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1 Introduction
Despite a large amount of research devoted to formally analyze cryptographic protocols (see
e.g. [4, 3, 2]), the thorough and automatic analysis of existing industrial protocol implementations
(like e.g. OpenSSL) remains largely unexplored.

Recently, methods based on symbolic execution (developed initially by [7]) were shown to
scale very well to real life non-protocol code. Here, the code is dynamically explored through
all its branches looking for implementation bugs like memory manipulation errors. In order to
avoid trying the entire (arbitrarily large) input space, program inputs are assumed to be symbolic
variables that remain uninstantiated (but become constrained) at execution time.

However, existing symbolic execution tools can’t deal with code that uses cryptography:
the search space blows up when exploring the insides of such functions, as they are specifically
designed to avoid being invertible (e.g., hash or encryption operations), and hence the underlying
constraint solver of the symbolic execution engine is unable to find suitable inputs in a reasonable
time.

In order to cope with this problem, in recent previous work [5] we extend the symbolic
execution engine KLEE by introducing “symbolic” functions that replace concrete ones, and
prevent their exploration. In order to specify the behaviour of symbolic functions and to allow the
execution to progress, symbolic functions are endowed with rewriting rules that detail abstractly
their functional properties (e.g., that decryption inverts encryption).

In [5], we considered sequential code, matching the low-level virtual machine (LLVM) on
which KLEE works. Thus, we were able to analyse only single-thread code, which is insufficient
to analyse a whole protocol consisting typically of at least two communicating parties executing
in parallel. In this work, we bridge the gap and develop a framework that is suitable for analysing
such settings. We use an existing tool, KLEENET, built on top of KLEE. KLEENET is a frame-
work originally developed for analysing asynchronous wireless sensor networks (WSN), where
different nodes (“sensors”) of the network run concurrently and become active or inactive (go
to sleep) in different periods of execution. KLEENET allows to model specific network con-
ditions of WSNs, like packet loss or duplication, and node reboots. The main difficulty solved
by KLEENET is in scaling the symbolic execution with n nodes that communicate packets with
potentially symbolic destinations (their so-called state mapping problem). In KLEENET, sensor
nodes from the WSN compute for a while, then schedule themselves to wake up at some later
time, and then go to sleep, in order to save on energy consumption. At a given time, KLEENET
selects active nodes for execution, and advances time when all nodes are done for that turn.
Nodes can write messages to other nodes’ memory, and can signal them for waking up earlier
(as an indication that they need to process a message).

In our case, we deal with processes (that is, cryptographic protocol participants) that are not
designed nor rely on real-time computing. All the timing issues we need to model arise from
communication (e.g., timeouts or blocked operations). Also, the ability of one node to write
arbitrarily on another node’s memory is overkill for our purposes; standard message-passing
communication is enough. Thus, our first goal is to encapsulate KLEENET and implement an
abstract socket library where messages are sent and received in standard socket-based fashion.
A receive operation may block, or succeed and return with an indication of the number of bytes
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read, possibly less than the length intended to be received. A send operation could succeed
immediately or also potentially block, waiting for an operating system’s sending buffer to be
freed.

Hence, we add an extra process “System” that models an operating system that handles com-
munication. Regular process do not talk to each other directly, but rather via System. Moreover,
having a special System process brings us another advantage. Symbolic functions (like encrypted
values) are symbolic terms that can be inverted according to rewrite rules. This is implemented
via a table where symbolic function calls are table entries that record the different function pa-
rameters at the time of the call. Using this table, for instance, a destructor function (like decryp-
tion) is modelled as a table lookup, where the original plaintext is returned when the right key
is provided. In the concurrent case, the table needs to be centralized and accessible from every
protocol participant process, since for example a process can decrypt a value that another process
had previously encrypted. Thus, we can conveniently store it in the System process, and provide
system calls to serve queries from the regular processes.

We proceed as follows: in Section 2 we illustrate the need for concurrent symbolic execution
with cryptography with a concrete example. Section 3 sketchs a concurrent semantics for LLVM.
Section 4 presents our prototype, and Section 5 concludes the paper.

Related work. Previous research in this area focuses on extracting and verifying formal mod-
els from implementation code. This includes the work of Goubault [6], where protocols written
in C are abstracted into horn-clauses. Another direction is taken by Bhargavan et al. [1], which
develops an implementation of TLS coded in ML. In this case, the implementation is interoper-
able with other industrial implementations and can be analyzed by automatically extracting and
verifying its corresponding formal model (using Proverif [4] and Cryptoverif [3]). Still, these
tools are not applicable to legacy or binary code.

2 Symbolically Executing Concurrent Code
Consider the simple nonce exchange example of Figure 1 between A and B, who share a symmet-
ric key K, and use it to encrypt the nonces. Function input() generates a fresh symbol. Functions
send to() and recv from() are communication calls that talk to our System process, as decribed
in the previous section. Function klee assert(0) tells KLEE to stop execution and issue an error.

Here, A sends a (symbolic) nonce na encrypted as encrypt(na,K) to B. Upon receiving and
decrypting successfully the nonce (as nar), B answers with encrypt(nar + 1,K), and then send
its own (symbolic) nonce nb encrypted (as encrypt(nb,K)). When A receives, it decrypts and
checks that nar = na + 1, then answers back with nbr + 1 encrypted as encrypt(nbr + 1,K).
Finally, B checks nbr = nb + 1.

At first glance, one could think of analysing the different protocol endpoints separately, using
e.g. the standard KLEE machine. Messages received from the network are treated in the same
way as regular inputs from the environment: they become fresh symbolic values that may take
any arbitrary value.

However, when considering cryptography, this poses a problem. Consider for instance when
A receives the second message encrypt(nar + 1,K) as an array of symbolic bytes (for instance,
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16 bytes for Rijndael), decrypts, and then checks whether nar == na + 1. Here, KLEE (more
precisely, the underlying bitarray solver STP), would try to find 16 bytes that decrypt to na + 1,
without knowing K, which is of course infeasible.

Another difficulty is that analysing a single process in isolation does not allow to specify
and verify global properties that depend on all the running processes (think, for instance, of an
authentication query modelled as a correspondence assertion, that needs events recorded by all
participants).

On the other hand, if we execute both processes together in parallel and assume that crypto-
graphic calls are symbolic functions that are not executed but rather stay as invertible terms, we
are able to analyse the whole protocol.

The crucial point is that symbolic values and functions (corresponding to cryptographic calls)
are communicated by KLEENET between different processes, thus binding symbolic values from
different processes.

For instance, consider again when A decrypts the symbolic bytes corresponding to the second
message encrypt(nar+1,K) and proceeds to check whether nar == na+1. There is an interleav-
ing trace where earlier in the execution the (symbolic function) encrypt(na,K) was sent from A
to B, and upon (symbolic) decryption the symbols na and nar where unified. This ensures the
check nar == na + 1 succeeds, and we can continue exploring that branch without difficulties.

Using our current machinery we are able to explore all possible traces, reaching all possible
combinations (A and B both print OK, or neither, or either one); this models a network that either
delivers messages exactly as they were sent (making the checks to succeed), or that different
messages were sent (out of order, duplicated, possibly modified enroute or completely forged),
making the checks to fail. (In order to ensure an attacker can’t provide encrypt(ni,K) for ni ,
na, nb, we need to ensure K is secret. See Section 5 for more on this.)

3 Semantics
In [5] we provide detailed concrete and symbolic semantics for the sequential case. In the con-
crete case, the execution state is represented by a context c, defined as a tuple c = 〈pc,M,G, fs〉.
Here, the program counter pc is an address (s.t.M(pc) holds the first byte of the next instruction
to be executed). fs is a stack of function frames. Finally,A is a set of memory addresses reserved
during the execution of this function.

In the symbolic case, contexts are endowed with a constraint store Σ, a sequence of symbolic
conditions that are used to record the path conditions taken in each branch during execution. In
practice, the solvability of Σ is decided by a bitarray SMT solver.

The semantic rules of [5] define an execution relation c
r
→ c′ between contexts c and c′, and

LLVM operation r.
Concurrency. In order to model concurrency, we define a global concrete state as a tuple of

execution states (i.e. contexts) 〈c1, . . . , cn〉 plus a queue of messages Q, and then proceed with
the straightforward rule concrete PAR:
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void

a_node ()

{

int na, nar, nbr, enar, enbr;

na = input();

send_to(B,encrypt(na,K));

enar = recv_from(B);

nar = decrypt(enar, K);

if(nar == na+1){

enbr = recv_from(B);

nbr = decrypt(enbr, K);

send_to(B,encrypt(nbr+1,K));

printf ("A OK\n");

}else{

printf ("A NOT OK\n");

klee_assert(0);

}

}

void

b_node ()

{

int nb, nar, nbr, enar, enbr;

nb = input();

enar = recv_from(A);

nar = decrypt(enar, K);

send_to(A,encrypt(nar+1,K));

send_to(A,encrypt(nb,K));

enbr = recv_from(A);

nbr = decrypt(enbr, K);

if(nbr == nb+1){

printf ("B OK\n");

}else{

printf ("B NOT OK\n");

klee_assert(0);

}

}

Figure 1: Simple nonce exchange

ci
r
→ c′i r , send, recv

Q, 〈c1, . . . , ci, . . . , cn〉
i,r
−→ Q, 〈c1, . . . , c′i , . . . , cn〉

CPAR

This rule says that whenever a single thread can evolve with an independent operation (not
communication), then the whole global state can evolve as well.

We add the two communicacion operations: send(i,M) and recv(i,M), where M is a single
byte:

ci
send( j,M)
→ c′i

Q, 〈c1, . . . , ci, . . . , cn〉
i,send( j,M)
−→ Q.〈i, j,M〉, 〈c1, . . . , c′i , . . . , cn〉

SEND

ci
x:=recv( j,M)
→ c′i{x← M} Q = Q′.〈 j, i,M〉.Q′′ no recv( j, X) in Q′

Q, 〈c1, . . . , ci, . . . , cn〉
i,recv( j,M)
−→ Q′.Q′′〈c1, . . . , c′i , . . . , cn〉

RECV

Here, notation c{x ← M} means updating the binding with value M. These rules add mes-
sages to queue Q (when sending) or removes a message in the queue (when receiving), in which
case the oldest (leftmost) message is provided.

We finally need to update the symbolic semantics. Instead of carrying out a single Σ per
process, we carry out a single Σ shared and updatable by every single process in the following
symbolic PAR rule:
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〈Σ, ci〉
r
→ 〈Σ′, c′i〉 r , send, recv

Q, 〈Σ, c1, . . . , ci, . . . , cn〉
i,r
−→ Q, 〈Σ′, c1, . . . , c′i , . . . , cn〉

SPAR

Notice that communication operations do not change the sigma, meaning that they do not
introduce or remove constraints, so they remain the same as the concrete ones; (however they do
potentially assign a symbolic term to a binding, thus modelling the exchange of symbolic values
as implemented by KLEENET).

We conclude the section by stating an easy consequence of Lemma 1 of [5], which says that
concurrent symbolic execution is sound, in the sense that it operationally corresponds to concrete
concurrent executions:

Lemma 1 (Soundness of concurrent symbolic execution). Let tr be a symbolic trace (i.e., one
obtained with the concurrent symbolic semantics of rules SPAR, SEND and RECV) with Σtr σ-
satisfiable. Then trσ is a valid concurrent concrete trace.

Here, Σ is σ satisfiable when substitution σ makes every constraint in Σ to hold.

4 Prototype
In order to test our ideas, we have developed a prototype in the form of a software layer on top of
KLEENET. The System process described in the Introduction implements a small set of system
calls:

send to(X,M) sends data M to process X

recv f rom(X) receives data from process X

wait() blocks until a signal is received

signal(X) sends a signal to process X

The underlying system call facility is implemented using the bare KLEENET interface, hiding
the real-time passage to our processes. The parameter and return values exchanged between the
regular processes and the System is implemented serializing and deserializing data values on a
shared static buffer.

In order to implement symbolic functions, the System process maintains a table and provides
pseudo system calls, for instance:

encrypt(n,K) pseudo encrypts n with key K;

decrypt(en,K) pseudo decrypts en with key K;

When called, encrypt(n,K) returns a fresh token and saves the parameters and return value rela-
tion in an internal table. Then decrypts(en,K) uses this table to recall the original plaintext for
a given token, thus emulating the decryption procedure; note that this may potentially branch,
as there could be several potential valid encryptions; also, notice that the plaintext n could very
well be a purely symbolic value (like na in our example).
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5 Conclusions and future work
Results so far are promising. This work only presents the machinery to execute concurrent pro-
cesses that use cryptography, not to analyse security properties; the properties analysed are still
standard KLEE, like memory manipulation errors or user-specific stated via klee assert. As
future work we are working towards developing security analysis for establishing secrecy and
authentication:

• Secrecy. A taint analysis that tracks the flow of data in each trace. This is implemented
by having different possible taint labels attached to data values (bindings and memory);
then different LLVM operations “pass on” the taintings (this includes flow operations like
conditionals). For instance, we assign a taint label “secret” to the key K of our example,
and check that each sent message through the network is not tainted, entailing that K is
indeed secret (this can be proved even against realistic, polynomial time attackers!).

• Authentication. A second analysis is about modelling the network attacker as he changes
enroute messages. For instance, even though we can prove that an attacker doesn’t know
key K in the example, he could still perform replay attacks (e.g., replaying the first mes-
sage in the example and causing na == nb) in order to perform authentication attacks.
Although we do cover this simple replays, since we support fetching different similar en-
cryptions from the shared table, we do not support arbitrary messages computed by an
adversary (e.g., reencrypting or decrypting messages and computing new ones). So we
need to model the knowledge of the attacker, and explore (symbolically) all the possible
computed messages.

To conclude, we’d like to point out that although we aim at analysing cryptographic proto-
cols, in principle our framework can be used to analyse any concurrent system efficiently, since
replacing concrete functions by symbolic ones allows a modular analysis that would be impossi-
ble otherwise.
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