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The concept of differential privacy emerged as an approach to protect the privacy of the individuals participating in

statistical databases. Roughly, a mechanism satisfies differential privacy if the presence or value of a single individual

in a database does not change significantly the likelihood of obtaining a certain answer to any statistical query posed

by the data analyst. Differentially-private mechanisms are often oblivious: first the query is processed on the database

to produce the true answer, and then this answer is adequately randomized before being reported to the data analyst.

Ideally the mechanism should minimize leakage, i.e., obfuscate as much as possible the link between the reported

answer and the individuals’ data. At the same time, it should maximize utility, i.e., the reported answer should be as

close as possible to the true one. These two goals are, however, conflicting, and a trade-off between privacy and utility

is imposed.

In this paper we use quantitative information flow to analyze the leakage and the utility of oblivious differentially-private

mechanisms. We introduce a technique that exploits some graph-symmetries presented by the adjacency relation on

databases to derive bounds on the leakage of the mechanism, measured as min-entropy leakage. We use identity gain

functions, which are closely related to min-entropy leakage, to evaluate utility, and therefore we are also able to derive

bounds for it. Depending on the graph-symmetries we consider, we can additionally build a mechanism that maximizes

utility while preserving the required level of differential privacy.
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1 Introduction

In statistical databases the data of a (large) number of individuals are collected, and data analysts

are allowed to pose statistical queries. Typical examples of statistical queries include average

value, total counting, or the fraction of the entries in the database that satisfy some property.

Statistical databases are of special importance in many areas. For instance, medical databases

can provide information on how a disease spreads, and a census database can help authorities

decide how to spend the budget of years to come. The field of statistical disclosure control

concerns the problem of revealing accurate statistics about a set of respondents while preserving

the privacy of individuals.

In principle we would like to consider the global information relative to the database as

public, and the individual information about a individual as private. It is not trivial to combine

these two requirements, because these two kinds of information are intrinsically linked. As an

example, suppose that a statistical database of individuals of a certain country indicates that the

life expectancy for women is 5 years longer than for men. Clearly this piece of information

reveals something about each individual in this country, even about individuals not present in the

database.

Moreover, private information about particular individuals can be revealed even if only sta-

tistical queries about the sample as a whole are allowed. Consider, for example, a database that

stores the values of the salaries of a set of individuals, and assume that a data analyst can pose the

query “what is the average salary of the individuals in the database?”. We would like to obtain

this information without being able to infer the salary of any specific individual. Unfortunately

this is not always possible. In particular, if the number of individuals in the database is known

(via the result of a counting query, for instance), and an individual is removed from (or included

in) the database, it is possible to infer his salary by querying again the database and calculating

the influence of the removal (or inclusion) on the answer to the query.

Yet another issue to be considered is side information, which is any piece of data about indi-

viduals that the adversary has and that does not come from the database itself. It may originate

from prior beliefs, from public sources such as newspapers, or even from other databases. The

problem with side information is that some piece of information in itself harmless may pose a

threat to the privacy of individuals if combined with the answer to a query in the database [11].

The problem of statistical disclosure control is not trivial, and in order to cope with it, Dwork

proposed the notion of differential privacy, which has received a lot of attention in the privacy

community. Differential privacy is based on the idea that the presence or absence of an indi-

vidual in the database, or the individual’s particular value, should not significantly change the

probability of obtaining any specific answer for a certain query [11, 12, 13, 14]. Intuitively, it

ensures that individuals can opt in (or out) of the database without significantly changing the

probability of any given answer to a query to be reported, and hence it is “safe” for an individual

to join (or leave) the database. A strong property of differential privacy is that it is indifferent to

side information: the privacy guarantee holds no matter what side information an adversary may

have.

There are several approaches in the literature to implement differentially-private query mech-

anisms. For numeric queries, Dwork showed that it is enough to consider additive Laplacian
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noise [11] that calculates the true answer to the query on the database, and then adds to this

answer some noise drawn from a Laplace distribution. Later on more sophisticated mechanisms

have been proposed, which correlate noise between queries and allow for more information to

be extracted from the database while still preserving differential privacy [7, 22, 16]. For the case

where output perturbation does not make sense (e.g., the case of non-numeric queries, or the case

where the perturbed answer is not almost as good as the exact answer), McSherry and Talwar

proposed the exponential mechanism [21].

Although differential privacy is a promising approach to the problem of statistical disclosure

control, the fact that it relies on the randomization of the query answer poses some challenges

with respect to the utility of the mechanism. If the noise is not introduced with sufficient care,

the reported answer can be so “different” from the true answer that the informative purpose of

the database is compromised.

Indeed, a differentially-private mechanism has two goals. On one hand, in order to ensure

privacy, it needs to minimize the amount of information that the randomized answers reveal

about the database (and, in particular, about individuals). Drawing a parallel with information

flow, privacy can be seen as the converse of the information leakage from databases to reported

answers. On the other hand, the mechanism also needs to provide good utility, i.e., it needs

to maximize the correlation between the true answers and the randomized answers. Clearly

differential privacy introduces a trade-off between privacy and utility: the noise that obfuscates

the link between the reported answer and the database has the side-effect of driving the answer

away from the true one.

In this context, some natural questions arise. How to quantify the privacy and the utility

a differentially-private mechanism provides? Is there a way of ensuring a desired level of dif-

ferential privacy and providing the maximum utility at the same time? In this paper we address

these two questions by connecting differential privacy to the well-established field of quantitative

information flow.

1.1 Quantitative information flow

Protecting private information is a concern not only of the privacy community. In a broad range

of computational systems it is necessary to avoid the leakage of secret information through public

observables. If some information is supposed to be confidential, then unauthorized users should

not be allowed to infer such information from the output or the behavior of the system. Ideally

we would like systems to be completely secure, i.e., protect the secret information entirely, but

this goal is usually impossible to achieve. It is thus important to quantify leakage, and that is the

concern of the field of quantitative information flow.

Information theory is widely regarded as a natural framework to provide firm foundations

to quantitative information flow. The basic idea is that a system can be seen as a channel in

the information-theoretic sense, where the secret is the input and the observables are the output.

The entropy of the input provides a measure of its vulnerability, i.e., how easily an adversary

can discover the secret. As argued in [20], the notion of entropy should be chosen according

to the model of adversary, and to the way we estimate the success of the attack. The entropy

of a random variable represents its uncertainty, hence the vulnerability is anti-monotonic on
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the entropy. One of the main notions of entropy used for quantitative information flow in the

literature is min-entropy [23, 8, 24].

Independently of the intended model of adversary, the notion of leakage can be expressed in a

uniform way as the difference between the initial uncertainty about the secret, i.e., the uncertainty

before we run the system, and the remaining uncertainty about the secret, i.e., the uncertainty

after we run the system and observe its outcome:

information leakage = initial uncertainty − remaining uncertainty (1)

In general the observation of the outcome should increase the probabilistic knowledge about

the secret, and consequently decrease the corresponding uncertainty. Therefore we expect the

result of (1) to be non-negative. This is indeed the case for min-entropy.

1.2 Goal of this paper

The main goal of this work is investigate the relationships between differential privacy and quan-

titative information flow. At the motivational level, the concern about privacy is akin the concern

about information leakage. At the conceptual level, the differentially-private mechanism can be

seen as an information-theoretic channel, and the limit case of complete privacy (ǫ = 0) corre-

sponds to a 0-capacity channel, which does not allow any leakage.

We use these similarities to describe and measure relevant properties of the differentially-

private mechanism in terms of uncertainty, entropy, and leakage. More specifically, we investi-

gate the notion of differential privacy and its implications in the light of the min-entropy frame-

work for information flow.

First, we address the problem of characterizing the protection that differential privacy grants

with respect to information leakage. Given that a trade-off between privacy and utility is an im-

position on any differentially-private query mechanism, it is interesting to quantify the utility of

the mechanism and explore ways to improve it while preserving privacy. We attack this problem

by considering the graph structure that the query induces on the true answers.

Contribution The main contributions of this paper can be summarized as follows.

• We propose an information-theoretic framework to reason about both information leakage

and utility in differentially-private query mechanisms.

• We explore the graph-theoretic foundations of the adjacency relation on databases, and we

point out two types of symmetries (distance-regular graphs and vertex-transitive graphs)

which allows us to prove that differential privacy induces a bound on the min-entropy

leakage.

• Furthermore, we prove that this bound is tight, i.e., that there always exists a differentially

private mechanism that attains this bound.
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• We prove that if the graph structure of the answers satisfies our symmetry conditions,

then differential privacy induces a bound on the utility, measured in terms of identity gain

functions. We also prove that this bound is tight.

• As a side result, we prove that under our symmetry conditions the exponential mechanism

is optimal, i.e., it provides maximum utility for a given degree of privacy.

1.3 Roadmap to the paper

This paper is organized as follows. In Section 2 we review some basic concepts of information

theory, quantitative information flow, differential privacy, and graph theory.

In Section 3 we introduce a model to reason about privacy and utility for query mechanisms

for statistical databases. We focus on oblivious mechanisms, i.e., randomization methods that

can be split into two sub-channels in cascade. The first channel corresponds to the query: it takes

a database as input and produces the true answer as output. The second channel corresponds

to the noise: it takes the true answer as input, and outputs a randomized answer (according to

some differentially-private policy) to be reported to the data analyst. In this model, the leakage

of private information is the information that flows from databases to reported answers, i.e., the

information flow in the composition of the two sub-channels. We measure this leakage using the

min-entropy leakage framework. Utility is corresponds to posterior min-entropy in the second

sub-channel.

To derive bounds on leakage and utility, we develop a technique that exploits the graph struc-

ture induced by the adjacency relation on databases and on true answers. In Section 4 we show

that if the graph structure of the input to a channel is either distance-regular or vertex-transitive,

it is possible to transform the channel matrix while preserving their information flow proper-

ties. This allows us to calculate bounds on the a posterior entropy of the channels, and to derive

bounds on the maximum min-entropy leakage of the channels.

In Section 5 we show that the set of all databases are both distance-regular and vertex-

transitive, and we derive our results for leakage by applying our bounds on min-entropy leakage

to the channel from databases to reported answers. In Section 6 we consider the adjacency rela-

tion on true answers induced by the adjacency relation on databases, and then apply our bounds

to the channel from true answers to reported answers. This allows us to derive our results for

utility.

Finally, in Section 7 we review some of the related work in the literature, and in Section 8 we

make our final remarks and conclude the paper.

2 Preliminaries

In this section we review some concepts from from differential privacy, from the information-

theoretic framework for quantitative information flow, and from graph theory.

6



PIRSES-GA-2011-295261 /MEALS Page 7 of 46 Public

2.1 The information-theoretic framework for quantitative information flow

In the following, let X,Y denote two discrete random variables with carriers X = {x0, . . . , xn−1},

Y = {y0, . . . , ym−1}, and let π denote a probability distribution for X, called a prior distribution.

An information-theoretic channel (or simply a channel) is a triple (X,Y,M), where X is the

channel’s input, Y is the channel’s output, and M is a matrix of conditional probabilities called

the channel matrix. Each element Mx,y represents the probability that Y takes value y given that X

has value x. Together, π and M, define induce a joint probability distribution p for X,Y , defined

as p(x, y) = πxMx,y. Note that p satisfies p(x) = πx and p(y|x) = Mx,y.

There are several measures of the information shared by X and Y via the channel matrix. In

this paper we will concentrate in the measures based on min-entropy leakage.

Min-entropy leakage The vulnerability of X is defined as

V(X) = max
x∈X

p(x)

Intuitively, V(X) represents the probability that an adversary can correctly guess the value of

X in a single try, since a rational adversary will choose as her guess the value of x with maximum

probability. Correspondingly, the conditional vulnerability of X given Y is defined as

V(X|Y) =
∑

y∈Y

p(y)V(X|Y = y)

=
∑

y∈Y

max
x∈X

p(x)p(y|x)

In words, it represents the probability that the adversary can correctly guess the value of X

in one try after observing the value of Y . It can be shown that
V(X|Y)

V(X)
≥ 1, and intuitively it

represents by how much the adversary’s probability of success is increased by the observation of

the channel’s output.

For mathematical convenience, the vulnerability is usually converted into bits by taking its

logarithm in base 2. The min-entropy of X is then defined as

H∞(X) = − log2 V(X)

and the conditional min-entropy of X given Y is defined as

H∞(X|Y) = − log2 V(X|Y)

The min-entropy leakage (or simply min-leakage) of X to Y is defined as the difference be-

tween the a priori (before observing the value of Y) and a posteriori (after observing the value

of Y) min-entropies:

I∞(X; Y) = H∞(X) − H∞(X|Y)

= log2

V(X|Y)

V(X)

7
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It can be shown that 0 ≤ I∞(X; Y) ≤ H∞(X), but min-leakage is not symmetric, i.e., in general

we have I∞(X; Y) , I∞(Y; X).

Min-capacity is the worst-case leakage obtained by maximising over all input distributions:

C∞ = max
π

I∞(X; Y)

It has been proven in [8] that C∞ is obtained at the uniform distribution, and that it is equal

to the sum of the maxima of each column in the channel matrix, i.e., C∞ =
∑

y ∈Ymaxx ∈X p(y|x).

2.2 Differential Privacy

Let X be the set of all possible databases. Two databases x, x′ ∈ X are adjacent (or neighbors),

written x ∼ x′, if they differ for the presence or the value of exactly one individual. We call ∼ the

adjacency relation on databases. Note that the structure (X,∼) forms an undirected graph, where

vertices are databases and edges connect every two neighbor databases.

A differentially-private mechanism (or simply a mechanism) is a probabilistic function from

X to some set of possible answersZ. Differential privacy is based on the idea that a mechanism

provides sufficient protection if the ratio between the probabilities of two adjacent databases to

give a certain answer is bound by eǫ , for some ǫ > 0. Formally:

Definition 1 ([13]). A mechanism K from X to Z satisfies ǫ-differential privacy if for all pairs

x, x′ ∈ X, with x ∼ x′, and all S ⊆ Z, we have:

Pr[K(x) ∈ S ] ≤ eǫ × Pr[K(x′) ∈ S ] (2)

Note that in this work we consider X,Z to be finite, therefore all probability distributions

are discrete and it is sufficient to consider probabilities of the form Pr[K(x) = z] in the above

definition.

Intuitively, (2) implies that if a value of a single individual changes in a dataset (either by in-

clusion, removal or modification), the probability of the querying mechanism to report a specific

answer will not “vary much”. In other words, the influence of a single individual in a database is

“negligible” with respect to the whole set of individuals. Of course the notion of what is meant

by “much” and “negligible” depends on the value of ǫ, and it is usual to think of ǫ as a constant

smaller than 1. In fact, for 0 < ǫ < 1 we have eǫ ≈ (1 + ǫ), which further attests the notion that

differential privacy ensures a “small” multiplicative difference in the distributions generated by

neighbor databases.

2.3 Graph theory

Given a graph G = (V,∼), the distance d(v,w) between two vertices v,w ∈ V is the number of

edges in a shortest path connecting them. If V is the set of vertices of G, we denote by V〈d〉(v)

the subset of vertices in V that are at distance d from the vertex v. The diameter δ of G is the

maximum distance between any two vertices in V, i.e., δ = maxv,w∈V d(v,w). The degree of

a vertex is the number of edges incident to it. G is called regular if every vertex has the same

8
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(a) Tetrahedral graph (b) Cubical graph (c) Petersen graph

Figure 1: Some distance-regular graphs with degree 3

(a) Cycle: degree 2 (b) Degree 4 (c) Clique: degree 5

Figure 2: Some vertex-transitive graphs

degree. A regular graph with vertices of degree k is called a k-regular graph. An automorphism

of G is a permutation σ on the vertex setV such that for any pair of vertices v,w, if v ∼ w, then

σ(v) ∼ σ(w). The automorphism group of a graph G is the set of all of its automorphisms. Let

σk be the composition of σ with itself k times, i.e., σk(v) = σ(σk−1(v)) for k > 0, and σ0(v) = v.

The following two definitions introduce the classes of graphs that we will be interested in, and

some examples of distance-regular graphs and vertex-transitive graphs can be found in Figure 1

and Figure 2, respectively.

Definition 2 (Distance-regular graph). A graph G = (V,∼) is called distance-regular if there

exist integers bd and cd (d ∈ {0, . . . , δ}) (called intersection numbers) such that, for all vertices

v,w at distance d(v,w) = d, there are exactly

• bd neighbors of w inV〈d+1〉(v)

• cd neighbors of w inV〈d−1〉(v)

The second class we are interested in are vertex-transitive graphs.

Definition 3 (Vertex-transitive graph). A graph G = (V,∼) is called vertex-transitive if for any

pair v,w ∈ V there exists an automorphism σ such that σ(v) = w.

9
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3 A model of utility and privacy for statistical databases

We fix a finite setU = {0, 1, . . . , u− 1} of u individuals participating in the database. In addition,

we fix a finite set V = {v0, v1, . . . , vv−1}, often called the universe, representing the set of (v

different) possible values for the sensitive attribute of each individual (e.g., disease name in a

medical database). In the more general case where there are several sensitive attributes (e.g.,

salary and security number in a census sample), we can think of the elements of V as tuples.

The absence of an individual in the database, if allowed, can be modeled with a special value in

V. A database x = d0 . . . du−1 is a u-tuple where each di ∈ V is the value of the corresponding

individual. The set of all databases isX = Vu. Denoting by∼ the adjacency relation on databases

(i.e., x ∼ x′, if and only if x and x′ are databases that differ in the value of exactly one individual),

we recall that the structure (X,∼) is an undirected graph.

Let K be a mechanism from X to Z (see Figure 3). The mechanism can be modeled by a

channel (X,Z,M), where X,Z are the channel’s inputs and outputs respectively, and M is the

channel matrix. The definition of differential privacy can be directly expressed as a property of

the channel: it satisfies ǫ-differential privacy iff:

Mx,z ≤ eǫMx,z′ for all x, x′ ∈ X s.t. x ∼ x′, and all z ∈ Z

Intuitively, the correlation between X and Z measures how much information about the com-

plete database the adversary can obtain by observing the reported answer. We will refer to this

correlation as the leakage of the channel, denoted by L(X,Z).

We model the true answer to the query f by the random variable Y ranging over Y =

Range( f ). The correlation between Y and Z measures how much we can learn about the true

answer from the reported one. We will refer to this correlation as the utility of the channel,

denoted byU(Y,Z).

In practice, the mechanism K is often oblivious, meaning that the reported answer Z only

depends on the true answer Y and not on the database X. In this case, K , seen as a channel, can

be decomposed into two parts: a channel from X to Y modelling the query f , and a noise channel

H from Y to Z. These two channels are said to be in cascade, since the output of the first one

is the input for the second one. In this case, the definition of utility only depends on the noise

channel H . Figure 4. depicts the leakage relating X and Y and the utility relating Y and Z for a

decomposed oblivious mechanism.

10
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X

dataset
f

query

Y

real answer
H

noise
channel

Z
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K (ǫ-diff. priv. mechanism)
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Leakage

Figure 4: Leakage and utility for oblivious mechanisms

We capture the notion of the adversary’s side information as the prior distribution on X, which

is standard in works on information flow and also on differential privacy [15, 19].

The main goal of this paper is to explore the relation between differential privacy and quan-

titative information flow. We will use the model we just introduced to explore the following

questions:

1. Does ǫ-differential privacy induce a bound on the information leakage of the mechansim

K?

2. Does ǫ-differential privacy induce a bound on the utility?

3. Given a query f and a value ǫ > 0, can we construct a mechanism K which satisfies

ǫ-differential privacy and also presents maximum utility?

We will see that the answer to question 1 is positive in case we take the measure of leakage

to be the min-entropy leakage, and we provide bounds that are tight (i.e., for every ǫ there is a

K whose leakage reaches the bound). Regarding question 2, we are able to give a tight bound

in some cases which depend on the structure of the query, and for the same cases, we are able to

construct an oblivious K with maximum utility (defined in terms of a identity gain function), as

requested in question 3.

4 Relating differential privacy and quantitative information

flow

In this section we propose a general technique that exploits the graph structure of the input to

channels in order to establish relations between ǫ-differential privacy and min-entropy leakage,

11
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which imply results regarding privacy and utility. More specifically, if the graph structure of the

input to a channel is distance-regular or vertex-transitive, we show how to transform the channel

matrix into an equivalent matrix with certain regularities that can be used to derive bounds on the

a posteriori min-entropy of the channel. These bounds can be instantiated for our results on the

leakage of mechanisms (Section 5) and their utility (Section 6).

In Section 4.2 we will present our transformations on the channel matrix, and in Section 4.3

we will show how to derive bounds on the posterior min-entropy for the matrix obtained. It is

important to note that the bounds on the posterior min-entropy are obtained under the assumption

that the input distribution is uniform. This is not a restriction for our bounds on the leakage: as

seen in Section 2, the maximum min-entropy leakage is achieved in the uniform input distribution

and, therefore, any bound for the uniform distribution is also a bound for all other input distribu-

tions. In the case of utility the assumption of uniform input distribution is more restrictive, but

we will see that it still provides interesting results for several practical cases.

4.1 Assumptions and notation

In the rest of this section we consider channels (usually referred to by M, M′, M′′ or N) having

input A and output B, with finite carriersA = {a0, . . . , an−1} and B = {b0, . . . , bm−1}, respectively,

and we assume that the probability distribution of A is uniform. Furthermore, we assume that

|A| = n ≤ |B| = m. If it is the case that n > m, we just add to the matrix enough zero-ed

columns, i.e., columns containing only 0’s, so as to match the number of rows. Note that adding

zero-ed columns does not change the min-entropy leakage nor the conditional min-entropy of

the channel. We assume as well an adjacency relation ∼ on A, i.e., that (A,∼) is an undirected

graph structure. With a slight abuse of notation, we may use the number i to denote the element

ai ofA (or, equivalently, the element bi of B) whenever it is clear from the context. In particular,

we also write i ∼ h when i and h are associated with adjacent elements ai ∼ ah of A, and we

write d(i, h) to denote the distance between the elements ofA associated with i and h.

We recall that a channel matrix M satisfies ǫ-differential privacy if for each column j and for

each pair of rows i and h such that i ∼ h we have that:

1

eǫ
≤

Mi, j

Mh, j

≤ eǫ .

The a posteriori entropy of a channel with matrix M will be denoted by HM
∞ (A|B), and its

min-entropy leakage by IM
∞ (A; B).

In the proofs we will need to use several indices, and we will typically use the letters i, j, h, k, l

to range over rows and columns (usually i, h, l will range over rows and j, k will range over

columns). Given a matrix M, we denote by maxM
j the maximum value of column j over all rows

i, i.e., maxM
j = maxi Mi, j, and by maxM = maxi, j Mi, j the maximum element of the matrix.

We denote by M[l→ k] the matrix obtained by “collapsing” the column l into k, i.e.

M[l→ k]i, j =



























Mi,k + Mi,l if j = k,

0 if j = l,

Mi, j otherwise

12
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Also, given a partial function ρ : A → B, the image of A under ρ is ρ(A) = {ρ(a)|a ∈

A, ρ(a) , ⊥}, where ⊥ stands for “undefined”.

Finally, given a graph G = (V,∼) with diameter δ, we denote by ∆G the set {0, 1, . . . , δ}.

We may omit the subscript and denote the set only by ∆ if the context does not allow for any

confusion. For a fixed d, we define nd = |V〈d〉(v)| as the number of vertices in V at distance d

from v, and we intend that it will be always clear by the context to which set of vertices V and

element v the value nd is associated with.

4.2 The matrix transformation

Consider a channel whose matrix M has at least as many columns as rows and assume that

the input distribution is uniform. Our transformation on the channel matrices is divided into

two steps. First, we transform M into a matrix M′ in which each of the first n columns has a

maximum in the diagonal, and the remaining columns are all 0’s. Second, under the assumption

that the input domain is distance-regular or vertex-transitive, we transform M′ into a matrix M′′

whose diagonal elements are all the same, and coincide with the maximum element maxM′′ of

M′′. Our transformation ensures that both M′ and M′′ are valid channel matrices (i.e., each

row is a probability distribution), respect ǫ-differential privacy, and preserve the value of the a

posteriori entropy for the uniform input distribution. A scheme of our transformation is shown

in Figure 5, where Lemma 1 (Step 1) is the first step of our transformation, and the second is

step either Lemma 2 (Step 2a) or Lemma 4 (Step 2b), depending on whether the graph structure

is distance-regular or vertex-transitive, respectively.

The next Lemma is relative to the first step, and it is independent of the graph structure of the

input.

Lemma 1 (Step 1). Let M be a channel matrix of dimensions n × m s.t. n ≤ m, and assume that

M satisfies ǫ-differential privacy. Then it is possible to transform M into a matrix M′ satisfying

the following conditions:

(i) M′ is a valid channel matrix:
∑m−1

j=0 M′i, j = 1 for all 0 ≤ i ≤ n − 1;

(ii) Each of the first n columns has a maximum in the diagonal: M′i,i = maxM′

i for all 0 ≤ i ≤

n − 1;

(iii) The m−n last columns only contain 0’s: M′i, j = 0 for all 0 ≤ i ≤ n−1 and all n ≤ j ≤ m−1;

(iv) M′ satisfies ǫ-differential privacy:
M′

i, j

M′
h, j

≤ eǫ for all 0 ≤ i, h ≤ n − 1 s.t. i ∼ h and all

0 ≤ j ≤ m − 1;

(v) HM′

∞ (A|B) = HM
∞ (A|B), if A has the uniform distribution.

Proof. We first show that there exists a matrix N of dimensions n × m, and an injective total

function ρ : A → B such that:

• Ni,ρ(i) = maxN
ρ(i)

for all i ∈ A, and

13
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M











M0,0 M0,1 . . . M0,m−1

M1,0 M1,1 . . . M1,m−1

...
...

. . .
...

Mn−1,0 Mn−1,1 . . . Mn−1,m−1











Lemma Step 1

(any graph structure)

M ′











maxM
′

0
− . . . − 0 . . . 0

− maxM
′

1
. . . − 0 . . . 0

...
...

. . .
...

...
. . .

...

− − . . . maxM
′

n−1
0 . . . 0











Lemma Step 2a

(distance-regular)

Lemma Step 2b

(vertex-transitive)

M ′′











maxM
′′

− . . . − 0 . . . 0

− maxM
′′

. . . − 0 . . . 0

...
...

. . .
...

...
. . .

...

− − . . . maxM
′′

0 . . . 0











Figure 5: Steps of the matrix transformation for distance-regular and vertex-transitive graphs

• Ni, j = 0 for all j ∈ B\ρ(A) and all i ∈ A.

The first condition means that every row contains the maximum of exactly one column, and

the second condition means that the exceeding columns are zero-ed columns.

We iteratively construct ρ and N “column by column” via a sequence of approximating partial

functions ρs and matrices Ns (0 ≤ s ≤ m).

• Initial step (s = 0)

Define ρ0(i) = ⊥ for all i ∈ A and N0 = M.

• sth step (1 ≤ s ≤ m)

Let j be the s-th column and let i ∈ A be one of the rows containing the maximum value

of column j in M, i.e., Mi, j = maxM
j . There are two cases:

14



PIRSES-GA-2011-295261 /MEALS Page 15 of 46 Public

1. ρs−1(i) = ⊥. We define:

ρs = ρs−1 ∪ {i 7→ j} and

Ns = Ns−1

2. ρs−1(i) = k ∈ B. We “collapse” column j into column k:

ρs = ρs−1 and

Ns = Ns−1[ j→ k]

Since the operation of “collapsing” keeps the mapping i 7→ k in ρs and then zeroes the column

j in Ns, all unassigned columns B \ ρm(A) must be zero in Nm. We finish the construction by

taking ρ to be the same as ρm after assigning to every row one of the columns in B\ ρm(A) (there

are enough such columns since n ≤ m). We also take N = Nm. Note that by construction N is a

channel matrix.

Thus we get a matrix N and a function ρ : A → B which, by construction, is injective and

satisfies Ni,ρ(i) = maxN
ρ(i)

for all i ∈ A, and Ni, j = 0 for all j ∈ B\ρ(A) and all i ∈ A. Furthermore,

N provides ǫ-differential privacy (condition (iv)) because each column is a linear combination

of columns of M. It is also easy to see that
∑

j maxN
j
=

∑

j maxM
j , and from that it immediately

follows that HN
∞(A|B) = HM

∞ (A|B) (recall that A has the uniform distribution and therefore the a

posteriori entropy is a function of the sum of the maximum of each column), so condition (v) is

satisfied.

Finally, we create our claimed matrix M′ from N just by rearranging the columns according

to ρ. Note that the order of the columns is irrelevant, since any permutation represents the

same conditional probabilities and therefore the same channel1. The resulting matrix M′ has all

maxima in the diagonal M′i,i for 0 ≤ i ≤ n − 1, and every element in the columns n ≤ j ≤ m − 1

are 0, which satisfies conditions (ii) and (iii). Also, since N is a valid channel matrix, so is M′

and condition (i) is also satisfied.

�

The second step of our transformation depends on the graph structure of (A,∼). Before we

discuss this step, we need to introduce a notion of distance between elements in B, derived from

the notion of distance between elements inA. Let M be a channel matrix in which the maximum

of each column is in the diagonal, as in Figure 6. Then we define the distance between two

elements j1, j2 ∈ B as follows:

d( j1, j2) =















d(i1, i2) if there exist i1, i2 ∈ A such that i1 = j1 and i2 = j2,

⊥ otherwise.
(3)

Note that the range of the notion of distance defined above is the set ∆ = {0, 1, . . . , δ}, where

δ is the diameter of (A,∼). Let B〈d〉( j) ⊆ B be the set of elements at distance d from an element

j ∈ B. Of course, for every j ∈ B, we have
⋃

d∈∆B〈d〉( j) = B.

1By rearranging the columns of the channel matrix we may change the marginal probability of the outputs.

This, however, poses no problem for our purposes, since the maximum a posteriori entropy of the channel will be

maintained. If we want the marginal probability of the outputs to remain unchanged, we can just “re-label” the

columns after the rearrangement so they will match the correct outputs.

15
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row i Mi,0 . . . . . . . . . Mi,m−1Mi,j′

...

Mj′,j′ = max
M
j′

d(i, j′)

{

Mi,j′′

...

...

...

Mj′′,j′′ = max
M
j′′















d(i, j′′)

M0,0 M0,1 . . .

M1,0 . . .
...

. . . M0,m−2 M0,m−1

. . . M1,m−1

...

...

Mn−2,0 . . .

Mn−1,0 Mn−1,1 . . .

...

. . . Mn−2,m−1

. . . Mn−1,m−2 Mn−1,m−1

Figure 6: The relation between elements of a row i and the elements in the diagonal

Finally, let us extend the adjacency relation ∼ onA to an adjacency relation ∼′ on B by using

the notion of distance of (3). For any j1, j2 ∈ B, we have j1 ∼
′ j2 if and only if d( j1, j2) = 1.

Let B∗ = {0, 1, . . . , n − 1} be the subset of B that excludes the zero-ed columns of M′ from n to

m − 1. Therefore, if (A,∼) is distance-regular, so it is (B∗,∼′).

Now we are ready to present the lemma for the second step of our transformation, in the case

of distance-regular graphs.

Lemma 2 (Step 2a). Let M′ be a channel matrix of dimensions n × m such that n ≤ m, and

assume that M′ satisfies ǫ-differential privacy. Let ∼ be an adjacency relation onA such that the

graph (A,∼) is connected and distance-regular. Assume that the maximum value of each column

is on the diagonal, that is Mi,i = maxM
i

for all i ∈ A, and that all the last m − n columns have

only zero elements, i.e., M′i, j = 0 for all 0 ≤ i ≤ n − 1 and n ≤ j ≤ m − 1. Then it is possible to

transform M′ into a matrix M′′ satisfying the following conditions:

(i) M′′ is a valid channel matrix:
∑m−1

j=0 M′′i, j = 1 for all 0 ≤ i ≤ n − 1;

(ii) The elements of the diagonal are all the same, and are equal to the maximum of the matrix:

M′′i,i = maxM′′ for all 0 ≤ i ≤ n − 1;

(iii) The m−n last columns contain only 0’s: M′′i, j = 0 for all 0 ≤ i ≤ n−1 and all n ≤ j ≤ m−1;

(iv) M′′ satisfies ǫ-differential privacy:
M′

i, j

M′
h, j

≤ eǫ for all 0 ≤ i, h ≤ n − 1 s.t. i ∼ h and all

0 ≤ j ≤ m − 1;

(v) HM′′

∞ (A|B) = HM′

∞ (A|B), if A has the uniform distribution.

16
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Proof. Let us consider B∗ = {0, 1, . . . , n − 1}, i.e., the subset of B that excludes the zero-ed

columns of M′ from n to m − 1. Note that we can safely use the set B∗ instead of B in this proof

because the zero-ed columns do not contribute to the a posteriori entropy, and trivially respect

ǫ-differential privacy.

We then define the matrix M′′ as follows.

M′′i, j =















1
n|A〈d(i, j)〉(i)|

∑

k∈B∗
∑

h∈A〈d(i, j)〉(k) M′
h,k

if j ∈ B∗,

0 otherwise.

Condition (iii) is clearly satisfied, and we now show that M′′ is indeed a channel matrix

(condition (i))..

∑

j∈B∗

M′′i, j =
∑

j∈B∗

1

n|A〈d(i, j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i, j)〉(k)

M′h,k

=
1

n

∑

k∈B∗

∑

j∈B∗

1

|A〈d(i, j)〉(i)|

∑

h∈A〈d(i, j)〉(k)

M′h,k

Note that for every i, B∗ =
⋃

d∈∆B
∗
〈d〉

(i), and for different values of d the sets B∗
〈d〉

(i) are disjoint.

Therefore the summation over j ∈ B∗ can be split as follows

=
1

n

∑

k∈B∗

∑

d∈∆

∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|

∑

h∈A〈d〉(k)

M′h,k

=
1

n

∑

k∈B∗

∑

d∈∆

∑

h∈A〈d〉(k)

M′h,k

∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|

since
∑

j∈B∗
〈d〉

(i)

1

|A〈d〉(i)|
= 1 (recall that the definition of distance in B is given as that in A), we

obtain

=
1

n

∑

k∈B∗

∑

d∈∆

∑

h∈A〈d〉(k)

M′h,k

and now the summations over h and d can be joined together

=
1

n

∑

k∈B∗

∑

h∈A

M′h,k

17
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now reorganizing the summations, considering that M′ is a channel matrix, and that |B∗| = n we

have

=
1

n

∑

h∈A

∑

k∈B∗

M′h,k

=
1

n

∑

h∈A

1

= 1

which implies that condition (i) is satisfied.

We now turn our attention to the elements of the diagonal, which are all identical because:

M′′i,i =
1

n

∑

k∈B∗

M′k,k

To fulfill condition (ii) we still need to show that M′′i,i = maxM′′

i for all i ∈ A.

M′′i, j =
1

n|A〈d(i, j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i, j)〉(k)

M′h,k

≤
1

n|A〈d(i, j)〉(i)|

∑

k∈B∗

∑

h∈A〈d(i, j)〉(k)

M′k,k (since the biggest element
is in the diagonal)

=
1

n

∑

k∈B∗

M′k,k
1

|A〈d(i, j)〉(i)|

∑

h∈A〈d(i, j)〉(k)

1

=
1

n

∑

k∈B∗

M′k,k
|A〈d(i, j)〉(k)|

|A〈d(i, j)〉(i)|

=
1

n

∑

k∈B∗

M′k,k · 1 (since the graph
is distance-regular)

= M′′i,i

Since A has the uniform distribution, HM′

∞ (A|B) = HM′′

∞ (A|B) (condition (v)) follows immedi-

ately.

It remains to show that M′′ satisfies ǫ-differential privacy (condition (iv)). We need to show

that

M′′i, j ≤ eǫM′′i′, j ∀ j ∈ B, i, i′ ∈ A : i ∼ i′

Note that for the columns B\B∗ all elements are zero-ed, and therefore ǫ-differential privacy

is trivially satisfied. Hence we only need to consider the elements in B∗.

Since d(i, i′) = 1, from the triangular inequality we have:

d(i′, j) − 1 ≤ d(i, j) ≤ d(i′, j) + 1

Thus, there are 3 possible cases:

18
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1. d(i, j) = d(i′, j)

The result is immediate since M′′i, j = M′′i′, j.

2. d(i, j) = d(i′, j) − 1

We define the set of neighbors of h “one step further away” from k:

Fh,k = {h
′ ∼ h | h′ ∈ A〈d(h,k)+1〉(k)}

Equivalently, we can see Fh,k as the set of neighbors of h that are not at distance d(h, k)− 1

from k. Since the graph is distance-regular, the number of elements in this set is given by

the intersection number bd(h,k), i.e., |Fh,k| = bd(h,k). The following inequalities hold for any

h, h′ ∈ A:

M′h,k ≤ eǫM′h′,k ∀h′ ∈ Fh,k (diff. privacy)⇒

bd(h,k)M
′
h,k ≤ eǫ

∑

h′∈Fh,k

M′h′,k (sum of the above)

fix now a distance d and sum the above inequalities for all vertices at distance d from h:
∑

h∈A〈d〉(k)

bd M′h,k ≤ eǫ
∑

h∈A〈d〉(k)

∑

h′∈Fh,k

M′h′,k

Note that, being the graph distance-regular, and by the definition of the intersection number

cd+1, each h′ ∈ A〈d+1〉(k) is contained in Fh,k for exactly cd+1 different h ∈ A〈d〉(k). So the

right-hand side above sums all vertices of A〈d+1〉(k) exactly cd+1 times each. Thus we get

that for all k ∈ B∗, d ∈ ∆:

bd

∑

h∈A〈d〉(k)

M′h,k ≤ eǫ cd+1

∑

h∈A〈d+1〉(k)

M′h,k (4)

Finally, note that cd+1|A〈d+1〉(i)| = bd|A〈d〉(i)| (both sides count the number of edges be-

tween a vertex at distance d and a vertex at distance d + 1) and therefore we have

cd+1

bd

=
|A〈d〉(i)|

A〈d+1〉(i)|

And we conclude

M′′i, j =
1

n|A〈d〉(i)|

∑

k∈B∗

∑

h∈A〈d〉(k)

M′h,k

≤ eǫ
1

n|A〈d〉(i)|

cd+1

bd

∑

k∈B∗

∑

h∈A〈d+1〉(k)

M′h,k (from (4))

= eǫ
1

n|A〈d+1〉(i)|

∑

k∈B∗

∑

h∈A〈d+1〉(k)

M′h,k

= eǫM′′i′, j
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3. d(i, j) = d(i′, j) + 1

This case is analogous to the case case where d(i, j) = d(i′, j) − 1.

�

We will soon, in Lemma 4, cover the second step of our transformation for the case of vertex-

transitive graphs. Before, however, we will derive an auxiliary result in Lemma 3, and for that

we introduce the following notation.

Let (V,∼) be a graph, v,w ∈ V be two of its vertices, and let Γ be an automorphism group for

(V,∼). We define the set of automorphisms that map v to w as:

Γv 7→w = {σ ∈ Γ | σ(v) = w}

Note that Γv7→w ∩ Γv 7→w′ = ∅ for all w , w′, and that Γ =
⋃

w Γv7→w for any v ∈ V .

The following auxiliary lemma states that in a vertex-transitive graph, starting from any ver-

tex v, there exist as many automorphisms mapping v to w as to any other vertex w′.

Lemma 3. Let (V,∼) be a finite vertex transitive graph, n = |V | and Γ its full automorphism

group. Then, for all v,w,w′ ∈ V:

|Γv7→w| = |Γv7→w′ | =
|Γ|

n

Proof. Given two automorphisms σ and ρ, let ρ ◦ σ denote the composition of ρ with σ, i.e.,

the automorphism one would obtain by first applying σ to every vertex of the graph, and then

applying ρ to the resulting mapping. By extension, given an automorphism group Γ and an

automorphism ρ, we write ρ ◦ Γ for the automorphism group obtained by composing ρ with

every σ ∈ Γ.

Assume that |Γv7→w| < |Γv7→w′ | for some v,w,w′ ∈ V . Since the graph is vertex-transitive, there

exists an automorphism ρ such that ρ(w′) = w.

Consider the set of automorphisms ρ◦Γv7→w′ . This set contains |Γv7→w′ | distinct automorphisms

(since ρ ◦σ = ρ ◦σ′ implies σ = σ′). Moreover these automorphisms map v to w, and therefore

we have ρ ◦ Γv 7→w′ ⊆ Γv7→w, which is a contradiction since by hypothesis we have |Γv7→w| <

|Γv7→w′ | = |ρ ◦ Γv7→w′ |.

Thus |Γv7→w| ≥ |Γv7→w′ | and by exchanging w,w′ we get |Γv7→w| = |Γv7→w′ |. Finally from Γ =
⋃

w Γv 7→w we get |Γv7→w| =
|Γ|

n
.

�

Now we are ready to present the second step of our transformation for vertex-transitive

graphs.

Lemma 4 (Step 2b). Consider a channel matrix M′ satisfying the assumptions of Lemma 2,

except for the assumption about distance-regularity: let instead (A,∼) be vertex-transitive. As-

sume that the input and output domains of the channel are the same, i.e., A = B. Then it is

possible to transform M′ into a matrix M′′ with the same properties as in Lemma 2.
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Proof. Let us consider B∗ = {0, 1, . . . , n − 1}, i.e., the subset of B that excludes the zero-ed

columns of M′ from n to m − 1. Note that we can safely use the set B∗ instead of B in this proof

because the zero-ed columns do not contribute to the a posteriori entropy, and trivially respect

ǫ-differential privacy.

Let Γ be the automorphism group of (A,∼). Since A = B, it follows that Γ is also an auto-

morphism group of (B,∼′) (the graph induced on outputs by the adjacency relation on inputs),

and for all i, j ∈ A we define the elements of M′′ as:

M′′i, j =















1
|Γ|

∑

σ∈Γ M′
σ(i),σ( j)

if j ∈ B∗,

0 otherwise.

Condition (iii) is clearly satisfied, and we now show that M′′ is indeed a channel matrix

(condition (i)).

n−1
∑

j=0

M′′i, j =

n−1
∑

j=0

1

|Γ|

∑

σ∈Γ

M′σ(i),σ( j)

=
1

|Γ|

∑

σ∈Γ

n−1
∑

j=0

M′σ(i),σ( j)

=
1

|Γ|

∑

σ∈Γ

1 (since Mσ(i),· is a prob. distribution)

= 1

Then we show that M′′i,i = M′′j, j for all i, j ∈ A.

M′′i,i =
1

|Γ|

∑

σ∈Γ

M′σ(i),σ(i)

=
1

|Γ|

n−1
∑

k=0

∑

σ∈Γi 7→k

M′σ(i),σ(i) (since Γ =
⋃

k

Γi7→k)

=
1

|Γ|

n−1
∑

k=0

∑

σ∈Γi 7→k

M′k,k (σ(i) = k since σ ∈ Γi7→k)

=
1

|Γ|

n−1
∑

k=0

M′k,k|Γi7→k|

=
1

|Γ|

n−1
∑

k=0

M′k,k
|Γ|

n
(by Lemma 3)

=
1

n

n−1
∑

k=0

M′k,k
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And we can conclude that every element in the diagonal of M′′ is the same, as they are

the average of the diagonal elements of M′. To fulfil condition (ii) we still need to show that

M′′j, j = maxM′′

j for all j ∈ A.

M′′j, j =
1

|Γ|

∑

σ∈Γ

M′σ( j),σ( j)

≥
1

|Γ|

∑

σ∈Γ

M′σ(h),σ( j) (since M′ respects ǫ-d.p.)

= M′h, j

Then we show that M′′ provides ǫ-differential privacy (condition (iv)). Let i, h ∈ A such that

i ∼ h. Note that σ(i) ∼ σ(h) for all σ ∈ Γ since σ is an automorphism. Thus for all j ∈ A we

have:

M′′i, j =
1

|Γ|

∑

σ∈Γ

M′σ(i),σ( j)

≤
1

|Γ|

∑

σ∈Γ

eǫM′σ(h),σ( j) (ǫ-diff. priv. of M, σ(i) ∼ σ(h))

= eǫM′′h, j

Finally, we show that HM′′

∞ (A) = HM′

∞ (A) (condition (v)).

HM′′

∞ (A) =

n−1
∑

i=0

M′′i,i (the maxima of M′ are in the diagonal)

=

n−1
∑

i=0

1

|Γ|

∑

σ∈Γ

M′σ(i),σ(i)

=
1

|Γ|

∑

σ∈Γ

n−1
∑

i=0

M′σ(i),σ(i)

=
1

|Γ|

∑

σ∈Γ

HM′

∞ (A) (the maxima of M are also in the diagonal)

= HM′

∞ (A)

�

Note that in the proof above, the vertex-transitivity of the graph was only used to show that

M′′i,i = M′′
h,h

. All the other points would hold for any graph, and using any set Γ of automorphisms

to construct M′′.

4.3 The bound on the a posteriori entropy of the channel

Once our transformation presented in the previous section has been applied, and the channel

matrix respects the properties of M′′, we use the graph structure of (A,∼) to determine a bound
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on the a posteriori entropy HM′′

∞ (A|B) of M′′. Recall that our matrix transformation preserves the

value of the a posteriori conditional entropy, so the bound we find is also valid for the original

channel matrix we started with.

It is a known result in the literature (cfr. [8]) that, if the distribution of A is uniform, then the

a posteriori min-entropy of the channel M is given by

HM
∞ (A|B) = − log2

1

n

∑

j∈B

maxM
j

Hence, under our assumption that the input distribution A is uniform, and knowing that the

diagonal elements of the matrix M′′ are all equal to the maximum maxM′′ , we have

HM′′

∞ (A|B) = − log2 maxM′′ (5)

Therefore finding a bound on the a posteriori entropy of the channel M′′ reduces to finding a

bound on maxM′′ . This is exactly what we do in this section.

We proceed by noting that the property of ǫ-differential privacy induces a relation between

the ratio of elements at any distance:

Remark 1. Let M be a matrix satisfying ǫ-differential privacy. Then, for any column j, and any

pair of rows i and h we have that:

1

eǫ d(i,h)
≤

Mi, j

Mh, j

≤ eǫ d(i,h)

In particular, since for every i it is the case that Mi,i = maxM, then for each element Mi, j we

have that:

Mi, j ≥
maxM

eǫ d(i, j)
(6)

which motivates the next proposition.

Proposition 1. Let M be a channel matrix satisfying ǫ-differential privacy where for every 0 ≤

i ≤ n − 1 it is the case that Mi,i = maxM. Then:

maxM ≤ 1
∑

d∈∆
nd

eǫd

Proof. The elements of a given row i of M represent a probability distribution, therefore they

sum to 1.
∑

j

Mi, j = 1

By substituting (6) in the equation above we obtain:

∑

j

(

maxM

eǫd(i, j)

)

≤ 1

∑

d

(

nd

eǫd
maxM

)

≤ 1
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and therefore

maxM ≤
1

∑

d
nd

eǫd

�

Putting together all the steps of this section, we obtain our main result.

Theorem 1. Consider a channel matrix M satisfying ǫ-differential privacy for some ǫ > 0,

assume that the inpjts distribution on A is uniform, and that (A,∼) is either distance-regular or

vertex-transitive. Then we have:

HM
∞ (A|B) ≥ − log2

1
∑

d
nd

eǫ d

(7)

where nd = |A〈d〉(i)| is the number of nodes j ∈ A at distance d from i ∈ A.

Moreover, this bound it tight, in the sense that we can build a matrix for which (7) holds with

equality.

Proof. The inequality follows directly from (5) and Proposition 1. To prove that the bound

is tight, it is sufficient to define each element Mi, j according to (6) with equality instead of

inequality. �

In the next sections we will instantiate Theorem 1 to the channel from databases to reported

answers, deriving a bound for the leakage of the mechanism (Section 5), and also to the sub-

channel from true answers to reported answers, finding a bound for the utility (Sectoin 6).

5 Application to leakage

The correlation L(X,Z) between X and Z measures the information that the adversary can learn

about the database by observing the reported answers. In this section we measure this information

as min-entropy leakage, that is L(X,Z) = I∞(X; Z).

We shall consider that the input for the channel follows a uniform distribution, and derive

bounds on information leakage imposed by differential privacy. Since the min-entropy leakage

IM
∞ (X; Z) of a given matrix M is maximum when the input distribution is uniform [8], the bounds

we present in this section (Theorem 2, Proposition 5, and Proposition 6) are valid for every

possible input distribution. Moreover, since we model side information as input distributions, it

follows that our bounds are valid for any possible side information the adversary may have.

Our first result shows that the min-entropy leakage of a mechanism K is bounded by a quan-

tity depending on ǫ, and on the numbers u = |U| and v = |V| of individuals and values respec-

tively. We assume that v ≥ 2.

As seen in Section 3, K can be modeled as a channel with input X and output Z. We will use

here the bound on the posterior min-entropy of the channel obtained in Section 4. For that, we

need to show first that the graph structure of the database domain (X,∼) presents the symmetries

we need.
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Dist-regular Vertex-transitiveV u

Figure 7: Venn diagram for the classes of graphs considered in Section 5.1.

5.1 Graph symmetries of the database domain

A Hamming graph is a graph where the vertices are tuples from some Cartesian space, and there

is an edge between every two vertices if, and only if, they differ in the value of exactly one

coordinate. Clearly the graph structure of the database domain (X,∼) is Hamming graph, where

each vertex is a database (i.e., a tuple containing the sensitive values of each individual), and

there is an edge between every two databases that differ by the value of exactly one individual.

It is known in the literature [18, 9] that Hamming graphs present the two special kinds of

symmetry we introduced in Section 2.3: distance-regularity and vertex-transitivity. The fol-

lowing propositions formalize this fact, which will be used in the remaining of this section to

transform a generic channel matrix into a matrix with a symmetric structure, while preserving

the a posteriori min-entropy and ǫ-differential privacy.

Proposition 2. If v ≥ 2, the graph (Vu,∼) is a connected distance-regular graph with diameter

δ = u, and intersection numbers bd = (u − d)(v − 1) and cd = d, for all 0 ≤ d ≤ δ.

Proof. The vertices of (Vu,∼) are u-tuples (v1, . . . , vu), vi ∈ V and two vertices are adjacent if

and only if the differ in exactly one element vi. Then the distance between two vertices is the

number of elements in which they differ. Let x1, x2 ∈ V
u with d(x1, x2) = d, so they differ in

exactly d elements. To go at distance d + 1 from x1 we can select any of the remaining u − d

elements and change it in v − 1 possible ways, so the total number is (u − d)(v − 1), which only

depends on d, not on x1, x2. Similarly, by changing one of the differing elements of x2 to match

the value of x1 we get a vertex at distance d − 1, and there are d such elements. �

Proposition 3. The graph (Vu,∼) is a vertex-transitive graph.

Proof. The Hamming graph is the Cartesian product of u complete graphs of size v. Complete

graphs are trivially vertex-transitive and it is known [18] that a Cartesian product is vertex-

transitive if, and only if, each of its factors is so. �

The relation between graph structures we consider in this paper is summarized in Figure

7. Figure 8 displays two database structures (Vu,∼). Note that when |V| = 2, (Vu,∼) is the

u-dimensional hypercube.

5.2 The bound on leakage

From Propositions 2 and 3 we know that (X,∼) is both distance-regular and vertex-transitive,

and therefore we can apply Theorem 1. Then, by (6) we know that for j ∈ X〈d〉(x) (i.e., every
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aaaa aaab

abababaa

aaba aabb

abbbabba

baaa baab

bbabbbaa

baba babb

bbbbbbba

(a) u = 4,V = {a, b} (4-dimensional hyper-

cube)

aaa

aba

aca

aab

abb

acb

aac

abc

acc

baa

bba

bca

caa

cba

cca bcb

bccccb

ccc

(b) u = 3,V = {a, b, c} (for readability sake we

only show part of the graph)

Figure 8: Two (Vu,∼) graphs

j in X at distance d from a given x) it is the case that Mx, j ≥
maxM

eǫd
. Furthermore we note that

each element j at distance d from x can be obtained by changing the value of d individuals in the

u-tuple representing i. We can choose these d individuals in
(

u

d

)

possible ways, and for each of

these individuals we can change the value (with respect to the one in x) in v − 1 possible ways.

Therefore |X〈d〉(x)| =
(

u

d

)

(v − 1)d, and we obtain that the number of databases at distance d from

x is

nd = |X〈d〉(x)| =

(

u

d

)

(v − 1)d (8)

Indeed, since x can be represented as a u-tuple with values in V , we need to select d individu-

als in the u-tuple and then change their values, and each of them can be changed in v−1 different

ways.

Using the value of nd from (8) in Theorem 1 we obtain the following result.

Theorem 2. If K satisfies ǫ-differential privacy, then the information leakage is bound from

above as follows:

I∞(X; Z) ≤ u log2

v eǫ

v − 1 + eǫ
= Bnd(u, v, ǫ)

Proof. For this proof we need a matrix with all column maxima on the diagonal, and all equal.

We obtain such a matrix by transforming the matrix associated with K as follows: first we apply

Lemma 1 to it (with A = X and B = Z), and then we apply either Lemma 2 or Lemma 4 (we

can choose either of them, since (X,∼) is both distance-regular and vertex-transitive). The final

matrix M has all non-zero elements on its n × n submatrix, with n = |X| = Vu, provides ǫ-

differential privacy, and for every row i we have that Mi,i = maxM. Furthermore, IM
∞ (X; Z) is

equal to the min-entropy leakage of K , assuming a uniform distribution on X.
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Then we can derive:

n
∑

j=1

Mi, j ≥

n
∑

j=1

maxM

(eǫ)d(i, j)
(by (6))

=

u
∑

d=0

nd

maxM

(eǫ)d

=

u
∑

d=0

(

u

d

)

(v − 1)d maxM

(eǫ)d
(by (8))

Since each row represents a probability distribution, the elements of row i must sum up to 1:

u
∑

d=0

(

u

d

)

(v − 1)d maxM

(eǫ)d
≤ 1

and by multiplying both sides of the inequality by eǫu we get

maxM
∑u

d=0

(

u

d

)

(v − 1)deǫ(u−d) ≤ eǫu

Since by the binomial expansion

u
∑

d=0

(

u

d

)

(v − 1)d(eǫ)u−d = (v − 1 + eǫ)u, we obtain:

maxM ≤
(

eǫ

v−1+eǫ

)u
(9)

And hence, for the uniform input distribution:

IM
∞ (X; Y) = H∞(X) − HM

∞ (X|Y) (by definition)

= log2 |V
u| + log2 maxM (by (5))

≤ log2 vu + log2

(

eǫ

v − 1 + eǫ

)u

(by (9))

= u log2

v eǫ

v − 1 + eǫ

To conclude our proof we recall that, the min-entropy leakage IM
∞ (X; Y) of a given matrix M

is maximum when the input distribution is uniform [8]. Therefore since the above bound is valid

for a uniform distribution on X, it is also valid for any distribution on X.

�

Note that the bound Bnd(u, v, ǫ) = u log2
v eǫ

(v−1+eǫ )
is a continuous function in ǫ, has value 0

when ǫ = 0, and converges to u log2 v as ǫ approaches infinity. Figure 9 shows the growth of

Bnd(u, v, ǫ) along with ǫ, for various fixed values of u and v.

The next proposition shows that the bound obtained in previous theorem is tight.
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Figure 9: Graphs of Bnd(u, v, ǫ) for u=100 and v=2 (lowest line), v=10 (intermediate line), and

v=100 (highest line), respectively.

Proposition 4. For every u, v, and ǫ there exists a mechanismK which provides ǫ-differential pri-

vacy and whose min-entropy leakage, for the uniform input distribution, is I∞(X; Z) = Bnd(u, v, ǫ).

Proof. The adjacency relation in X determines a graph structure (X,∼). Let Z = X and define

the matrix of K as follows, where d = d(x, z):

p(z|x) =
2Bnd(u,v,ǫ)

vu(eǫ)d
(10)

We need to show that p(·|x) is a probability distribution for every x:

∑

z∈Z

2Bnd(u,v,ǫ)

vu(eǫ)d
=

2Bnd(u,v,ǫ)

vu

∑

z∈Z

1

(eǫ)d

=
2Bnd(u,v,ǫ)

vu

∑

d

nd

(eǫ)d

=
2Bnd(u,v,ǫ)

vu
·

1

maxM
(by Proposition 1)

=
2Bnd(u,v,ǫ)

vu
·

vue0

2Bnd(u,v,ǫ)
(max occurs when d = 0 in (10))

= 1

We now show that K provides ǫ-differential privacy. For every x, x′ ∈ X such that x ∼ x′,

and for every z ∈ Z we have:

p(z|x)

p(z|x′)
=

2Bnd(u,v,ǫ)

vu(eǫ)d(x,z)
·

vu(eǫ)d(x′,z)

2Bnd(u,v,ǫ)
(by (10))

= eǫ(d(x′,z)−d(x,z))

≤ eǫd(x,x′) (by the triangle inequality)

= eǫ (d(x, x′) = 1 since x ∼ x′)
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Finally, let us calculate I∞(X; Z) = H∞(X)−H∞(X|Z). Since input distribution is uniform, we

have:

H∞(X) = − log2

1

vu

Moreover, we know from (5) that H∞(X|Z) = maxM′′ , and to obtain the maximum value we

take d = 0 in (10):

H∞(X|Z) = − log2

2Bnd(u,v,ǫ)

vue0

= − log2

2Bnd(u,v,ǫ)

vu

Now, by subtracting the value of H∞(X|Z) from the value of H∞(X) we obtain I∞(X; Z) =

Bnd(u, v, ǫ).

�

An example follows of the use of Bnd(u, v, ǫ) as a bound for the min-entropy leakage.

Example 1. Assume that we are interested in the eye color of a certain populationU = {Alice,Bob}.

Let V = {a, b, c} where a stands for absent (i.e., the null value), b stands for blue, and c stands

for coalblack. Each dataset is a tuple d0d1, where d0 ∈ V represents the eye color of Alice (cases

d0 = b and d0 = c), or that Alice is not in the dataset (case d0 = a). d1 provides the same

kind of information for Bob. Note that v = 3. Fig 10(a) represents the set X of all possible

datasets and its adjacency relation. Fig 10(b) represents the matrix with input X which provides

ǫ-differential privacy and has the highest min-entropy leakage. In the representation of the ma-

trix, the generic entry α stands for maxM

eǫ α
, where maxM is the highest value in the matrix, i.e.,

maxM = 2Bnd(u,v,ǫ)

vu =
(

veǫ

v−1+eǫ

)u
1
vu =

e2ǫ

(2+eǫ )2 .

Note that the bound Bnd(u, v, ǫ) is guaranteed to be reached with the uniform input distri-

bution. The construction of the matrix for Proposition 4 gives a square matrix of dimension

Vu × Vu. Often, however, the range of K is fixed, as it is usually related to the possible an-

swers to the query f . Hence it is natural to consider the scenario in which we are given a number

r < Vu, and want to consider only thoseK’s whose range has cardinality at most r. Proposition 5

shows that in this restricted setting we can find a better bound than the one given by Theorem 2.

It relies on the following lemma.

Lemma 5. LetK be a mechanism with input X, where X = Vu, providing ǫ-differential privacy.

Assume that r = |Range(K)| = vℓ, for some ℓ < u. Let M be the matrix associated with K . Then

it is possible to build a square matrix M′ of size vℓ × vℓ, with row and column indices inA ⊆ X,

and a binary relation ∼′⊆ A ×A such that (A,∼′) is isomorphic to (Vℓ,∼ℓ), and such that:

(i) M′ is a valid channel matrix:
∑m−1

j=0 M′i, j = 1 for all 0 ≤ i ≤ n − 1;
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ca cb cc

ba bb bc

aa ab ac

(a) The datasets and their adja-

cency relation

aa ab ac ba ca bb bc cb cc

aa 0 1 1 1 1 2 2 2 2

ab 1 0 1 2 2 1 2 1 2

ac 1 1 0 2 2 2 1 2 1

ba 1 2 2 0 1 1 2 1 2

ca 1 2 2 1 0 2 2 1 1

bb 2 1 2 1 2 0 1 1 2

bc 2 2 1 1 2 1 0 2 1

cb 2 1 2 2 1 1 2 0 1

cc 2 2 1 2 1 2 1 1 0

(b) The representation of the ma-

trix

Figure 10: All possible databases and highest min-entropy leakage matrix giving ǫ-differential

privacy for Example 1.

(ii) M′i, j ≤ (eǫ)u−l+d M′
h, j

for all i, h ∈ X and j ∈ Z, where d is the ∼′-distance between i and h;

(iii) The elements of the diagonal are all equal to the maximum element of the matrix: M′i,i =

maxM′ for all i ∈ X;

(iv) HM′

∞ (X|Z) = HM
∞ (X|Z), if X has the uniform distribution.

Proof. (Sketch) We first apply a procedure similar to that of Lemma 1 to construct a square

matrix of size vℓ × vℓ which has the maximum values of each column in the diagonal. (In this

case we construct an injection from the columns to rows containing their maximum value, and

we eliminate the rows that at the end are not associated with any column.) Then define ∼′ as the

projection of ∼u onVℓ, which satisfies condition (ii). Finally, apply the procedure in Lemma 2,

or equivalently the procedure in Lemma 4, on the structure (X,∼′) to make all elements in the

diagonal equal to the maximum element of the matrix (condition (iii)). Note that this procedure

preserves the property of condition (ii), and conditional min-entropy ((iv)). Also the matrix

obtained is a valid channel matrix (condition (i)). �

Now we are ready to prove the proposition.

Proposition 5. LetK be a mechanism with associated channel matrix M, and let r = |Range(K)|.

If K provides ǫ-differential privacy then the min-entropy leakage associated with K is bounded

from above as follows:

IM
∞ (X; Z) ≤ log2

r (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)u

where ℓ = ⌊logv r⌋.

Proof. We first consider the case where r = vℓ for some ℓ. We transform the matrix M associated

with K by applying Lemma 5, and let M′ be the resulting matrix. Let maxM′ be the value of
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every element in the diagonal of M′, i.e., maxM′ = M′i,i for every row i, and let A′
〈d〉

(i) be the

set of elements whose ∼′-distance from i is d. Note that for every j ∈ A′
〈d〉

(i) we have that

M′j, j ≤ M′i, j(e
ǫ)u−ℓ+d, hence

M′i, j ≥
maxM′

(eǫ)u−ℓ+d

Furthermore each element j at ∼′-distance d from i can be obtained by changing the value

of d individuals in the ℓ-tuple representing i (remember that (A,∼′) is isomorphic to (Vℓ,∼ℓ)).

We can choose those d individuals in
(

ℓ

d

)

possible ways, and for each of these individuals we can

change the value (with respect to the one in i) in v − 1 possible ways. Therefore

|A′〈d〉(i)| =

(

ℓ

d

)

(v − 1)d

Taking into account that for M′i,i we need not to divide by (eǫ)u−ℓ+d, we obtain:

maxM +
∑ℓ

d=1

(

ℓ

d

)

(v − 1)d maxM

(eǫ )u−ℓ+d ≤
∑

j M′i, j

Since each row represents a probability distribution, the elements of row i must sum up to 1.

Hence:

maxM +
∑ℓ

d=1

(

ℓ

d

)

(v − 1)d maxM

(eǫ )u−ℓ+d ≤ 1 (11)

Simple calculations, similar to those of the proof of Theorem 2, give:

maxM ≤
(eǫ )u

(v−1+eǫ )ℓ−(eǫ )ℓ+(eǫ )u

Therefore:

IM′

∞ (X; Z) = H∞(X) − HM′

∞ (X|Z) (by definition) (12)

= log2 vu + log2

vℓ
∑

j=1

maxM 1
vu (13)

= log2 vu + log2

1

vu
+ log2(vℓmaxM) (14)

≤ log2

vℓ (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)u
(by (11) ) (15)

Consider now the case in which r is not of the form vℓ. Let ℓ be the maximum integer such

that vℓ < r, and let m = r − vℓ. Transform the matrix M associated with K by collapsing

the m columns with the smallest maxima into the m columns with highest maxima. I.e., let

j1, j2, . . . , jm the indices of the columns which have smallest maxima values, i.e., maxM
jt
≤ maxM

j

for every column j , j1, j2, . . . , jm. Similarly, let k1, k2, . . . , km be the indexes of the columns with

maximum values. Recalling the definition of the “collapsing” operator introduced in Section 4.1,

we define

N = M[ j1 → k1][ j2 → k2] . . . [ jm → km]
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Finally, eliminate the m zero-ed columns to obtain a matrix with exactly vℓ columns. It is

easy to show that

IM
∞ (X; Z) ≤ IN

∞(X; Z)
r

vℓ

After transforming N into a matrix M′ with the same min-entropy leakage as described in the

first part of this proof, from (12) we conclude

IM
∞ (X; Z) ≤ IM′

∞ (X; Z)
r

vℓ
≤ log2

r (eǫ)u

(v − 1 + eǫ)ℓ − (eǫ)ℓ + (eǫ)u

�

Note that this bound can be much smaller than the one provided by Theorem 2. For instance,

if r = v this bound becomes:

log2

v (eǫ)u

v − 1 + (eǫ)u

which for large values of u is much smaller than Bnd(u, v, ǫ).

This does not contradict the fact that the bound Bnd(u, v, ǫ) is strict: in fact it is strict when

we are free to choose the range, but here we fix the dimension of the range.

Leakage about an individual Protecting an entire database is not the primary goal of differ-

ential privacy. Indeed, some information will necessarily be revealed, otherwise the query would

not be useful. Instead, differential privacy aims at protecting the value of any single individual,

even in the worst case where the values of all other individuals are known.

The definition of differential privacy induces a straightforward bound on the information

leakage about an individual. Let x be a database and x− = x\{di} be the database obtained from

x after removing the data relative to individual i. Of course x ∼ x−, and we can easily derive the

following relation:

p(z|x)

p(z|x−)
=

p(z)p(x|z)

p(x)
·

p(x−)

p(z)p(x−|z)
(by the Bayes law)

=
p(x|z)

p(x)
·

p(x−)

p(x−|z)

=
p(x−|z)p(di|x

−, z)

p(x−)p(di|x−)
·

p(x−)

p(x−|z)
(by the chain rule of probabilities)

=
p(di|x

−, z)

p(di|x−)
(16)

Since by ǫ-differential privacy we have
p(z|x)

p(z|x−)
≤ eǫ , from (16) we conclude:

p(di|x
−, z)

p(di|x−)
≤ eǫ (17)
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In (17), p(di|x
−) represents the probability of the adversary correctly guessing the value of di

in one try if she knows the values of all other individuals in the database, x−. Correspondingly,

p(di|x
−, z) represents the probability of a successful guess if the adversary knows x− and has

observed the output z of the differentially-private mechanism. The inequality shows that ratio

between these two probabilities is no greater than eǫ , which is a natural bound on the min-entropy

leakage of the mechanism (once we take logarithms).

With our model, however, we can find a slightly better bound. We start by fixing an individ-

ual, and we consider a tuple x− ∈ Vu−1 containing the given (and known) values of all other u−1

individuals. Then we create a channel whose input V ranges over the values inV and represents

the value of our individual of interest. Note that this means that we take into consideration all

possible input databases where the values of the other individuals are exactly those of x− and

only the value of the selected individual varies. Intuitively, Ix−

∞ (V; Z) measures the leakage about

the individual’s value in this case. (Similarly, Hx−

∞ (V |Z) represents the conditional entropy of V

given Z for a fixed database where all other values are x−.) Differential privacy provides a slightly

stronger bound for leakage in this case.

In this context, the leakage for a single individual can be characterized as follows.

Proposition 6. Assume that K satisfies ǫ-differential privacy. Then the information leakage for

an individual is bound from above by:

Ix−

∞ (V; B) ≤ log2

v eǫ

v − 1 + eǫ

Proof. Fix a database x, and a particular individual i in U. The possible ways in which we can

change the value of i in x are v − 1. All the new databases obtained in this way are adjacent to

each other, i.e., the graph structure associated with the input is a clique of v nodes. Recall that nd

is the number of elements of the input at distance d from a given element x. In this case we have

nd =



























1 for d = 0,

v − 1 for d = 1,

0 otherwise.

By substituting this value of nd in Theorem 1, we get

Hx−

∞ (V |Z) ≥ − log2

1

1 +
v − 1

eǫ

= − log2

eǫ

v − 1 + eǫ
(18)

The particular individual can present v different values, and thus in the case the input distri-
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bution is uniform its min-entropy is Hx−

∞ (V) = log2 v.

Ix−

∞ (V; Z) = Hx−

∞ (V) − Hx−

∞ (V |Y) (by definition)

≤ log2 v + log2

eǫ

v − 1 + eǫ
(by (18))

= log2

v eǫ

v − 1 + eǫ

Since the min-entropy leakage is maximum in the case of the uniform input distribution, the

result follows.

�

Note that the bound on the leakage for an individual does not depend on the size u ofU, nor

on the database x− that we fix. This is in accordance with the fact that the guarantees provided

by differential-privacy are independent of the side information the adversary may have.

Finally, recall that Equation 17 is a natural bound of eǫ on the leakage about an individual

imposed by differential privacy. Rewriting that bound in the notation used in this section, we

have Ix−

∞ (V; B) ≤ eǫ . Note that this differs from Proposition 6 up to a very slight factor of v
v−1+eǫ

.

6 Application to utility

In this Section we use the bounds we obtained on the a posteriori entropy of the channel to derive

bounds on the utility of differentially-private mechanisms.

For our analysis we assume an oblivious mechanism. We can decompose the system into the

cascade of two channels, and the utility becomes a property of the noise channelH mapping the

true answer y ∈ Y into a reported answer z ∈ Z according to given probability distributionsHy,z.

The data analyst, however, does not necessarily take z as her guess for the true answer, since

she can use some Bayesian post-processing to maximize the probability of success, i.e., a right

guess. Thus for each reported answer z the data analyst can remap her guess to a value y′ ∈ Y

according to some strategy that maximizes her expected gain.

The standard way to define utility is by means of gain functions (see for instance [6]). We

define gain : Y×Y → R and the value gain(y, y′) represents the reward for guessing the answer

y′ when the correct answer is y.

It is natural to define the global utility of the noise channelH as the expected gain:

U(Y,Z) =
∑

y

p(y)
∑

y′

p(y′|y)gain(y, y′) (19)

where p(y) is the prior probability of true answer y, and p(y′|y) is the probability of the data

analyst guessing y′ when the true answer is y. Naturally, the above equation has an implicit

dependence on the reported answer z, as the data analyst will choose her guess y′ based on the

reported answer z she observes.

34



PIRSES-GA-2011-295261 /MEALS Page 35 of 46 Public

Assuming that the data analyst uses a remapping function guess : Z → Y, we can derive the

following characterization of the utility. Let δx(·) represent the probability distribution which has

value 1 on x and 0 elsewhere.

U(Y,Z) =
∑

y

p(y)
∑

y′

p(y′|y)gain(y, y′) (by (19))

=
∑

y

p(y)
∑

y′















∑

z

p(z|y)p(y′|z)















gain(y, y′)

=
∑

y

p(y)
∑

y′















∑

z

p(z|y)δy′(guess(z))















gain(y, y′) (as y′ = guess(z))

=
∑

y

p(y)
∑

z

p(z|y)
∑

y′

δy′(guess(z))gain(y, y′)

=
∑

y

p(y)
∑

z

p(z|y)gain(y, guess(z))

=
∑

y,z

p(y, z)gain(y, guess(z)) (20)

The use of identity gain functions in the context of differential privacy was also investigated

in [15]2. We focus here on the so-called identity gain function, which is defined as

gainid(y, y′) =















1 if y = y′,

0 otherwise.
(21)

In the above equation, note that the value y′ represents the data analyst’s guess after the

observed answer z, hence:

gainid(y, guess(z)) = δy(guess(z))

This kind of function represents the case in which there is no reason to prefer one answer

over another, except if it is the correct answer. More precisely, we obtain some gain if and only

if we guess the right answer. The answer domain can be equipped with a notion of distance (i.e.,

even if two answers are wrong, one of them may be “closer” to the correct one than the other),

and the gain function could take into account the proximity of the reported answer to the true

one. Naturally, in this case a “close” answer, even if wrong, is considered better than a “distant”

one. We do not assume here a notion of distance, and therefore we will focus on the identity

case.

By substituting gain with gainid in (20) we obtain:

U(Y,Z) =
∑

y,z

p(y, z)δy(guess(z)) (22)

2The authors of [15] used the dual notion of loss functions instead of gain functions, but the final result is

equivalent.
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which tells us that the expected utility is the greatest when guess(z) = y is chosen to maximize

p(y, z). Assuming that the data analyst chooses such a maximizing remapping, we have:

U(Y,Z) =
∑

z

max
y

p(y, z)

=
∑

z

max
y

(p(y) p(z|y)) (by the Bayes law) (23)

If the gain function is the identity, and the function guess is chosen to optimize utility (i.e., it

represents the data analyst’s best strategy), then there is a well-known correspondence between

U and the Bayes risk / the a posteriori min-entropy. This correspondence is expressed by the

following proposition:

Proposition 7. Assume that function gain is the identity and the function guess is optimal. Then:

U(Y,Z) =
∑

z

max
y

(p(y) p(z|y)) = 2−H∞(Y |Z)

Proof. Just substitute (23) in the definition of conditional min-entropy: H∞(Z | Y) = − log2

∑

z maxy((p(y) p(z|y)).

�

Note that while leakage is related to the ratio between the a priori and a posteriori min-

entropy of the channel, utility concerns only the a posteriori min-entropy. This reflects the fact

that leakage is a comparative measure, i.e., it tells how much the adversary’s probability of

success has improved with respect to an initial situation, whereas utility is an absolute measure,

as it is only concerned about how much the mechanism’s output tells about the true answer to the

query.

6.1 The bound on the utility

Here we show that, in some special cases, the fact that K provides ǫ-differential privacy induces

a bound on the utility defined in terms of a identity gain function. Recall that in Section 4.2 we

extended the adjacency relation ∼ from the datasets X to the true answers Y, in such a way that

two values in Y are adjacent if they have pre-images that are adjacent. Intuitively, the function

f associated with the query determines a partition on the set of all databases (X = Vu), and we

say that two classes are adjacent if they contain an adjacent pair. For the sake of clarity, we will

state formally the following direct consequence of (3):

Definition 4. Given y, y′ ∈ Y, with y , y′, we say that y and y′ are adjacent (notation y ∼ y′), if

and only if there exist x, x′ ∈ Vu with x ∼ x′ such that y = f (x) and y′ = f (x′).

Since ∼ is symmetric on databases, it is also symmetric on Y, therefore also (Y,∼) forms an

undirected graph.

Using the above concept of neighborhood for the inputs of the noise channel H , we can

show that in an oblivious mechanisms (see Figure 4) if the query f is deterministic, then the
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mechanismK provides ǫ-differential privacy with respect to neighbor databases if and only ifH

respects ǫ-differential privacy with respect to neighbor answers. Intuitively, this result follows

from the fact that a deterministic query f remaps every database x ∈ X to a sole answer y ∈ Y,

working as a sort of “re-labeling” that substitutes databases for answers in the adjacency graph

structure, and therefore preserving ǫ-differential privacy. Note also that if K is oblivious, the

probability of any reported answer z ∈ Z does not depend on the database, but solely on the

true answer y. Therefore under a deterministic f , two databases x and x′ can be mapped to same

value of y only if, for all z, Kx,z = Kx′,z.

Proposition 8. In an oblivious setting, if the query function f is deterministic, then the mecha-

nism K satisfies ǫ-differential privacy with respect to every pair of neighbor databases x, x′ ∈ X

if and only if the noise channel H satisfies ǫ-differential privacy with respect to every pair of

neighbor answers y, y′ ∈ Y.

Proof. Since the matrix K can be obtained by the product of the two matrices corresponding to

f and H , we can derive that, for every pair of neighbor databases x and x′ and for all reported

answer z:

p(z|x)

p(z|x′)
=

p(z|x)

p(z|x′)

=

∑

y p(y|x)p(z|y)
∑

y p(y|x′)p(z|y)
(matrix multiplication)

=

∑

y δ f (x)(y)p(z|y)
∑

y δ f (x′)(y)p(z|y)
(since f is deterministic)

=
p(z| f (x))

p(z| f (x′))
(by def. of δ)

=
H f (x),z

H f (x′),z

It follows immediately that
Kx,z

Kx′ ,z
≤ eǫ if and only if

H f (x),z

H f (x′),z
≤ eǫ .

�

The link the above proposition establishes between the mechanism K and the noise channel

H will help us determine a bound on the utility ofH , since, in the case the query f is determin-

istic, requiring K to respect ǫ-differential privacy is equivalent to requiring thatH does.

Theorem 3. Consider a noise channel H satisfying ǫ-differential privacy for some ǫ > 0, and

let y be an element of Y. Assume that the distribution of Y is uniform and that (Y,∼) is either
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distance-regular or vertex-transitive. For each distance d ∈ {0, 1, . . . , δ}, where δ is the diameter

of (Y,∼), we have:

U(Y,Z) ≤
1

∑

d

nd

eǫ d

(24)

where nd is the number of nodes y′ ∈ Y at distance d from y.

Proof. Since (Y,∼) is distance-regular or vertex-transitive, we can apply Theorem 1 to derive

that HM
∞ (Z|Y) ≥ − log2

1
∑

d
nd

eǫ d

. Then we just substitute this result in Proposition 7. �

Provided (Y,∼) is distance-regular or vertex-transitive, the above bound is tight. Indeed,

we can construct a noise channel H which satisfies (24) with equality. More precisely, for

0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1, we define H (here identified with its channel matrix for

simplicity) as follows:

Hi, j =
γ

eǫ d(i, j)
(25)

where

γ =
1

∑

d

nd

eǫ d

(26)

Note that H is a square matrix of dimension n × n, where n = |X|. This is not a problem

because since we assume (Y,∼) to be either distance-regular or vertex-transitive, via Theorem 1

we can transform the channel matrix into an equivalent one such that all non zero elements are

in the submatrix of dimensions n × n. LetZ∗ = {0, 1, . . . , n − 1} be the subset ofZ that excludes

the zero-ed columns of the channel matrix from n to m − 1.

Theorem 4. Assume (Y,∼) is distance-regular or vertex-transitive and that the distribution of

Y is uniform. Then the matrixH defined in (25) satisfies ǫ-differential privacy and has maximal

utility:

U(Y,Z) =
1

∑

d

nd

eǫ d

Proof. First we prove that the matrix as defined in (25) is a channel matrix, i.e., that each row is
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a probability distribution.

∑

j∈Z∗

Hi, j =
∑

j∈Z∗

γ

eǫd(i, j)

= γ
∑

j∈Z∗

1

eǫd(i, j)

= γ
∑

d

nd

eǫd
by (26)

= γ
1

γ

= 1

Now we show that the utility is maximum.

U(Y,Z) =
∑

z∈Z∗

max
y

(p(y)H(z|y)) by (23)

=
∑

z∈Z∗

max
y

1

|Y|
H(z|y) since Y is uniform

=
1

|Y|

∑

z∈Z∗

max
y

γ

maxd eǫd(z,y)
by (25)

=
1

|Y|

∑

z∈Z∗

γ maximum is d = 0

=
1

|Y|
· |Z∗|γ

= γ since |Y| = |Z∗| = n

�

It is possible to always haveH as in (25): the matrix so defined will be a legal channel matrix,

and it will satisfy ǫ-differential privacy. If (Y,∼) is neither distance-regular nor vertex-transitive,

then the utility of suchH is not necessarily optimal.

6.2 Examples

The conditions for the construction of the optimal noise channel are strong, but there are some

interesting scenarios in which they are satisfied. Depending on the degree of connectivity c of

the graph (Y,∼), we can have ⌊ |Y|
2
⌋ − 1 different cases (note that the case of c = 1 is not possible

because the datasets are fully connected via their adjacency relation), whose extremes are:

• (Y,∼) is a clique, i.e., every element has exactly |Y| − 1 adjacent elements.
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• (Y,∼) is a ring, i.e., every element has exactly two adjacent elements. This is similar to

the case of the counting queries considered in [15], with the difference that our “counting”

is in arithmetic modulo |Y|.

Remark 2. Note that our method can be applied also when the conditions of Theorem 4 are

not met: We can always add “artificial” adjacencies to the graph structure so as to meet those

conditions. For computing the distance in (25) we use, instead of (Y,∼), a structure (Y,∼′)

which satisfies the conditions of Theorem 4, and such that ∼⊆∼′. The matrix constructed in this

way provides ǫ-differential privacy, but in general is not optimal. It is clear that, in general, the

smaller ∼′, the higher the utility.

The matrices generated by (25) can be very different, depending on the value of c. The next

two examples illustrate queries that give rise to the clique and to the ring structures, and show

the corresponding matrices.

Example 2. Consider a database with electoral information where each entry corresponds to a

voter and contains the following three fields:

• Id: a unique (anonymized) identifier assigned to each voter;

• City: the name of the city where the individual voted;

• Candidate: the name of the candidate the individual voted for.

Consider the query “What is the city with the greatest number of votes for a given candidate

cand?”. For such a query the identity gain function could be taken as the natural choice: from

the data analyst’s point of view, only the right city could give some gain, and all wrong answers

would be equally bad. Also, since every two answers are neighbors, the graph structure of the

answers is a clique.

Consider the scenario where the set of cities is City = {A, B,C,D, E, F} and assume for

simplicity that there is a unique answer for the query, i.e., there are no two cities with exactly

the same number of individuals voting for candidate cand. Table 1 shows two alternative mecha-

nisms providing ǫ-differential privacy (with ǫ = ln 2). The first one, M1, is based on the truncated

geometric mechanism method used in [15] for counting queries (here extended to the case where

every two distinct answers are neighbors). The second mechanism, M2, is obtained by applying

the definition of (25). From Theorem 4 we know that for the uniform input distribution M2 gives

optimal utility.

For the uniform input distribution, we have U(M1) = 0.2243 < 0.2857 = U(M2). Even for

non-uniform distributions, our mechanism still provides better utility. For instance, for p(A) =

p(F) = 1/10 and p(B) = p(C) = p(D) = P(E) = 1/5, we have U(M1) = 0.2415 < 0.2857 =

U(M2). This is not too surprising: the geometric mechanism, as well as the Laplacian mechanism

proposed by Dwork, perform very well when the domain of answers is provided with a metric

and the utility function is not the identity.
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(a) M1: adapted truncated geometric mechanism

In/Out A B C D E F

A 0.534 0.060 0.053 0.046 0.040 0.267

B 0.465 0.069 0.060 0.053 0.046 0.307

C 0.405 0.060 0.069 0.060 0.053 0.353

D 0.353 0.053 0.060 0.069 0.060 0.405

E 0.307 0.046 0.053 0.060 0.069 0.465

F 0.267 0.040 0.046 0.053 0.060 0.534

(b) M2: our mechanism

In/Out A B C D E F

A 2/7 1/7 1/7 1/7 1/7 1/7

B 1/7 2/7 1/7 1/7 1/7 1/7

C 1/7 1/7 2/7 1/7 1/7 1/7

D 1/7 1/7 1/7 2/7 1/7 1/7

E 1/7 1/7 1/7 1/7 2/7 1/7

F 1/7 1/7 1/7 1/7 1/7 2/7

Table 1: Mechanisms for the city with higher number of votes for candidate cand

Example 3. Consider the same database of the previous example, but now assume a counting

query of the form “What is the number of votes for candidate cand?”. Now each answer has at

most two neighbors, and the graph structure on the answers is a line. For illustration purposes,

assume that only 5 individuals have participated in the election. Table 2 shows two alternative

mechanisms providing ǫ-differential privacy (ǫ = log 2): the truncated geometric mechanism M1

proposed in [15] and the mechanism we propose M2. Note that in order to apply our method we

have first to apply Remark 2 to transform the graph structure from a line into a ring.

Consider the uniform prior distribution. We see that the utility of M1 is higher than the utility

of M2, the first being 4/9 and the second being 8/21. This does not contradict our theorem,

because our matrix is guaranteed to be optimal only in the case of a ring structure, not of a line

as we have in this example. If the structure were a ring, i.e., if the last row were adjacent to the

first one, then M1 would not provide ǫ-differential privacy. In case of a line as in this example,

the truncated geometric mechanism has been proved optimal [15].

7 Related work

To the best of our knowledge, the first work to investigate the relation between differential privacy

and information-theoretic leakage for an individual was [3]. There, the definition of channel was

for a given database, and the channel inputs were all possible databases adjacent to it. Two

bounds on leakage were presented, one for the min-entropy, and one for Shannon entropy. Our

bound in Proposition 6 improves the min-entropy bound of [3].

Barthe and Köpf [5] were the first to investigate the more challenging connection between

differential privacy and the min-entropy leakage for the set of all possible databases. They
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(a) M1: truncated 1
2
-geom. mechanism

In/Out 0 1 2 3 4 5

0 2/3 1/6 1/12 1/24 1/48 1/48

1 1/3 1/3 1/6 1/12 1/24 1/24

2 1/6 1/6 1/3 1/6 1/12 1/12

3 1/12 1/12 1/6 1/3 1/6 1/6

4 1/24 1/24 1/12 1/6 1/3 1/3

5 1/48 1/48 1/24 1/12 1/6 2/3

(b) M2: our mechanism

In/Out 0 1 2 3 4 5

0 8/21 4/21 2/21 1/21 2/21 4/21

1 4/21 8/21 4/21 2/21 1/21 2/21

2 2/21 4/21 8/21 4/21 2/21 1/21

3 1/21 2/21 4/21 8/21 4/21 2/21

8 2/21 1/21 2/21 4/21 8/21 4/21

5 4/21 2/21 1/21 2/21 4/21 8/21

Table 2: Mechanisms for the counting query (5 voters)

considered “end-to-end differentially-private mechanisms”, which correspond to what we call

the mechanism K in this paper, and proposed, like we do, to interpret these mechanisms as

information-theoretic channels. They gave a bound for the leakage, but pointed out that it was

not tight in general. They also observed that for any number of individuals u and level of privacy ǫ

one can construct a channel whose maximal leakage is u log(2eǫ)/(eǫ+1) and concluded therefore

that the bound must be at least as high as such expression. Another difference between their

work and ours is that [5] captures the case in which the focus of differential privacy is on hiding

participation of individuals in a database, whereas we consider both the participation and the

values of the individuals.

Clarkson and Schneider also considered differential privacy as a case study of their proposal

for quantification of integrity [10]. There, the authors analyzed database privacy conditions from

the literature (such as differential privacy, k-anonymity, and l-diversity) for utility quantification.

In particular, they studied the relationship between differential privacy and a notion of leakage

(being different from ours as their definition is based on Shannon entropy) and they provided a

tight bound on leakage.

Heusser and Malacaria [17] were among the first to explore the application of information-

theoretic concepts to databases queries. They proposed to model database queries as programs,

which allows for statistical analysis of the information leaked by the query. However, [17] did

not attempt to relate information leakage to differential privacy.

In [15] the authors aimed at obtaining optimal-utility mechanisms while preserving differ-

ential privacy. The authors proposed adding noise to the output of the query according to the

geometric mechanism. Their framework is very interesting in the sense it provides a general def-

inition of utility for a mechanism M that captures any possible side information and preference
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the users of M may have. They proved that the geometric mechanism is optimal in the particular

case of counting queries. Our results in Section 6 do not restrict to counting queries, but on the

other hand we only consider the case of identity loss function.

Finally, our definition of the channel matrix in (25) corresponds to the exponential mecha-

nism of McSherry and Talwar [21] if the quality function relating two answers i and j is taken to

be −d(i, j), that is, the negative of the distance between them. Therefore, under the hypothesis of

Theorem 3, it follows that the exponential mechanism is an optimal way to maximize utility as

measured by the identity gain-function, while preserving differential privacy.

8 Paper summary and discussion

In this paper we have investigated the relations of ǫ-differential privacy with leakage, and utility,

extending our previous work [1, 2]. Our main contribution has been the development of a general

technique for determining these relations depending on the graph structure of the input domain,

induced by the adjacency relation and by the query. We have considered two particular structures,

the distance-regular graphs, and the vertex-transitive graphs, which allowed us to obtain tight

bounds on leakage and on utility. We also constructed an optimal noise channel satisfying ǫ-

differential privacy for some special cases.

As future work, we plan to extend our result to other kinds of utility functions, and we believe

that the g-leakage framework [4] may be suitable for this goal. In particular, we are interested

in the case in which the the answer domain is provided with a metric, and we are interested in

taking into account the degree of accuracy of the inferred answer.
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