v j PIRSES-GA-2011-295261 MEALS 7

]
2
0
=
0
q

(‘ September 22, 2014 Ly
Page 1 of 24 PROGRAMME MARIE CURIE
Project no.: PIRSES-GA-2011-295261
Project full title: Mobility between Europe and Argentina app lying Logics to Systems
Project Acronym: MEALS
Deliverable no.: 4.1/1

Title of Deliverable: Controllability in Partial and Uncertain Environ ments

Contractual Date of Delivery to the CEC: 1-Apr-2014

Actual Date of Delivery to the CEC: 19-Sep-2014

Organisation name of lead contractor for this deliverable: ULEIC

Author(s): Nicolas D'lppolito, Victor Braberman,

Nir Piterman, Sebastian Uchitel

Participants(s): IMP, UBA, ULEIC

Work package contributing to the deliverable: WP4

Nature: R

Dissemination Level: Public

Total number of pages: 24

Start date of project: 1 Oct. 2011 Duration: 48 month
Abstract:

Controller synthesis is a well studied problem that attempts to automatically ¢eaeraperational behaviour model
of the system-to-be that satis es a given goal when deployed in a giveraoh model that behaves according to speci-
ed assumptions. A limitation of many controller synthesis techniques is that #uyine complete descriptions of the
problem domain. This is limiting in the context of modern incremental developmenegses when a fully described
problem domain is unavailable, undesirable or uneconomical. Previoksomdviodal Transition Systems (MTS) con-
trol problems exists, however it is restricted to deterministic MTSs and detetimicddbelled Transition Systems (LTS)
implementations. In this paper we study the Modal Transition System Contybleé®n in its full generality, allowing
for nondeterministic MTSs modelling the environment's behaviour and nomdigtistic LTS implementations. Give
an nondeterministic MTS we ask if all, none or some of the nondeterministic LH8sdribes admit an LTS controller
that guarantees a given property. We show a technique that soleetvely the MTS realisability problem and it can
be, in some cases, reduced to deterministic control problems. In all cas&§T realisability problem is in sam
complexity class as the corresponding LTS problem.

Note:

“This deliverable is based on material that has been published in ACSD 201

This project has received funding from the European Uniore8t# Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261IMEALS Page 2 of 24 Public

Contents
1 Introduction 3
2 Preliminaries 4
2.1 Transition Systems e 4
2.2 FluentLinear TemporalLogic 5
2.3 Controller Synthesis. e 6
3 Motivation 7
4 MTS Control Problem 9
5 E cient MTS Control Subproblems 14
5.1 Deterministic MTS Non-Deterministic Implementations. 15
5.2 Non-Deterministic MTS Deterministic Implementations. 16
6 Discussion and Related Work 18
7 Conclusions and Future Work 20
Bibliography 20
MEALS Partner Abbreviations 23

PIRSES-GA-2011-295261IMEALS Page 3 of 24 Public

1 Introduction

Correct-by-construction is an alternative approach to woosand-verify that makes sense in
many software engineering settings including embeddedadaptive systems [2], and model-
based development (e.g, [3, 4, 5, 6, 7, 8]). The assumptitihratseasoning about system goals
declaratively and then producing automatically operatiatescriptions of how such goals can
be achieved leads to high quality systems.

Controller synthesis is a eld which ts into this approacheny abstractly, given a model of
the assumed behaviour of the environmdfit dnd a system goaly), controller synthesis pro-
duces an operational behaviour model for a compoNetitat when executing in an environment
consistent with the assumptions results in a system thatasagteed to satisfy the goal —i.e.,
EKM F G.

Controller synthesis has been traditionally oriented tolwdrardware engineering, focus-
ing mainly on a Machine-Environment model based on sharadang Consequently, Kripke
structures have been extensively used as the formal séttirigehaviour modelling [9]. More
recently, focus on event-based formal models, such as leab&tansition Systems (LTS), that
support other interactions models (e.g. message passthgeamote procedure calls) that are
commonplace in Software Engineering have also been st{@lied

In practice, software engineering is not a waterfall prec&ngineers do not build a complete
description of the environmet and system goalS before they start thinking about (or actually
getting round to doing some) implementation. In fact, it idely accepted that intertwining re-
guirements and design is crucial and informs the requirésrelaboration process [10]. Indeed,
notions such as realisability (i.e. if it is possible to el system that satis es a partial enunci-
ation of its goals and also a partial description of its emwment) have been studied extensively
for this purpose.

The importance of reasoning over partial speci cationsti®@ds with the requirement of
complete behaviour models that controller synthesis irepo$ypically, approaches to controller
synthesis require a completely de ned model of the systenabeur (e.g. an LTS) with respect
to a xed alphabet of actions (e.g. traces described by thesition system are required, all
else is prohibited) and consequently do not allow reasoabaut realisability or constructing
controllers when only partial information about the sysemaironment is available.

Formalisms that support partial operational descriptimingehaviour have been studied for
sometime. Notably, multi-valued Kripke structures [11jdamodal transition systems [12].
These models allow explicit distinction between behavibat is required and prohibited from
behaviour for which it is yet unknown in which of the two preus categories it falls.

Despite advances in veri cation of partial behaviour madahd the close technical relation
between veri cation and synthesis (the former can answekM F G, the latter goes one step
further showing whaM must look like so to havEkM F G) such formalisms have been scant-
ily studied in the context of the controller synthesis. e ttontext of event-based interaction
models, we have studied the problem of synthesis for pdsgakaviour models using Modal
Transition Systems (MTS) as the formal grounding for enumnent behaviour description. This
preliminary work was limited to deterministic behaviour deds, an important restriction which
impedes using abstraction in models to reduce complexitdyramders modelling failures and

3

PIRSES-GA-2011-295261IMEALS Page 4 of 24 Public

in general non-deterministic aspects of problem domdmghis paper we solve the problem of
MTS control for non-deterministic domain models and cossitbn-deterministic implementa-
tions The framework supports goals expressed in Fluent Linearp®eal Logic (FLTL) [13]
and can be used in conjunction with specialised (and moreient) synthesis algorithms for
sublogics such as GR(1) [14].

2 Preliminaries

2.1 Transition Systems

We x notation for labelled transition systems (LTSs) [1&jhich are widely used for modelling
and analysing the behaviour of concurrent and distribugstesns. An LTS is a state transition
system where transitions are labelled with actions. Theokettions of an LTS is called its
communicating alphabet and constitutes the interactioaisthe modelled system can have with
its environment.

De nition 1. (Labelled Transition Systenj$5]) Let Statesbe the universal set of statesct
be the universal set of actions. lAabelled Transition Syste(hTS) is a tupleE = (S;A; ; %),
whereS Statesis a nite set of statesA Actis a nite alphabet, (S A S)isa
transition relation, and,2S is the initial state.

If for somes’ 2 Swe have §,°;) 2 we say that is enabled frons. For a states we
denote ()= j9L (s;N) 2 gand (s°)=1Lj(s;;H)2 ¢

De nition 2. (Parallel Composition)et M = (Sy, Aw, w,) andN = (S, Ax, n,) be
LTSs. Parallel compositiorkis a symmetric operator (up to isomorphism) such &N is the
LTSP=(Su Sn, Aul An, , (8);S))), where is the smallest relation that satis es the rules
below, where 2 Ay [An:

(s7;)2 . (t 192 .
GO Emz, A ez A
(5792 wi (65192 v yp \ A
((sD;7:(%9)2 MEIN

De nition 3. (Traces)Consider an LTS = (S;A; ;). Asequence = g 1;:::isatracein
L if there exists a sequensg o; St; 1;::, Where forevery 0we have §; 'i;S+1) 2

Modal Transition System (MTS) [12] are abstract notions ®6E. They extend LTSs by
distinguishing between two sets of transitions. Intuigiven MTS describes a set of possible
LTSs by describing an upper bound and a lower bound on thd seinsitions from every state.
Thus, an MTS de nes required transitions, which must exist possible transitions, which may
exist. By elimination, other transitions cannot exist. Fallyy we have the following.

De nition 4. (Modal Transition Systefi2]) A Modal Transition System (MT&M = (S;A; '; P, %),
whereS StatesA Act ands, 2 SareasinLTSs and’ P (S A S)aretherequired
and possible transition relations, respectively.

PIRSES-GA-2011-295261IMEALS Page 5 of 24 Public

We refer to actions in P n " as maybe actions. We depict maybe transitions byxsog
actions with a question mark “?”. We denote by(s) the set of possible actions enabled in
s, namely P(s) = f° j9L (s,7;9) 2 Pgand P(s;’) the set ofa-successors of, namely

P(s;") =L (s ;) 2 Pg Similarly, "(s)and '(s;").

De nition 5. (Re nementLetM = (S;A; §,; Vi) andN = (T;A; & N S)) be two MTSs.
RelationH S T is are nementbetweenM andN if the following holds for every 2 A and
every (5;t) 2 H.

If (s;7;) 2 |, thenthere is®such that(, *;t) 2 | and §t% 2 H.

If (t;7;t9 2 | thenthereis’suchthat§ ;)2 |, and &t% 2 H.

We say thatN re nes M if there is a re nement relatiotd betweenM and N such that

(8;9)) 2 H, denotedM N. We say thalN andM arebisimilar if the same re nement relation
(transposed) shows thit re nes N and thatN re nes M.

Intuitively, N re nes M if every required transition oM exists inN and every possible
transition inN is possible also itM. An LTS can be viewed as an MTS wheré= ', Thus, the
de nition generalises to when an LTS re nes an MTS. LTSs tleahe an MTSM are complete
descriptions of the system behaviour and thus are catiptementationsf M.

De nition 6. (Implementation and Implementation Relatigk) LTS N is animplementation
of an MTSM if and only if N is a re nement ofM (M N). We shall refer to the re ne-
ment relation between an MTS and an LTS as an implementaglation. We denote the set of
implementations oM asl .

We say that an MTS isleterministicif there is no state that has two outgoing possible
transitions on the same label. More formally, an MESs deterministicif (s;;) 2 2 and
(s5;992 £ impliess’= s The de nition generalizes to LTSs as well. We refer to theafe
all deterministic implementations of an M8 asl ¢,.

2.2 Fluent Linear Temporal Logic

We describe properties using Fluent Linear Temporal Logid () [13]. FLTL is a linear-time
temporal logic for reasoning about uents. Aent Fl is de ned by a pair of sets and a Boolean
value: FI = Hg|; Tg; Initgi, wherelg Actis the set of initiating actions[; Actis the
set of terminating actions arig \ T = ;. A uent may be initially true or falseas indicated
by Initg|. Every action 2 Actinduces a uent, namely. = hf g Actn f gfalse.

LetF bethe set of all possible uents ovAct An FLTL formulais de ned inductively using
the standard Boolean connectives and temporal oper&ténext), U (strong until) as follows:

"u=Fljot gyt 0 jJ X' j"U ,whereFl 2 F. As usual we introducé, } (eventually),
(always), andV (weak until) as syntactic sugar. Letbe the set of in nite traces ovekct The
trace = "o; 1;:::satises a uentFl at positioni, denoted; i F Fl, if and only if one of the
following conditions holds:

Initg)» 8j2N 0 j il “<Tg)

9j2N (j i"7j2Ig)"r(Bk2N j<k i! w<Tg)

5

PIRSES-GA-2011-295261IMEALS Page 6 of 24 Public

In other words, a uent holds at positianf and only if it holds initially or some initiating action
has occurred, but no terminating action has yet occurred.

For an in nite trace , the satisfaction of a (composite) formulaat positioni, denoted
; 1 E ', is de ned as follows:

JiED L GIEY)

iE . GIEY)_GIF)

I EX , Sit1lfg’

JIFE"U , 9] i, JF 81 k<j;kpg'

We say that holdsin ,denoted ' ,if ; OF'.Aformula’ 2 FLTL holds in an LTSE
(denotecE F ') if it holds on every in nite trace produced k.

In this paper we modify LTSs and MTSs by adding new actionsaaitting states and transi-
tions that use the new actions. It is convenient to changeé.Faiimulas to ignore these changes.
Consider an FLTL formula and a set of actions such that for all uentd=| = hg; Tgy; Initgi
in' we have \ (Ig [Tg) = ;. We dgpe the -variant version of , denotedX ('), by
replacing every sub-formuld in' by X((-,)UX ().

Thus, this transformation replaces every next operatoaricg in the formula by an until
operator that skips uninteresting actions that are in

Theorem 1. Given atrace = 'g; 1;:::InE = (S; A, ; %), an FLTL formula’ and a set of
actions 2 Act. If \ A= then for every tracethat is a -variant of we have F ' i

EX ()
We note that our results hold for properties that descrile afetraces that can be modi ed

easily to accept -variants as above. We choose to focus on FLTL as it makeoaiptexity
results concrete and is a well accepted standard.

2.3 Controller Synthesis

An LTS control problem is an LT& whose actions are partitioned to controllable and uncon-
trollable. We seek aontroller M such thatEkM does not restrict uncontrollable actions®f
andEkM does not have deadlocks. Formally, we have the following.

De nition 7. (Legal LTS)ConsiderE and M two LTSs. We say thaM is legal for E with
respect to controllable alphab&t A if for every reachable states;(m) of EKM we havei) if
(s;;9) 2 Eand' < A then there isn® such thatif;, *; m®) 2 M and,ii) there is an action
and states’ andm® such that (§ m); *; (s% M) is a transition irEkM.

De nition 8. (LTS Control[8]) Given a domain model in the form of an LTS= (S; A; ; %),
a set of controllable action& A, and an FLTL formuld , a solution for the LTS control
problemE = hE;"; Ad isan LTSM = (Su, Au, wm, So,,) such thatM is a legal LTS forE, EKM
is deadlock free, and every tracén EKM is such that ' .

Whenever a controller exists we say that the control probkemealisable. It is unrealisable
otherwise. In case that a domain mo#ek given andA; and' are implicit we denote b the

6

PIRSES-GA-2011-295261IMEALS Page 7 of 24 Public

control problemE = hE;"; Ac. We depict uncontrollable actions (i.e. actionsAm A.) with
doubled-dashed transitions (e.g., see transitipregdyForPickup5)). In gures we usec and
u actions to denote controllable and uncontrollable actiespectively — e.g. models in Figure 2.

Theorem 2. (LTS Control [9, 16])Given an LTS control problerga = hE;"; A it is decidable

in 2EXPTIME in the size df and EXPTIME in E whethek is realisable. If E is deterministic
the algorithm is polynomial in the size of E. The algorithmdbecking realisability can also
extract a controller M.

The problem MTS control problem [17] is to check whether atine or some of the LTS
implementations of a given MTS can be controlled by an LTSraier [8]. More speci cally,
given an MTS, an FLTL goal and a set of controllable actiohs,dnswer to the MTS control
problem isall if all implementations of the MTS can be controllethneif no implementation
can be controlled ansomeotherwise. This is formally de ned below.

De nition 9. (Semantics of MTS Controiven an MTSE = (S, A, ", P, §), an FLTL
formula’ and a setA. A of controllable actions, to solve thdTS control problent =
hE; " Ad is to answer:

All, if for all LTS 121 g, the control problenfi;'; A.i is realisable,

None if for all LTS | 21 g, the control problenl;*; Al is unrealisable,

Some otherwise.

A nave approach to the MTS control problem may require to exalaa in nite number of
LTS control problems. In [17] we solved the problem of MTS tohwhen the MTS is determin-
istic and restricting attention to deterministic implertaions. That is, replace all quanti cation
over LTS above by quanti cation ovérd instead ofl ¢ —recall that ¢ refers to the set of deter-
ministic implementations dE. Technically, we proposed two LTS control problems thataers
respectively, whether all implementations are contrédland whether none of the implementa-
tions are controllable.

3 Motivation

Consider the following example inspired by the one preseatanally in [18]. A library re-
quires a system that allows the users to borrow books anagigss that users have access to
their desired ones. Books are loaned for a xed period of tifteravhich users must return
them. Books are automatically available as soon as they amnesl. The system must handle
concurrent book requests by multiple users.

In Figure 1, we show a partial speci cation for the book-lgancess up to the level require-
ments have been de ned. Although the system is multi-uberntodel shows the behaviour of
the system from the perspective of one user, abstracting awidti-user behaviour using non-
determinism. When a user wants to borrow a book she searahigefdesired oneg{ueryBook
Then, the system displays a list of available copiesBookg from which the user can choose
one (electForPickupand then pick it up from the countepickup. However, as the system
is used by several users at the same time, the selected coplyava been oered, chosen and

7

PIRSES-GA-2011-295261IMEALS Page 8 of 24 Public

readyForPickoupo

o O O o
o ©
o ©

acceptAlt

declineAlt

blog?

selectForPickup

Figure 1. Books Loan Partial Speci cation.

taken by another user. In such a case, an alternative boatkied and oered. The user can then
either acceptgcce ptAl} and pick up the bookdickupAl) or decline the oer (declineAl). For
simplicity, in this example we require a user to return a bbefore another can be requested.

The interference between users that may magkelactForPickusuccessful (allowing pick
up) or not (proposing an alternative) is abstracted awayiguré 1 with a non-deterministic
choice. The choice hides the reason for which one scenatiioeoother may occur. This is a
standard approach to reducing model complexity.

Some libraries allow users to reserve a copy of a currentyaitable book. When a copy
of the reserved book is returned to the library, the copy ¢kéd and the user is noti ed for
pick up feadyForPickup. Such a situation is modelled here as a possible but notreshu
i.e. maybe — transition that models the choice of the useokd & copy as soon as it is returned
(hold& wait).

Another variability in this speci cation is that users mag provided with a blogging feature
to allow them to share their impressions about a book whég #re reading it. This is modelled
with another maybe transition labellbtbg.

The maybe transitionisold& wait andblog underspecify the library system allowing imple-
mentations that provide derent combinations of functionality (i.e. providing or ribbld and
wait”, providing or not “blogging”). Our aim is to understanf a controller exists that can
guarantee that users will eventually get the book of chdicem@alised by the FLTL property

(queryBooK } pickup). Note that actions In particular we are interested in kingwwhether
the goal will be achievable iall valid implementations of such speci cations, in ordgmeor
noneof them.

The answer to the MTS control problem stated abow®ime This follows from the fact that
there are implementations of the system that are indeeddilafitie but there are also implemen-
tations in which it is simply not possible to guarantee thatuser will eventually get her desired
book.

Consider an implementation that does not implemenhthd& wait feature. AsselectForPickup
is nondeterministic, it is impossible to guarantee thatuber will eventually get the chance to

PIRSES-GA-2011-295261IMEALS Page 9 of 24 Public

pickup the book —i.e., it may always lose the race with otts&rsiand end up in state 3, being
forced to choose an alternative book or cancel the request.

On the other hand, an implementation that allows the usegderve the book to be taken
when returned is indeed controllable. Naturally, this kdddcause we are assuming that there is
a mechanism for guaranteeing that users actually returksbddis assumption is coded in state
5 in whichreadyForPickupmust eventually happen.

As not all implementations are controllable this suggdsas ¢ither we must strengthen our
speci cation to force implementations with the "hold andittéeature (provision of the "blog-
ging” feature is irrelevant for controllability of our ggalwe must weaken our goal (e.g. for
instance allowing users to give up on their wanted book) mngfthen our assumptions (e.g.
gueries cannot fail more than 5 times in a row).

4 MTS Control Problem

In this section we consider the problem of MTS control whenMTS could be nondeterministic
and we consider nondeterministic implementations. Weigeointuitions for proofs, for more
detailed see [19]. We show how to construct two nondetestinLTSs,E® andE®, such that

if a control problem withE® is realisable the answer to the MTS control problem Eois all
and, dually, if a control problem witE?® is unrealisable the answerm®ne This is similar to
the solution of MTS control in the deterministic case [17ihe sense that we construct an LTS
that is the “hardest” implementation to control and an LT& th the “easiest” implementation to
control. Answering these two LTS control problems gives aex answer to the MTS control
problem. We start with the problem of answering the questibatherall implementations are
controllable.

De nition 10. Consider an MTE = (S;A; '; P;) and a set of controllable actiodg A.
We de ne E® = (Sgs; Ags; gs; So) as follows:
Ses=S[f(sl)js2Sand;, "(g§ A9

Ags = A[f \1g
fE(s;_‘;sO) 2 Pj (9, ;and <AgQ [
f(s;"1;(s1))j (s 1) 2 Sesg [

f((s1),:s)is’2 P(s)and '(s7), 9

Intuitively, the transformation gives more control to theveonment. First, the new action
"1 is uncontrollable. The construction & proceeds by considering three cas@states with
required uncontrollable transitions enablejistates with no required uncontrollable transitions
enabled, but required controllable transitions enabledjig) states with no required transitions
(i.e. only maybe transitions). To states that have unctabie required transitions we add all
uncontrollable transitions — note that controllable tramss are not included as they do notect
controllability. As an example, consid&; andE? shown in Figures 2(a) and 2(d) respectively.
E? is the result of applying the transformation abové&{o E? includes all possible uncontrolled
implementation choices. Hence, contEfl guarantees controllability of every implementation

9

PIRSES-GA-2011-295261IMEALS Page 10 of 24 Public

of E;. To states that have no uncontrollable required transtaord some controllable required
transitions we include all uncontrollable transitions amdextra uncontrollable transition to a
new state (i.e. £ 1)) that enables all required controllable transitionsrirthe original state.
Intuitively, we give the environment a choice between atiSgible) uncontrollable transitions
and (through the new stats; (L)) a choice to implement additional controllable tramsis that
agree with their labels with the existing required trawsis. Hence, forcing the controller to
be able to control every possible nondeterministic comimnaof transitions with at least one
required option. For example, considgs and ES in Figures 2(b) and 2(e) respectively. In
order to controIEg the controller must have a solution for both,all uncontrollable possible
transitions, and, as; is uncontrollable,i) for every possible nondeterministic choice on the
required controllable. Note that we do not include transsi on controllable actions that have

no required transition (e.g., (300? 6) as they might allow the controller to avoid enabling some
required transitions. On the other hand, we do include atideterministic options over the
actions that have some required controllable as it makeprtiidem harder for the controller.
Finally, from states that have no required transitions waalkoadd transitions at all — i.e. they
become deadlock states. This follows from the fact that thglementation that disables all
transitions from such a state is a valid implementation. @em&; in Figure 2(c) is an example
of the previous case. To be sure that all implementatiori& @cgin be controlled, it is necessary
to have a solution that completely avoids reaching the deaditate 2.

The LTSE? provides the basis for determining whether the answer tdFi® control ques-
tion isAll. The following lemma provides the key properties to compléanswer for the case
all.

Lemma 1. (All) Given an MTS control problefig = hE;"; Acl, where E= (S;A; ", P o). If
E8 is the LTS obtained by applying De nition 10 to E, then thédi@ing holds. The answer for
Eisalli the LTS control probler® = hE®; Xr '); Ad is realisable.

We give an intuition of the proof for Lemma 1. Assume theredssolution toE®. Then we
know that the environment has a strategy to violate the obetis requirements. This follows
from the fact that LTS control problems are solved by a redadb two-player games [8] and
such games are Determined [20], which means that if the gatoesing for one player (e.g. the
controller) it must be the case that is winning for the othez (e.g. the environment). Note that,
a game is winning for a player means that she has a strategyitieagainst any strategy of her
opponent. At a glance, this proof uses the environmengdeggiyN to violate the controller goals
to build an uncontrollable implementatidrof E. This is done by building an implementation
relation betweem andE that chooses what to implement based on the decisions &.tliden
we prove that is uncontrollable, which follows by the fact that we builchoosing what to
implement as\ would have. Hence, violating the controller goals.

Intuitively, in the other direction the proof is based oniihea that a controller fde8encodes
a strategy for all possible implementationsaf More speci cally, we start by assuming that
there is a controlleM for E®. Then, given an implementatidnof E (i.e. | 2 | g), we show
that there exists a controllé®for I = h;"; Aci. We then construdi® from M following the
re nement relation betweek andl. Intuitively, M® can be seen as the result of prunixgby

10

PIRSES-GA-2011-295261IMEALS Page 11 of 24 Public

(d) E? (e) E3 (f E3

Figure 2: Examples oES.

removing all implementations choices disabled frerby I. In addition, asV®is built uponM,
MPYis a solution td . More speci cally, we consider states bfollowing cases as done in De ni-
tion 10, now taking into account the re nement relation beénl andE. Consider a stateof |
that re nes states of E. If shas uncontrollable required transitions but no contrédlabquired,
then, by construction, we know thahave all possible uncontrollable transitions enableBSn
Hence,M also includes all possible uncontrollable transitionsrfrg from which follows that
M will have a transition for any enabled transitiontirif the only required transitions fromare
controllable, then by de nition o8, the controller ofE8must enable a transition to, both the
state 6,1) from which the required controllable transitions arel#ed, and all the possible un-
controllable successors sf It follows that the controller can control any implemendatchoice
of uncontrollable transitions fror) and also, as re nes s, the required controllable that must
be enabled in. Note that statesof | that re ne states of E where all transitions enabled s
are maybe transitions induce deadlock states that will asehchable iM%l as, inE8they are
deadlock states.

We now turn to the case of distinguishing betweenrtbrecase anall or some

De nition 11. Consider an MTE = (S;A; "; P;s) and a set of controllable actiodg A.
We de neE® = (Sgo; Ago; o) S) as follows:
S =S [f(ssa;sH)2 Pja2Aand '(s) =g [

11

PIRSES-GA-2011-295261IMEALS Page 12 of 24 Public

()
. a2Aand;, , (9 A
(sa)2 and '(s;a) =;
Aps = Alf "aja2Aandas)2 Pn g
p=fsas)ja2zAandGas)2 g [
(s @ (sas))ja2Aand Ga;s) 2 Seo [

f((sa;s);as)ja2Ag

Intuitively, E® gives more control to the controller. As before we considates according
to the set of enabled transitions. For states with uncdabla required transitions we add in
E® all required transitions as they will be enabled in all intpéntations. We do not add other
transitions as it would only result in a more complex probleecause either we add new un-
controllable transitions, or we add nondeterministic cheiover the (already enabled) required
transitions. An example of this case is shown in the modeRgnres 3(a) and 3(d). Note that
to control E] it is only necessary to have a solution for the uncontroltedgition. However, if
the state were such that its only required transitions anéraitable, then they should be B°
as they could be chosen by the controller.

In order to strengthen the controller, we add&bstates that allow it to choose which tran-
sitions to implement in two cases. First, from states thaehaquired controllable transitions
but no required uncontrollable transitions. Second, frtees that have no required transitions
from them.

From states that have no uncontrollable required tramsitimt have some required control-
lable transitions we add possible transitions that do nateshn action with a required transition.
This means that the controller has a choice of either impteimg one maybe transition or using
one of the required transitions. We do this by adding newsitemms labelled with actions that
uniquely identify the transition. For instance, consiBgfrom Figure 3(e), the result of applying

the latter rule tdEs in Figure 3(b). The controllable transitiontf” (O; u; 1), that comes allows

the controller to choose to implement the maybe transitidh 01 if it wants to. Otherwise, it
can choose to use the (required) controllable transitiballedc.

From states that have no required transitions we allow tlseesy to choose which maybe
transition to implement. As before we use actions to idgrthie transition, allowing the con-
troller to choose which one to implement. Note that all pogshondeterministic choices are
included (but made deterministic). See for example moaefsgures 3(c) and 3(f).

The LTSE? provides the basis for determining whether the answer tdfFi® control ques-
tion isNone

Lemma 2 provides the key properties to compute the answénéacasenone

Lemma 2. (None)Given an MTS control problefd = hE;"; A where E= (S;A;, ", P, so).
If E® is the LTS obtained by applying De nition 11 to E, then thédi@ing holds. The answer
for Eisnonei the LTS control probler&® = FE®; X4('); Aes N(ANA.)i is unrealisable.

We give an intuition of the proof for Lemma 2. We rst assumattthere is a controllev for
E°. Now, recall thatM controls’ 5 actions, which are only added EP for maybe transitions
in E. Thus, a transition labelled,. appearing inV represents an implementation choice that

12

PIRSES-GA-2011-295261IMEALS Page 13 of 24 Public

(@) Eq (b) Es

(c) Es (d) E3

(e) ES () E2

Figure 3: Examples dE®.

13

PIRSES-GA-2011-295261IMEALS Page 14 of 24 Public

can be controlled by. In other wordsM encodes a set of controllable implementations. More
speci cally, we construct, fronM and E®, an implementation and a controlleM? for | =
H;" Ad and that will show thanoneimplies the unrealisability oE°control problem. We
consider states in cases. If the state has uncontrollagléresl transitions, then for each of
them we include a transition inand M°. If the state has no uncontrollable required but some
controllable required, then we choose transitions to imglet inl and enable invi° following
what is enabled by. If the state has no required transitions, then as all agtdthe form (55
are controllable we add toandM°actions enabled bi. We then show tha¥1°indeed controls
| . This is done by showing a correspondence between tradéMdfand traces oE°kM, which
can be proven following their construction procedure. Thasth must satisfy the respective
goals.

In the other direction, given an implementatio® | ¢ and a controlleM®for | , we construct
a controllerM for E°. The construction o is directed by the re nement relation betwemand
|, and the controllable transitions enabledW$; Intuitively, M is an extension df°that follows
implementation choices dfby adding transitions labelled with,.¢ that will synchronise with
E®-i.e. forcingE® to behave a$. More speci cally, ift is a state of that re nes states of E
and implements a maybe transitios) &; s”), thenM enables the success® §; &) of sin E°.
We then show how a correspondence between tracdgvtffand traces oE°kM is established,
from which follows that both traces satisfy the respectivalg.

We now provide the algorithm to compute the solution to theSMJontrol Problem. The
soundness and completeness of the algorithm follows fromrha 1 and Lemma 2.

Algorithm 1. (MTS Control)Given an MTS control problerg = FE;"; Ad. If E8 andE® are
the LTSs obtained by applying De nitions 10 and 11 respetiivto E, then the answer fdE is
computed as follows.

All, if there exists a solution fdE® = hE®; X¢ ("); Ad

None if there is no solution foE® and no solution foE® = hE®; X5('); Aes N(ANA)i.

Some otherwise.

Theorem 3. (MTS Control) Given an MTS control problere = hE;"; Ad it is decidable in
2EXPTIME in' and EXPTIME in E whetheE is realisable.

Proof. The algorithm for checking whethét is realisable calls for solving two LTS control
problems. One wittE® and one withE®. The size of botE® and E® is linear in the size of
E. The sizes oK, (') andX3(') are linear in the size df. From Theorem 2 we establish the
bounds of 2EXPTIME in the size ¢fand EXPTIME in the size oE.

5 E cient MTS Control Subproblems

The complexity of the general MTS control problem has exptinégrowth with respect to
two factors: the size of the formula and the size of the domadel (see Theorem 2). Various
sublogics have been studied to reduce the (doubly) expahgrawth of complexity with respect
to the goal to be controlled. In particular, GR(1) goals rediints complexity to polynomial [14].

14

PIRSES-GA-2011-295261IMEALS Page 15 of 24 Public

In this section, we address the exponential growth in the gizhe domain model by iden-
tifying two MTS control subproblems for which the complgxih the size of the domain model
is polynomial. The rst subproblem is when we restrict MTSkte deterministic. The second
is when we limit the possible implementations of MTS to deti@istic ones. We show that in
both cases a simpler analysis that requires reasoning deteriministic LTS controllability is
su cient.

5.1 Deterministic MTS Non-Deterministic Implementations

We formally de ne the subproblem of answering whether alling or none implementations of
a deterministic MTS are controllable as follows:

De nition 12. (Det MTS Control)Given an MTS control problerk = hE;"; A, whereE is
deterministic. Then the answer fiaris computed as follows.

All, if all deterministic implementation dE are realisable.

Noneg, if no deterministic implementation d is realisable, and

Some otherwise.

We note that the case of determinstic MTS realisability wharly deterministic implemen-
tations are considered was handled in [17]. We show thatisncise, MTS control reduces to
the simpler problem of considering only deterministic iB1pkentations. We need to establish
correspondence between the three possible answers ofdh tllems.

The following Lemma states that if the answer to et MTScontrol problem is some or
all, then the answer cannot be none for the problem reddricteleterministic implementations
as solved in [17].

Lemma 3. Given a deterministic MTS E (S;A; "; P;s), an FLTL formula’' , and a set
A:. A of controllable actions; If for some R | ¢ we haveN;"; A.i is realisable then for some
D 21 ¢ we haveD;"; Ad is realisable.

The following Lemma states that if the answer to the controbfem is all when restricting
attention to deterministic implementations then all ndadainistic implementations are con-
trollable as well.

Lemma 4. Given a deterministic MTS E (S;A; "; P;s), and FLTL formula’ and a set
A: A of controllable actions; If for all D2 | ¢ we havelD;'; Adi is realisable then for every
N 2 | ¢ we haveN;"; Adl is realisable.

It follows from the two lemmata above that the following algjom correctly computes the
answer to the MTS control problem when the MTS is deternimist

Algorithm 2. Given an MTS control problerk = hE;"; A, whereE is deterministic. The
answer to the control problefis as follows.

All, if the answer for the deterministic MTS control problé&ns all.

Noneg, if there is no solution for the deterministic MTS controbptemE.

15

PIRSES-GA-2011-295261IMEALS Page 16 of 24 Public

Some otherwise.

Theorem 4. (Deterministic MTS Controliziven an MTS control probletd = hE;"; Aci, where
E is deterministic, it is decidable in 2EXPTIME'irand polynomial in E whethét is realisable.

Proof. We have shown that in this case it is enough to consider theeafadeterministic imple-
mentations. From [17] this MTS control can be reduced to tW8 tontrol problems where the
LTSs are deterministic. From Theorem 2 it follows that it EXPTIME in* and polynomial in
E.

5.2 Non-Deterministic MTS Deterministic Implementations

The case of searching for deterministic implementations ebndeterministic MTS is handled
di erently. First, we extract from the MTE a sub-MTSD. If D andE are not bisimilar, then
E has no deterministic implementations. Then, we apply aiafieed control check o and
the answer to the realisability check @nis the answer to whethell, some or noneof the
deterministic implementations & can be controlled to satisfy the formula.

De nition 13. Consideran MTE = (S;A; "; P; 5). We extract fronE a sub-MTSD, where
D=(T;A; ", P;s). We construc S by induction. Consider a stage2 T\ S. For every
label” such that 2 "(s) we add toT onerequireda-successor o$. For every label such that
"2 P(s)n "(s) we add toT all maybe™ successors .

Lemma 5. Given a nondeterministic MTS & (S; A; "; P;), E has deterministic implemen-
tations if and only if D is bisimilar to E.

Proof. Assume that there is a deterministic implementatiaf E. From the implementation
relation betweeth andE we can construct an implementation relation betwieandD. Indeed,
the only transitions missing from are cases where a staén E has two required successors
(s P and 6, 7; %Y. But assis implemented by some state lgfthen, by de nition of re ne-
ment, s’ and s*°must be bismilar and whatever choiceHrto continue froms to either §;"; <9

or (s;; s°Y would be su cient to implement the statin E. ThusD is bisilimar toE. The other
direction is trivial and omitted.

Clearly, if E has no deterministic implementations then the answer totiestion whether
all deterministic implementations satisfy a certain folanig vacuously true. In the case tHat
is bisimilar toE every implementation oE is an implementation dD and vice versa. Thus, the
answer to the MTS control problem withireplacingk is the same answer as thattfWe anal-
yseD to check whether all its implementations are controllabtame of them are controllable,
or none of them are controllable. We construct varidftsandD® of D where all nondetermin-
ism is removed by renaming actions. D¥ the environment chooses which maybe transitions
to implement and irD® the controller chooses which maybe transitions to impleimdsing D®
andD?® we create control problems that check the “all” and “someesaof the control problem.

De nition 14. Consideran MTE = (S;A; "; P;) and a set of controllable actiodg A.
Let D = (S%A; "; P;s) be the sub-MTS extracted frof as in De nition 13. We de ne
D® = (Sps; Aps; ps; So) as follows:

16

PIRSES-GA-2011-295261IMEALS Page 17 of 24 Public

Sps = S°[f (51)j;, (9 Ag
As =A S[f g

D8 =
f(s;(@s);)j(sasH)2 "and "(9* Ag
f(s (& s); D) j(sas)2 P;a<Acand '(s)* Ag
f(s 1 (s1)j:, (9 AgQ
f((s1); (& 9);) j (s34 892 " anda2Ag
f(s; (@); D j(sas)2 Pa<A.and;, () Ag [
f(s;(a;9); D) "(9=; and s, a;)2 PGESTA ESTA MAL, ESTO NO DEBERIA AGRE-
GAR NADA Y DEJAR AL ESTADO COMO DEADLOCK.

— ———

All the new actions are uncontrollable. We note tBdtis very similar toE® except thaD?®
is made eectively deterministic by renaming all actions. As befave,extend the de nition of
all uentsin' to include the copiesa(s) of actions inA. That is, if a uent includes the action
" then its modi ed version includes also the actiong).

Lemma 6. (Deterministic All) Given an MTS control problerkE = hE;"; Ad where E =
(S;A; ", Pis). If D is the MTS obtained from E by applying De nition 13 and 3 ob-
tained from D by De nition 14, then the following holds. Thesamr forE is all i the LTS
control problemD® = FD8; X+ ('); A is realisable.

The proof is very similar to that of Lemma 1 except that werretsattention to deterministic
implementations.

We now turn to the case of distinguishing betweennbeecase andll or some In this
case, we can apply De nition 11 . Denote the resulting LTS d3°. We note that a® has no
nondeterminism on required transitions it follows tB&tis deterministic.

Lemma 7. (Deterministic None)Given an MTS control problere = hE;"; Ad where E =
(S;A; " P;s). If Dis the MTS obtained from E by applying De nition 13 and i3 obtained
from D by De nition 11, then the following holds. The answer Eois nonei the LTS control
problemD® = D% Xx(');Ape (A Ao)i is not realisable.

The proof is very similar to that of Lemma 2 except that we (reaty) restrict attention to
deterministic implementations.

It follows that the following algorithm provides the answerthe MTS control problem in
the case that we restrict attention to deterministic imgetations.

Algorithm 3. (MTS Deterministic Controlsiven an MTS control problerk = hE;"; Adi. If D
is the LTS obtained front by applying De nition 13 andD8 is the LTS obtained by applying
De nition 14 to D andD? is the LTS obtained by applying De nition 11 t©, then the answer
for E is computed as follows.

All, if there exists a solution fdD® = FD®; X¢ '); Adi

None if there is no solution foD 8 and no solution foD® = D% X4('); Aps (A Ac)i.

Some otherwise.

17

PIRSES-GA-2011-295261IMEALS Page 18 of 24 Public

Theorem 5. (MTS Deterministic ControllGiven an MTS control problerg = hE;"; A the
answer to the control problem & where implementations are restricted to deterministiclenp
mentations, is decidable in 2EXPTIME'irand polynomial in E.

Proof. The Theorem follows from noticing that bod® and D° are deterministic. Thus, the
simpler algorithm for checking realisability of deternstic LTS from Theorem 2 applies.

6 Discussion and Related Work

The software engineering community has studied the cortg&iruof event-based operational
models in various forms. For instance, construction of suokels from scenario-based speci -
cations(e.g. [21]) has received much attention as exalgued descriptions are close to wide-
spread speci cation approaches such as message sequemtearid use-cases. Integration of
fragmented, example-based speci cation into a stateebasedel can be analysed via model
checking, simulation, animation and inspection, the fadgided by automated slicing and ab-
straction techniques.

Synthesis that also combines some form of declarative gja¢ioin (e.g. temporal logics)
has also been studied with the aim of providing an operaltimoael on which to further support
requirements elicitation and analysis [22]. The work pnése herein shares the view that model
elaboration can be supported through synthesis and asalysrthermore, analysis of a partial
domain model for realisability of system goals by means afraroller allows prompting further
elaboration of both domain model and goals.

Enacting automatically synthesised plans is a strateggtadan various software engineer-
ing domains. For instance, Inverardi et al. automaticaliydoglue code and component adap-
tors in order to achieve safe composition at the architedewel [4], and in particular in service
oriented architectures [23]. Such approaches build orsiclalscontroller synthesis and conse-
guently require fully speci ed domain models, hence theiplecation is limited in earlier phases
of development. The results that we present in this papawvalieasoning about the feasibility of
constructing such glue code and adaptors without neclsseqgjuiring the e ort of developing
a full domain model.

Architectural design of self-adaptive systems often idekilayers that must deal with mis-
sion planning. In these layers, algorithms capable of produat run-time strategies that adapt
to changes in the environment, in the system'’s capabilitiggals is required. Hence, these sys-
tems can leverage automated controller synthesis [24, 8]sp&culate that controller synthesis
techniques that support partial domain knowledge, sucha®smne presented here, may allow
deploying self-adaptive systems that work in environmémntsvhich there is more uncertainty.

In [17], we solved the MTS control problem for a restrictedtiag that considers only the
case where both the MTS speci cation and its implementateme deterministic. Such case can
be considered an even simpler case of the one described fior56cl. However, as we have
shown, the problem of MTS control with deterministic MTS speation and nondeterministic
implementations is essentially reduced to the one predem{&7].

Our work builds on a particular formalism for describingtbehaviour models (MTS [12]),
however, there are many formalisms that have been develsjpledhe notion of partiality ex-

18

PIRSES-GA-2011-295261IMEALS Page 19 of 24 Public

plicitly embedded. Notably, there exist many (more expve$variants of MTS including Dis-
junctive [25], and Parametric [26] MTS. The results presdrit this work would have to be
revisited in the context of other partial behaviour forreals. However, since many complexity
results for MTS hold for extensions such as DMTS, we beligeg our results could also extend
naturally to these extensions.

Initial attention to partial models was focused on propeen cation (cf. [11, 27, 28]). First,
three-valued model checking was de ned [11] and shown teetthe same complexity as that
of model checking. Subsequently, generalised model chgdi&7] improves the accuracy of
results: three-valued model checking may result in the ansgome” even when no implemen-
tations satisfy the property. Generalised model checlasglves this but at a high computational
complexity [28].

In order to reason about generalised model checking onelgisftom the model of transi-
tion systems (for 3-valued model checking) to that of a ga@. de nition of MTS control is
more similar to generalised model checking than to 3-valmedel checking. We nd it inter-
esting that both MTS and LTS control problems are solved énstlime model (that of a game)
and that MTS control does not require a more general model.

Another related subject is abstraction of games. For exanp[29] abstraction is applied to
games in order to enable reasoning about in nite games.|&ilyiin [30] abstraction re nement
is generalised to reason about larger games. Applyingadigin allows making assumptions
about which states can be reasoned about together. In owambyp we work with a given
abstraction from the start, the MTS, rather than abstrgetimore detailed model.

We have mentioned some of the many results that exist onaitemtsynthesis and realiz-
ability of temporal logic. Our work builds on LTS control ngj the 2EXPTIME-completeness
of LTL controller synthesis [9] and also allows use of moreceéent synthesis de ned over re-
stricted subsets of LTL (cf. [31, 14]). The latter resultswhhat in some cases synthesis can be
applied in practice. Similar restrictions, if applied to B Tontrol combined with our reductions,
produce the same reduction in complexity.

Our previous work on usage of controller synthesis in thdaedrof LTSs has been incorpo-
rated in the MTSA toolset [32]. We have implemented a soleeGR(1) [14] formulas in the
context of the LTS control problem [8].

In addition to dealing with partial behaviour models, ourkvallows non-deterministic be-
haviour. Non-determinism and partial observation (thstexice of actions which can neither be
controlled nor monitored by the controller) are closehatet! challenges in the realm of games.
Partial observation boils down to safety imperfect-infatimn games [33]. Very recently, we
have presented two techniques for synthesis of LTS coatsolh the context of nondetermin-
istic environments [34]. Each technique produces comrslfor di erent interactions modes
between the environment and the controller. One simildnabadf 1A legal environments and the
other inspired in the interaction among players in an imgatsinformation game.

Partial observable Markov Decision Processes (MDPs) a® iasrobotics for planning pur-
poses (e.g. [35]). A key dierence is that the environment is given in terms of stoob st
haviour of actions and that the aim is the maximization of glative payo s, there are no hard
goal. Optimal policies under hard co-safety propertiesdrdg been recently addressed in the
robotics community ([36]).

19

PIRSES-GA-2011-295261IMEALS Page 20 of 24 Public

In [5] safety properties (and bounded-liveness) are usepbals in an LTS-like framework.
The technique assumes input enabledness but the resuttimigplter is legal, in the sense of
interface automata — i.e. the controller cannot block utrotlable actions, nor the environ-
ment block controllable ones. Thus, the controller disglalk controllable transitions that are
not enabled from every possible nondeterministic sucessddence, the approach in [5] can-
not be reused for the general interface automata contrblgmosince liveness requires special
treatment as shown, e.g., in [8].

7 Conclusions and Future Work

We have presented a general technique for answering the Miitgot problem. In other words,
an algorithm for answering if all, some or none of the impletations described by a partial
behaviour model in the form of an MTS can be controlled to @ahia given goal. Our technique
is general in the sense that it does not restrict MTS to detéstit speci cations nor does it
limit the implementations considered to deterministicone

We show that the answer to the MTS control problem can be ctedpay considering two
LTS control problems representing the “hardest” and “ed’Sienplementations to control. In
addition, we identi ed restricted versions of the MTS camtproblem which can be answered
more e ciently as it is not necessary to consider control of noregeinistic implementations.

For the general case, the two LTS control problems must béeapfp nondeterministic
LTS which means an exponential complexity in the size of tbmain model. However, for
the restricted MTS control problems identi ed, we show tlias enough to consider the two
deterministic LTS control problems, reducing the comgiexif the problem to polynomial in
the size of the domain model.

The complexity of deciding controllability also dependstbha complexity of the goal to be
controlled. In the general case (general FLTL formula) tmpglexity is double exponential
in the size of the goal. However, our technique can build astiexy results for solving more
e ciently sub-logics. Hence, for GR(1) formulae the compleistremains polynomial.

We believe that from the LTS control problems that are prieskim this paper it is possible
to construct “templates” for the control of all implemeidat and “templates” for the control of
“controllable” implementations when only some are coétae. Extraction of these templates
and their usage for the re nement of the domain models or tiesiriction is an interesting area
for further studies.

We are currently working on implementation of these algyoni$ and their incorporation
within the realisability framework of MTSA [32]. In spite dhe complexity of the control
problem for nondeterministic LTS our initial experiments ancouraging and we hope that the
cases that arise in practice will not incur the full thear@ticomplexity of the solution.

20

PIRSES-GA-2011-295261IMEALS Page 21 of 24 Public

Bibliography

[1]

[2]

M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool imbedded controller synthesis,”
in Proceedings of the 22Nd International Conference on ComputerdA\Veri cation, ser.
CAV'10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 5669. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14295-6_49

F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An architace for requirements-driven self-
recon guration,” in Proceedings of the 21st International Conference on Advahair-
mation Systems Engineerirnger. CAISE '09. Springer-Verlag, 2009, pp. 246—-260.

[3] W. Heaven, D. Sykes, J. Magee, and J. Kramer, “Softwargineering for self-

[4]

[5]

[6]

[7]

[8]

adaptive systems,” B. H. Cheng, R. Lemos, H. Giese, P. Inverardi J. Magee, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. A Case StudyGioal-Driven Archi-
tectural Adaptation, pp. 109-127. [Online]. Availablettp://dx.doi.org/10.1007/
978-3-642-02161-9 6

P. Inverardi and M. Tivoli, “A reuse-based approach te torrect and automatic com-
position of web-services,” irnternational workshop on Engineering of software ser-
vices for pervasive environments: in conjunction with the BEEQFSE joint meeting
ser. ESSPE '07. New York, NY, USA: ACM, 2007, pp. 29-33. [OglinAvailable:
http://doi.acm.org/10.1145/1294904.1294908

E. Letier and W. Heaven, “Requirements modelling by sgsth of deontic input-output
automata,” in35th International Conference on Software Engineerisgr. ICSE 2013.
Norwell, MA, USA: Kluwer Academic Publishers, 2013.

M. Jackson, “The world and the machine,”imoceedings of the 17th international confer-
ence on Software engineeringer. ICSE '95. ACM, 1995, pp. 283-292.

N. D'lppolito, V. A. Braberman, N. Piterman, and S. Uchjté&Synthesis of live behaviour
models for fallible domains,” iIfCSE R. N. Taylor, H. Gall, and N. Medvidovic, Eds.
ACM, 2011, pp. 211-220.

N. D'Ippolito, V. Braberman, N. Piterman, and S. Uchit&gynthesising non-anomalous
event-based controllers for liveness goa#&ZM Tran. Softw. Eng. Methodplol. 22, 2013.

[9] A. Pnueli and R. Rosner, “On the synthesis of a reactive negdin Proceedings of the

16th ACM SIGPLAN-SIGACT symposium on Principles of programrainguagesser.
POPL '89. ACM, 1989, pp. 179-190.

[10] W. Swartout and R. Balzer, “On the inevitable intertwimiof speci cation and implemen-

tation,” Communications of the ACMol. 25, no. 7, pp. 438-440, 1982.

[11] G. Bruns and P. Godefroid, “Model checking partial stapaces with 3-valued tempo-

ral logics,” in 11th International Conference on Computer Aided Veri catiear. Lecture
Notes in Computer Science, vol. 1633. Springer, 1999, pp-234.

21

PIRSES-GA-2011-295261IMEALS Page 22 of 24 Public

[12] K. Larsen and B. Thomsen, ““A Modal Process Logic”,” Rroceedings of 3rd Annual
Symposium on Logic in Computer Science (LICS'88)JEEE Computer Society Press,
1988, pp. 203-210.

[13] D. Giannakopoulou and J. Magee, “Fluent model checkargevent-based systems,” in
Proceedings of the 9th European software engineering cenéer held jointly with 11th
ACM SIGSOFT international symposium on Foundations of softveagineering ser.
ESEQFSE-11. ACM, 2003, pp. 257—-266.

[14] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. S&®ynthesis of reactive(1)
designs,’J. Comput. Syst. S¢vol. 78, no. 3, pp. 911-938, 2012.

[15] R. M. Keller, “Formal veri cation of parallel progranis,Communications of the ACM
vol. 19, pp. 371-384, July 1976.

[16] J. H. Reif, “Universal games of incomplete informatiom STOG M. J. Fischer, R. A.
DeMillo, N. A. Lynch, W. A. Burkhard, and A. V. Aho, Eds. ACM, 197pp. 288-308.

[17] N. D'lppolito, V. Braberman, N. Piterman, and S. UchjtéThe modal transition system
control problem,” in19th International Symposium on Formal Methpsksr. Lecture Notes
in Computer Science, vol. 7436. Paris, France: Springeayye2012, pp. 155-170.

[18] A. van LamsweerdeRequirements Engineering - From System Goals to UML Models t
Software Speci cations Wiley, 2009.

[19] N. D'Ippolito, “Technical Report.”

[20] D. Matrtin, “Borel determinacy,The annals of Mathematicsol. 102, no. 2, pp. 363-371,
1975.

[21] Y. Bontemps, P.-Y. Schobbens, and @ding, “Synthesis of open reactive systems from
scenario-based speci cation&fundamenta Informaticae - Application of Concurrency to
System Design (ACSD'Q3)ol. 62, pp. 139-169, February 2004.

[22] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarg@s,gand state machines:
a win-win partnership for model synthesis,” Rroceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engingeser. SIGSOFT '06-SE-
14. ACM, 2006, pp. 197-207.

[23] A. Bertolino, P. Inverardi, P. Pelliccione, and M. TiyolAutomatic synthesis of behav-
ior protocols for composable web-services,” Bmoceedings of the 7th joint meeting of
the European software engineering conference and the ACM@ESymposium on The
foundations of software engineerirger. ESEG-SE '09. ACM, 2009, pp. 141-150.

[24] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “Plarctice architectural change for
autonomous systems,” BAVCBS2007, pp. 15-21.

22

PIRSES-GA-2011-295261IMEALS Page 23 of 24 Public

[25] K. G. Larsen and L. Xinxin, “Equation solving using madiansition systems,” ii.ICS
IEEE Computer Society, 1990, pp. 108-117.

[26] N. Benes, J. Krénsky, K. G. Larsen, M. H. Mgller, and J. Srba, “Parametric modaht
sition systems,” inATVA ser. Lecture Notes in Computer Science, T. Bultan and P.-A.
Hsiung, Eds., vol. 6996. Springer, 2011, pp. 275-289.

[27] G. Bruns and P. Godefroid, “Generalized model checkiRgasoning about partial state
spaces,” inl1th International Conference on Concurrency Theasr. Lecture Notes in
Computer Science, vol. 1877. Springer, 2000, pp. 168-182.

[28] P. Godefroid and N. Piterman, “Ltl generalized modedcking revisited,” inProceedings
of the 10th International Conference on Veri cation, Modeleching, and Abstract Inter-
pretation ser. VMCAI '09. Springer-Verlag, 2009, pp. 89-104.

[29] P. Stevens, “Abstract games for in nite state processa 9th International Conference on
Concurrency Theoryser. Lecture Notes in Computer Science, vol. 1466. Sprid§8s,
pp. 147-162.

[30] T. A. Henzinger, R. Jhala, and R. Majumdar, “Counterexantplided control,” in30th
International Colloquium on Automata, Languages and Progmang ser. Lecture Notes
in Computer Science, vol. 2719. Springer, 2003, pp. 886-902.

[31] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Contaslkynthesis for timed automata,” in
Proceedings of the IFAC Symposium on System Structure andoCdr998.

[32] N. D'lppolito, D. Fischbein, M. Chechik, and S. UchitélMitsa: The modal transition
system analyser,” ifProceedings of the 2008 23rd IEE¥CM International Conference
on Automated Software Engineerjrggr. ASE '08. IEEE Computer Society, 2008, pp.
475-476.

[33] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Envwin@nt assumptions for syn-
thesis,” inProceedings of the 19th international conference on Corenay Theoryser.
CONCUR '08. Springer-Verlag, 2008, pp. 147-161.

[34] N. D'lppolito, V. Braberman, N. Piterman, and S. UchjtéBynthesis of event-based
controllers for non-deterministic environments,” fBubmitted to 20th International
Symposium on Formal Methods. available Htp://www.doc.ic.ac.uk/ ~srdipi/
techacsd2014/dbpu2014a.pdf , ser. Lecture Notes in Computer Science, vol. 7436.
Paris, France: Springer-Verlag, 2012, pp. 155-170.

[35] S. Thrun, W. Burgard, and D. Fo®robabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents) The MIT Press, 2005.

[36] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Op#hty and robustness in
multi-robot path planning with temporal logic constrajiitsJ. Robotic Resvol. 32, no. 8,
pp. 889-911, 2013.

23

PIRSES-GA-2011-295261IMEALS Page 24 of 24 Public

MEALS Partner Abbreviations

SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universit Dresden, D

INR: Institut National de Recherche en Informatique et en Autagnat FR
IMP: Imperial College of Science, Technology and Medicine, UK
ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de@doba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de’B Cuarto, AR

ITBA: Instituto Tecnobgico Buenos Aires, AR

24

