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Abstract:

Differential privacy is a notion of privacy that was initially designed for statistical databases, and has been recently
extended to a more general class of domains. Both differential privacy and its generalized version can be achieved by
adding random noise to the reported data. Thus, privacy is obtained at the cost of reducing the data’s accuracy, and
therefore their utility.
In this paper we consider the problem of identifying optimal mechanisms for generalized differential privacy, i.e. mech-
anisms that maximize the utility for a given level of privacy. The utility usually depends on a prior distribution of the
data, and naturally it would be desirable to design mechanisms that are universally optimal, i.e., optimal for all priors.
However it is already known that such mechanisms do not exist in general. We then characterize maximal classes of
priors for which a mechanism which is optimal for all the priors of the class does exist. We show that such classes can
be defined as convex polytopes in the priors space.
As an application, we consider the problem of privacy that arises when using, for instance, location-based services,
and we show how to define mechanisms that maximize the quality of service while preserving the desired level of
geo-indistinguishability.
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1 Prologue
Privacy is an instance of the general problem of information protection, which constitutes one of
the main topics of the research of our team Cométe. The history of our interest for this topic has
an important milestone in the visit of Prakash to Cométe in 2006, in the context of our équipe
associée Printemps. We had been working for a while on a probabilistic approach to anonymity,
and when Prakash arrived, he suggested to consider an information-theoretic approach instead.
This was the beginning of a very fruitful collaboration between Prakash and our team, and two
of the papers that originated from this collaboration became the backbone of the PhD thesis
of Konstantinos Chatzikokolakis. Furthermore, the collaboration with Prakash influences, still
today, our research on information protection, in the sense that our research is characterized
by the paradigmatic view of a system as a noisy channel – the central concept of information
theory. The present paper, which explores the properties of the channel matrix in the context of
differential privacy, is a tribute to the fundamental role that Prakash has had in Cométe’s scientific
life and evolution.

2 Introduction
It is often the case that a privacy threat arises not because of direct access to sensitive data
by unauthorized agents, but rather because of the information they can infer from correlated
public data. This phenomenon, known as information leakage, is quite general and it has been
studied in several different domains, including programming languages, anonymity protocols,
and statistical databases (see, for instance, [1, 2, 3]). Naturally, the settings and the approaches
vary from domain to domain, but the principles are the same.

In the case of statistical databases, the public information is typically defined by the kind of
queries we are allowed to ask, and the concerns for privacy focus on the consequences that the
participation in the databases may have for the confidential data of a single individual. Differen-
tial privacy [4, 5] was designed to control these consequences. Since it has been recognized that
the deterministic methods offer little resistance to composition attacks (i.e. to the combination of
information inferred from different databases, see for instance [6, 7]), differential privacy targets
probabilistic mechanisms, i.e. mechanisms that answer the query in a probabilistic fashion. Typ-
ically, they generate the output by adding random noise to the true answer, according to some
probabilistic distribution. The aim of differential privacy is to guarantee that the participation of a
single individual in the database will not affect too much the probability of each reported answer.
More precisely, (the log of) the ratio between the likelihoods of obtaining a certain answer, from
any two adjacent databases (i.e., differing only for the presence of an individual), must not ex-
ceed a given parameter ε. The rationale of this notion comes from the fact that it is equivalent to
the property that the reported answer does not change significantly the probabilistic knowledge
of the individual data. Differential privacy has become very popular thanks to the fact that it is
easy to implement: it is sufficient to add Laplacian noise to the true answer. Furthermore, the
notion and the implementation are independent from the side knowledge of the adversary about
the underlying database (represented as a prior probability distiribution over possible databases).
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Finally, it is compositional, in the sense that the privacy loss caused by the combination of attacks
is the sum of the single privacy losses.

There have been several studies aimed at applying differential privacy to other areas. In this
work, we focus on the approach proposed in [8], which introduced the concept of dX-privacy,
suitable for any domain X equipped with a notion of distance dX. Given a mechanism K from the
set of secrets X to distribution over some set of outputs Z, we say that K satisfies dX-privacy if
for any two secrets x1 and x2, and any output z, the log of the ratio between K(x1) and K(x2) does
not exceed dX(x1, x2). Note that dX-privacy is an extension of differential privacy: the latter can
be obtained by setting X to be the set of databases (seen as tuples of individual records) and dX
to be the Hamming distance between these tuples, scaled by ε. Furthermore, it is a conservative
extension, in the sense that it preserves the implementability by means of Laplacian noise, the
independence from the prior probability, the interpretation in terms of probabilistic knowledge,
and the compositionality properties. From the practical point of view, dX-privacy is particularly
suitable to protect the accuracy of the values, like in the case of smart-meter signatures [8] and
the precise geographical position in location-based services [9]. Similar extensions of differential
privacy obtained by generalizing the distance or the adjacency relation have been considered in
[10, 11, 12].

Besides guaranteeing privacy, a mechanism should of course provide an answer which is
“useful” enough for the service it has been designed. This second goal is measured in terms of
utility, which represents the average gain that a rational user obtains from the reported answer.
More precisely, let y be the true answer and let z be the output reported by the mechanism. On the
basis of the latter, the user tries to make a guess y′ (remapping) about the (hidden) true answer y.
His gain g(y, y′) is determined by a given function g. The utility is then defined as the expected
gain under the best possible remapping. While the gain function can take various forms, in this
paper we restrict our analysis to the binary gain function, which evaluates to 1 when the user’s
guess is the same as the query result (y = y′) and evaluates to 0 otherwise.

Obviously, there is a trade-off between privacy and utility, and we are interested in mecha-
nisms that offer maximal utility for the desired level of dX-privacy. Such mechanisms are called
optimal. Naturally, we are also interested in mechanisms that are universally optimal, i.e., opti-
mal under any prior1, as we don’t want to design a different mechanism for each user2. A famous
result by Gosh et al. [13] states that this is possible for the counting queries, namely the queries
of the form “how many records in the database have the property p”, for some p. Unfortunately
Brenner and Nissim showed that in differential privacy universally optimal mechanisms do not
exist for any other kind of query [14]. However, one can still hope that it is possible to design
mechanisms that are optimal for a significant class of users. These are exactly the main ob-
jectives of this paper: identify regions of priors which admit a robust optimal mechanism, i.e.
a mechanism whose optimality is not affected by changes in the prior (within the region), and
provide a method to construct such mechanism.

A related issue that we consider in this paper is the amount of information leaked by a mech-
anism, a central concept in the area of quantitative information flow . There have been various

1Note that, in contrast to dX-privacy, utility does depend on the prior.
2We recall that the prior represents the side knowledge of the user.
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proposals for quantifying the information leakage, we consider here an information-theoretic
approach based on Rényi min-entropy [15, 16], which is suitable for one-try attacks. A main
difference between the min-entropy leakage and dX-privacy is that the former measures the ex-
pected risk of disclosure of sensitive information, while the latter focuses on the worst case, i.e.,
it considers catastrophic any such disclosure, no matter how unlikely it is.

Recently, researchers have investigated the relation between differential privacy and min-
entropy leakage [17, 18, 19], and in particular it has been proved in [18] that differential privacy
induces a bound on the min-entropy leakage, which is met by a certain mechanism for the uni-
form prior (for which min-entropy leakage is always maximum). In this paper, we extend the
above result to provide a more accurate bound for any prior in the special regions described
above. More precisely, we provide a bound to the leakage specific to the prior and that can be
met, under a certain condition, by a suitable mechanism.

Contributions
• We identify, for an arbitrary metric space (Y, dY), the class of the dY-regular distributions

ofY. The interest of this class is that for each prior distribution in it we are able to provide
a specific upper bound to the utility of any dY-private mechanism. We characterize this
class as a geometric region, and we study its properties.

• We describe a dY-private mechanism, called “tight-constraints mechanism”, which meets
the upper bound for every dY-regular prior, and is therefore robustly optimal in that region.
We provide necessary and sufficient conditions for the existence of such mechanism, and
an effective method to test the conditions and to construct the mechanism.

• We consider the domain of databases (X, dX), where dX is the Hamming distance, and we
recast the above definitions and results in terms of min-entropy leakage. We are able to
improve a result from the literature which says that differential privacy induces a bound
on the min-entropy leakage for the uniform prior: We provide more accurate bounds, and
show that these bounds are valid for all the dX-regular priors (not just for the uniform
one). A construction similar to the one in the previous point yields the tight-constraints
mechanism which reaches those upper bounds.

A preliminary version of this paper, restricted to standard differential privacy, and without
proofs, appeared in POST 2013.

Plan of the paper In the next section we recall the basic definitions of generalized differential
privacy, utility, and min-entropy mutual information. Section 4 introduces the notion of dY-
regular prior, investigates the properties of these priors, and gives a geometric characterization of
their region. Section 5 shows that for all dY-regular priors on the true answers (resp. databases),
dY-privacy induces an upper bound on the utility (resp. on the min-entropy leakage). Section 6
identifies a mechanism which reaches the above bounds for every dY-regular prior, and that is
therefore the universally optimal mechanism (resp. the maximally leaking mechanism) in the
region. Section 7 illustrates our methodology and results using the example of the sum queries
and location privacy. Section 8 concludes and proposes some directions for future research.
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3 Preliminaries
In this section we recall the generalized variant of differential privacy from [8], considering an
arbitrary set of secrets X, equipped with a metric dX. We then discuss two instantiations of the
general definition: first, standard differential privacy is defined on databases under the Hamming
distance. Second, geo-indistinguishability [9], a notion of location privacy, is obtained by using
geographical locations as secrets, under the Euclidean distance. Finally, we recall a standard way
for measuring the utility of a mechanism, and the notion of min-mutual information.

3.1 Generalized privacy
As discussed in the introduction, a generalized variant of differential privacy can be defined on
an arbitrary set of secrets X, equipped with a metric dX. Intuitively, dX(x, x′) gives the “distin-
guishability level” between secrets x, x′, based on the privacy semantics that we wish to obtain.
The smaller the distinguishability level is, the harder it should be for the adversary to distin-
guish the two secrets, hence offering privacy, while secrets at great distance are allowed to be
distinguished, giving the possibility to obtain some controlled knowledge about the secret.

A mechanism from X to Z is a function K : X → P(Z), where P(Z) denotes the set
of probability distributions over some set of outputs Z. In this paper we consider X,Z to be
finite, hence the involved distributions to be discrete. The mechanism’s outcome K(x) is then
a probability distribution, and K(x)(z) is the probability of an output z ∈ Z when running the
mechanism on x ∈ X. For simplicity we write K : X → Z to denote a machanism from X to Z
(omitting P).

The multiplicative distance dP between probability distributions µ1, µ2 ∈ P(Z) is defined as
dP(µ1, µ2) = supz∈Z | ln

µ1(z)
µ2(z) | with the convention that | ln µ1(z)

µ2(z) | = 0 if both µ1(z), µ2(z) are zero and
∞ if only one of them is zero.

We are now ready to give the definition of dX-privacy:

Definition 1. A mechanism K : X → Z satisfies dX-privacy, iff ∀x, x′ ∈ X:

dP(K(x),K(x′)) ≤ dX(x, x′)

or equivalently:
K(x)(z) ≤ edX(x,x′) K(x′)(z) ∀z ∈ Z

The intuition behind this definition is that the attacker’s ability to distinguish two secrets
should depend on their distinguishability level dX(x, x′). The closer two secrets are, the more
similar the mechanism’s output on those secrets should be, making it harder for the adversary to
distinguish them. Depending on the choice of dX, the definition can be adapted to the application
at hand, giving rise to different notions of privacy.

In [8], two alternative characterizations of dX-privacy are also given, in which the attacker’s
knowledge is explicitly quantified, which makes it easier to understand the privacy guarantees
obtained by a particular choice of dX.

6



PIRSES-GA-2011-295261 / MEALS Page 7 of 29 Public

Answering queries. In practice, we often want to learn some information about our secret, that
is we want to obtain the answer to a query f : X → Y. To do so privately, we can compose f with
a “noise” mechanism H : Y → Z, thus obtaining an “oblivious” mechanism H ◦ f : X → Z,
called oblivious since the answer depends only on f (x) and not on x itself. The role of H is to
add random noise to the true query result f (x) and produce a “noisy” reported output z ∈ Z.

Since we assume all sets to be finite, the mechanism H can be described by a stochastic
matrix H = (hyz), called the noise matrix, whose rows are indexed by the elements of Y and
whose columns are indexed by the elements of Z. Hence, hyz is the probability of reporting z
when the true query result is y.

Given a metric dY on Y, the generalized definition of privacy allows us to directly talk about
the privacy of H, without involving f at all. Using matrix notation, dY-privacy for H (Defini-
tion 1) can be written as

hyz ≤ edY(y,y′)hy′z ∀y, y′ ∈ Y, z ∈ Z (1)

A natural question, then, is how dX-privacy of the composed mechanism H ◦ f relates to dY-
privacy of H. The connection between the two comes from the concept of uniform ∆-sensitivity.

Definition 2. A sequence y1, . . . , yn is called a chain from y1 to yn. We say that such chain is
tight if dY(y1, yn) =

∑
i dY(yi, yi+1). Two elements y, y′ ∈ Y are called ∆-expansive iff dY(y, y′) =

∆dX(x, x′) for some x ∈ f −1(y), x′ ∈ f −1(y′). A chain is ∆-expansive iff all steps yi, yi+1 are
∆-expansive.

Finally, f is uniformly ∆-sensitive wrt dX, dY iff:

• for all x, x′ ∈ X: dY( f (x), f (x′)) ≤ ∆ dX(x, x′), and

• for all y, y′ ∈ Y: there exists a tight and ∆-expansive chain from y to y′.

The intuition behind this definition is that f expands distances by at most ∆, and there are
no answers that are always the results of a smaller expansion: all y, y′ ∈ Y can be linked by a
chain in which the expansion is exactly ∆. Under this condition, it has been shown in [8] that the
privacy of H characterizes that of H ◦ f .

Theorem 1 ([8]). Assume that f is uniformly ∆-sensitive wrt dX, dY. Then H satisfies dY-privacy
if and only if H ◦ f satisfies ∆dX-privacy.

In the remaining of the paper, we give results about dY-privacy for H, for an arbitrary metric
dY, independently from any function f . The results can be used either to talk about the privacy of
H itself, or – given the above theorem – about the privacy of oblivious mechanisms of the form
H ◦ f , for some function f for which uniform sensitivity can be established. A typical case of
uniform sensitivity arises in standard differential privacy when dY is the metric obtained from the
induced graph of f , as discussed in the next section. But uniform sensitivity can be established
for other types of metrics; some examples are given in [8].

7
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Figure 1: The induced graph of different queries

3.2 Differential privacy
The notion of differential privacy, introduced by Dwork in [4], imposes constraints on data re-
porting mechanisms so that the outputs produced by two databases differing only for one record
are almost indistinguishable. Let V be a universe of values and u the number of individuals. The
set of all possible databases (u-tuples of values from V) is V = Vu. Two databases x, x′ ∈ V
are called adjacent, written x ∼ x′, iff they differ in the value of exactly one individual. The
adjacency relation ∼ defines a graph, and the length of the shortest path between two databases
x, x′ in the graph, written dh(x, x′), defines a metric called the Hamming distance. In other words,
dh(x, x′) is the number of individuals in which x and x′ differ.

The property of ε-differential privacy requires that, for any two adjacent databases, the ratio
of the probabilities of producing a certain output is bound by eε . It is easy to see that this property
is equivalent to εdh-privacy, under the Hamming distance dh.

Given a query f : V → Y, the adjacency relation ∼ can be extended to Y, giving rise to the
induced graph ∼ f of f [14, 19], defined as:

y ∼ f y′ iff x ∼ x′ for some x ∈ f −1(y), x′ ∈ f −1(y′)

Figure 1 shows the induced graph of three different queries. In these examples count(x, p) refers
to a counting query which returns the number of records in the database x which satisfy a certain
property p. Other queries in the figure are expressed using the count function.

Furthermore, let d∼ f (y, y
′) be the metric on Y defined as the shortest ∼ f -path from y to y′.

It has then been shown in [8] that any function f is uniformly 1-sensitive wrt dh, d∼ f . As a
consequence of this, and of Theorem 1, ε-differential privacy of an oblivious mechanism H ◦ f
can be characterized by the εd∼ f -privacy privacy of H.

Corollary 1. For any query f : V → Y, H satisfies εd∼ f -privacy if and only if H ◦ f satisfies
εdh-privacy.

8
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3.3 Geo-indistinguishability
An advantage of the generalized definition of privacy is that it can be applied in cases when
there is a single individual involved – hence the notion of adjacency is inadequate – by using a
metric that gives a meaningful notion of privacy for the application at hand. An example of such
a notion is geo-indistinguishability [9], proposed as a formal notion of location privacy in the
context of Location Based Services (LBSs).

Consider a mobile user, typically using a GPS-enabled hand-held device, who wishes to
obtain information related to his current location, for instance restaurants close to him. To do
so, he can query an LBS provider, providing his actual location x as part of the query. However,
location information is not only inherently sensitive itself, but also correlated to a variety of other
sensitive information, such as political and religious beliefs, medical information, etc. Hence, the
user would like to perform the LBS query privately, that is without disclosing his exact location
to the provider. Note that protecting the user’s identity is not the goal here; in fact, the user might
wish to be authenticated to the service provider in order to obtain personalized recommendations.
What he is interested in, instead, is hiding his location.

A possible solution is to use a location obfuscation mechanism [20], producing a noisy loca-
tion z which is reported to the service provider. A natural goal then is to formalize the privacy
guarantees provided by such a mechanism, for which various approaches have been proposed in
the literature [21].

Geo-indistinguishability provides such a formal definition of location privacy, and can be
expressed as an instance of dX-privacy. Secrets X are now locations (a subset of R2), and ε-
geo-indistinguishability is εd2-privacy, where d2 is the Euclidean distance between locations.3

Intuitively, dP(K(x),K(x′)) ≤ εd2(x, x′) requires that the closer (geographically) two locations
x, x′ are, the more likely to produce the same reported location z they should be. This allows the
provider to get some approximate information necessary to provide the service (e.g. distinguish
locations in Paris from those in London), but prevents him from learning x with high accuracy
(since locations x′ close to x produce the same z with similar probabilities).

The results of this paper refer to an arbitrary metric between secrets, hence they are directly
applicable to geo-indistinguishability. A case-study in the context of location privacy is given in
Section 7.2.

3.4 Utility model
The main role of a noise mechanism H : Y → Z is to guarantee dY-privacy while providing
useful information about the true query result, i.e. to satisfy a trade-off between the privacy and
utility. For quantifying the utility of H we follow a standard model from [13]. Let y ∈ Y be the
result of executing a query f . The mechanism H : Y → Z processes y and produces an output
z in some domain Z to the user. Based on the reported output z and prior knowledge about the
likely results of f , she applies a remapping function R : Z → Y to z to produce a guess y′ ∈ Y
for the real query result. Note that the composite mechanism R ◦ H : Y → Y is a mechanism

3Note that any other meaningful geographical distance could also be used, such as the Manhattan or a map-based
distance.
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whose output domain is the query results domain Y. We say that H is remapped to R ◦ H by
the remap R. Now, with the user’s guessed value y′, a real-valued gain function g : Y × Y → R
quantifies how informative y′ is compared to the real query result y. In this paper we restrict our
analysis to the binary gain function gb which is defined as gb(y, y′) = 1 iff y′ = y and 0 otherwise.
The choice of this gain corresponds to the preference of a user to guess the true query result.

In practice, the user usually bases her guess y′ about the real query result on prior knowl-
edge about the underlying secret and the underlying query. This knowledge is modeled by a
probability distribution π (called prior) over the domain Y of query results. Now the utility of a
mechanism H : Y → Z with respect to a prior π and a remap R : Z → Y is the expected value
of the underlying gain function gb, and is therefore expressed as

U(H,π,R) =
∑

y,y′ πy (HR)yy′ gb(y, y′). (2)

Using the definition of gb, the above expression reduces to a convex combination of the diagonal
elements of HR as follows.

U(H,π,R) =
∑

y πy (HR)yy. (3)

Accordingly, we say that a dY-private mechanism H is dY-optimal for a prior π if there is
a remap R such that U(H,π,R) is maximal for all dY-private mechanisms and all remaps.4 In
general the optimality of a mechanism depends on the prior (related to the user). That is a
mechanism that is optimal for a prior may not be optimal for another one. In the setting of
differential privacy, it has been proven [14] that for any query, other than a single counting one,
there is no mechanism that is optimal for all priors simultaneously. Nevertheless, we identify in
Section 4 a region of priors, where it is possible to find a single mechanism which is optimal to
all of them.

3.5 Min-mutual information
In this section we recall the use of an information-theoretic notion, namely mutual information,
to quantify the amount of information conveyed by a mechanism H : Y → Z as an information
theoretic channel.

Following recent works in the area of quantitative information flow ([15, 16, 17]), we adopt
Rényi’s min-entropy ([22]) as our measure of uncertainly. The min-entropy H∞(π) of a prior π,
defined asH∞(π) = − log2 maxi πi, measures the user’s uncertainty about the query result. Then,
the corresponding notion of conditional min-entropy, defined asH∞(H,π) = − log2

∑
z∈Zmaxy πy hyz,

measures the uncertainty about the query result after observing an output z ∈ Z. Finally, sub-
tracting the latter from the former brings us to the notion of min-mutual information:

L(H,π) = H∞(π) −H∞(H,π)

which measures the amount of information about the query result conveyed by the mechanism
H. In the area of quantitative information flow this quantity is known as min-entropy leakage;
the reader is referred to [15] for more details about this notion.

4Note that there may exist many optimal mechanisms for a given prior.
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4 Regular priors
In this section we describe a region of priors, called ‘dY-regular’. These priors are determined
by the metric dY on the domain Y. Recall that the dY-privacy constraints for H can be written as
hyz/hy′z ≥ e−dY(y,y′) for all y, y′ ∈ Y. Since every lower bound e−dY(y,y′) depends only on y, y′, the
constraints can be described altogether by a square matrix Φ formed by such lower bounds. We
refer to this matrix as the privacy-constraints matrix.

Definition 3 (privacy-constraints matrix). The privacy-constraints matrix Φ of a metric dY is a
square matrix, indexed by Y ×Y, where φyy′ = e−dY(y,y′) for all y, y′ ∈ Y.

Note that Φ is symmetric (φyy′ = φy′y) due to the symmetry of dY. Recall that dY describes the
privacy restrictions imposed on the domain Y. In particular these restrictions become vacuous
if dY(y, y′) → ∞ for all y, y′ : y , y′. In this extreme case the privacy-constraints matrix Φ

converges to the identity matrix where each diagonal entry is 1 and all other entries are 0. We
now define the dY-regular priors, in terms of the privacy-constraints matrix of dY. For a vector µ
having cardinality |Y|, we use µ ≥ 0 to denote ∀y : µy ≥ 0.

Definition 4 (dY-regular prior). A prior π is called dY-regular iff there exists a row vector µ ≥ 0
such that π = µΦ.

In the following we describe the common properties of these priors and also give a geometric
characterization for their region comparing it to the whole prior space. As a first observation, this
region converges to the entire prior space when the privacy constraints on Y become vacuous.
This is because, as described above, Φ approaches the identity matrix where the vector µ exists
for each prior π (just define µ = π).

An important property of any dY-regular prior is that the ratio between any two of its entries
πy, πy′ is always bound by edY(y,y′). Because of this property, such a prior is called dY-regular.

Proposition 1. For every dY-regular prior π and for all y, y′ ∈ Y we have that πy
/
πy′ ≤ edY(y,y′).

Proof. By Definition 4, the ratio πy/πy′ is given by

πy
/
πy′ =

∑
y′′ µy′′φy′′y∑
y′′ µy′′φy′′y′

. (4)

By the definitions of φy′′y′ , φy′′y we also have that

φy′′y′ = e−dY(y′′,y′) ≥ e−(dY(y′′,y)+dY(y,y′)) = e−dY(y,y′) φy′′y.

The above inequality is implied by the triangle inequality, dY(y′′, y′) ≤ dY(y′′, y) + dY(y, y′) and
the fact that e−1 < 1. Since µy′′ ≥ 0 for all y′′, we have∑

y′′
µy′′φy′′y′ ≥ e−dY(y,y′)

∑
y′′
µy′′φy′′y

Substituting the above inequality in Eq. (4) completes the proof. � �

11
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The above property restricts nearby elements of Y (with respect to the metric dY) to have
‘similar’ probabilities. In practice, this property holds for a large class of users who have no
sharp information that discriminates between nearby elements ofY. Note that the above property
is not equivalent to Definition 4. Namely, it is not true that all priors having such a property are
dY-regular.

A consequence of the above proposition is that for any dY-regular prior π, the probability πy

associated with y ∈ Y is restricted by upper and lower bounds as follows.

Proposition 2. For every dY-regular prior π and for every y ∈ Y we have that

1
/∑

y′∈Y edY(y,y′) ≤ πy ≤ 1
/∑

y′∈Y e−dY(y,y′).

Proof. By Proposition 1, it holds for every pair of entries πy, πy′ that

πy′ ≤ edY(y,y′) πy and e−dY(y,y′) πy ≤ πy′ .

Summing the above inequalities over y′, we get∑
y′∈Y

πy′ ≤ πy

∑
y′∈Y

edY(y,y′) and πy

∑
y′∈Y

e−dY(y,y′) ≤
∑
y′∈Y

πy′ .

Since
∑

y′∈Y πy′ = 1, the above inequalities imply the upper and lower bounds for πy. � �

One obvious implication is that any dY-regular prior must have full support, that is πy > 0 for
all y ∈ Y. In the following we describe the set of dY-regular priors as a region in the prior space.
For doing so, we first define in the following set of priors which we refer to as the corner priors.

Definition 5 (corner priors). For every y ∈ Y, a corresponding corner prior, denoted by cy, is
defined as

cy
y′ =

φyy′∑
y′′∈Y φyy′′

∀y′ ∈ Y.

Note that the above definition is sound, i.e. cy is a probability distribution for all y ∈ Y. Note
also that there are |Y| corner priors; each one corresponds to an element y ∈ Y. By inspecting
the entries of cy, observe that cy

y has the maximum value compared to other entries, and moreover
this value is exactly the upper bound specified by Proposition 2. We can therefore interpret this
observation informally as cy is ‘maximally biased’ to y. It can be also seen that each corner prior
is dY-regular. In fact for any corner cy, there is a row vector µ that satisfies the condition in Def.
4; this vector is obtained by setting µy = 1/

∑
y′∈Y φyy′ and µy′ = 0 for all y′ , y. Here it is easy to

verify that cy = µΦ.
Now we can describe the region of the dY-regular priors using the corner priors. Precisely,

this region consists of all convex combinations of the corner priors.

Proposition 3 (convexity). A prior π is dY-regular iff it is a convex combination of the corner
priors, i.e. there exist real numbers γy ≥ 0, y ∈ Y such that

π =
∑

y∈Y γy cy and
∑

y∈Y γy = 1.

12



PIRSES-GA-2011-295261 / MEALS Page 13 of 29 Public

Proof. By Definition 4, a prior π is dY-regular iff there exists vector µ ≥ 0 such that π = µΦ;
that is iff there are reals µy ≥ 0 for all y ∈ Y, such that π can be written as a linear combination
of Φ’s rows as follows.

π =
∑
y∈Y

µy Φy,

where Φy is the row of Φ corresponding to the element y ∈ Y. From Def. 5, observe that each
row Φy is equal to

(∑
y′∈Y φyy′

)
cy. By substitution in the above equation for π, we get that π is

dY-regular iff π = γy Φy where γy = µy

(∑
y′∈Y φyy′

)
. Note that the existence of the vector µ ≥ 0

is equivalent to the existence of the coefficients γy ≥ 0. Observe also that
∑

y∈Y γy = µΦ = 1.
These observations complete the proof. � �

From Proposition 3 the region of dY-regular priors is a convex set, where each point (prior) in
this region is a convex combination of the corner priors. This region is therefore geometrically
regarded as a convex polytope in the prior space. Since the corner points always exists, this
region is never empty. For a prior π in this region, the coefficients γy model the ‘proximity’ of π
to each corner prior cy. In particular, note that 0 ≤ γy ≤ 1, and γy = 1 iff π = cy. We demonstrate
this geometric interpretation using the following examples.

Example 1. Consider a simple domain Y consisting of 3 elements organized in a graph structure
where dg(y, y′) is the graph distance between y, y′. Now for an arbitrary scaling number ε > 0, we
can define the metric dY as dY(y, y′) = ε dg(y, y′). Since every prior onY has 3 entries (specifying
the probability of every element y ∈ Y), the prior space for Y can be represented by the 3-
dimensional Euclidean space. Figure 2 visualizes the region of dY-regular priors in two cases:
when the graph structure of Y is a line, and when it is a circle. Note that in both cases, we have
3 corner priors c1, c2, c3. In each case, the region is depicted for ε = 0.7 and ε = 1.6. Note in this
example that ε controls the privacy constraints imposed by dY-privacy, which in turn determine
the size of the region of dY-regular priors. In particular with ε = 1.6 (less privacy), the region is
larger than the one with ε = 0.7. In general the region expands as ε increases and converges to
the entire region of priors defined by the corner points {(0, 0, 1), (0, 1, 0), (0, 0, 1)} when ε → ∞.

Example 2. Suppose that Y contains 4 elements, and dY is defined as dY(y, y′) = D for all
y, y′ : y , y′. In this case every prior contains 4 entries and therefore is not possible to be plotted
in the 3-dimensional space. However, using the fact that the fourth component is redundant
(
∑

i πi = 1), every prior is fully described by its ‘projection’ onto the 3-dimensional subspace.
Figure 3 shows the projection of the dY-regular prior region for different values of D. Again the
privacy constraints enforced by dY-privacy are determined by D. The less restricted is D (i.e.
having a higher value), the bigger the region is; and eventually coincides with the entire space
when D→ ∞.

5 Upper bounds for utility and min-mutual information
In this section, we further describe the dY-regular priors on the domain Y in terms of the utility
that can be achieved for these priors by a mechanism H : Y → Z satisfying dY-privacy. We also

13
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Figure 2: Regions of dY-regular priors for Example 1
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Figure 3: Regions of dY-regular priors for Example 2

describe the amount of information that can be conveyed by H to users with such priors. More
precisely, we identify for any dY-regular prior π upper bounds for the utility and min-mutual
information, considering all dY-private mechanisms and all possible remaps. These bounds are
indeed induced by the privacy constraints defined by the metric dY.

5.1 Utility
For a given domainY equipped with the metric dY, consider a dY-private mechanism H : Y → Z
producing observables in some domainZ. In the following analysis we derive a linear algebraic
expression for U(H,π,R), the utility of H for a prior π using the remap R : Z → Y. Such an
expression will play the main role in the subsequent results. We start by observing that the matrix
product of H and the remap R describes an dY-private mechanism HR : Y → Y. Therefore the
entries of HR satisfy the following subset of constraints.

e−dY(y,y′) (HR)y′y′ ≤ (HR)yy′

14
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for all y, y′ ∈ Y. Using Definition 3 of the privacy-constraints matrix Φ, and taking into account
that

∑
y′∈Y (HR)yy′ = 1 for all y (as both H and R are stochastic), we get the following inequalities.∑

y′∈Y φyy′ (HR)y′y′ ≤ 1, ∀y ∈ Y.

The inequality operators can be replaced by equalities while introducing slack variables sy : 0 ≤
sy ≤ 1 for all y ∈ Y. The above inequalities can therefore be written as follows.∑

y′∈Y φyy′ (HR)y′y′ + sy = 1, ∀y ∈ Y.

Let the slack variables sy form a column vector s indexed byY. Let also 1 denote a column vector
of the same size and having all entries equal to 1. Using these vectors and the privacy-constraints
matrix Φ (for the given metric dY), the above equations can be rewritten in the following matrix
form.

Φ diag(HR) + s = 1, (5)

where diag(HR) is the column vector consisting of the diagonal entries of HR. Now, for any
mechanism H : Y → Z and a remap R : Z → Y satisfying Eq. (5), and for a prior π, we
want to refine the generic expression (3) of the utility by taking Eq. (5) into account. We start by
rewriting Eq. (3) in the following matrix form.

U(H,π,R) = π diag(HR). (6)

Now, let µ be a row vector such that
π = µΦ. (7)

Note that, the above matrix equation is in fact a system of |Y| linear equations. The yth equation
in this system is formed by the yth column of Φ, and the yth entry of π as follows.

µΦy = πy ∀y ∈ Y.

Solving this system of equations for the row vector µ has the following possible outcomes: If
the matrix Φ is invertible, then, for any prior π, Eq. (7) has exactly one solution. If Φ is not
invertible (i.e. it contains linearly dependent columns), then there are either 0 or an infinite
number of solutions, depending on the prior π: If the entries of π respect the linear dependence
relation then there are infinitely many solutions. Otherwise, the equations are ‘inconsistent’, in
which case there are no solutions.

Whether Φ is invertible or not, we consider here only the priors where the matrix equation (7)
has at least one solution µ. Note that, by definition, all the dY-regular priors have this property,
but there can be others for which the solution µ has some negative components. In some of the
results below (in particular in Lemma 1) we consider this larger class of priors for the sake of
generality.

Multiplying Equation (5) by µ yields

µΦ diag(HR) + µ s = µ 1. (8)

Substituting Equations (7) and (6) in the above equation consecutively provides the required
expression for the utility and therefore proves the following lemma.

15
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Lemma 1. For a metric space (Y, dY) let π be any prior on Y. Then for every row vector µ
satisfying π = µΦ, the utility of any dY-private mechanism H for π using a remap R is given by

U(H,π,R) = µ 1 − µ s, (9)

for a vector s satisfying 0 ≤ sy ≤ 1 for all y ∈ Y.

Lemma 1 expresses the utility function for any dY-private mechanism H, for a prior π satis-
fying π = µΦ, and using a remap R. This utility is expressed as a function of the vector µ and
the slack vector s. Although the matrix H and the remap R do not explicitly appear on the right
side of Equation (9), the utility still depends on them indirectly through the vector s. Namely, ac-
cording to Equation (5), the choice of H and R determines the slack vector s. The utility function
depends also on the prior π, because the choice of π determines the set of vectors µ satisfying
Eq. (7). Substituting any of these vectors in Eq. (9) yields the same value forU(H,π,R).

Now recall from Definition 4 that for every dY-regular prior π there is µ satisfying π = µΦ

and µ ≥ 0. This characteristic together with Lemma 1 implies an upper bound on the utility of
any dY-private mechanism H for π.

Theorem 2 (utility upper bound). Let π be a dY-regular prior and H : Y → Z be a dY-private
mechanism. Then for all row vectors µ ≥ 0 satisfying µΦ = π, and any remap R, it holds that

U(H,π,R) ≤
∑

y∈Y µy. (10)

Furthermore the mechanism H and remap R satisfy the equality in (10) for every dY-regular prior
iff Φ diag(HR) = 1.

Proof. Since π is dY-regular, we have π = µΦ for a vector µ ≥ 0. Applying Lemma 1 and noting
that sy ≥ 0 for all y ∈ Y, we observe that µ s ≥ 0 and hence the utility is upper-bounded by
µ 1 =

∑
y∈Y µy.

It remains to show that this bound is attained for every dY-regular prior if and only if
Φ diag(HR) = 1, which is equivalent (according to Eq. (5)) to s = 0: Clearly, if s = 0, then
applying Lemma 1 yields the equality in (10) for every dY-regular prior. For the ‘only if’ direc-
tion, it is sufficient to find a regular prior for which s = 0 must hold to satisfy the equality in
(10). For this purpose we recall that every corner prior cy satisfies µyΦ = cy where µy

y > 0. Now
consider the prior π̄ = (1/|Y|)

∑
y∈Y cy, which is dY-regular by Proposition 3. It is easy to see that

it holds µ̄Φ = π̄ where µ̄ = (1/|Y|)
∑

y∈Y µ
y. Observe here that µ̄y > 0 for all y ∈ Y. Suppose now

that the equality in (10) holds for µ̄. Therefore it must hold, by Lemma 1, that µ̄ s = 0. Since
µ̄y > 0 for all y ∈ Y, it must hold that s = 0. This completes the proof. � �

The above result can be also seen from the geometric perspective. As shown by Proposition
3, each member in the region of dY-regular priors is described as a convex combination of the
corner priors. That is there are coefficients γy ≥ 0 for y ∈ Y which form this combination. It can
be shown (as in the proof of Proposition 3) that γy = µy

(∑
y′∈Y φyy′

)
. Hence, the upper bound

given by Theorem 2 can be written as follows using the coefficients γy.

U(H,π,R) ≤
∑
y∈Y

γy∑
y′∈Y φyy′

.
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Inspecting the above result for corner priors, recall that for a corner cy, γy′ is 1 for y′ = y and
is 0 otherwise; thus, the utility upper bound for cy is therefore 1/

∑
y′ φyy′ . Moreover, the upper

bound for each dY-regular prior π can be regarded (according to the above equation) as a convex
combination of the upper bounds for the corner priors. That is, from the geometric perspective,
the utility upper bound for π linearly depends on its proximity to the corner priors.

5.2 Min-mutual information
In this paper we use the information-theoretic notion of min-mutual information in two distinct
ways: first, we use it to measure the information conveyed about the result of a specific query,
similarly to the use of “utility” in the previous section. Mutual information and utility are indeed
closely related, which allows us to transfer the bound obtained in the previous section to the
information-theoretic setting.

Second, we use it to quantify the information about the secret itself, thus obtaining what is
known in the area of quantitative information flow as min-entropy leakage [15]. The above bound
can therefore be interpreted as a bound on the information leaked by any mechanism, even non-
oblivious ones, independently from the actual query. For arbitrary priors, we obtain in a more
natural way the bound conjectured in [17] and proven in [19]. Moreover, if we restrict to specific
(dY-regular) priors, then we are able to provide more accurate bounds.

The following result from [19] shows that min-mutual information corresponds to the notion
of utility under the binary gain function and using an optimal remap, i.e., a remap that gives the
best utility among all possible remaps, for the given prior.

Proposition 4 ([19]). Given a mechanism H : Y → Z and a prior π, let R̂ be an optimal remap
for π,H. Then, we have

L(H,π) = log2
U(H,π, R̂)

maxy πy

This connection allows us to transfer the upper-bound given by Theorem 2 to min-mutual
information.

Proposition 5 (min-mutual information upper bound). Let π be a dY-regular prior and H : Y →
Z be a dY-private mechanism. Then for all row vectors µ ≥ 0 satisfying µΦ = π, we have:

L(H,π) ≤ log2

∑
y∈Y µy

maxy πy
. (11)

Furthermore, H satisfies the equality for every dY-regular prior iff there is a remap R such that
Φ diag(HR) = 1.

Proof. By Proposition 4, the leakageL(H,π) is monotonically increasing with the utilityU(H,π, R̂).
By Theorem 2, this utility is upper-bounded by

∑
y∈Y µy. Substituting this upper bound in Propo-

sition 4 yields the inequality (11) where the equality holds iff it holds in Theorem 2 for H and
and an optimal remap R̂. That is iff Φ diag(HR̂) = 1. This condition is equivalent to the condition
of equality in Proposition 5, because if a remap R satisfies this latter condition then it must be
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optimal because the utility with R (by Theorem 2) is globally maximum, that is no other remap
can achieve higher utility. � �

The above bound holds only for dY-regular priors. However, it is well-known ([16]) that min-
mutual information is maximized by the uniform prior u, i.e. L(H,π) ≤ L(H,u) for all H,π.
Thus, in cases when u is dY-regular, we can extend the above bound to any prior.

Corollary 2. Suppose that the uniform prior u is dY-regular, and let H : Y → Z be any dY-
private mechanism. Then for all row vectors µ ≥ 0 satisfying µΦ = u, and for all priors π, we
have that

L(H,π) ≤ log2(|Y|
∑

y∈Y µy)

5.3 Quantifying the leakage about the database
In the previous section we considered the information about the query result that is revealed by
a mechanism H. This information was measured by the min-mutual information L(H,π).

We now turn our attention to the case of standard differential privacy, with the goal of quanti-
fying the information about the database that is conveyed by a differentially private mechanism
K (not necessarily oblivious). Intuitively, we wish to minimize this information to protect the
privacy of the users, contrary to the utility which we aim at maximizing. We can apply the re-
sults of the previous section by considering the full mechanism K, mapping databasesV = Vu to
outputs (recall that u is the number of individuals in the database and V the universe of values).
Differential privacy corresponds to εdh-privacy, where dh is the Hamming distance on the domain
V of databases. Correspondingly εdh-regularity will concern priors π on databasesV.

In this case, L(K,π) measures the information about the database conveyed by the mecha-
nism, which we refer to as “min-entropy leakage”, and the bounds from the previous section can
be directly applied. However, since we now work on a specific metric space (V, εdh), we can
obtain a closed expression for the bound of Corollary 2. We start by observing that due to the
symmetry of the graph, the uniform prior u is εdh-regular for all ε > 0. More precisely, we can
show that the vector µ of sizeV having all elements equal to(

eε

|V |(|V | − 1 + eε)

)u

satisfies µΦ = u and µ ≥ 0. Thus, applying Corollary 2 we get the following result.

Theorem 3 (min-entropy leakage upper bound). Let V = Vu be a set of databases, let ε > 0,
and let K be an ε-differentially private mechanism. Then for all priors π onV, we have:

L(K,π) ≤ u log2
|V | eε

|V | − 1 + eε

This bound determines the maximum amount of information that any ε-differentially privacy
mechanism can leak about the database (independently from the underlying query). The bound
was first conjectured in [17] and independently proven in [19]; our technique gives an alternative
and arguably more intuitive proof of this result.
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Figure 4: Leakage bounds for various values of ε

Note that the above bound holds for all priors. If we restrict to a specific εdh-regular prior π,
then we can get better results by using the bound of Proposition 5 which depends on the actual
prior. This is demonstrated in the following example.

Example 3. Consider a database of 5 individuals, each having one of 4 possible values, i.e. V =

Vu with V = {1, 2, 3, 4} and u = 5. Assume that each individual selects a value independently
from the others, but not all values are equally probable; in particular the probabilities of values
1, 2, 3, 4 are 0.3, 0.27, 0.23, 0.2 respectively. Let π be the corresponding prior on V that models
this information. We have numerically verified that for all 0.48 ≤ ε ≤ 1 (with step 0.01) π is
εdh-regular. Thus we can apply Proposition 5 to get an upper bound of L(K,π) for this prior.

The resulting bound, together with the general bound for all priors from Theorem 3, are
shown in Figure 4. We see that restricting to a specific prior provides a significantly better
bound for all values of ε. For instance, for ε = 0.5 we get that L(K,π) ≤ 1.2 for this π, while
L(K,π) ≤ 2.5 for all priors π.

6 Tight-constraints mechanisms
In general, the bounds for the utility (Theorem 2) and the min-mutual information (Proposition
5) are not tight. That is for a given metric dY on a domain Y, there may be no dY-private
mechanism H that meets these bounds. Nevertheless, they provide ultimate limits, induced by
the dY-privacy constraints, for all dY-private mechanisms and dY-regular priors. These bounds
are simultaneously tight if the condition Φ diag(HR) = 1 is satisfied (note that this condition
is independent of the underlying prior). In this section we exploit this ‘tightness’ condition
and investigate the mechanisms that, whenever exist, satisfy this condition and are therefore
optimal for the entire region of dY-regular priors. We call these mechanisms tight-constraints
mechanisms.
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Definition 6 (A tight-constraints mechanism). For a metric dY, a mechanism H : Y → Y is
called a tight-constraints mechanism iff it satisfies the following conditions for all y, y′ ∈ Y.

e−dY(y,y′) hy′y′ = hyy′ . (12)

It is important to note that, in general, there may exist zero, one or more tight-constraints
mechanisms for a given metric dY. The above definition enforces |Y| (|Y| − 1) linearly inde-
pendent equations, referred to as the ‘tight constraints’. Additionally it must also hold that∑

y′∈Y hyy′ = 1 for all y ∈ Y. Thus we have, in total, |Y| |Y| equations. If these equations are lin-
early independent, then they solve to unique values. If these values are non-negative, then they
determine a unique tight-constraints mechanism. On the other hand, if these equations are not
linearly independent, then there may be multiple solutions with non-negative entries, in which
case we have multiple tight-constraints mechanisms for dY.

6.1 Properties
The first feature that follows immediately from the definition of tight-constraints mechanisms,
for a metric dY, is that they satisfy dY-privacy:

Proposition 6 (dY-privacy). For a given metric dY, every tight-constraints mechanism is dY-
private.

Proof. For a tight-constraints mechanism Ĥ, we want to show that for every pair of query results
y, y′ and every output z, we have

ĥyz ≤ edY(y,y′) · ĥy′z. (13)

By Definition 6, for every pair of elements y, y′ and every output z, we have

ĥy′z = e−dY(y′,z) · ĥzz and ĥyz = e−dY(y,z) · ĥzz. (14)

If ĥzz = 0 then ĥy′z = ĥyz = 0. In this case, Condition (13) is satisfied. Otherwise (i.e. if ĥzz , 0),
both ĥy′z and ĥyz are non-zero, and it follows from Equations (14) that, for all inputs y and y′, and
every output z,

ĥy′z
/
ĥyz = e−(dY(y′,z)−dY(y,z)).

By the triangle inequality, we have that dY(y′, z)− dY(y, z) ≤ dY(y, y′). Knowing also that e−1 < 1,
it follows from the above inequality that

ĥy′z
/
ĥyz ≥ e−dY(y,y′).

The above inequality is equivalent to Condition (13) of dY-privacy. � �

Thanks to the above property, we can give a further useful characteristic for the tight-constraints
mechanisms distinguishing them from other dY-private mechanisms. More precisely, the follow-
ing proposition identifies a linear algebraic condition that is satisfied only by the tight-constraints
mechanisms for the given metric dY:
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Proposition 7 (diagonal characterization). For a metric dY, a dY-private mechanism H : Y → Y
is a tight-constraints mechanism iff

Φ diag(H) = 1. (15)

Proof. If H is a tight-constraints mechanism, then by Definition 6 we have that hyy′ = e−dY(y,y′) hy′y′

for all y, y′ ∈ Y. It also holds that
∑

y′∈Y hyy′ = 1 for all y ∈ Y. Combining these equations yields∑
y′∈Y

e−dY(y,y′) hy′y′ = 1, ∀y ∈ Y. (16)

Using the privacy-constraints matrix Φ, the above equations can be written in the matrix form
(15). Now we prove the other direction of implication as follows. Suppose that Eq. (16) (which
is equivalent to Eq. (15)) is satisfied by a dY-private mechanism H. Then it holds for all y, y′ ∈ Y
that hyy′ ≥ e−dY(y,y′) hy′y′ . Suppose for a contradiction that this inequality is strict for some y, y′ ∈
Y, i.e. hyy′ > e−dY(y,y′) hy′y′ . Then

∑
y′∈Y hyy′ >

∑
y′∈Y e−dY(y,y′) hy′y′ = 1, where the last equality

holds by Eq. (16). That is, the sum of the entries of a row in H is strictly greater than 1 which
violates the validity of H. � �

The above proposition provides a way to check the existence of, and also compute, the tight-
constraints mechanisms for a given metric dY. Since Condition (15) is satisfied only by these
mechanisms, there is at least one tight-constraints mechanism if there is a vector z, with non-
negative entries, that satisfies the equation Φ z = 1. In this case a tight-constraints mechanism
is obtained by setting its diagonal to z, and evaluating the non-diagonal entries from the diagonal
using Eqs. (12).

Now we turn our attention to the region of dY-regular priors and identify the mechanisms
that are optimal with respect to both utility and min-mutual information in this region. Precisely,
we show that the set of these optimal mechanism consists exactly of all mechanisms that can be
mapped to a tight-constraints one using some remap R.

Theorem 4 (Optimality). Let dY be a metric for which at least one tight-constraints mechanism
exists. Then a dY-private mechanism H : Y → Z is dY-optimal (wrt both utility and min-mutual
information) for every dY-regular prior π iff there is a remap R : Z → Y such that HR is a
tight-constraints mechanism for dY.

Proof. If there exists a tight-constraints mechanism H′ for a given metric dY, then H′ must satisfy
Eq. (15). This implies that the upper-bound in Theorem 2 is reachable by H′ and the identity
remap. Thus the upper-bound, in this case, is tight. Now consider a dY-private mechanism
H : Y → Z. By Theorem 2, H meets that upper bound for the utility (and therefore is dY-
optimal) iff it satisfies the condition Φ diag(HR) = 1, with some remap R. Since H is dY-private,
HR is also dY-private. Now by Proposition 7, satisfying the condition Φ diag(HR) = 1 (meaning
that H is optimal) is equivalent to that HR is a tight-constraints mechanism (for dY). Using the
relation, given by Proposition 4, between utility and min-mutual information, the same argument
holds for the latter. � �
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Observe that tight-constraints mechanisms are optimal because they are mapped to them-
selves by the identity remap. In the light of Theorem 4, we consider the special case of the
uniform prior, denoted by u, where all results in Y are equally likely. Note that this prior cor-
responds to users having unbiased knowledge about the query results, i.e. they assume that all
the true results Y are yielded, by executing the query, with the same probability. Firstly, the
following lemma proves an equivalence between the existence of at least one tight-constraints
mechanism on one hand and the uniform prior u being dY-regular on the other hand.

Proposition 8. For a given metric dY, there exists at least one tight-constraints mechanism iff the
uniform prior u is dY-regular.

Proof. By Proposition 7, if there is at least a tight-constraints mechanism Ĥ, then Eq. (15) must
hold for this mechanism. Taking the transpose of both sides in this equation, and noting that
Φt = Φ (because Φ is symmetric), then we get that

(diag(Ĥ))t · Φ = 1t.

Scaling the above equation by 1/|Y| yields the row vector u, the uniform prior, on the right hand
side. Thus if a tight-constraints mechanism Ĥ, exists then

(1/|Y|) (diag(Ĥ))t · Φ = u.

which means (By Def. 4) that u is dY-regular, because the row vector (diag(Ĥ))t has only non-
negative entries. For the opposite implication, assume that u is dY-regular. Then by the definition
there is a row vector µ with non-negative entries such that µΦ = u. Taking the transpose of both
sides, and multiplying by |Y|, yields that Eq. (15) is satisfied for H, whose diagonal is given by
diag(H) = |Y| ·µt (non-negative). Thus there exists a tight-constraints mechanism for dY. � �

It is worth noticing that in general the region of dY-regular priors may or may not include the
uniform prior. However, as shown earlier in Section 4, this region is enlarged and converges to
the entire prior space as the distances dY(y, y′) → ∞ for all y , y′. In particular the dY-regular
priors accommodate the uniform prior u if dY is scaled up by an appropriate factor.

In the case of ε-differential privacy it holds that dY = ε dh where dh is the Hamming distance
on databases. Thus there is always a threshold ε∗, above which the uniform prior u is ε dh-regular.
This can provide a design criteria to select a setting for ε such that, according to Proposition 8,
there is a tight-constraints mechanism that is optimal for all ε dh-regular priors.

Using Proposition 8, we can describe the optimal mechanisms for the uniform prior as a
corollary of Theorem 4.

Corollary 3. Let dY be a metric for which there exists at least one tight-constraints mechanism.
Then a mechanism H is dY-optimal for the uniform prior on Y iff HR is a tight-constraints
mechanism for some remap R : Z → Y.

In summary, the existence of tight-constraints mechanisms and their structures depend on the
given metric. The choice of such metric corresponds to the required privacy guarantee. Consider
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in particular the conventional ε-differential privacy, where any two adjacent elements in a domain
Y are required to be indistinguishable relative to ε. In this case, the domain Y and its adjacency
relation ∼ f are modeled by the graph G = (Y,∼ f ); and the requirement of satisfying ε-differential
privacy forY translates in our general model to the metric dY(y, y′) = ε d∼ f (y, y

′), where d∼ f (y, y
′)

is the graph distance between y, y′. With this metric, we find that tight-constraints mechanisms
capture other known differentially-private mechanisms. For example, if we setY to be the output
domain of a counting query executed on a database, we find that the tight-constraints mechanism
for Y is exactly the truncated-geometric mechanism, which was shown by [13] to be optimal
for every prior. Also, we instantiate, in the following, the tight-constraints mechanism when
the metric space (Y, dY) satisfies a certain symmetry. This symmetry captures, in particular, the
graphs for which an optimal mechanism is constructed in [19] for the uniform prior u. Once
again this mechanism is precisely a tight-constraints one. Note that an additional conclusion
which we add here is that this mechanism is optimal not only for u but also for all dY-regular
priors.

6.2 Tight-constraints mechanism for symmetric metric spaces
We consider the mechanisms that satisfy dY-privacy for a given domain Y. We focus here on
the metric spaces (Y, dY) that satisfy a certain symmetry which we call ball-size symmetry. To
describe this property, we recall the standard notion of balls in metric spaces: a ball of radius r
around a point y ∈ Y is the set BdY

r (y) = {y′ ∈ Y : dY(y, y′) ≤ r}. Now we define the ball-size
symmetry as follows.

Definition 7 (ball-size symmetry). A metric space (Y, dY) is said to be ball-size symmetric if for
all y, y′ ∈ Y, and all radii r, we have |BdY

r (y)| = |BdY
r (y′)|.

Note that the above condition is equivalent to saying that for any y ∈ Y, the number of
elements that are at distance r from y depends only on r, allowing us to write this number as nr.
Inspecting the privacy-constraints matrix Φ in this case, we observe that the row sum

∑
y′ φyy′ for

every y ∈ Y is the same and equal to
∑

r nr e−r. This means that the column vector z, of which
every element is equal to 1/

∑
r nr e−r, satisfies Φ z = 1 and therefore yields (by Proposition 7) the

diagonal of a tight-constraints mechanism H. The other (non-diagonal) entries of H follow from
the diagonal as in Definition 6. Thus we conclude the following result.

Proposition 9 (tight-constraints mechanism for symmetric metric spaces). For any metric space
(Y, dY) satisfying ball-size symmetry there is a tight-constraints mechanism H : Y → Y which
is given as hyy′ = edY(y,y′)/∑

r nr e−r.

The main consequence of the above proposition is that the mechanism H is optimal for every
dY-regular prior including the uniform prior u.

The above result generalizes and extends a result by [19] in the context of differential privacy.
The authors of [19] considered two types of graphs: distance-regular and vertex-transitive graphs.
They constructed for these graphs an ε-differentially private mechanism optimal for the uniform
prior. As shown earlier ε-differential privacy for a graph (Y,∼ f ) translates in our setting to the
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(b) 2-count query

Figure 5: Adjacency graphs

metric space (Y, ε d∼ f ). It can be easily seen that if (Y,∼ f ) is either distance-regular or vertex-
transitive, the corresponding metric space (Y, ε d∼ f ) is ball-size symmetric. Therefore, we can
instantiate the tight-constraints mechanism of Proposition 9 to εd∼ f , which gives exactly the
optimal mechanism constructed in [19]. Hence, we directly obtain the same optimality results,
and moreover our analysis shows that this mechanism is optimal on the entire region of εd∼ f -
regular priors, instead of only the uniform one.

7 Case-studies
In this section we show the usefulness of the tight-constraints mechanism by applying it to two
contexts: standard differential privacy and geo-indistinguishability.

7.1 Differential privacy: sum and 2-count queries
We evaluate the tight constraints mechanism for two families of queries, namely sum and 2-count
queries. For each family, we apply the mechanism on databases consisting of u individuals each
having an integer value between 0 and v, and we compare its utility to the geometric mechanism.

It is well-known that no universally optimal mechanism exists for these families; in particular,
the geometric mechanism, known to be optimal for a single counting query, is not guaranteed to
be optimal for sum queries or multiple counting queries. On the other hand, as discussed in
the previous section, tight-constraints mechanisms, whenever they exist, are guaranteed to be
optimal within the region of regular priors.

The comparison is made as follows: for each query, we numerically compute the smallest
ε (using a step of 0.01) for which a tight-constraints mechanism exists (i.e. for which the uni-
form prior u is εd∼ f -regular, see Proposition 8). Then we compute the utility (using an optimal
remap) of both the tight constraints and the geometric mechanisms, for a range of ε starting from
the minimum one. Note that the tight constraint mechanism exists for any ε greater than the
minimum one.

Sum query Let f be the query returning the sum of the values for all individuals, thus it has
range Y = {0, . . . , vu}. By modifying the value of a single individual, the outcome of the query
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Figure 6: Utility for various values of ε

can be altered by at most v (when changing the value from 0 to v), thus two elements i, j ∈ Y are
adjacent iff |i − j| ≤ v. The induced graph structure on Y is shown in Figure 5(a) (for the case
v = 3).

For our case-study we numerically evaluate this query for u = 150, v = 5 and for the uniform
prior. We found that the minimum ε for which a tight-constraints mechanism exists (and is in
fact unique since Φ is invertible) is 0.8. Figure 6(a) shows the utility of the tight-constraint
mechanism, as well as that of the geometric mechanism, for values of ε between 0.8 and 1.3,
the uniform prior and using and optimal remap. We see that the tight-constraints mechanism
provides significantly higher utility than the geometric mechanism in this case.

2-count query Consider now the query f consisting of 2 counting queries (i.e. reporting the
number of users satisfying properties p1 and p2), thus it has rangeY = {0, . . . , u}× {0, . . . , u}. By
modifying the value of a single individual, the outcome of each counting query can be altered by
at most 1, thus two answers (i1, i2), ( j1, j2) ∈ Y are adjacent iff |i1 − j1| ≤ 1 and |i2 − j2| ≤ 1. The
induced graph structure on Y is shown in Figure 5(b).

We evaluate this query for u = 30 and for the uniform prior. We found that the minimum ε
for which a tight-constraints mechanism exists is 0.9. Figure 6(b) shows the utility of the two
mechanisms (with the geometric being applied independently to each counting query) for values
of ε between 0.9 and 1.3 and the uniform prior. Similarly to the sum query, we see that the
tight-constraints mechanism provides significantly higher utility than the geometric mechanism
in this case.

7.2 Geo-indistinguishability
As discussed in Section 3.3, geo-indistinguishability is a notion of location privacy obtained by
taking dX = εd2, where d2 is the Euclidean distance between locations. In [9] it is shown that a
planar version of the Laplace mechanism satisfies ε-geo-indistinguishability. The Planar Laplace
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Figure 7: Utility of location privacy mechanisms for various values of ε

mechanism is continuous, having as input and output the full R2, but in the case of a finite number
of locations it can be discretized and truncated while still satisfying geo-indistinguishability (for
a slightly adjusted ε).

Although the Planar Laplace mechanism is simple, efficient and easy to implement, it pro-
vides no optimality guarantees. On the other hand, for any finite number of locations, the tight-
constraints mechanism, if it exists, is guaranteed to be optimal for εd2-regular priors. In this
section we compare the two mechanisms on a grid of 100 × 100 locations, with step size 1 km.

Note that constructing the tight-constraints mechanism involves inverting the matrix Φ, which
can be done in time O(|X|2.376) using the Coppersmith-Winograd algorithm. This complexity is
much lower than that of recent methods for computing optimal location obfuscation mechanisms.
For instance, the well-known method of Shokri et al. [23] – which uses the adversary’s expected
error as the metric of privacy – involves solving large linear optimization problems and was
evaluated to a grid of only 30 locations (compared to the 10,000 locations in our grid).

Figure 7 shows the utility of the two mechanisms for ε ranging from 0.4 to 1.3 and for a
uniform prior. As expected, the tight-constraints mechanism offers significantly higher utility
than the Planar Laplace mechanism for the same ε.

It should be emphasized, however, that our optimality results hold for the binary gain func-
tion, which corresponds to an attacker trying to guess the true location of the user (the utility
being the probability of a correct guess). This might often be meaningful, especially when the
grid size is big: guessing any incorrect cell could be considered equally bad. But it is also com-
mon to consider gain functions taking the distance between locations into account, with respect
to which the tight-constraints mechanism is not guaranteed to be optimal.

8 Conclusion and future work
In this paper we have continued the line of research initiated by [13, 14] about the existence of
differentially-private mechanisms that are universally optimal, i.e., optimal for all priors. While
the positive result of [13] (for counting queries) and the negative one of [14] (for essentially
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all other queries) answer the question completely, the latter sets a rather dissatisfactory scenario,
since counting queries are a very specific kind of queries, and in general users can be interested in
very different queries. We have then considered the question whether we can achieve optimality
with the same mechanism for a restricted class of priors. Fortunately the answer is positive: we
have identified a region of priors, called dY-regular, and a mechanism, called tight-constraints,
which is optimal for all the priors in this region. We have also provided a complete and effec-
tively checkable characterization of the conditions under which such mechanism exists, and an
effective method to construct it. As a side result, we have improved on the existing bounds for the
min-entropy leakage induced by differential privacy. More precisely, we have been able to give
specific and tight bounds for each dY-regular prior, in general smaller than the bound existing in
the literature for the worst-case leakage (achieved by the uniform prior [18]).

So far we have been studying only the case of utility for binary gain functions. In the future
we aim at lifting this limitation, i.e. we would like to consider also other kinds of gain. Further-
more, we intend to study how the utility decreases when we use a tight-constraints mechanism
outside the class of dY-regular priors. In particular, we aim at identifying a class of priors, larger
than the dY-regular ones, for which the tight-constraints mechanism is close to be optimal.
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