ?]. Our work di↵ers in many ways, not least in that we present
a technique for translating TSs which have branching time semantics into ASP, whereas the
work done in [?, ?] is concerned with specifications of linear semantics. Our solutions represent
computation trees rather than individual runs. [?] describes an approach for representing fluent
linear temporal logic (FLTL) expressions as EC logic programs and demonstrates how Inductive
Logic Programming can be used to refine MTSs that satisfy the FLTL expressions from a given
set of runs representing ‘good’ and ‘bad’ system executions. Our work is however concerned
with formalising and reasoning about triggered scenarios, whose semantics di↵er from those of

14

PIRSES-GA-2011-295261 /MEALS Page 15 of 20 Public

FLTL expressions, in ASP, and using ASP to generate examples of computation trees that violate
some given property.

7 Conclusions and Future Work
The aim of this paper is to lay a foundation for the logic-based analysis of TSs. To achieve this
we have introduced extensions to the EC to model notions of multiple time-lines and same action
histories. We have then defined a general translation of TSs into this framework into finite time
and demonstrated how the ASP representation may be used as an alternative verification method
for detecting vacuity and violation of single-state fluent properties. The soundness and utility
of our translation in comparison to existing synthesis algorithms has been discussed. Our future
work will focus on developing a comprehensive ASP-based analysis framework for verifying
the correctness of TS specifications with respect to general forms of safety properties as well as
liveness properties. We will also investigate the use of inductive learning methods for revising
our ASP representation of TSs to eliminate existing violations.

Acknowledgements: Many thanks to German Sibay for insightful discussions. This work is
partly financed by ERC project PBM - FIMBSE (No. 204853).

15

PIRSES-GA-2011-295261 /MEALS Page 16 of 20 Public

A Translation of Triggered Scenarios into ASP
In this appendix we provide the translation of the triggered scenario given in Fig. 1.A into an
EC-based answer set programming representation. Full details of programs used in this paper
are available to download at (www.doc.ic.ac.uk/⇠da04/CaseStudies).

trigger scenario(uTS SendInstructionsAndScan).
uni(uTS SendInstructionsAndScan).
trigger(t1).
is in(t1, uTS SendInstructionsAndScan).
main(m1).
is in(m1, uTS SendInstructionsAndScan).
scope(approve, uTS SendInstructionsAndScan).
scope(send signal, uTS SendInstructionsAndScan).
scope(request change, uTS SendInstructionsAndScan).
scope(send instructions, uTS SendInstructionsAndScan).
scope(scan, uTS SendInstructionsAndScan).

lpoc(t1, Pstart, Pend, R)
run(R), position(Pstart), position(Pend),
Pstart < Pend,
position(P1), position(P2), position(P3),
Pstart P1, P1 < P2, P2 < P3, P3 < Pend,
happens(request change, R, P1),
happens(approve, R, P2),
happens(send signal, R, P3),
not scoped action happens(t1, Pstart, Pend, R, P1, P2, P3).

scoped action happens(t1, Pstart, Pend, R, P1, P2, P3)
position(Pstart), position(Pend), run(R),
position(P1), position(P2), position(P3),
is in(t1, uTS SendInstructionsAndScan),
action(A), scope(A, uTS SendInstructionsAndScan),
position(P), Pstart P, P< Pend, P, P1, P, P2, P, P3,
happens(A, R, P).

lpoc(m1, Pstart, Pend, R)
position(Pstart), position(Pend), run(R),
Pstart < Pend,
position(P1), position(P2),
Pstart P1, P1 < Pend, happens(send instructions, R, P1),
Pstart P2, P2 < Pend, happens(scan, R, P2),

16

PIRSES-GA-2011-295261 /MEALS Page 17 of 20 Public

not scoped action happens(m1, Pstart, Pend, R, P1, P2).

scoped action happens(m1, Pstart, Pend, R, P1, P2)
position(Pstart), position(Pend), run(R),
position(P1), position(P2),
is in(m1, uTS SendInstructionsAndScan),
action(A), scope(A, uTS SendInstructionsAndScan),
position(P), Pstart P, P< Pend, P, P1, P, P2,
happens(A, R, P).

main chart(SM, P, R)
position(P), run(R),
position(P1), P < P1,
lpoc(SM, P, P1, R).

linearisation id(1).

linearisation(m1, 1, P, R)
position(P), run(R),
position(P1), position(P2), P P1, P P2, P1 < P2,
happens(send instructions, R, P1),
happens(scan, R, P2),
not scoped action happens(m1, P, P2, R, P1, P2).

linearisation id(2).

linearisation(m1, 2, P, R)
position(P), run(R),
position(P1), position(P2), P P1, P P2, P1 < P2,
happens(scan, R, P1),
happens(send instructions, R, P2),
not scoped action happens(m1, P, P2, R, P1, P2).

execution state(e2).
execution state(e23).
execution state(e234).
execution state(e2347).
execution state(e2348).
trigger complete(e234).
trigger complete(e2347).
trigger complete(e2348).

17

PIRSES-GA-2011-295261 /MEALS Page 18 of 20 Public

holds execution state(e2, R, P)
run(R), position(P),
position(Pstart), position(P1),
Pstart P1, P1 P,
happens(request change, R, P1),
not scoped action happens(t1, Pstart, P, R, P1).

scoped action happens(t1, Pstart, Pend, R, P1)
position(Pstart), position(Pend), run(R),
position(P1),
is in(t1, uTS SendInstructionsAndScan),
action(A), scope(A, uTS SendInstructionsAndScan),
position(P), Pstart P, P< Pend, P, P1,
happens(A, R, P).

holds execution state(e23, R, P)
run(R), position(P),
position(Pstart), position(P1), position(P2),
Pstart P1,P1 P2, P2 P,
happens(request change, R, P1),
happens(approve, R, P2),
not scoped action happens(t1, Pstart, P, R, P1, P2).

scoped action happens(t1, Pstart, Pend, R, P1, P2)
position(Pstart), position(Pend), run(R),
position(P1), position(P2),
is in(t1, uTS SendInstructionsAndScan),
action(A), scope(A, uTS SendInstructionsAndScan),
position(P), Pstart P, P< Pend, P, P1, P, P2,
happens(A, R, P).

holds execution state(e234, R, P)
run(R), position(P),
position(Pstart), position(P1), position(P2), position(P3),
Pstart P1, P1 P2, P2 < P3, P3 P,
happens(request change, R, P1),
happens(approve, R, P2),
happens(send signal, R, P3),
not scoped action happens(t1, Pstart, P, R, P1, P2, P3).

holds execution state(e2347, R, P)
run(R), position(P), position(Pstart), position(P1), position(P2)
position(P3), position(P4),

18

PIRSES-GA-2011-295261 /MEALS Page 19 of 20 Public

Pstart P1, P1 P2, P2 < P3, P3 < P4, P4 P,
happens(request change, R, P1), happens(approve, R, P2),
happens(send signal, R, P3), happens(send instructions, R, P4)
not scoped action happens(m1, Pstart, P, R, P1, P2, P3, P4).

scoped action happens(m1, Pstart, Pend, R, P1, P2, P3, P4)
position(Pstart), position(Pend), run(R),
position(P1), position(P2), position(P3), position(P4),
is in(m1, uTS SendInstructionsAndScan),
action(A), scope(A, uTS SendInstructionsAndScan),
position(P), Pstart P, P< Pend, P, P1, P, P2, P, P3, P, P4,
happens(A, R, P).

holds execution state(e2347, R, P)
run(R), position(P),
position(Pstart), position(P1), position(P2),
position(P3), position(P4),
Pstart P1, P1 P2, P2 < P3, P3 < P4, P4 P,
happens(request change, R, P1),
happens(approve, R, P2),
happens(send signal, R, P3),
happens(scan, R, P4)
not scoped action happens(m1, Pstart, P, R, P1, P2, P3, P4).

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

UBA: Universidad de Buenos Aires, AR

19

PIRSES-GA-2011-295261 /MEALS Page 20 of 20 Public

UNR: Universidad Nacional de Rı́o Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

20

