
PIRSES-GA-2011-295261/ MEALS
September 22, 2014

Page 1 of 24

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina app lying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 4.1/ 1

Title of Deliverable: Controllability in Partial and Uncertain Environ ments

Contractual Date of Delivery to the CEC: 1-Apr-2014
Actual Date of Delivery to the CEC: 19-Sep-2014
Organisation name of lead contractor for this deliverable: ULEIC
Author(s): Nicolas D'Ippolito, Victor Braberman,

Nir Piterman, Sebastian Uchitel

Participants(s): IMP, UBA, ULEIC
Work package contributing to the deliverable: WP4
Nature: R
Dissemination Level: Public
Total number of pages: 24
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Controller synthesis is a well studied problem that attempts to automatically generate an operational behaviour model
of the system-to-be that satis�es a given goal when deployed in a given domain model that behaves according to speci-
�ed assumptions. A limitation of many controller synthesis techniques is that they require complete descriptions of the
problem domain. This is limiting in the context of modern incremental development processes when a fully described
problem domain is unavailable, undesirable or uneconomical. Previous work on Modal Transition Systems (MTS) con-
trol problems exists, however it is restricted to deterministic MTSs and deterministic Labelled Transition Systems (LTS)
implementations. In this paper we study the Modal Transition System Control Problem in its full generality, allowing
for nondeterministic MTSs modelling the environment's behaviour and nondeterministic LTS implementations. Given
an nondeterministic MTS we ask if all, none or some of the nondeterministic LTSs itdescribes admit an LTS controller
that guarantees a given property. We show a technique that solves e� ectively the MTS realisability problem and it can
be, in some cases, reduced to deterministic control problems. In all cases the MTS realisability problem is in same
complexity class as the corresponding LTS problem.

Note:

“This deliverable is based on material that has been published in ACSD 2014”

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261/ MEALS Page 2 of 24 Public

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Transition Systems .. . 4
2.2 Fluent Linear Temporal Logic 5
2.3 Controller Synthesis 6

3 Motivation 7

4 MTS Control Problem 9

5 E� cient MTS Control Subproblems 14
5.1 Deterministic MTS Non-Deterministic Implementations. 15
5.2 Non-Deterministic MTS Deterministic Implementations. 16

6 Discussion and Related Work 18

7 Conclusions and Future Work 20

Bibliography 20

MEALS Partner Abbreviations 23

2

PIRSES-GA-2011-295261/ MEALS Page 3 of 24 Public

1 Introduction

Correct-by-construction is an alternative approach to construct-and-verify that makes sense in
many software engineering settings including embedded [1], adaptive systems [2], and model-
based development (e.g, [3, 4, 5, 6, 7, 8]). The assumption isthat reasoning about system goals
declaratively and then producing automatically operational descriptions of how such goals can
be achieved leads to high quality systems.

Controller synthesis is a �eld which �ts into this approach. Very abstractly, given a model of
the assumed behaviour of the environment (E) and a system goal (G), controller synthesis pro-
duces an operational behaviour model for a componentM that when executing in an environment
consistent with the assumptions results in a system that is guaranteed to satisfy the goal – i.e.,
EkM j= G.

Controller synthesis has been traditionally oriented towards hardware engineering, focus-
ing mainly on a Machine-Environment model based on shared memory. Consequently, Kripke
structures have been extensively used as the formal settingfor behaviour modelling [9]. More
recently, focus on event-based formal models, such as Labelled Transition Systems (LTS), that
support other interactions models (e.g. message passing and remote procedure calls) that are
commonplace in Software Engineering have also been studied[8].

In practice, software engineering is not a waterfall process. Engineers do not build a complete
description of the environmentE and system goalsG before they start thinking about (or actually
getting round to doing some) implementation. In fact, it is widely accepted that intertwining re-
quirements and design is crucial and informs the requirements elaboration process [10]. Indeed,
notions such as realisability (i.e. if it is possible to build a system that satis�es a partial enunci-
ation of its goals and also a partial description of its environment) have been studied extensively
for this purpose.

The importance of reasoning over partial speci�cations is at odds with the requirement of
complete behaviour models that controller synthesis imposes. Typically, approaches to controller
synthesis require a completely de�ned model of the system behaviour (e.g. an LTS) with respect
to a �xed alphabet of actions (e.g. traces described by the transition system are required, all
else is prohibited) and consequently do not allow reasoningabout realisability or constructing
controllers when only partial information about the systemenvironment is available.

Formalisms that support partial operational descriptionsof behaviour have been studied for
sometime. Notably, multi-valued Kripke structures [11] and modal transition systems [12].
These models allow explicit distinction between behaviourthat is required and prohibited from
behaviour for which it is yet unknown in which of the two previous categories it falls.

Despite advances in veri�cation of partial behaviour models and the close technical relation
between veri�cation and synthesis (the former can answer ifEkM j= G, the latter goes one step
further showing whatM must look like so to haveEkM j= G) such formalisms have been scant-
ily studied in the context of the controller synthesis. In the context of event-based interaction
models, we have studied the problem of synthesis for partialbehaviour models using Modal
Transition Systems (MTS) as the formal grounding for environment behaviour description. This
preliminary work was limited to deterministic behaviour models, an important restriction which
impedes using abstraction in models to reduce complexity and hinders modelling failures and

3

PIRSES-GA-2011-295261/ MEALS Page 4 of 24 Public

in general non-deterministic aspects of problem domains.In this paper we solve the problem of
MTS control for non-deterministic domain models and consider non-deterministic implementa-
tions. The framework supports goals expressed in Fluent Linear Temporal Logic (FLTL) [13]
and can be used in conjunction with specialised (and more e� cient) synthesis algorithms for
sublogics such as GR(1) [14].

2 Preliminaries

2.1 Transition Systems

We �x notation for labelled transition systems (LTSs) [15],which are widely used for modelling
and analysing the behaviour of concurrent and distributed systems. An LTS is a state transition
system where transitions are labelled with actions. The setof actions of an LTS is called its
communicating alphabet and constitutes the interactions that the modelled system can have with
its environment.

De�nition 1. (Labelled Transition Systems[15]) Let S tatesbe the universal set of states,Act
be the universal set of actions. ALabelled Transition System(LTS) is a tupleE = (S; A; � ; s0),
whereS � S tatesis a �nite set of states,A � Act is a �nite alphabet,� � (S � A � S) is a
transition relation, ands02S is the initial state.

If for somes0 2 S we have (s; `; s0) 2 � we say that̀ is enabled froms. For a states we
denote� (s) = f` j 9s0 � (s; `; s0) 2 � gand� (s; `) = fs0 j (s; `; s0) 2 � g.

De�nition 2. (Parallel Composition)Let M = (SM, AM, � M, sM
0) andN = (SN, AN, � N, sN

0) be
LTSs. Parallel compositionk is a symmetric operator (up to isomorphism) such thatMkN is the
LTS P = (SM � SN, AM [AN, � , (sM

0 ; sN
0)), where� is the smallest relation that satis�es the rules

below, wherè 2 AM [AN:

(s;`;s0)2� M
((s;t);`;(s0;t))2� ` 2 AMnAN

(t;`;t0)2� N
((s;t);`;(s;t0))2� ` 2 ANnAM

(s;`;s0)2� M ; (t;`;t0)2� N
((s;t);`;(s0;t0))2� ` 2 AM \ AN

De�nition 3. (Traces)Consider an LTSL = (S; A; � ; s0). A sequence� = `0; `1; : : : is a trace in
L if there exists a sequences0; `0; s1; `1; : : :, where for everyi � 0 we have (si; ` i; si+1) 2 � .

Modal Transition System (MTS) [12] are abstract notions of LTSs. They extend LTSs by
distinguishing between two sets of transitions. Intuitively an MTS describes a set of possible
LTSs by describing an upper bound and a lower bound on the set of transitions from every state.
Thus, an MTS de�nes required transitions, which must exist,and possible transitions, which may
exist. By elimination, other transitions cannot exist. Formally, we have the following.

De�nition 4. (Modal Transition System[12]) A Modal Transition System (MTS)is M = (S; A; � r ; � p; s0),
whereS � S tates, A � Act, ands0 2 S are as in LTSs and� r � � p � (S� A� S) are the required
and possible transition relations, respectively.

4

PIRSES-GA-2011-295261/ MEALS Page 5 of 24 Public

We refer to actions in� p n � r as maybe actions. We depict maybe transitions by su� xing
actions with a question mark “?”. We denote by� p(s) the set of possible actions enabled in
s, namely� p(s) = f` j 9s0 � (s; `; s0) 2 � pgand � p(s; `) the set ofa-successors ofs, namely
� p(s; `) = fs0 j (s; `; s0) 2 � pg. Similarly, � r(s) and� r(s; `).

De�nition 5. (Re�nement)Let M = (S; A; � r
M; � p

M; sM
0) andN = (T; A; � r

N; � p
N; sN

0) be two MTSs.
RelationH � S � T is are�nementbetweenM andN if the following holds for everỳ 2 A and
every (s; t) 2 H.

� If (s; `; s0) 2 � r
M then there ist0 such that (t; `; t0) 2 � r

N and (s0; t0) 2 H.
� If (t; `; t0) 2 � p

N then there iss0 such that (s; `; s0) 2 � p
M and (s0; t0) 2 H.

We say thatN re�nes M if there is a re�nement relationH betweenM and N such that
(sM

0 ; sN
0) 2 H, denotedM � N. We say thatN andM arebisimilar if the same re�nement relation

(transposed) shows thatM re�nes N and thatN re�nes M.

Intuitively, N re�nes M if every required transition ofM exists in N and every possible
transition inN is possible also inM. An LTS can be viewed as an MTS where� p = � r . Thus, the
de�nition generalises to when an LTS re�nes an MTS. LTSs thatre�ne an MTSM are complete
descriptions of the system behaviour and thus are calledimplementationsof M.

De�nition 6. (Implementation and Implementation Relation)An LTS N is animplementation
of an MTS M if and only if N is a re�nement ofM (M � N). We shall refer to the re�ne-
ment relation between an MTS and an LTS as an implementation relation. We denote the set of
implementations ofM asI M.

We say that an MTS isdeterministicif there is no state that has two outgoing possible
transitions on the same label. More formally, an MTSE is deterministicif (s; `; s0) 2 � p

E and
(s; `; s00) 2 � p

E implies s0 = s00. The de�nition generalizes to LTSs as well. We refer to the set of
all deterministic implementations of an MTSM asI d

M.

2.2 Fluent Linear Temporal Logic

We describe properties using Fluent Linear Temporal Logic (FLTL) [13]. FLTL is a linear-time
temporal logic for reasoning about �uents. A�uent Fl is de�ned by a pair of sets and a Boolean
value: Fl = hIFl ;TFl; InitFl i , whereIFl � Act is the set of initiating actions,TFl � Act is the
set of terminating actions andIFl \ TFl = ; . A �uent may be initially true or falseas indicated
by InitFl . Every actioǹ 2 Act induces a �uent, namely� ` = hf̀ g; Actn f̀ g; falsei .

LetF be the set of all possible �uents overAct. An FLTL formula is de�ned inductively using
the standard Boolean connectives and temporal operatorsX (next),U (strong until) as follows:
' ::= Fl j : ' j ' _ j X' j ' U , whereFl 2 F . As usual we introducê , } (eventually),�
(always), andW (weak until) as syntactic sugar. Let� be the set of in�nite traces overAct. The
trace� = `0; `1; : : : satis�es a �uentFl at positioni, denoted�; i j= Fl, if and only if one of the
following conditions holds:

� InitFl ^ (8 j 2 N � 0 � j � i ! ` j < TFl)
� 9 j 2 N � (j � i ^ ` j 2 IFl) ^ (8k 2 N � j < k � i ! `k < TFl)

5

PIRSES-GA-2011-295261/ MEALS Page 6 of 24 Public

In other words, a �uent holds at positioni if and only if it holds initially or some initiating action
has occurred, but no terminating action has yet occurred.

For an in�nite trace� , the satisfaction of a (composite) formula' at positioni, denoted
�; i j= ' , is de�ned as follows:

�; i j= : ' , : (�; i j= ')
�; i j= ' _ , (�; i j= ') _ (�; i j=)
�; i j= X' , �; i + 1 j= '
�; i j= ' U , 9 j � i:�; j j= ^ 8 i � k < j:�; k j= '

We say that' holds in� , denoted� j= ' , if �; 0 j= ' . A formula ' 2 FLTL holds in an LTSE
(denotedE j= ') if it holds on every in�nite trace produced byE.

In this paper we modify LTSs and MTSs by adding new actions andadding states and transi-
tions that use the new actions. It is convenient to change FLTL formulas to ignore these changes.
Consider an FLTL formula' and a set of actions� such that for all �uentsFl = hIFl ;TFl; InitFl i
in ' we have� \ (IFl [TFl) = ; . We de�ne the� -variant version of' , denotedX � ('), by
replacing every sub-formulaX in ' by X((

W
`2� � `)UX � ()).

Thus, this transformation replaces every next operator occurring in the formula by an until
operator that skips uninteresting actions that are in� .

Theorem 1. Given a trace� = `0; `1; : : : in E = (S; A; � ; s0), an FLTL formula' and a set of
actions� 2 Act. If � \ A = ; then for every trace� 0 that is a� -variant of � we have� j= ' i�
� 0 j= X � (').

We note that our results hold for properties that describe sets of traces that can be modi�ed
easily to accept� -variants as above. We choose to focus on FLTL as it makes all complexity
results concrete and is a well accepted standard.

2.3 Controller Synthesis

An LTS control problem is an LTSE whose actions are partitioned to controllable and uncon-
trollable. We seek acontroller M such thatEkM does not restrict uncontrollable actions ofE
andEkM does not have deadlocks. Formally, we have the following.

De�nition 7. (Legal LTS)ConsiderE and M two LTSs. We say thatM is legal for E with
respect to controllable alphabetAc � A if for every reachable state (s;m) of EkM we havei) if
(s; `; s0) 2 � E and` < Ac then there ism0 such that (m; `; m0) 2 � M and,ii) there is an actioǹ
and statess0 andm0 such that ((s;m); `; (s0;m0)) is a transition inEkM.

De�nition 8. (LTS Control[8]) Given a domain model in the form of an LTSE = (S; A; � ; s0),
a set of controllable actionsAc � A, and an FLTL formula' , a solution for the LTS control
problemE = hE; '; Aci is an LTSM = (SM, AM, � M, s0M) such thatM is a legal LTS forE, EkM
is deadlock free, and every trace� in EkM is such that� j= ' .

Whenever a controller exists we say that the control problem is realisable. It is unrealisable
otherwise. In case that a domain modelE is given andAc and' are implicit we denote byE the

6

PIRSES-GA-2011-295261/ MEALS Page 7 of 24 Public

control problemE = hE; '; Aci . We depict uncontrollable actions (i.e. actions inA n Ac) with
doubled-dashed transitions (e.g., see transition (4; readyForPickup;5)). In �gures we usec and
u actions to denote controllable and uncontrollable actionsrespectively – e.g. models in Figure 2.

Theorem 2. (LTS Control [9, 16])Given an LTS control problemE = hE; '; Aci it is decidable
in 2EXPTIME in the size of' and EXPTIME in E whetherE is realisable. If E is deterministic
the algorithm is polynomial in the size of E. The algorithm for checking realisability can also
extract a controller M.

The problem MTS control problem [17] is to check whether all,none or some of the LTS
implementations of a given MTS can be controlled by an LTS controller [8]. More speci�cally,
given an MTS, an FLTL goal and a set of controllable actions, the answer to the MTS control
problem isall if all implementations of the MTS can be controlled,noneif no implementation
can be controlled andsomeotherwise. This is formally de�ned below.

De�nition 9. (Semantics of MTS Control)Given an MTSE = (S, A, � r , � p, s0), an FLTL
formula ' and a setAc � A of controllable actions, to solve theMTS control problemE =
hE; '; Aci is to answer:

� All , if for all LTS I 2I E, the control problemhI; '; Aci is realisable,
� None, if for all LTS I 2I E, the control problemhI; '; Aci is unrealisable,
� Some, otherwise.

A nä�ve approach to the MTS control problem may require to evaluate an in�nite number of
LTS control problems. In [17] we solved the problem of MTS control when the MTS is determin-
istic and restricting attention to deterministic implementations. That is, replace all quanti�cation
over LTS above by quanti�cation overI d

E instead ofI E – recall thatI d
E refers to the set of deter-

ministic implementations ofE. Technically, we proposed two LTS control problems that answer,
respectively, whether all implementations are controllable and whether none of the implementa-
tions are controllable.

3 Motivation

Consider the following example inspired by the one presentedoriginally in [18]. A library re-
quires a system that allows the users to borrow books and guarantees that users have access to
their desired ones. Books are loaned for a �xed period of time after which users must return
them. Books are automatically available as soon as they are returned. The system must handle
concurrent book requests by multiple users.

In Figure 1, we show a partial speci�cation for the book-loanprocess up to the level require-
ments have been de�ned. Although the system is multi-user, the model shows the behaviour of
the system from the perspective of one user, abstracting away multi-user behaviour using non-
determinism. When a user wants to borrow a book she searches for the desired one (queryBook).
Then, the system displays a list of available copies (listBooks) from which the user can choose
one (selectForPickup) and then pick it up from the counter (pickup). However, as the system
is used by several users at the same time, the selected copy may have been o� ered, chosen and

7

PIRSES-GA-2011-295261/ MEALS Page 8 of 24 Public

Figure 1: Books Loan Partial Speci�cation.

taken by another user. In such a case, an alternative book is locked and o� ered. The user can then
either accept (acceptAlt) and pick up the book (pickupAlt) or decline the o� er (declineAlt). For
simplicity, in this example we require a user to return a bookbefore another can be requested.

The interference between users that may make aselectForPickupsuccessful (allowing pick
up) or not (proposing an alternative) is abstracted away in Figure 1 with a non-deterministic
choice. The choice hides the reason for which one scenario orthe other may occur. This is a
standard approach to reducing model complexity.

Some libraries allow users to reserve a copy of a currently unavailable book. When a copy
of the reserved book is returned to the library, the copy is locked and the user is noti�ed for
pick up (readyForPickup). Such a situation is modelled here as a possible but not required –
i.e. maybe – transition that models the choice of the user to hold a copy as soon as it is returned
(hold&wait).

Another variability in this speci�cation is that users may be provided with a blogging feature
to allow them to share their impressions about a book while they are reading it. This is modelled
with another maybe transition labelledblog.

The maybe transitionshold&wait andblog underspecify the library system allowing imple-
mentations that provide di� erent combinations of functionality (i.e. providing or not“hold and
wait”, providing or not “blogging”). Our aim is to understand if a controller exists that can
guarantee that users will eventually get the book of choice (formalised by the FLTL property
� (queryBook! } pickup)). Note that actions In particular we are interested in knowing whether
the goal will be achievable inall valid implementations of such speci�cations, in onlysomeor
noneof them.

The answer to the MTS control problem stated above issome. This follows from the fact that
there are implementations of the system that are indeed controllable but there are also implemen-
tations in which it is simply not possible to guarantee that the user will eventually get her desired
book.

Consider an implementation that does not implement thehold&wait feature. AsselectForPickup
is nondeterministic, it is impossible to guarantee that theuser will eventually get the chance to

8

PIRSES-GA-2011-295261/ MEALS Page 9 of 24 Public

pickup the book – i.e., it may always lose the race with other users and end up in state 3, being
forced to choose an alternative book or cancel the request.

On the other hand, an implementation that allows the user to reserve the book to be taken
when returned is indeed controllable. Naturally, this holds because we are assuming that there is
a mechanism for guaranteeing that users actually return books. This assumption is coded in state
5 in whichreadyForPickupmust eventually happen.

As not all implementations are controllable this suggests that either we must strengthen our
speci�cation to force implementations with the ”hold and wait” feature (provision of the ”blog-
ging” feature is irrelevant for controllability of our goal), we must weaken our goal (e.g. for
instance allowing users to give up on their wanted book) or strengthen our assumptions (e.g.
queries cannot fail more than 5 times in a row).

4 MTS Control Problem

In this section we consider the problem of MTS control when the MTS could be nondeterministic
and we consider nondeterministic implementations. We provide intuitions for proofs, for more
detailed see [19]. We show how to construct two nondeterministic LTSs,E8 andE9, such that
if a control problem withE8 is realisable the answer to the MTS control problem forE is all
and, dually, if a control problem withE9 is unrealisable the answer isnone. This is similar to
the solution of MTS control in the deterministic case [17] inthe sense that we construct an LTS
that is the “hardest” implementation to control and an LTS that is the “easiest” implementation to
control. Answering these two LTS control problems gives a correct answer to the MTS control
problem. We start with the problem of answering the questionwhetherall implementations are
controllable.

De�nition 10. Consider an MTSE = (S; A; � r ; � p; s0) and a set of controllable actionsAc � A.
We de�neE8 = (SE8 ; AE8 ; � E8 ; s0) as follows:

� SE8 = S [f (s; 1) j s 2 S and; , � r(s) � Acg
� AE8 = A [f `1g
� � E8 =

f(s; `; s0) 2 � p j � r(s) , ; and` < Acg [
f(s; `1; (s; 1)) j (s; 1) 2 SE8g [
f((s; 1); `; s0) j s0 2 � p(s; `) and� r(s; `) , ;g

Intuitively, the transformation gives more control to the environment. First, the new action
`1 is uncontrollable. The construction ofE8 proceeds by considering three cases:i) states with
required uncontrollable transitions enabled,ii) states with no required uncontrollable transitions
enabled, but required controllable transitions enabled, and iii) states with no required transitions
(i.e. only maybe transitions). To states that have uncontrollable required transitions we add all
uncontrollable transitions – note that controllable transitions are not included as they do not a� ect
controllability. As an example, considerE1 andE8

1 shown in Figures 2(a) and 2(d) respectively.
E8

1 is the result of applying the transformation above toE1. E8
1 includes all possible uncontrolled

implementation choices. Hence, controlE8
1 guarantees controllability of every implementation

9

PIRSES-GA-2011-295261/ MEALS Page 10 of 24 Public

of E1. To states that have no uncontrollable required transitions and some controllable required
transitions we include all uncontrollable transitions andan extra uncontrollable transition to a
new state (i.e. (s; 1)) that enables all required controllable transitions from the original state.
Intuitively, we give the environment a choice between all (possible) uncontrollable transitions
and (through the new state (s; 1)) a choice to implement additional controllable transitions that
agree with their labels with the existing required transitions. Hence, forcing the controller to
be able to control every possible nondeterministic combination of transitions with at least one
required option. For example, considerE2 and E8

2 in Figures 2(b) and 2(e) respectively. In
order to controlE8

2 the controller must have a solution for both,i) all uncontrollable possible
transitions, and, as̀1 is uncontrollable,ii) for every possible nondeterministic choice on the
required controllable. Note that we do not include transitions on controllable actions that have

no required transition (e.g., 0
c00?
�! 6) as they might allow the controller to avoid enabling some

required transitions. On the other hand, we do include all nondeterministic options over the
actions that have some required controllable as it makes theproblem harder for the controller.
Finally, from states that have no required transitions we donot add transitions at all – i.e. they
become deadlock states. This follows from the fact that the implementation that disables all
transitions from such a state is a valid implementation. Consider E3 in Figure 2(c) is an example
of the previous case. To be sure that all implementations ofR3 can be controlled, it is necessary
to have a solution that completely avoids reaching the deadlock state 2.

The LTSE8 provides the basis for determining whether the answer to theMTS control ques-
tion isAll . The following lemma provides the key properties to computethe answer for the case
all.

Lemma 1. (All) Given an MTS control problemE = hE; '; Aci , where E= (S; A; � r ; � p; s0E). If
E8 is the LTS obtained by applying De�nition 10 to E, then the following holds. The answer for
E is all i� the LTS control problemE8 = hE8;X f`1g('); Aci is realisable.

We give an intuition of the proof for Lemma 1. Assume there is no solution toE8. Then we
know that the environment has a strategy to violate the controller's requirements. This follows
from the fact that LTS control problems are solved by a reduction to two-player games [8] and
such games are Determined [20], which means that if the game is loosing for one player (e.g. the
controller) it must be the case that is winning for the other one (e.g. the environment). Note that,
a game is winning for a player means that she has a strategy that wins against any strategy of her
opponent. At a glance, this proof uses the environment's strategyN to violate the controller goals
to build an uncontrollable implementationI of E. This is done by building an implementation
relation betweenI andE that chooses what to implement based on the decisions of theN. Then
we prove thatI is uncontrollable, which follows by the fact that we builtI choosing what to
implement asN would have. Hence, violating the controller goals.

Intuitively, in the other direction the proof is based on theidea that a controller forE8encodes
a strategy for all possible implementations ofE. More speci�cally, we start by assuming that
there is a controllerM for E8. Then, given an implementationI of E (i.e. I 2 I E), we show
that there exists a controllerM0 for I = hI ; '; Aci . We then constructM0 from M following the
re�nement relation betweenE andI . Intuitively, M0 can be seen as the result of pruningM by

10

PIRSES-GA-2011-295261/ MEALS Page 11 of 24 Public

(a) E1 (b) E2 (c) E3

(d) E8
1 (e) E8

2 (f) E8
3

Figure 2: Examples ofE8.

removing all implementations choices disabled fromE by I . In addition, asM0 is built uponM,
M0 is a solution toI . More speci�cally, we consider states ofI following cases as done in De�ni-
tion 10, now taking into account the re�nement relation betweenI andE. Consider a statet of I
that re�nes states of E. If s has uncontrollable required transitions but no controllable required,
then, by construction, we know thats have all possible uncontrollable transitions enabled inE8.
Hence,M also includes all possible uncontrollable transitions from s, from which follows that
M will have a transition for any enabled transition int. If the only required transitions fromsare
controllable, then by de�nition ofE8, the controller ofE8must enable a transition to, both the
state (s; 1) from which the required controllable transitions are enabled, and all the possible un-
controllable successors ofs. It follows that the controller can control any implementation choice
of uncontrollable transitions fromt, and also, ast re�nes s, the required controllable that must
be enabled int. Note that statest of I that re�ne statess of E where all transitions enabled ins
are maybe transitions induce deadlock states that will not be reachable inM0kI as, inE8they are
deadlock states.

We now turn to the case of distinguishing between thenonecase andall or some.

De�nition 11. Consider an MTSE = (S; A; � r ; � p; s0) and a set of controllable actionsAc � A.
We de�neE9 = (SE9 ; AE9 ; � E9 ; s0) as follows:

� SE9 = S [f (s; a; s0) 2 � p j a 2 A and� r(s) = ;g [

11

PIRSES-GA-2011-295261/ MEALS Page 12 of 24 Public

(
(s; a; s0) 2 � p

������
a 2 A and; , � r(s) � Ac;
and� r(s; a) = ;

)

� AE9 = A [f ` (a;s0) j a 2 A and (s;a; s0) 2 � p n� rg
� � E9 = f(s; a; s0) j a 2 A and (s;a; s0) 2 � rg [�

(s; `(a;s0); (s; a; s0)) ja 2 A and (s;a; s0) 2 SE9
	

[
f((s; a; s0); a; s0) j a 2 Ag

Intuitively, E9 gives more control to the controller. As before we consider states according
to the set of enabled transitions. For states with uncontrollable required transitions we add in
E9 all required transitions as they will be enabled in all implementations. We do not add other
transitions as it would only result in a more complex problembecause either we add new un-
controllable transitions, or we add nondeterministic choices over the (already enabled) required
transitions. An example of this case is shown in the models inFigures 3(a) and 3(d). Note that
to controlE9

4 it is only necessary to have a solution for the uncontrolled transition. However, if
the state were such that its only required transitions are controllable, then they should be inE9

as they could be chosen by the controller.
In order to strengthen the controller, we add toE9 states that allow it to choose which tran-

sitions to implement in two cases. First, from states that have required controllable transitions
but no required uncontrollable transitions. Second, from states that have no required transitions
from them.

From states that have no uncontrollable required transitions but have some required control-
lable transitions we add possible transitions that do not share an action with a required transition.
This means that the controller has a choice of either implementing one maybe transition or using
one of the required transitions. We do this by adding new transitions labelled with actions that
uniquely identify the transition. For instance, considerE9

5 from Figure 3(e), the result of applying

the latter rule toE5 in Figure 3(b). The controllable transition 0
` (u;1)
�! (0; u;1), that comes allows

the controller to choose to implement the maybe transition 0
u?

�! 1 if it wants to. Otherwise, it
can choose to use the (required) controllable transition labelledc.

From states that have no required transitions we allow the system to choose which maybe
transition to implement. As before we use actions to identify the transition, allowing the con-
troller to choose which one to implement. Note that all possible nondeterministic choices are
included (but made deterministic). See for example models in Figures 3(c) and 3(f).

The LTSE9 provides the basis for determining whether the answer to theMTS control ques-
tion is None.

Lemma 2 provides the key properties to compute the answer forthe casenone.

Lemma 2. (None)Given an MTS control problemE = hE; '; Aci where E= (S; A; � r ; � p; soE).
If E9 is the LTS obtained by applying De�nition 11 to E, then the following holds. The answer
for E is nonei� the LTS control problemE9 = hE9;XA('); AE9 n(A nAc)i is unrealisable.

We give an intuition of the proof for Lemma 2. We �rst assume that there is a controllerM for
E9. Now, recall thatM controls` (a;s) actions, which are only added inE9 for maybe transitions
in E. Thus, a transition labelled̀(a;s) appearing inM represents an implementation choice that

12

PIRSES-GA-2011-295261/ MEALS Page 13 of 24 Public

(a) E4 (b) E5

(c) E6 (d) E9
4

(e) E9
5 (f) E9

6

Figure 3: Examples ofE9.

13

PIRSES-GA-2011-295261/ MEALS Page 14 of 24 Public

can be controlled byM. In other words,M encodes a set of controllable implementations. More
speci�cally, we construct, fromM and E9, an implementationI and a controllerM0 for I =
hI ; '; Aci and that will show thatnoneimplies the unrealisability ofE9control problem. We
consider states in cases. If the state has uncontrollable required transitions, then for each of
them we include a transition inI andM0. If the state has no uncontrollable required but some
controllable required, then we choose transitions to implement inI and enable inM0 following
what is enabled byM. If the state has no required transitions, then as all actions of the form` (a;s)

are controllable we add toI andM0 actions enabled byM. We then show thatM0 indeed controls
I . This is done by showing a correspondence between traces ofIkM0 and traces ofE9kM, which
can be proven following their construction procedure. Thus, both must satisfy the respective
goals.

In the other direction, given an implementationI 2 I E and a controllerM0 for I , we construct
a controllerM for E9. The construction ofM is directed by the re�nement relation betweenE and
I , and the controllable transitions enabled byM0. Intuitively, M is an extension ofM0 that follows
implementation choices ofI by adding transitions labelled with̀(a;s) that will synchronise with
E9– i.e. forcingE9 to behave asI . More speci�cally, if t is a state ofI that re�nes states of E
and implements a maybe transition (s;a; s0), thenM enables the successor (s; a; s0) of s in E9.
We then show how a correspondence between traces ofIkM0 and traces ofE9kM is established,
from which follows that both traces satisfy the respective goals.

We now provide the algorithm to compute the solution to the MTS Control Problem. The
soundness and completeness of the algorithm follows from Lemma 1 and Lemma 2.

Algorithm 1. (MTS Control)Given an MTS control problemE = hE; '; Aci . If E8 andE9 are
the LTSs obtained by applying De�nitions 10 and 11 respectively, to E, then the answer forE is
computed as follows.

� All , if there exists a solution forE8 = hE8;X f`1g('); Aci
� None, if there is no solution forE8 and no solution forE9 = hE9;XA('); AE9 n(A nAc)i .
� Some, otherwise.

Theorem 3. (MTS Control)Given an MTS control problemE = hE; '; Aci it is decidable in
2EXPTIME in' and EXPTIME in E whetherE is realisable.

Proof. The algorithm for checking whetherE is realisable calls for solving two LTS control
problems. One withE8 and one withE9. The size of bothE8 andE9 is linear in the size of
E. The sizes ofX f`1g(') andXA(') are linear in the size of' . From Theorem 2 we establish the
bounds of 2EXPTIME in the size of' and EXPTIME in the size ofE. �

5 E� cient MTS Control Subproblems

The complexity of the general MTS control problem has exponential growth with respect to
two factors: the size of the formula and the size of the domainmodel (see Theorem 2). Various
sublogics have been studied to reduce the (doubly) exponential growth of complexity with respect
to the goal to be controlled. In particular, GR(1) goals reduce this complexity to polynomial [14].

14

PIRSES-GA-2011-295261/ MEALS Page 15 of 24 Public

In this section, we address the exponential growth in the size of the domain model by iden-
tifying two MTS control subproblems for which the complexity in the size of the domain model
is polynomial. The �rst subproblem is when we restrict MTS tobe deterministic. The second
is when we limit the possible implementations of MTS to deterministic ones. We show that in
both cases a simpler analysis that requires reasoning aboutdeterministic LTS controllability is
su� cient.

5.1 Deterministic MTS Non-Deterministic Implementations

We formally de�ne the subproblem of answering whether all, some or none implementations of
a deterministic MTS are controllable as follows:

De�nition 12. (Det MTS Control)Given an MTS control problemE = hE; '; Aci , whereE is
deterministic. Then the answer forE is computed as follows.

� All , if all deterministic implementation ofE are realisable.
� None, if no deterministic implementation ofE is realisable, and
� Some, otherwise.

We note that the case of determinstic MTS realisability where only deterministic implemen-
tations are considered was handled in [17]. We show that in this case, MTS control reduces to
the simpler problem of considering only deterministic implementations. We need to establish
correspondence between the three possible answers of the two problems.

The following Lemma states that if the answer to theDet MTScontrol problem is some or
all, then the answer cannot be none for the problem restricted to deterministic implementations
as solved in [17].

Lemma 3. Given a deterministic MTS E= (S; A; � r ; � p; s0), an FLTL formula' , and a set
Ac � A of controllable actions; If for some N2 I E we havehN; '; Aci is realisable then for some
D 2 I d

E we havehD; '; Aci is realisable.

The following Lemma states that if the answer to the control problem is all when restricting
attention to deterministic implementations then all nondeterministic implementations are con-
trollable as well.

Lemma 4. Given a deterministic MTS E= (S; A; � r ; � p; s0), and FLTL formula' and a set
Ac � A of controllable actions; If for all D2 I d

E we havehD; '; Aci is realisable then for every
N 2 I E we havehN; '; Aci is realisable.

It follows from the two lemmata above that the following algorithm correctly computes the
answer to the MTS control problem when the MTS is deterministic.

Algorithm 2. Given an MTS control problemE = hE; '; Aci , whereE is deterministic. The
answer to the control problemE is as follows.

� All , if the answer for the deterministic MTS control problemE is all.
� None, if there is no solution for the deterministic MTS control problemE.

15

PIRSES-GA-2011-295261/ MEALS Page 16 of 24 Public

� Some, otherwise.

Theorem 4. (Deterministic MTS Control)Given an MTS control problemE = hE; '; Aci , where
E is deterministic, it is decidable in 2EXPTIME in' and polynomial in E whetherE is realisable.

Proof. We have shown that in this case it is enough to consider the case of deterministic imple-
mentations. From [17] this MTS control can be reduced to two LTS control problems where the
LTSs are deterministic. From Theorem 2 it follows that it is 2EXPTIME in ' and polynomial in
E. �

5.2 Non-Deterministic MTS Deterministic Implementations

The case of searching for deterministic implementations ofa nondeterministic MTS is handled
di� erently. First, we extract from the MTSE a sub-MTSD. If D andE are not bisimilar, then
E has no deterministic implementations. Then, we apply a specialized control check onD and
the answer to the realisability check onD is the answer to whetherall, some, or noneof the
deterministic implementations ofE can be controlled to satisfy the formula.

De�nition 13. Consider an MTSE = (S; A; � r ; � p; s0). We extract fromE a sub-MTSD, where
D = (T; A; � r ; � p; s0). We constructT � S by induction. Consider a states 2 T \ S. For every
label` such that̀ 2 � r(s) we add toT onerequireda-successor ofs. For every label̀ such that
` 2 � p(s) n� r(s) we add toT all maybè successors ofs.

Lemma 5. Given a nondeterministic MTS E= (S; A; � r ; � p; s0), E has deterministic implemen-
tations if and only if D is bisimilar to E.

Proof. Assume that there is a deterministic implementationI of E. From the implementation
relation betweenI andE we can construct an implementation relation betweenI andD. Indeed,
the only transitions missing fromD are cases where a states in E has two required successors
(s; `; s0) and (s; `; s00). But ass is implemented by some state ofI , then, by de�nition of re�ne-
ment,s0 ands00must be bismilar and whatever choice inE to continue froms to either (s; `; s0)
or (s; `; s00) would be su� cient to implement the states in E. ThusD is bisilimar toE. The other
direction is trivial and omitted. �

Clearly, if E has no deterministic implementations then the answer to thequestion whether
all deterministic implementations satisfy a certain formula is vacuously true. In the case thatD
is bisimilar toE every implementation ofE is an implementation ofD and vice versa. Thus, the
answer to the MTS control problem withD replacingE is the same answer as that ofE. We anal-
yseD to check whether all its implementations are controllable,some of them are controllable,
or none of them are controllable. We construct variantsD8 andD9 of D where all nondetermin-
ism is removed by renaming actions. InD8 the environment chooses which maybe transitions
to implement and inD9 the controller chooses which maybe transitions to implement. UsingD8

andD9 we create control problems that check the “all” and “some” cases of the control problem.

De�nition 14. Consider an MTSE = (S; A; � r ; � p; s0) and a set of controllable actionsAc � A.
Let D = (S0; A; � r ; � p; s0) be the sub-MTS extracted fromE as in De�nition 13. We de�ne
D8 = (SD8 ; AD8 ; � D8 ; s0) as follows:

16

PIRSES-GA-2011-295261/ MEALS Page 17 of 24 Public

� SD8 = S0 [f (s; 1) j ; , � r(s) � Acg
� AD8 = A � S [f `1g
� � D8 =

f(s; (a; s0); s0) j (s; a; s0)2� r and� r(s)* Acg [
f(s; (a; s0); s0) j (s; a; s0)2� p; a<Ac and� r(s)* Acg [
f(s; `1; (s; 1)) j ; , � r(s)� Acg [
f((s; 1); (a; s0); s0) j (s; a; s0)2� r anda2Acg [
f(s; (a; s0); s0) j (s; a; s0)2� p; a<Ac and; , � s(s)� Acg [
f(s; (a; s0); s0) j � r(s)=; and (s;a; s0)2� pgESTA ESTA MAL, ESTO NO DEBERIA AGRE-
GAR NADA Y DEJAR AL ESTADO COMO DEADLOCK.

All the new actions are uncontrollable. We note thatD8 is very similar toE8 except thatD8

is made e� ectively deterministic by renaming all actions. As before,we extend the de�nition of
all �uents in ' to include the copies (a; s) of actions inA. That is, if a �uent includes the action
` then its modi�ed version includes also the action (`; s).

Lemma 6. (Deterministic All) Given an MTS control problemE = hE; '; Aci where E =
(S; A; � r ; � p; s0). If D is the MTS obtained from E by applying De�nition 13 and D8 is ob-
tained from D by De�nition 14, then the following holds. The answer forE is all i� the LTS
control problemD 8 = hD8;X f`1g('); Aci is realisable.

The proof is very similar to that of Lemma 1 except that we restrict attention to deterministic
implementations.

We now turn to the case of distinguishing between thenonecase andall or some. In this
case, we can apply De�nition 11 toD. Denote the resulting LTS asD9. We note that asD has no
nondeterminism on required transitions it follows thatD9 is deterministic.

Lemma 7. (Deterministic None)Given an MTS control problemE = hE; '; Aci where E =
(S; A; � r ; � p; s0). If D is the MTS obtained from E by applying De�nition 13 and D9 is obtained
from D by De�nition 11, then the following holds. The answer forE is nonei� the LTS control
problemD 9 = hD9;XA('); AD9 � (A � Ac)i is not realisable.

The proof is very similar to that of Lemma 2 except that we (naturally) restrict attention to
deterministic implementations.

It follows that the following algorithm provides the answerto the MTS control problem in
the case that we restrict attention to deterministic implementations.

Algorithm 3. (MTS Deterministic Control)Given an MTS control problemE = hE; '; Aci . If D
is the LTS obtained fromE by applying De�nition 13 andD8 is the LTS obtained by applying
De�nition 14 to D andD9 is the LTS obtained by applying De�nition 11 toD, then the answer
for E is computed as follows.

� All , if there exists a solution forD 8 = hD8;X f`1g('); Aci
� None, if there is no solution forD 8 and no solution forD 9 = hD9;XA('); AD9 � (A � Ac)i .
� Some, otherwise.

17

PIRSES-GA-2011-295261/ MEALS Page 18 of 24 Public

Theorem 5. (MTS Deterministic Control)Given an MTS control problemE = hE; '; Aci the
answer to the control problem ofE, where implementations are restricted to deterministic imple-
mentations, is decidable in 2EXPTIME in' and polynomial in E.

Proof. The Theorem follows from noticing that bothD8 and D9 are deterministic. Thus, the
simpler algorithm for checking realisability of deterministic LTS from Theorem 2 applies. �

6 Discussion and Related Work

The software engineering community has studied the construction of event-based operational
models in various forms. For instance, construction of suchmodels from scenario-based speci�-
cations(e.g. [21]) has received much attention as example-based descriptions are close to wide-
spread speci�cation approaches such as message sequence charts and use-cases. Integration of
fragmented, example-based speci�cation into a state-based model can be analysed via model
checking, simulation, animation and inspection, the latter aided by automated slicing and ab-
straction techniques.

Synthesis that also combines some form of declarative speci�cation (e.g. temporal logics)
has also been studied with the aim of providing an operational model on which to further support
requirements elicitation and analysis [22]. The work presented herein shares the view that model
elaboration can be supported through synthesis and analysis. Furthermore, analysis of a partial
domain model for realisability of system goals by means of a controller allows prompting further
elaboration of both domain model and goals.

Enacting automatically synthesised plans is a strategy adopted in various software engineer-
ing domains. For instance, Inverardi et al. automatically build glue code and component adap-
tors in order to achieve safe composition at the architecture level [4], and in particular in service
oriented architectures [23]. Such approaches build on classical controller synthesis and conse-
quently require fully speci�ed domain models, hence their application is limited in earlier phases
of development. The results that we present in this paper allows reasoning about the feasibility of
constructing such glue code and adaptors without necessarily requiring the e� ort of developing
a full domain model.

Architectural design of self-adaptive systems often includes layers that must deal with mis-
sion planning. In these layers, algorithms capable of producing at run-time strategies that adapt
to changes in the environment, in the system's capabilitiesor goals is required. Hence, these sys-
tems can leverage automated controller synthesis [24, 2]. We speculate that controller synthesis
techniques that support partial domain knowledge, such as the one presented here, may allow
deploying self-adaptive systems that work in environmentsfor which there is more uncertainty.

In [17], we solved the MTS control problem for a restricted setting that considers only the
case where both the MTS speci�cation and its implementations are deterministic. Such case can
be considered an even simpler case of the one described in Section 5.1. However, as we have
shown, the problem of MTS control with deterministic MTS speci�cation and nondeterministic
implementations is essentially reduced to the one presented in [17].

Our work builds on a particular formalism for describing partial behaviour models (MTS [12]),
however, there are many formalisms that have been developedwith the notion of partiality ex-

18

PIRSES-GA-2011-295261/ MEALS Page 19 of 24 Public

plicitly embedded. Notably, there exist many (more expressive) variants of MTS including Dis-
junctive [25], and Parametric [26] MTS. The results presented in this work would have to be
revisited in the context of other partial behaviour formalisms. However, since many complexity
results for MTS hold for extensions such as DMTS, we believe that our results could also extend
naturally to these extensions.

Initial attention to partial models was focused on propertyveri�cation (cf. [11, 27, 28]). First,
three-valued model checking was de�ned [11] and shown to have the same complexity as that
of model checking. Subsequently, generalised model checking [27] improves the accuracy of
results: three-valued model checking may result in the answer ”some” even when no implemen-
tations satisfy the property. Generalised model checking resolves this but at a high computational
complexity [28].

In order to reason about generalised model checking one has to go from the model of transi-
tion systems (for 3-valued model checking) to that of a game.Our de�nition of MTS control is
more similar to generalised model checking than to 3-valuedmodel checking. We �nd it inter-
esting that both MTS and LTS control problems are solved in the same model (that of a game)
and that MTS control does not require a more general model.

Another related subject is abstraction of games. For example, in [29] abstraction is applied to
games in order to enable reasoning about in�nite games. Similarly, in [30] abstraction re�nement
is generalised to reason about larger games. Applying abstraction allows making assumptions
about which states can be reasoned about together. In our approach, we work with a given
abstraction from the start, the MTS, rather than abstracting a more detailed model.

We have mentioned some of the many results that exist on controller synthesis and realiz-
ability of temporal logic. Our work builds on LTS control using the 2EXPTIME-completeness
of LTL controller synthesis [9] and also allows use of more e� cient synthesis de�ned over re-
stricted subsets of LTL (cf. [31, 14]). The latter results show that in some cases synthesis can be
applied in practice. Similar restrictions, if applied to MTS control combined with our reductions,
produce the same reduction in complexity.

Our previous work on usage of controller synthesis in the context of LTSs has been incorpo-
rated in the MTSA toolset [32]. We have implemented a solver to GR(1) [14] formulas in the
context of the LTS control problem [8].

In addition to dealing with partial behaviour models, our work allows non-deterministic be-
haviour. Non-determinism and partial observation (the existence of actions which can neither be
controlled nor monitored by the controller) are closely related challenges in the realm of games.
Partial observation boils down to safety imperfect-information games [33]. Very recently, we
have presented two techniques for synthesis of LTS controllers in the context of nondetermin-
istic environments [34]. Each technique produces controllers for di� erent interactions modes
between the environment and the controller. One similar to that of IA legal environments and the
other inspired in the interaction among players in an imperfect-information game.

Partial observable Markov Decision Processes (MDPs) are used in robotics for planning pur-
poses (e.g. [35]). A key di� erence is that the environment is given in terms of stochastic be-
haviour of actions and that the aim is the maximization of cumulative payo� s, there are no hard
goal. Optimal policies under hard co-safety properties hasonly been recently addressed in the
robotics community ([36]).

19

PIRSES-GA-2011-295261/ MEALS Page 20 of 24 Public

In [5] safety properties (and bounded-liveness) are used asgoals in an LTS-like framework.
The technique assumes input enabledness but the resulting controller is legal, in the sense of
interface automata – i.e. the controller cannot block uncontrollable actions, nor the environ-
ment block controllable ones. Thus, the controller disables all controllable transitions that are
not enabled from every possible nondeterministic successors. Hence, the approach in [5] can-
not be reused for the general interface automata control problem since liveness requires special
treatment as shown, e.g., in [8].

7 Conclusions and Future Work

We have presented a general technique for answering the MTS control problem. In other words,
an algorithm for answering if all, some or none of the implementations described by a partial
behaviour model in the form of an MTS can be controlled to achieve a given goal. Our technique
is general in the sense that it does not restrict MTS to deterministic speci�cations nor does it
limit the implementations considered to deterministic ones.

We show that the answer to the MTS control problem can be computed by considering two
LTS control problems representing the “hardest” and “easiest” implementations to control. In
addition, we identi�ed restricted versions of the MTS control problem which can be answered
more e� ciently as it is not necessary to consider control of non-deterministic implementations.

For the general case, the two LTS control problems must be applied to nondeterministic
LTS which means an exponential complexity in the size of the domain model. However, for
the restricted MTS control problems identi�ed, we show thatit is enough to consider the two
deterministic LTS control problems, reducing the complexity of the problem to polynomial in
the size of the domain model.

The complexity of deciding controllability also depends onthe complexity of the goal to be
controlled. In the general case (general FLTL formula) the complexity is double exponential
in the size of the goal. However, our technique can build on existing results for solving more
e� ciently sub-logics. Hence, for GR(1) formulae the complexity is remains polynomial.

We believe that from the LTS control problems that are presented in this paper it is possible
to construct “templates” for the control of all implementations and “templates” for the control of
“controllable” implementations when only some are controllable. Extraction of these templates
and their usage for the re�nement of the domain models or their restriction is an interesting area
for further studies.

We are currently working on implementation of these algorithms and their incorporation
within the realisability framework of MTSA [32]. In spite ofthe complexity of the control
problem for nondeterministic LTS our initial experiments are encouraging and we hope that the
cases that arise in practice will not incur the full theoretical complexity of the solution.

20

PIRSES-GA-2011-295261/ MEALS Page 21 of 24 Public

Bibliography

[1] M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for embedded controller synthesis,”
in Proceedings of the 22Nd International Conference on Computer Aided Veri�cation, ser.
CAV'10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 566–569. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14295-6_49

[2] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An architecture for requirements-driven self-
recon�guration,” inProceedings of the 21st International Conference on Advanced Infor-
mation Systems Engineering, ser. CAiSE '09. Springer-Verlag, 2009, pp. 246–260.

[3] W. Heaven, D. Sykes, J. Magee, and J. Kramer, “Software engineering for self-
adaptive systems,” B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. A Case Study in Goal-Driven Archi-
tectural Adaptation, pp. 109–127. [Online]. Available:http://dx.doi.org/10.1007/
978-3-642-02161-9_6

[4] P. Inverardi and M. Tivoli, “A reuse-based approach to the correct and automatic com-
position of web-services,” inInternational workshop on Engineering of software ser-
vices for pervasive environments: in conjunction with the 6th ESEC/FSE joint meeting,
ser. ESSPE '07. New York, NY, USA: ACM, 2007, pp. 29–33. [Online]. Available:
http://doi.acm.org/10.1145/1294904.1294908

[5] E. Letier and W. Heaven, “Requirements modelling by synthesis of deontic input-output
automata,” in35th International Conference on Software Engineering, ser. ICSE 2013.
Norwell, MA, USA: Kluwer Academic Publishers, 2013.

[6] M. Jackson, “The world and the machine,” inProceedings of the 17th international confer-
ence on Software engineering, ser. ICSE '95. ACM, 1995, pp. 283–292.

[7] N. D'Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel, “Synthesis of live behaviour
models for fallible domains,” inICSE, R. N. Taylor, H. Gall, and N. Medvidovic, Eds.
ACM, 2011, pp. 211–220.

[8] N. D'Ippolito, V. Braberman, N. Piterman, and S. Uchitel,“Synthesising non-anomalous
event-based controllers for liveness goals,”ACM Tran. Softw. Eng. Methodol., vol. 22, 2013.

[9] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in Proceedings of the
16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ser.
POPL '89. ACM, 1989, pp. 179–190.

[10] W. Swartout and R. Balzer, “On the inevitable intertwining of speci�cation and implemen-
tation,” Communications of the ACM, vol. 25, no. 7, pp. 438–440, 1982.

[11] G. Bruns and P. Godefroid, “Model checking partial statespaces with 3-valued tempo-
ral logics,” in 11th International Conference on Computer Aided Veri�cation, ser. Lecture
Notes in Computer Science, vol. 1633. Springer, 1999, pp. 274–287.

21

PIRSES-GA-2011-295261/ MEALS Page 22 of 24 Public

[12] K. Larsen and B. Thomsen, ““A Modal Process Logic”,” inProceedings of 3rd Annual
Symposium on Logic in Computer Science (LICS'88). IEEE Computer Society Press,
1988, pp. 203–210.

[13] D. Giannakopoulou and J. Magee, “Fluent model checkingfor event-based systems,” in
Proceedings of the 9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software engineering, ser.
ESEC/FSE-11. ACM, 2003, pp. 257–266.

[14] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa'ar, “Synthesis of reactive(1)
designs,”J. Comput. Syst. Sci., vol. 78, no. 3, pp. 911–938, 2012.

[15] R. M. Keller, “Formal veri�cation of parallel programs,” Communications of the ACM,
vol. 19, pp. 371–384, July 1976.

[16] J. H. Reif, “Universal games of incomplete information,” in STOC, M. J. Fischer, R. A.
DeMillo, N. A. Lynch, W. A. Burkhard, and A. V. Aho, Eds. ACM, 1979, pp. 288–308.

[17] N. D'Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “The modal transition system
control problem,” in19th International Symposium on Formal Methods, ser. Lecture Notes
in Computer Science, vol. 7436. Paris, France: Springer-Verlag, 2012, pp. 155–170.

[18] A. van Lamsweerde,Requirements Engineering - From System Goals to UML Models to
Software Speci�cations. Wiley, 2009.

[19] N. D'Ippolito, “Technical Report.”

[20] D. Martin, “Borel determinacy,”The annals of Mathematics, vol. 102, no. 2, pp. 363–371,
1975.

[21] Y. Bontemps, P.-Y. Schobbens, and C. Löding, “Synthesis of open reactive systems from
scenario-based speci�cations,”Fundamenta Informaticae - Application of Concurrency to
System Design (ACSD'03), vol. 62, pp. 139–169, February 2004.

[22] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios, goals, and state machines:
a win-win partnership for model synthesis,” inProceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, ser. SIGSOFT '06/FSE-
14. ACM, 2006, pp. 197–207.

[23] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic synthesis of behav-
ior protocols for composable web-services,” inProceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC/FSE '09. ACM, 2009, pp. 141–150.

[24] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “Plan-directed architectural change for
autonomous systems,” inSAVCBS, 2007, pp. 15–21.

22

PIRSES-GA-2011-295261/ MEALS Page 23 of 24 Public

[25] K. G. Larsen and L. Xinxin, “Equation solving using modal transition systems,” inLICS.
IEEE Computer Society, 1990, pp. 108–117.

[26] N. Benes, J. Kret�́nský, K. G. Larsen, M. H. Møller, and J. Srba, “Parametric modal tran-
sition systems,” inATVA, ser. Lecture Notes in Computer Science, T. Bultan and P.-A.
Hsiung, Eds., vol. 6996. Springer, 2011, pp. 275–289.

[27] G. Bruns and P. Godefroid, “Generalized model checking:Reasoning about partial state
spaces,” in11th International Conference on Concurrency Theory, ser. Lecture Notes in
Computer Science, vol. 1877. Springer, 2000, pp. 168–182.

[28] P. Godefroid and N. Piterman, “Ltl generalized model checking revisited,” inProceedings
of the 10th International Conference on Veri�cation, Model Checking, and Abstract Inter-
pretation, ser. VMCAI '09. Springer-Verlag, 2009, pp. 89–104.

[29] P. Stevens, “Abstract games for in�nite state processes,” in 9th International Conference on
Concurrency Theory, ser. Lecture Notes in Computer Science, vol. 1466. Springer, 1998,
pp. 147–162.

[30] T. A. Henzinger, R. Jhala, and R. Majumdar, “Counterexample-guided control,” in30th
International Colloquium on Automata, Languages and Programming, ser. Lecture Notes
in Computer Science, vol. 2719. Springer, 2003, pp. 886–902.

[31] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for timed automata,” in
Proceedings of the IFAC Symposium on System Structure and Control, 1998.

[32] N. D'Ippolito, D. Fischbein, M. Chechik, and S. Uchitel,“Mtsa: The modal transition
system analyser,” inProceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE '08. IEEE Computer Society, 2008, pp.
475–476.

[33] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment assumptions for syn-
thesis,” inProceedings of the 19th international conference on Concurrency Theory, ser.
CONCUR '08. Springer-Verlag, 2008, pp. 147–161.

[34] N. D'Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthesis of event-based
controllers for non-deterministic environments,” inSubmitted to 20th International
Symposium on Formal Methods. available athttp://www.doc.ic.ac.uk/ ~srdipi/
techacsd2014/dbpu2014a.pdf , ser. Lecture Notes in Computer Science, vol. 7436.
Paris, France: Springer-Verlag, 2012, pp. 155–170.

[35] S. Thrun, W. Burgard, and D. Fox,Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents). The MIT Press, 2005.

[36] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and robustness in
multi-robot path planning with temporal logic constraints,” I. J. Robotic Res., vol. 32, no. 8,
pp. 889–911, 2013.

23

PIRSES-GA-2011-295261/ MEALS Page 24 of 24 Public

MEALS Partner Abbreviations

SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Ćordoba, AR

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Ŕ�o Cuarto, AR

ITBA: Instituto T́ecnoĺogico Buenos Aires, AR

24

