
PIRSES-GA-2011-295261 /MEALS
September 24, 2014

Page 1 of 18

Project no.: PIRSES-GA-2011-295261

Project full title: Mobility between Europe and Argentina applying Logics to Systems

Project Acronym: MEALS

Deliverable no.: 3.4 / 2

Title of Deliverable: Rewards Estimation for Partial Explorations of Nondetermin-
istic Stochastic Systems

Contractual Date of Delivery to the CEC: 30-Sep-2014
Actual Date of Delivery to the CEC: 15-Sep-2014
Organisation name of lead contractor for this deliverable: INR
Author(s): Esteban Pavese, Victor Braberman,

Sebastian Uchitel
Participants(s): UBA, IMP
Work package contributing to the deliverable: WP3
Nature: R
Dissemination Level: Public
Total number of pages: 18
Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

Estimation of quantitative properties of software models can provide useful insights early in the development process.
However, computational complexity of estimating reliability or service-level metrics such as mean time to first failure
(MTTF) or turnaround time (TAT) can be prohibitive both in time, space and precision. A promising approach to
tackling this complexity is to compute lower bounds to these measures, based on partial explorations of the system
under analysis: (i) Model simulation to obtain samples of system behaviour; (ii) Invariant inference from samples;
and (iii) exhaustive model checking of the submodel defined by the invariant. However, existing work on quantitative
analysis using partial explorations is limited to deterministic models (which cannot be easily simulated) and MTTF
properties.
In this paper, we extend existing work to nondeterministic models and general properties on reward structures, by
performing a nondeterministic choice resolution, and show experiments that suggest that quantitative estimation using
this technique can be more effective than (full model) probabilistic model checking.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)
under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS Page 2 of 18 Public

Contents
1 Introduction 3

2 Background 4

3 Approach 5
3.1 Partial Explorations . 5
3.2 Automatic submodel generation . 6

4 Validation 7
4.1 Methodology . 8
4.2 Case studies . 8
4.3 Experimental results . 10

5 Discussion and Related Work 15

6 Conclusions and further work 16

Bibliography 16

MEALS Partner Abbreviations 17

2

PIRSES-GA-2011-295261 / MEALS Page 3 of 18 Public

1 Introduction
Model-based automated verification for assessing quantitative properties of software systems
aims to provide insights early in the development process that can reduce significantly both
development costs, and costs associated with deploying software that does not conform to its
service-level requirements. However, traditional metrics for these properties require models that
support describing probabilistic, non-deterministic and timed behaviour; models for which esti-
mating such metrics can be prohibitive in time, space and precision.

Model checking is an effective software verification method. In the context of quantitative
guarantees, such results can be computed for complex models using the techniques developed in
the area known as probabilistic model checking [2,15]. These techniques take as input probabilis-
tic models (such as Markov Decision Processes) and can assess quantitative properties through
exhaustive exploration of the model state space and subsequent numerical analysis.

Applicability of probabilistic model checking is threatened by the size of the model to be
analysed. Although state space reduction techniques exist, they may still fail to prevent state
explosion. Further, even if the entire state space can be explored, its size typically impedes
exact numerical calculation (e.g. Gaussian elimination) of these metrics, so iterative methods
(such as Jacobi or Gauss-Seidel) that approximate metrics must be used. However, some of
these methods do not have convergence guarantees, and when they do converge they may do so
(intractably) slowly. The latter can be a problem, for example, for reliability metrics of models
with unlikely failures (e.g. probability of failure in a fixed period below 10−5), and can lead to
iterations being cut short far from the actual value of the metric being estimated.

In summary, although probabilistic model checking may seem to promise exact calculation
of quantitatively measured properties, state space explosion and numerical methods can be com-
putationally prohibitive or result in poor approximations. Despite these limitations, probabilistic
model checking can provide bounds with 100% confidence for quantitative metrics even though
the distance of these bounds to the real value cannot be known.

In this paper we expand on the alternative to exhaustive model exploration –as in probabilis-
tic model checking– and partial random exploration –as in statistical model checking– presented
in [13], which has shown to counter some of the limitations of existing model-based quantitative
verification techniques. More specifically, in this paper we expand the referenced technique for
reward estimation over nondeterministic stochastic systems. We implement an analysis technique
for Markov Decision Processes (MDP). We use simulation to produce a set of traces that rep-
resent likely behaviour of the full model using a naive resolution strategy for non-deterministic
choice: we replace non-determinism with a probabilistic choice that makes each choice equiprob-
able. These traces are used to infer invariants of the state space explored during the simulation.
The resulting invariant represents a submodel of the MDP which contains all states that satisfy
the invariant and all probabilistic and nondeterministic choices between these states. We then
model check this submodel for quantitative properties. Our choice of strategy for resolving the
problem of simulation for nondeterminism, although arguably arbitrary and simplistic, can be
shown to not affect the correctness of the estimation technique. We present results that support
that the technique can be applied effectively to nondeterministic stochastic systems.

The remainder of the paper is organized as follows. In section 2 we provide background on

3

PIRSES-GA-2011-295261 / MEALS Page 4 of 18 Public

reward estimation. In Section 3 we describe our approach to reward estimation and nondetermin-
ism resolution. Section 4 provides case studies illustrating the approach and comparing results
to existing techniques. In Section 5 we present a discussion of our results and of related work.
Finally we offer our conclusions and discuss future work in Section 6.

2 Background
Quantitative measures such as mean time to first failure (MTTF) and turnaround time (TAT) [12]
are widely accepted metrics for reliability and service-level agreements in software systems.
These metrics establish the time a client can expect to operate a software system until it experi-
ences its first failure (MTTF) or the expected time until a computation or the response to a request
takes place (TAT). In order to calculate such measures, practitioners base their efforts on failure
models [12], which describe conditions under which the component is known to fail, or the time
it takes to perform certain actions. Most often, these conditions are probabilistic in nature. This
behaviour is usually modelled with a Markov chain. However, information regarding the prob-
ability of these conditions is usually partial. For example, the rate at which a packet is dropped
in a network system might be known, but on the other hand the order in which stations along
the network generate requests might not be known. In the first case, it might be easy to spec-
ify a probabilistic distribution describing the dropped packet phenomenon. In the second case,
however, such information is not easily available and practitioners must resort to underspecify
this order, resulting in nondeterministic models. Markov Decision Processes are models that can
specify both these probabilistic and nondeterministic choices under a same formalism. Complex
MDPs can be built compositionally using parallel composition [14] to model components that
run asynchronously but synchronise on shared actions.

Definition 1. Markov Decision Process [3]: A Markov Decision Process (MDP) is a tuple
〈S , s0, A,R〉 where S ⊆ V → C is a finite set of states, defined by mapping a finite set of variables
V to values on a finite subset of Z, C. s0 ∈ S is the initial state. A is a finite set of action labels.
The finite relation R ⊆ S × (A ∪ {τ}) × D(S) is the transition relation where the transition target
is defined by a distribution on target states.

A Discrete Time Markov Chain (DTMC) is similar to an MDP, but they do not allow nonde-
terminism. That is, R is such that for any state s ∈ S there exists only one transition (s, a, δ).

pCTL [1], a probabilistic extension of CTL, is widely used to describe MDP model proper-
ties. pCTL formulae differ from CTL in that, instead of predicating about properties that may
hold globally or for some execution paths, they aim at quantifying the probability of witnessing
traces that satisfy a given property.

Besides using logics such as pCTL for reasoning about MDP models, we are also interested in
conveying some sense of value to different MDP traces. As traces will possibly convey different
values, we might be interested in knowing what the expected value of a trace will be, given a
typical execution. Reward structures are used to specify this notion of value to MDP traces. For
example, a transition reward structure that assigns a value of 1 to each transition is a standard
way of defining overall time steps cost for the traces of an MDP.

4

PIRSES-GA-2011-295261 / MEALS Page 5 of 18 Public

Definition 2. Reward Structures: Given an MDP M = 〈S , s0, A,R〉, a transition reward structure
is a function ρ : S × A ×D(S) × S → R≥0.

The behaviour of an MDP is defined by the set of its generated paths. Paths are infinite
chains siai+1si+1ai+2 . . . that start with a state si. Each state is followed by an action a and a target
state, in such a way that this target state has a positive probability under one of the source state’s
distributions governed by the action a. We will note paths(M) the set of paths for an MDP M,
and paths ∗ (M) the set of all finite prefixes of paths(M). In order to be able to reason about
the probability of these paths, it is necessary to introduce the notion of a scheduler (also called
adversary). The combination of an MDP and a scheduler yields a purely stochastic Markov
chain, i.e., a DTMC.

Definition 3. Scheduler: A scheduler for an MDP M is a total function S : paths ∗ (M) → R,
such that if S (α) = (a, s) it must be that (a, s) is a possible transition from the last state in α.

When analysing MDPs, it is not possible in general to assign a single probability to the satis-
fiability of pCTL formulae, but rather a set of probabilities (one for each scheduler). In general,
we are interested in knowing the minimum and maximum values in this set of probabilities. A
similar phenomenon happens for reward structures. The reward associated with the paths satis-
fying a certain formula will also be dependent on the scheduler selected.

3 Approach
This section formally defines an approach to computing bounds to reward structures of nondeter-
ministic and stochastic software models. The approach is based on the calculation of said rewards
for a partial systematic exploration of the model’s state space. We first define what is meant by
a partial exploration and show that expected rewards computed over these partial explorations
are guaranteed bounds to the expected rewards of the entire system model. We then show that
some partial explorations can be specified declaratively through invariant properties. Finally, we
discuss how these declaratively specified partial explorations can be obtained automatically from
any given model, without need for human intervention.

3.1 Partial Explorations
We refer to a partial exploration of a system model as a submodel. We recall the definition of
submodel from [13], which can be adapted straightforwardly to MDPs. Intuitively, a submodel
of an MDP M is a model that retains a subset of the states and transitions of M – including and
reachable from the initial state – and in which all other states in M have been abstracted away
into a new λ trap state.

Submodels are key to our approach since they conservatively approximate the value of reward
structures for their maximum and minimum limit values. In other words, the minimum and
maximum expected reward associated to a CTL property φ on a model M is at least as much as
the minimum and maximum reward associated to the same property on any of its submodels. In
the following, the notation X for a set X will denote the sample mean of the set X.

5

PIRSES-GA-2011-295261 / MEALS Page 6 of 18 Public

a

a

a

a

a

b

b
b

b

a

b

b

0.01

0.99

0.25

0.15

0.60

0.80

0.20

0.35

0.65 0.10

0.90

b

a

a

a

a

a

b

b

b

b

a

b

b

0.01

0.99

0.25

0.15

0.60

0.80

0.20

0.35

0.65

0.10

0.90

τ

0.50

0.50

b
0.50 0.50

...

Determinisation Simulation

Invariant inferenceInvariant-driven verification

Measure

estimation

...

...

...

...

Figure 1: Example partial exploration of a state space
Theorem 1. Let M and M′ be two MDPs with state spaces S and S ′ and such that M′ is
a submodel of M. Then, for a given CTL formula φ and reward structure ρ, it holds that
maxσ∈S ched(M) ρ{π · π |= φ} ≥ maxσ′∈S ched(M′) ρ{π′ · π′ |= φ}, and, likewise, minσ∈S ched(M) ρ{π · π |= φ}

≥ minσ′∈S ched(M′) ρ{π′ · π′ |= φ}.

Proof. The intuition is that, for every path in the complete model, it either exists completely
in the submodel, or the submodel contains only a prefix that is extended by the λ state. Since
reward structures are based on transitions, every path in the full model accumulates at least as
much reward (possibly ∞) as the corresponding path (or prefix) in the submodel. Hence these
prefixes contribute to min /maxσ′∈S ched(M′) ρ{π · π |= φ} at most as much as what their extensions
in M contribute to min /maxσ∈S ched(M) ρ{π · π |= φ} �

The above result entails that if computing the extremum value of a reward structure of a
system model is intractable, it can be conservatively approximated on any of its submodels.

3.2 Automatic submodel generation
Although any submodel will provide a lower bound for the reward structures, the key to a
tractable quantitative measure estimation technique is to identify submodels for which this cal-
culation can be computed within a reasonable time budget, and for which the resulting bound is
a reasonable approximation to the reward of the full model. Independently of the fact that the
reward value for the full model is unknown, this is a problem for which coming up with an exact
solution (i.e. the “best” submodel) is intractable [11]. In [13] we detailed a heuristic approach to
a submodel construction strategy that aims at building probabilistically dense submodels, that is,
submodels for which the probability of reaching the λ trap state in a fixed time is low. We recall
that approach here for convenience, but the interested reader is referred to [13] for details.

Our suggested approach attempts to approximate these probabilistically dense submodels
through the use of bounded simulation. The resulting set of finite paths, if sufficiently large
and consisting of sufficiently long paths, is likely to cover a good part of a probabilistically
dense submodel. These traces form the basis for building our submodels. We observed that the
behavioural information conveyed by these paths is concurrent with the behaviour most likely to

6

PIRSES-GA-2011-295261 / MEALS Page 7 of 18 Public

be exhibited by the system in an arbitrary execution. As such, we aim at capturing the semantic
information of these paths to build submodels. Our approach involves computing state invariants
based on the states visited during the simulation and then add to the submodel any states and
transitions that satisfy the invariant. Further, our approach aims at automatically obtaining these
invariants. To this end, we produce probabilistically driven walks over the full system model,
recording the states (i.e. variable valuations) traversed. We use Daikon [6], an invariant inference
engine, to obtain predicates that hold over all traversed states. These invariant predicates, in turn,
are used to synthesise an observer MDP that can drive the generation of a submodel via parallel
composition.

It is important to note that, in our present approach, it is necessary to resolve nondeterminis-
tic transitions during the probabilistically driven walk generation. For the work presented in this
paper, we have opted to resolve nondeterminism in a naïve way, simply by assuming an equiprob-
able distribution between nondeterministic transitions. Therefore, the first step of the approach
is to perform simulation over an equiprobably determinised version of the original MDP. Once
the invariant is inferred simulations, it is be used to generate the partial submodel of the original
MDP. Figure 1 depicts this approach.

Definition 4. Equiprobably Determinised MDP: Let M = 〈S , s0, A,R〉 be an MDP. The equiprob-
ably determinised MDP of M is a DTMC Mdet = 〈S det, s0, A, Rdet〉 constructed in such a way that
S ⊆ S det, and for every (s, a, δ) ∈ R:

• If (s, a, δ) is the only transition for s in M, add the transition to Rdet;
• otherwise, take all (s, ai, δi). Add i states ts

1, . . . , t
s
i to S det. Add a transition (s, τ, δ) to Rdet

where δ(ts
j) = 1/i for those added states, and 0 everywhere else. Finally, add transitions

(ts
i , ai, δi) to Rdet for each of the added states.

The correctness of our approach is not hampered by this choice, as in fact any method of
resolving nondeterminism would serve our needs – any nondeterminism resolution approach
yields a valid submodel. However, it is left to be studied if this is the best way to resolve
nondeterminism. We discuss on this decision and possible alternatives in Section 5.

4 Validation
In this section we set out to validate our approach. The question we study is whether our ap-
proach can, when compared to probabilistic model checking over full explorations, produce
higher bounds, in less time, for expected rewards of system models. Note that comparison with
current Monte Carlo based techniques would be unfair, as they currently lack the capabilities to
perform simulation while resolving nondeterminism. Works such as [8] take a step in this direc-
tion. However, it must be noted that they are geared towards probabilistic model checking (i.e.,
expecting a quantitative answer in the range [0, 1]), rather than estimation of rewards, where the
results are unbounded. It is unclear whether these approaches are directly applicable to reward
estimation, we discuss this further in Section 5.

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 18 Public

4.1 Methodology
For both of the case studies taken from the literature, we took an MDP model (in one case the
MDP existed, in the other it was reverse engineered), modelled interesting behaviour as state
formulae, and defined an appropriate reward structure. We used the same input for both our
approach as well as classical estimation techniques.

We ran our approach for both case studies for several automatically generated invariants
varying the number and length of traces used for invariant inference. We used Daikon v4.6.4 [6]
configured to produce invariants that are conjunctions of terms of the form x ∼ y, where x and y
are either variables in the model, or integer constants, and ∼∈ {<,≤,=,≥>}. The invariants we
obtained were used to automatically build an observer O, an MDP that monitors the validity of
the invariant. This observer, when composed with the system model M, synchronises with all
actions and forces transitioning into the λ trap state whenever the destination state of the intended
transition would result in an invariant violation.

We used a modified version of PRISM v4.0.3 [9] to perform probabilistic model checking
to estimate expected reward both for the full state space and for its invariant-driven submod-
els. Modifications allow for batch trace generation (used for invariant inference) and time and
memory-use tracking (used for generating intermediate results and for timing out when time
budget is up). In practice, no equiprobably determinised version of the MDP is generated, the
nondeterministic choice is resolved on-the-fly in an equiprobable manner. PRISM was deployed
on an 8x Core Intel Xeon CPU @1.60 GHz with 8GB RAM.

PRISM provides different numerical methods for reward calculation. Previous experimenta-
tion showed that it is usually the case that the Gauss-Seidel method with backwards propagation
provides the best result in terms of bounds obtained for same time budgets, so we chose to run
our experiments under that setting.

PRISM runs were considered complete when any of the following criteria held: either a)
the absolute difference between results of successive iterations of the numerical method was
less than 0.01 (relative differences are not adequate because of slow convergence, which causes
iterative methods to cut too early). Alternatively, b) running time reached 3 hours; or c) memory
was exhausted.

4.2 Case studies
Bounded Retransmission Protocol.

Our first case study [5] models a robust communication protocols that attempts to ensure delivery
of data, the bounded retransmission protocol (BRP) [7].

BRP is a variant of the alternating bit protocol, which allows for a bounded number of re-
transmissions of a given chunk (i.e., a part of a file). The protocol consists of a sender, a receiver,
and two lossy channels, used for data and acknowledgements respectively. The sender transmits
a file composed of a number of chunks, by way of frames. Each frame contains the chunk itself
and three bits. The first bit indicates whether the chunk is the first one; the second one if it is the
last chunk; and the third bit alternates to avoid data duplication.

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 18 Public

The sender waits for acknowledgement of each frame sent. The sender may timeout if either
the frame or the corresponding acknowledgement are dropped. When this happens, the sender
resends the frame and does so repeatedly up to a specified retry limit. If the limit is reached and
the transmission is terminated, the sender may be able to establish that the file was not sent (if
some chunks were left unsent) or it may not know the outcome (if the last frame was sent but
no acknowledgement was received). In any case, the sender may send a new file, resetting the
retry count. A maximum of 256 retransmissions are attempted per file before the sender aborts
transmission of the file. Once a file is sent successfully or its transmission fails, the system waits
for another file to be sent.

Protocol clients send files one at a time. Each of these files is of a different size (in number of
chunks). The size is selected in a nondeterministic fashion for each file, between just a few and
1500 chunks, modelling the fact that we do not have certain information regarding this aspect of
usage.

We wish to estimate the mean time to the first failure, where failure is defined as the sender
failing to send a complete file (incomplete) or not being able to establish if a file was sent success-
fully (unknown). Consequently, the state predicate describing failures is incomplete ∨ unknown.
The definition of time for this case study aims at establishing how many data packets can be
expected to be sent successfully before failure.

IEEE 802.11 Wireless LAN.

The second case study depicts the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) mechanism of the IEEE 802.11 protocol [10]. The protocol uses a randomised
exponential backoff rule to minimise the likelihood of transmission collision. That is, whenever
a collision was averted by a component sensing the busy carrier when trying to send data over
busy media, the component is backed off (it needs to wait until trying to resend) for a time. This
time is chosen randomly from a specified range of delay, and successive failures cause this range
to increase exponentially. The goal of the protocol is to divide, as equally as possible, the access
to the channel between all participants that may collide.

The model used depicts a two-way handshake mechanism of the IEEE 802.11 medium access
control scheme, operating in a fixed network topology. The probabilistic model itself was lifted
from [8]. It has both stochastic behaviour (for example, in the randomised backoff procedure,
that allows up to seven exponential backoff levels) and nondeterministic behaviour (for example,
in modelling the interleaving of actions between the two independent emitter stations).

We are interested in estimating the turnaround time for the two stations to be able to success-
fully send their packets and advance to their done state, while avoiding potential collisions. As
such, the state predicate that describes this final state is station1 = done∧ station2 = done. Note
that, unlike the previous case study, both stations managing to send their messages is not a rare
event at all. However, the sheer size of the model does hamper direct estimation.

9

PIRSES-GA-2011-295261 / MEALS Page 10 of 18 Public

Simulation for invariant inference and submodel
generation Model checking

Traces Length States Min. MTTF Time Max. MTTF Time
7000 7000 362818 7012.95 289.40s 599588.06 TO
7000 8000 377758 8009.93 207.56s 449767.59 TO
7000 9000 392786 437502.87 TO 449818.72 TO
7000 10000 392786 356057.11 TO 487287.50 TO
8000 7000 362818 7012.95 216.32s 412304.48 TO
8000 8000 377758 8009.93 400.32s 385532.89 TO
8000 9000 392786 424594.70 TO 599678.92 TO
8000 10000 393127 509826.12 TO 712182.59 TO
9000 7000 362818 7012.95 150.81s 799269.07 TO
9000 8000 378099 8009.97 187.61s 749648.41 TO
9000 9000 392786 633351.44 TO 599678.92 TO
9000 10000 392786 612614.19 TO 649623.47 TO
10000 7000 362818 7012.95 163.30s 711919.82 TO
10000 8000 377758 8009.93 175.83s 699439.94 TO
10000 9000 392786 577921.47 TO 786948.15 TO
10000 10000 392786 761073.07 TO 899279.83 TO

Table 1: Selection of BRP submodel MTTF evaluation results for different simulation parameter
configurations.

4.3 Experimental results
We now present some of the experimental results obtained for the research question presented
above. The models used and complete experimental results can be found at http://lafhis.dc.uba.ar/~epavese/QEST13.

When comparing probabilistic model checking of both full and partial models we are inter-
ested in considering the impact between the inferred invariant, the resulting submodel’s size and
the value of the reward estimation obtained from it. We are also interested in gaining insight on
combinations of trace length and number that are likely to yield the best overall result.

BRP mean time to failure estimation.

In this case study, we first attempted to obtain the MTTF extreme values for the full model. After
the 3 hours of allotted time elapsed for each extreme value estimation, the results yielded a model
comprising nearly 29 million states, while the reward estimation set a minimum MTTF value of
8444 and a maximum MTTF of 9468. Both results were obtained after the estimation timed out
at 3 hours. It must be noted that in this case, the notion of time is not that of calendar time but is
measured in terms of actions taken by the protocol. The reason for this definition of time is that
the protocol is highly reactive. There may be long idle times during which a client does not try to
send any data, and it would be meaningless to compare that time with time incurred in actually
carrying out actions within the protocol.

We then put our approach to work, with the results obtained depicted in Tables 1 and 2. Cases
that computation did not converge before the 3 hours are reported as timeout (TO).

10

PIRSES-GA-2011-295261 / MEALS Page 11 of 18 Public

Traces Length Invariant

7000 7000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

7000 8000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

7000 9000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

7000 10000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

8000 7000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

8000 8000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

8000 9000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

8000 10000
s ≤ 7∧ srep ≤ 3∧nrtr ≤ 2∧ f ileS ize ≤ 1500∧ i ≤ 1500∧ r ≤ 4∧ rrep ≤ 3∧k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧
srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

9000 7000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

9000 8000
s ≤ 7∧ srep ≤ 3∧nrtr ≤ 2∧ f ileS ize ≤ 1500∧ i ≤ 1333∧ r ≤ 4∧ rrep ≤ 3∧k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ f ileS ize∧
srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥ k ∧ f ileS ize ≥ l ∧ r ≥ l

9000 9000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

9000 10000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 7000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1167 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 8000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 9000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

10000 10000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ f ileS ize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤ 2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤

f ileS ize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ f ileS ize ∧ nrtr ≤ i ∧ f ileS ize ≥ r ∧ f ileS ize ≥ rrep ∧ f ileS ize ≥
k ∧ f ileS ize ≥ l ∧ r ≥ l

Table 2: Selection of BRP inferred invariants for different parameter configurations.

It is interesting to note several things about these results. First, the submodels analysed
represent at most 2% of the size of the full model, a very low percentage. Regarding the bounds
themselves, it is noteworthy that the length of traces simulated is critical, particularly in the
case of estimating the minimum MTTF. Note that simulating traces less than 9000 actions long,
the results obtained for minimum MTTF are meager. Coincidentally, they are similar to those
obtained by the full model estimation at the moment of timeout, although the estimation over
submodels converges to these values much faster. However, for those submodels obtained from
the simulation of longer traces, the minimum MTTF estimated spikes and in fact approaches the
maximum estimated. This seems to have its correlation with the invariants that were inferred
in each case, depicted in Table 2. Note that, in the invariants obtained with traces less than
9000 steps long, the variable i is restricted to no more than 1333. Recall that i indicates the
number of packets of the file that have already been set. These invariants show that, for the
traces analysed, some times the maximum file size (1500) was chosen, but never completely
sent. For our approach, such situations would lie in the unknown set of the state space, and thus
conservatively evaluated as failing states. However, invariants obtained for longer traces do allow
i to reach its maximum of 1500, which explains the dramatic increase of the estimations. Even
more, increasing the simulation length to 10000 actions does pay off in some cases, although the

11

PIRSES-GA-2011-295261 / MEALS Page 12 of 18 Public

Simulation for invariant inference and submodel
generation Model checking

Traces Length States Min. TAT Time Max. TAT Time
500 100 117976 1725.00 0.72s 4213.90 1.15s
500 150 117976 1725.00 0.74s 4213.90 1.28s
500 200 118252 1725.00 0.76s 4278.24 1.16s
500 250 118252 1725.00 0.80s 4278.24 1.24s
1000 100 117976 1725.00 0.80s 4213.90 1.33s
1000 150 118252 1725.00 0.73s 4278.24 1.12s
1000 200 118232 1725.00 0.74s 4278.24 1.12s
1000 250 118252 1725.00 0.71s 4278.24 1.21s
1500 100 118104 1725.00 0.69s 4246.08 1.07s
1500 150 118252 1725.00 0.75s 4278.23 1.14s
1500 200 118252 1725.00 0.78s 4278.23 1.19s
1500 250 472809 1725.00 4.47s 4286.21 7.87s
2000 100 118240 1725.00 0.70s 4247.08 1.18s
2000 150 118252 1725.00 0.71s 4278.23 1.11s
2000 200 118252 1725.00 0.70s 4278.23 1.11s
2000 250 118232 1725.00 0.94s 4278.24 1.34s

Table 3: Selection of WLAN submodel TAT evaluation results for different simulation parameter
configurations.

increase is not nearly as dramatic.
In the case of the maximum MTTF estimation, all submodels behave more or less uniformly.

Although there are of course differences, the worst results still are much better than those ob-
tained by full model evaluation. However, when compared with the result obtained for full model
estimation, it can clearly be seen that estimation over submodels clearly pays off – the maximum
MTTF estimated for submodels is, in all cases, at least 50 times as much than those obtained for
the full model.

WLAN turnaround time estimation.

In this case study, we are interested in estimating the turnaround time (TAT) for both emitting
stations to complete sending their intended data. That is, the time from the moment the first
station intends to send data until both of them have successfully sent their data, including all
necessary backoff time.

For this case study we also attempted to produce an estimate for the full model. Contrasting
with the previous case study, the event under analysis is not a rare event. On the contrary, it
is desirable that in every instance both stations are able to send their data in a reasonable time.
During this analysis, we obtained a full model comprising about 75 million states. The minimum
TAT was estimated at 1725 after timing out, while the maximum one was estimated at 4301.65,
also at timeout. Turnaround time is measured in microseconds (µs).

Again, we compared this performance with our approach, with the results obtained depicted

12

PIRSES-GA-2011-295261 / MEALS Page 13 of 18 Public

Traces Length Invariant

500 100

col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1 ∧ slot2 ≤ 1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤

s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 < s2 ∧ bc1 ≥
slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

500 150

col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1 ∧ slot2 ≤ 1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤

s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 < s2 ∧ bc1 ≥
slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

500 200
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 ≥ bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 < s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

500 250
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 ≤ s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

1000 100

col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1 ∧ slot2 ≤ 1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤

s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 < s2 ∧ bc1 ≥
slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 150
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 ≤ s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

1000 200
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 < s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

1000 250
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 ≥ bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 < s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

1500 100

col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1 ∧ slot2 ≤ 1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤

s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ bc1 ≥ slot2 ∧ s2 >
slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 150
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 ≤ s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

1500 200
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 ≥ bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 < s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

1500 250
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 3∧ backo f f 1 ≤ 31∧ bc1 ≤ 3∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥

1 ∧ slot2 ≤ 1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 <
s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

2000 100

col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1 ∧ slot2 ≤ 1 ∧ backo f f 2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤

s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 > bc1 ∧ s1 > slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 ≤ s2 ∧ s2 >
slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 150
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 ≤ s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

2000 200
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 ≤ s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

2000 250
col ≤ 2∧ c1 ≤ 2∧ c2 ≤ 2∧ x1 ≤ 10∧ s1 ≤ 12∧ s1 ≥ 1∧ slot1 ≤ 1∧ backo f f 1 ≤ 31∧ bc1 ≤ 2∧ x2 ≤ 10∧ s2 ≤ 12∧ s2 ≥
1∧ slot2 ≤ 1∧backo f f 2 ≤ 31∧bc2 ≤ 2∧col ≤ s1∧col ≥ slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 <
s2∧ s1 > slot1∧ s1 > bc1∧ s1 > slot2∧ s1 > bc2∧ slot1 ≤ bc1∧ slot1 < s2∧bc1 < s2∧ s2 > slot2∧ s2 > bc2∧ slot2 ≤ bc2

Table 4: Selected WLAN inferred invariants for different parameter configurations.

in Tables 3 and 4.
In this case, the results are much easier to interpret. First, note the TAT estimations them-

selves from Table 3. The minimum turnaround time estimated is the same for all submodels
evaluated and coincides with that obtained through the full model evaluation. In the case of the
maximum turnaround estimation, they are not all the same, but they are all around the same
value, and differ in no more than 2% from the actual value estimated through full model evalu-
ation. However, the verification times that were necessary for estimating these results are what
are most significant. For every submodel, both for the minimum TAT estimation as for the max-
imum, all reward estimations finished in less than 10 seconds, with most of those estimations
taking much less time. This marks a stark contrast with the time needed for the full model ver-
ification. The size of the submodels evaluated is also striking. In all cases, this size is about
0.15% to 0.50% of the size of the whole model. This seems to suggest that the full model has
a very large portion of behaviour that is largely irrelevant when contrasted to the behaviour that

13

PIRSES-GA-2011-295261 / MEALS Page 14 of 18 Public

actually takes place in the wild. In fact, it is easy to see from Table 4 that although the waiting
slots (slot1 and slot2) can be increased to as much as 128 different slots, the simulations only
observed waiting times up to 4 of these slots. Since the slot is chosen equiprobably within the
same backoff level, this seems to suggest that only the first two backoff levels were taken on all
of the simulated executions. In other words, it was never necessary to increase the backoff to
more than this second level.

As in the previous case study, the choice of parameters for the number of traces to simulate
and the length of the simulated paths also plays a role. However, this is not as clear-cut as in
the previous case. Note that the size of the submodels evaluated seems to lie either near the
120000 state mark except for one that lies near the 460000 state mark. Although the difference
is notorious, the small verification times and the fact that all estimated results are similar mask
these differences. We may, however, find an explanation for such a disparity in the invariants
inferred–see Table 4. In the cases where a bigger submodel was generated, the second sender
station was allowed to take the slot number 3 in some of the executions, while in the smaller
ones it never did. Since the choice of slot is uniform, and whenever the slot 2 is available the
slot 3 also is, we can only conclude that this differences are only a coincidental artefact of the
stochasticity of the sampling procedure. The fact that these differences appear without regard for
sample set size or length reinforces this theory.

Note that for both case studies the time measured includes only the execution of the numerical
methods. The time spent on construction of the model state space, and on generating simulated
traces and invariants is not considered. However, in both cases it turned out that the time spent
building the model was comparable to that of generating and analysing traces–2 hours in the
first case while no more than a few minutes in the second. In fact, in the second case the model
can be built much faster than the generation of simulated traces. Even so, the process of trace
generation by simulation is easily performed in parallel, while model building cannot in general
be parallelised.

What both case studies and experiments indicate is that, through careful partial exploration
of the model, we can obtain useful bounds for reward estimation (or even calculate the actual
reward) with very low percentages (< 1.5%) of actual state space exploration. Further, submodels
that yield these results also converge very quickly to good MTTF results, much more so than
when performing full model estimation. From these results it follows that, for these case studies,
effort into estimating MTTF through automatically obtained submodels through model invariants
of the full model pays off.

It must be noted that when a bound is obtained, it is possible that the actual reward value is
much larger than any of those obtained. Of course, we are always limited by the fact that the
actual reward may not be calculated at all, neither with partial nor full models. It can be argued,
though, that it is often the case that the exact reward value is not needed as such; rather, satisfying
a minimum degree of reliability or service-level values is a sufficient guarantee. Hence, methods
which provide higher lower bounds faster are useful.

14

PIRSES-GA-2011-295261 / MEALS Page 15 of 18 Public

5 Discussion and Related Work
In this paper, we have presented a fully automated technique for reward estimation of nondeter-
ministic and stochastic system models, which is based on the approach presented in [13]. We
extend [13] to a broader class of properties than MTTF and also to support nondeterminism.

The invariant inference step of our approach, which determines the portion of the state space
to be analysed over the following steps, relies on simulation of the original system. The fact that
the system to simulate is nondeterministic poses additional difficulties to this simulation step.

Several works have attempted to solve this problem, especially in the context of generating
simulations for Monte Carlo estimation. In these cases, it is critical that the simulation of non-
deterministic transitions is performed in such a way that there is no bias in the generation (or
alternatively, in such a way that this bias can be controlled and quantified), as doing so otherwise
would introduce errors in the final estimation. In [8] the authors leverage on the fact that, usu-
ally, verification is performed while looking for the worst and best cases. In that sense, only the
two schedulers that induce the best and worst results are of interest, and the authors propose a
self-adjusting simulation algorithm that converges to these extremes.

In [4], rather than focusing on the problem of biasing scheduler selection, the authors aim
at detecting whether nondeterminism can be ignored safely. As the authors point out, it is often
the case that nondeterministic choices are actually behaviour-equivalent. By detecting these
situations via partial order methods, it can be used to identify situations where nondeterminism
can be ignored while keeping only one of the possible choices when performing simulation.

In our present work, we have opted to resolve nondeterminism by simply assuming an
equiprobable distribution over the possible nondeterministic choices at a given state. However, it
must be noted that, in the context of our work, any method of resolving nondeterminism would
have been acceptable, as we are not relying on simulation to produce a statistically correct result.
This is not to say that any nondeterminism resolution method will produce the same outcome,
as different choices may lead to different invariants. Although the results presented in this paper
are promising, it still remains to be seen if different approaches to the initial simulation might
produce even better results. In particular, the choice of simulating via equiprobable distribution
of nondeterministic transitions is a double-edged sword. On the one hand, by establishing a bal-
anced choice, it maximises the chance of exploring most of the nondeterministic alternatives so
that verification of all of them is carried out at a later step. But, on the other hand, some of this
explored behaviour might possibly be irrelevant when calculating the maximum (or minimum)
rewards, as the best and/or worst schedulers might never take some of the explored nondeter-
ministic transitions. In this sense, adapting the approach of [8] to the simulation step of our
framework might prove to be interesting. Although that proposed approach is geared towards
model checking of probabilistic properties rather than reward calculations, it may be adapted to
our needs. It is worth noting, however, that such an approach would need to carry out two simu-
lation steps as opposed to the current one. This is because the approach in [8] aims at simulating
executions that resemble those of the extreme scheduler that is of interest, which may be either
the one providing the minimum value, or the maximum, but not both at the same time. In that
sense, if we are interested in calculating both extreme values, we would need different simulation
sets, one for each extreme.

15

PIRSES-GA-2011-295261 / MEALS Page 16 of 18 Public

6 Conclusions and further work
In this paper we have proposed an approach to estimation of quantitative properties of system
models combining nondeterministic and stochasticity. The approach extends a novel combina-
tion of simulation, invariant inference and probabilistic model checking. We report on experi-
ments that suggest that quantitative estimation using this technique can be more effective than
(full model) probabilistic model checking. We believe the notion of quantitative analysis over
partial yet systematic explorations offers an alternative to, and hence complements, exhaustive
model exploration–as in probabilistic model checking–and partial random exploration–as in sta-
tistical model checking.

We believe the experimental results presented in this paper are promising. However further
analysis is due on two fronts that need to be furthered. First, a better understanding of the rela-
tionship between the simulated set of traces (both its size as the trace length) and the submodels
that result from them would be useful, as it should lead to heuristics for setting appropriate values
to these parameters. Finally, the analysis of different ways to resolve nondeterminism during the
simulation step should be deepened.

Bibliography
[1] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It Usually

Works: The Temporal Logic of Stochastic Systems. Lecture Notes in Computer Science,
pages 155–155, 1995.

[2] A. Bianco and L. De Alfaro. Model checking of probabilistic and nondeterministic systems.
In Foundations of Software Technology and Theoretical Computer Science, pages 499–513.
Springer, 1995.

[3] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
Proc. Foundations of Software Technology and Theoretical Computer Science, 1026:499–
513, 1995.

[4] J. Bogdoll, L. Ferrer Fioriti, A. Hartmanns, and H. Hermanns. Partial order methods for
statistical model checking and simulation. In FMOODS/FORTE, pages 59–74, 2011.

[5] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of probabilistic
systems by successive refinements. In PAPM/PROBMIV, volume 2165 of LNCS, pages
39–56. Springer, 2001.

[6] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao. The Daikon system for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1-3):35–45, Dec. 2007.

[7] L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link protocol. In Proc.
International Workshop on Types for Proofs and Programs (TYPES’93), volume 806 of
LNCS. Springer, 1994.

16

PIRSES-GA-2011-295261 / MEALS Page 17 of 18 Public

[8] D. Henriques, J. Martins, P. Zuliani, A. Platzer, and E. Clarke. Statistical model checking
for markov decision processes. In QEST, pages 84–93, 2012.

[9] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic
verification of probabilistic systems. In TACAS’06 Proceedings, volume 3920, pages 441–
444. Springer, 2006.

[10] Institute of Electrical and Electronic Engineers. IEEE Standard for Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, 1997.

[11] L. Jamieson and B. Dean. Weighted alliances in graphs. Congressus Numerantium, 187:76,
2007.

[12] M. R. Lyu. Handbook of software reliability engineering. McGraw-Hill, Inc., Hightstown,
NJ, USA, 1996.

[13] E. Pavese, V. Braberman, and S. Uchitel. Automated reliability estima-
tion over partial systematic explorations. In Proceedings of the 35th In-
ternational Conference on Software Engineering (ICSE). To appear., 2013.
http://publicaciones.dc.uba.ar/Publications/2013/PBU13/Automated Reliability Esti-
mation over Partial-icse2013.pdf.

[14] R. Segala. Modelling and verification of randomized distributed real time systems. PhD
thesis, Massachusetts Institute of Technology, 1995.

[15] M. Vardi. Automatic verification of probabilistic concurrent finite state programs. In SFCS
1985, pages 327–338. IEEE, Oct. 1985.

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR

17

PIRSES-GA-2011-295261 / MEALS Page 18 of 18 Public

UBA: Universidad de Buenos Aires, AR

UNR: Universidad Nacional de Río Cuarto, AR

ITBA: Instituto Técnológico Buenos Aires, AR

18

