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1 Introduction
Automatic domain transformation has been a topic of interest for a long time. There is a large
number of works (e. g. [4, 12, 14]) whose objective is to transform the planning task at hand into a
simpler language easier to deal with. It is also often beneficial to transform a planning task within
a given language, the objective being to improve planner performance through a more suitable
model. For example, it has been considered to remove redundant actions [7] in order to reduce
the branching factor, to (inversely) add additional redundant macro-actions in order to reduce
distance-to-goal (e. g. [2, 13]), and to simplify the task in ways proved to be sound using causal
graphs and other kinds of analyses (e. g. [10, 5]). In this work, we focus on an intra-language
transformation that has not, as yet, been systematically investigated: action schema splitting.

Given an action schema a[X], i. e., a PDDL-like action with parameters (variables) X ranging
over objects, take the interface size of a[X] to be its number of parameters, |X|. The splitting
operation creates several schemas a1[X1], . . . , ak[Xk] whose combination corresponds exactly to
a[X] in any valid plan, yet each of which has a smaller interface. The key advantage of such a
split is the smaller number of ground actions. For example, if each x ∈ X can be instantiated
with 100 objects, |X| = 3, and |Xi| = 1, then we reduce that number from 1000000 to 300.

Action schema splitting has been used as an engineering method to make domains accessible
to standard planners that ground out the actions, in the creation of the IPC Pipesworld and Cy-
bersecurity domains [9, 1], and in the formulation of genome edit distance as planning [6]. This
was done manually. The splitting method has never been formally described, and no attempt has
been made to automate it. Our contribution is to fill these gaps.

We spell out formally what a valid action schema split is, devising a general translation
method. Specifically, we show that, given a schema a[X], one can choose any split a1[X1], . . . , ak[Xk]
that preserves the intended order among potentially identical preconditions/adds/deletes in the
original schema (e. g., preconditions need to be checked before corresponding deletes are ap-
plied, or else the split schema may not be applicable even though the original schema is). Choos-
ing a1[X1], . . . , ak[Xk] constitutes a trade-off between minimizing interface size maxi |Xi| and thus
the number of ground actions, vs. minimizing split size k and, therewith, plan length. We design
automatic domain optimization techniques addressing that trade-off. We evaluate our methods
on (a) standard IPC benchmarks, as well as (b) “un-split” versions of the Pipesworld and genome
edit distance. Our techniques (a) are typically not beneficial on the former domains, as IPC do-
mains are already engineered to challenge search not pre-processes; however, our techniques (b)
are beneficial, and sometimes even more so than the manually split domain versions, for the latter
domains.

We next provide the background on our planning framework. We then introduce the action
schema splitting operation. We devise automatic domain optimization methods, and evaluate
these experimentally. We close the paper with a brief discussion of conclusions and future work.
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2 Background
We focus on STRIPS-like planning domains. Action schema splitting takes place on the first-
order (lifted) level, where actions are parameterized by object variables as in PDDL. We distin-
guish that level from the propositional level, as used in most current planner implementations,
and where the planning semantics is defined. We will denote variables with x, y, z, and sets of
variables with X,Y,Z.

Definition 1. An action schema a[X] is a 3-tuple (P, A,D) where P (the precondition), A (the add
list), and D (the delete list) are finite sets of first-order atoms such that X is the set of variables
that appear in P ∪ A ∪ D. X is called the interface of a[X], and the variables themselves are
often called the parameters of the action schema. We denote pre(a[X]) = P, add(a[X]) = A, and
del(a[X]) = D. We denote At(a[X]) = P ∪ A ∪ D.

An action, or ground action, a is a 3-tuple (P, A,D) where P, A, D are finite sets of propo-
sitional symbols. We denote the pre(·), add(·), del(·), and At(·) functions exactly as for action
schemas. If A is a set of action schemas or of actions, then At(A) is defined in the obvious way.

We always distinguish first-order constructs by notating them along with their variables, e. g.
writing l[X] for a first-order atom with variables X; like for action schemas, we refer to X as the
interface. Instead of a[{x, y, z}], we often write a(x, y, z).

Action schemas can be instantiated by assigning values – objects – to their parameters, yield-
ing actions. In that manner, action schemas represent sets of actions. Given a finite set of objects
O and an action schema a[X], the instantiation of a[X] with O is the ground action a defined
in the usual manner, substituting the variables of the first-order atoms in a[X] with the objects
assigned to the schema’s parameters.

Example 1. As an illustrating running example, we will consider the action schema moving block
x from block y to block z. We can write this in STRIPS notation as:

Move(x, y, z)
pre : {on(x, y), clear(x), clear(z)}
add : {on(x, z), clear(y)}
del : {on(x, y), clear(z)}

In our notation, this schema is represented as the triple Move(x, y, z) = ({on(x, y), clear(x), clear(z)},
{on(x, z), clear(y)}, {on(x, y), clear(z)}). Instantiating the variables x, y and z with objects A, B,C
respectively, the first-order atoms are grounded, and we can consider them as propositional sym-
bols. We write the corresponding (instantiated) action simply by replacing the parameters with
objects, like “Move(A, B,C)”. In the present case, Move(A, B,C) = ({on(A, B), clear(A), clear(C)},
{on(A,C), clear(B)}, {on(A, B), clear(C)}).

In PDDL, planning domains are represented using a set of action schemas common to a
set of planning instances giving the (finite) object set, initial state, and goal. Apart from the
instantiation of an action schema as defined above, we don’t require an explicit notation for this.
We base our formalization simply on grounded STRIPS as used in state-of-the-art planners like,
e. g., Fast Downward [8] and LAMA [15].
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Definition 2. A planning task Π is a 4-tuple Π = (P, A, I,G) where P is a finite set of proposi-
tional symbols, A is a finite set of actions where At(A) ⊆ P, I ⊆ P is the initial state, and G ⊆ P
is the goal.

A state s in Π is any set s ⊆ P. Action a is applicable to s if pre(a) ⊆ s. In that case, the
outcome state s′ of applying a to s is s′ = (s \ del(a)) ∪ add(a), and we write s

a
−→ s′. For an

actipon sequence a, we write s
a
−→ t if the actions in a can be iteratively applied to s, resulting in

t. A plan for Π is a sequence a such that I
a
−→ sG where G ⊆ sG. The plan is optimal if its length

is minimal among all plans for Π.

Note that we give adds a preference over deletes, i. e., if the same proposition p appears in
both del(a) and add(a), then p is true after applying a. This complies with the official semantics
of PDDL [3]; our technology can trivially be adapted to deal with the opposite semantics if so
desired. We do not consider action costs here, restricting ourselves to the uniform-cost case for
simplicity, and as the most efficient planning systems (in terms of runtime) tend to use uniform
costs.

3 Action Schema Splitting
We define action schema splitting as a syntactic transformation on action schemas. The trans-
formation is designed such that the plans in a transformed planning task are in one-to-one corre-
spondence with those in the original task. To illustrate the issues that must be tackled in achieving
this, consider our example:

Example 2. For the action schema Move(x, y, z) from Example 1, a tentative split into sub-
schemas could be:

Move1(x, y) Move2(x, z)
pre : {on(x, y), clear(x)} pre : {clear(z)}
add : {clear(y)} add : {on(x, z)}
del : {on(x, y)} del : {clear(z)}

The correspondence of this split schema to the original one appears obvious, and one may be
tempted to conclude that action schema splitting is trivial. However, note that the split shown is
not actually valid:

1. Nothing ensures that the two sub-schemas are instantiated consistently, i. e., assign the
same object to the shared parameter x on both sides.

2. Nothing ensures that the two sub-schemas are executed en block, i. e., both together and
without any other actions inserted in between. E.g., applying just Move2(x, z) allows us to
move any block x onto z, regardless of the current status of x.

3. Nothing ensures the intended order among the unifiable add clear(y) and precondition
clear(z): If y and z are instantiated with the same object, then, in any reachable state s, the
original schema will not be applicable because we cannot have on(x, y) and clear(y) at the

5



PIRSES-GA-2011-295261 / MEALS Page 6 of 20 Public

same time. In the split schema, however, the add of Move1(x, y) will establish that atom,
rendering Move2(x, z) (and therewith the overall split schema) applicable.

Issues (1) and (2) are easy to fix, for arbitrary splits, by decorating the sub-schemas with new
atoms ensuring consistent instantiation and en-block execution. Issue (3) is more subtle, and is
the only one restricting the set of splits we can choose from. We will now focus on issue (3),
desining our splitting framework. Issues (1) and (2) will be handled below by augmenting that
framework with the mentioned decorations.

3.1 Annotated Atoms and Sound Sequentializations
It is convenient to formulate our framework relative to atoms annotated with the part of the
schema they belong to:

Definition 3. Let a[X] be an action schema, and let l[Y] ∈ At(a[X]) be an atom in a[X]. Then the
corresponding annotated atom is the pair (l[Y], f (·)) where f (·) is pre(·) in case l[Y] ∈ pre(a[X]),
add(·) in case l[Y] ∈ add(a[X]), and del(·) in case l[Y] ∈ del(a[X]). The set of all annotated
atoms of a[X] is denoted AnnAt(a[X]).

To avoid clutter, we will write lpre[Y] for annotated atoms from the precondition, and similar
for adds/deletes. Annotated atoms are convenient because sub-schemas – schemas containing
a part of the original schema – correspond to subsets of AnnAt(a[X]). In the remainder of the
paper, we will typically identify schemas (and sub-schemas) with their set of annotated atoms.
In particular, this is done in our definition of what a split is:1

Definition 4. Let A[Z] be a set of action schemas, and let A[Z] be the set of all possible action
schemas over At(A[Z]). A split function for A[Z] is a function σ : A[Z] 7→ P(A[Z]), such
that, whenever σ(a[X]) = {a1[X1], . . . , ak[Xk]}, then a1[X1], . . . , ak[Xk] is a partition of a[X], i. e.,
ai[Xi] ∩ ai[Xi] = ∅ for i , j and

⋃
i ai[Xi] = a[X].

To address issue (3), we need to define a partial order over AnnAt(a[X]). Valid splits are then
ones that comply with that order. Namely, we need to make sure that, when the split schema
is executed, preconditions are evaluated before adds so the latter cannot establish the former;
preconditions are evaluated before deletes so the latter cannot disvalidate the former; and deletes
are executed before adds so the latter get the desired preference over the former. Of course, we
have to do all this only in case the two atoms in question might actually be identical in a ground
action. In other words:

Definition 5. Let a[X] be an action schema, and let l[Y], l[Y ′] ∈ At(a[X]) be atoms in a[X]
that share the same predicate l. We order Ann(l[Y]) before Ann(l[Y ′]), written Ann(l[Y]) →
Ann(l[Y ′]), if either: l[Y] ∈ pre(a[X]) and l[Y ′] ∈ add(a[X]); or l[Y] ∈ pre(a[X]) and l[Y ′] ∈
del(a[X]); or l[Y] ∈ del(a[X]) and l[Y ′] ∈ add(a[X]).

1While each schema is split separately, we define the splitting operation for sets of schemas as the decorations
addressing issues (1) and (2) will be shared across all schemas in a domain.
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If σ(a[X]) is a split of a[X], then a sequentialization of the split is any linear ordering
a1[X1], . . . , ak[Xk] of σ(a[X]). The sequentialization is sound if it complies with the ordering re-
lation→, i. e., whenever Ann(l[Y]) → Ann(l[Y ′]) and Ann(l[Y]) ∈ ai[Xi] and Ann(l[Y]) ∈ a j[X j],
then i ≤ j.

Note first that→ is acyclic, and hence in principle always allows sound sequentialization:

Lemma 1. Let a[X] be an action schema. Then the directed graph with vertices AnnAt(a[X])
and arcs→ is acyclic.

Proof. Direct from construction: The worst that can happen is for the same predicate to appear
in precondition, adds, and deletes, in which case its precondition occurences are ordered before
those in each of the adds and deletes, and its deletes occurences are ordered before those in the
adds. �

To understand these concepts, consider first the simple example where a[X] has an empty
precondition, adds {l(x)}, and deletes {l(y)}. Say the split separates the add atom from the delete
atom. The original schema will always result in l(x) being true. However, if we instantiate x
and y with the same object and allow the deleting sub-schema to be applied last, then the split
schema will result in l(x) being false. In a sound sequentialization, this cannot happen, tackling
issue (3) in controlling the splitting transformation and thus establishing its correctness relative
to the original domain.2

3.2 Quotient Graphs and Valid Splits
We now establish a characterization of the set of sound sequentializations, which also immedi-
ately leads us to methods for actually finding them. For illustration:

Example 3. For the action schema Move(x, y, z) from Example 1, the graph of partially ordered
annotated atoms is:

clearpre(z) clearpre(x)

cleardel(z)

clearadd(y)

onpre(x, y)

ondel(x, y)

onadd(x, z)
2A subtle point here is that some planning approaches/tools disallow non-empty intersections between adds and

deletes. Our assumption is that these, when given as input a ground action a not complying with their restriction,
transform a so that it does comply (removing the duplicate atom from the delete list). Our split schemas produce
ground actions equivalent to a (and thus also to the transformed action). Same if non-empty intersections between
preconditions and adds are disallowed, and if both are disallowed.

7
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Intuitively, the tentative split in Example 2 does not comply with the ordering over the clear(·)
predicate atoms, as the delete clear(z) is ordered in between the precondition clear(x) and the
add clear(y), but is ordered behind both in the split. We now make this intuition precise.

Definition 6. Let a[X] be an action schema, and let σ(a[X]) be a split of a[X]. Then the quotient
graph is the directed graph whose vertices are the sub-schemas ai[Xi] ∈ σ(a[X]), and that has an
arc from ai[Xi] to a j[X j] if there exist annotated atoms Ann(l[Y]) ∈ ai[Xi] and Ann(l[Y ′]) ∈ a j[X j]
such that Ann(l[Y])→ Ann(l[Y ′]). We say that σ(a[X]) is valid if the quotient graph is acyclic.

Quotient graphs as defined here are equivalent to imposing an “abstraction” – aggregat-
ing vertices into “block vertices” – over the acyclic graph of annotated atoms (identified in
Lemma 1). As we shall see, this simple concept achieves our aim of characterizing the set of
sound sequentializations. For illustration, consider again our example:

Example 4. The tentative split in Example 2 is not valid. Its quotient graph is: (we omit self-loops
for simplicity)

{onpre(x, y), clearpre(x), clearadd(y), ondel(x, y)}

{clearpre(z), onadd(x, z), cleardel(z)}

The downwards arc here results (amongst others) from the ordering clearpre(x)→ cleardel(z) (we
need to make sure to not delete our own precondition), whereas the upwards arc results from the
orderings clearpre(z) → clearadd(y) and cleardel(z) → clearadd(y) (we need to make sure to not
add our own precondition, and to not delete our add). A minimal way to get rid of the upwards
arc, and thus of the cycle, is to separate out clearadd(y):

{onpre(x, y), clearpre(x), ondel(x, y)}

{clearpre(z), onadd(x, z), cleardel(z)}

{clearadd(y)}
Note how this gets rid of issue (3) as observed in Example 2: If we instantiate y and z with
the same object now, then the application of the split schema fails at the second sub-schema
when the precondition clear(z) comes up (because that atom is no longer added by the previous
sub-schema).

As advertized, quotient graphs characterize exactly the sound sequentializations:

Lemma 2. Let a[X] be an action schema, let σ(a[X]) be a split, and let a1[X1], . . . , ak[Xk] be a
sequentialization of σ(a[X]). Then a1[X1], . . . , ak[Xk] is sound if and only if it complies with the
quotient graph, i. e., whenever that graph contains an arc from ai[Xi] to a j[X j], then i ≤ j.

8
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Proof. Direct from construction: As the block vertices in the quotient graph are the sub-schemas
in the split, the ordering constraints imposed by soundness correspond exactly to the arcs in the
quotient graph. �

As a split is valid iff its quotient graph is acyclic, which obviously is the case iff it is possible
for a sequentialization to comply with that graph, we get:

Corollary 1. Let a[X] be an action schema, and let σ(a[X]) be a split. Then σ(a[X]) is valid if
and only if it has at least one sound sequentialization.

3.3 Finding Valid Splits
We have now identified exactly which splits can be chosen (namely, the valid ones). Remains the
question, how to actually find such splits? Does there even always exist a non-trivial split, with
more than a single sub-schema? Both questions are easily answered; we start with the latter one:

Definition 7. Let a[X] be an action schema. Then its trivial split, denoted TrivialSplit(a[X]), is
the partition {a[X]} that assigns every annotated atom to the same single sub-schema. Its atom
split, denoted AtomSplit(a[X]), is the partition {{Ann(l[Y])} | Ann(l[Y]) ∈ a[X]} that assigns every
annotated atom to a separate sub-schema.

Corollary 2. Let a[X] be an action schema. Then TrivialSplit(a[X]) and AtomSplit(a[X]) are
both valid.

This corollary is trivial for TrivialSplit(a[X]), and direct from Lemma 1 for AtomSplit(a[X]).
As soon as the action schema contains more than a single atom, AtomSplit(a[X]) is non-trivial
(contains more than one sub-schema). For illustration, reconsider Example 3: The atom split
creates a separate sub-schema for each of the seven annotated atoms, and its quotient graph is
exactly the one shown. In our simple example from above where a[X] adds {l(x)} and deletes
{l(y)}, the atom split separates the add atom from the delete atom, and imposes that the delete is
applied first, so that the only compliant sequentialization, like the original schema, always results
in l(x) being true.

Towards answering the question how to find more general valid splits, note first that splits
naturally form a hierarchy (a partial order): We say that σ(a[X]) is coarser than σ′(a[X]) if
σ(a[X]) , σ′(a[X]) and, for every ai[Xi] ∈ σ′(a[X]), there exists a j[X j] ∈ σ(a[X]) such that
ai[Xi] ⊆ a j[X j]. The unique coarsest split is the trivial split, and the unique finest split (i. e.,
the least coarse one) is the atom split. We can travel between these two extremes by iteratively
merging sub-schemas:

Definition 8. Let a[X] be an action schema, and let σ(a[X]) = {a1[X1], . . . , ak[Xk]} be a split.
Denote by→∗ the transitive closure over the arcs in the quotient graph. Then sub-schemas ai[Xi]
and a j[X j] are mergeable if there exists no l ∈ {1, . . . , k} \ {i, j} where al[Xl] is ordered between
ai[Xi] and a j[X j], i. e., where either ai[Xi]→∗ al[Xl]→∗ a j[X j] or a j[X j]→∗ al[Xl]→∗ ai[Xi]. In
that case, the merged split is the one that results from merging ai[Xi] and a j[X j], i. e., replacing
them with ai[Xi] ∪ a j[X j] in σ(a[X]).

9
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Iterating such merging steps, starting from the atom split, underlies our search methods for
domain optimization, described in the next section. This is suitable because:

Theorem 1. Let a[X] be an action schema. Then any split constructed by starting with AtomSplit(a[X]),
and iteratively merging mergeable sub-schemas, is valid. Vice versa, any valid split can be con-
structed in this way.

Proof. The first half of the claim follows because AtomSplit(a[X]) is valid (Corollary 2), and
because if a split is valid then the merged split is valid as well. To show the latter, assume to the
contrary that merging ai[Xi] and a j[X j] introduces a cycle. Say al[Xl] is any node on that cycle,
different from ai[Xi]∪ a j[X j]. Then there is a path from ai[Xi]∪ a j[X j] to al[Xl], and a path from
al[Xl] to ai[Xi]∪a j[X j]. The “from” and “to” paths cannot both contact ai[Xi]∪a j[X j] in ai[Xi] or
else the previous split would have contained a cycle already; same for a j[X j]. Thus, in the original
quotient graph, al[Xl] must have been ordered between ai[Xi] and a j[X j], in contradiction.

To see the second half of the claim, let σ(a[X]) be any valid split, and let ai[Xi] ∈ σ(a[X]).
Let the “basis” of ai[Xi] be those annotated atoms that are not transitively ordered by→ behind
any member of ai[Xi]. Such atoms exist as→ over the atoms is acyclic. The basis atoms are not
transitively ordered relative to each other, so can be merged. All other atoms are reached via a
→ path ~p from at least one basis atom. As σ(a[X]) is valid, all atoms in between on ~p must be
contained in ai[Xi] as well (else there would be a cycle), so we can iteratively merge-in all atoms
on ~p. �

Example 5. The valid split in Example 4 (bottom figure) can be obtained from the atom split in
Example 3 by iteratively merging clearpre(x) with onpre(x, y) (basis) with ondel(x, y); and merging
clearpre(z) with onadd(x, z) (basis) with cleardel(z).

3.4 Decorating Splits, and Correctness
We have now clarified how to tackle issue (3) raised above in Example 2, but we have not
yet done anything about issue (1), ensuring consistent parameter instantiation across the split
schema, nor about issue (2), ensuring en-block execution across all split schemas in the domain.
As advertized, both issues are easy to address by introducing artificial (new) atoms. We formalize
this in terms of modifying the split function to decorate each sub-schema with these new atoms;
the construction also fixes a sequentialization of the split:

Definition 9. Let A[Z] be a set of action schemas, and let σ be a split function for A[Z] such that,
for every a[X] ∈ A[Z], σ(a[X]) is valid. We define the decorated split function σ̃ that, for each
a[X], selects an arbitrary sound sequentialization a1[X1], . . . , ak[Xk] of σ(a[X]), and decorates
that sequentialization as follows:

1. Token procnone. If σ(a[X]) has more than one sub-schema, then define σ̃(a[X]) adding
the atom procnone() to pre(a1[X1]), del(a1[X1]) and add(ak[Xk]). If σ(a[X]) has only one
sub-schema, add procnone() to pre(a1[X1]).

10
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2. Token do. Assuming a bijective function id : A[Z] 7→ {1, . . . , |A[Z]|}, if σ(a[X]) has
more than one sub-schema, then define σ̃(a[X]) adding the atoms doid(a[X])

2 to add(a1[X1]);
doid(a[X])

j to pre(a j[X j]) and del(a j[X j]) and doid(a[X])
j+1 to add(a j[X j]), for 1 < j < k; doid(a[X])

k
to pre(ak[Xk]) and del(ak[Xk]). If σ(a[X]) has only one sub-schema, do is not used.

3. Token par. Assuming a bijective function id : X 7→ {1, . . . , |X|}, if x ∈ Xi ∩ X j for
i , j, then define σ̃(a[X]) adding the literal parid(x)(x) to add(a jmin[X jmin]) where jmin is
the smallest j such that x ∈ X j; to pre(a j[X j]) for every j > jmin such that x ∈ X j; to
del(a jmax[X jmax]) where jmax is the largest j such that x ∈ X j.

By σ̃(A[Z]) =
⋃

a[X]∈A[Z] σ̃(a[X]) we denote the set of sub-schemas obtained by applying σ̃ to all
action schemas in A[Z]. We refer to σ̃(A[Z]) as the split domain obtained from A[Z] via σ.

Tokens procnone and do together ensure that the sub-schemas of an original schema a[X]
can only be executed en block, i. e., grouped together. Thanks to procnone, no other block can
be active when we start with a1[X1], and we only release the block when we end with ak[Xk].
As the do token is ID’ed, no sub-actions from any other action schema can be executed in be-
tween. Token do furthermore enforces the chosen sequentialization within the block, ensuring
soundness, ensuring that every sub-schema is applied exactly once, and ensuring that the tempo-
rality underlying clauses (i) and (iii) is adhered to. Token par forces the planner to instantiate
the sub-schemas consistently, by fixing the instantiation of every shared parameter x in the first
sub-schema using x. The token is ID’ed with the variable in question, as otherwise the roles of
two shared variables could be exchanged (if x and y are instantiated to o1 respectively o2 up front,
then the roles of non-ID’ed instantiated tokens par(o1) and par(o2) could be changed later on,
e. g. using o2 for x and o1 for y).

Example 6. Consider once more the action schema Move(x, y, z). Using the valid split in Exam-
ple 4 (bottom figure), and using id(Move(x, y, z)) = 1 as well as id(x) = 1 and id(y) = 2, we
obtain the following decorated split σ̃(Move(x, y, z)):

Move1(x, y)
pre : {on(x, y), clear(x), procnone}
add : {do1

2, par1(x), par2(y)}
del : {on(x, y), procnone}

Move2(x, z)
pre : {clear(z), do1

2, par1(x)}
add : {on(x, z), do1

3}

del : {clear(z), do1
2, par1(x)}

Move3(y)
pre : {do1

3, par2(y)}
add : {clear(y), procnone}
del : {do1

3, par2(y)}

These sub-schemas can only be executed in the given order. They consume the block-token
procnone at the start and release it at the end. Parameters x and y have to be instantiated con-
sistently as Move2(x, z) has to get par1(x) from Move1(x, y), and Move3(y) has to get par2(y)

11
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from Move1(x, y). The ordering constraints from the split’s quotient graph are respected. Thus
all three issues (1–3) from Example 2 are solved.

In general, the split domain preserves plans exactly; all we have to do is include the new
artificial atoms, adding procnone into the initial state and goal:

Theorem 2. Let A[Z] be a set of action schemas, and let σ be a split function for A[Z] such that,
for every a[X] ∈ A[Z], σ(a[X]) is valid. Let O be a finite set of objects, and let A respectively Aσ

be the sets of ground actions obtained by instantiating every schema in A[Z], respectively every
schema in the split domain σ̃(A[Z]), with O. Denote P = At(A) and let I,G ⊆ P be any subsets
of P. Then the plans for the task Π = (P, A, I,G) are in one-to-one correspondence with those
for the task Πσ = (At(Aσ), Aσ, I ∪ {procnone},G ∪ {procnone}).

Proof. Any plan for Π can be transformed into a corresponding plan for Πσ in the obvious
manner, inflating every action grounding a schema a[X] into the corresponding sequences of
grounded sub-schemas a1[X1], . . . , ak[Xk]. Vice versa, any plan for Πσ can be transformed into
a corresponding plan for Π in the inverse manner, thanks to the en block execution, consistent
instantiation, and sound sequentialization as discussed above. �

Note that our transformation does not preserve optimality. An optimal plan for Π does not
necessarily correspond to an optimal plan for Πσ, nor vice versa, because action schemas with
a larger number of sub-schemas get “punished”. This could be avoided with the help of general
action costs, simply by giving each sub-schema cost 1/|σ(a[X])|. For now, we stick to uniform
costs to keep things simple.

4 Domain Optimization
With the machinery to split action schemas at hand, we still need to design methods for apply-
ing that machinery automatically: How to find good splits? And what are “good splits” any-
how? Towards answering these questions, recall the hierarchy of splits between the atom split
(all annotated atoms separated) and the trivial split (equal to the original schema, no splitting
done). As we move up and down in that hierarchy for an action schema a[X], coarser cover-
ings have less sub-schemas and therefore tend to result in shorter plans using the split domain;
and finer coverings have smaller interfaces and therefore tend to result in less ground actions.
We capture this in terms of the split’s size, SplitSize(σ(a[X])) = |σ(a[X])|, and interface size,
IntSize(σ(a[X])) = maxai[Xi]∈σ(a[X]) |Xi|. Plan length increases linearly in SplitSize(σ(a[X])) (if the
underlying action indeed participates in the plan), and the number of ground actions decreases
exponentially in |X| − IntSize(σ(a[X])) (disregarding pruning methods such as static predicates
as used in most implementations).3 The trivial split is optimal in split size, the atom fit is opti-
mal in interface size. In practice, we need to find a good trade-off between these two extremes.
Unsurprisingly, doing so optimally is hard:

3Ideally, one would be interested in the actual increase in plan length, respectively decrease in the number of
ground actions, which at least for the latter parameter might even be feasible. We did not explore this for now,
considering only the criteria (split size and interface size) that can be read directly off the split.

12
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Theorem 3. Let split optimization be the problem of deciding, given an action schema a[X] as
well as natural numbers K and N, whether there exists a valid splitσ(a[X]) such that SplitSize(σ(a[X])) ≤
K and IntSize(σ(a[X])) ≤ N. Then split optimization is NP-complete.

Proof. Membership is trivial: Guess a split σ(a[X]) and test whether it has the desired prop-
erties. Hardness can be proved via a polynomial reduction from Bin Packing. Each “item” of
size n is simulated by an add atom with n parameters, with no overlaps between atoms. The
interfaces between sub-schemas are then disjoint, simulating the “bins”. Bin size corresponds to
IntSize(σ(a[X])), and the number of bins corresponds to SplitSize(σ(a[X])); there are no ordering
constraints so validity trivializes. �

Given this, for the time being we experimented with a family of greedy approximate opti-
mization methods (exploring optimal splits is a topic for future work). Within these methods, we
capture the trade-off in terms of a weighted sum, normalizing each criterion to the interval [0, 1]
to enhance comparability. From now on, for simplicity we assume an action schema a[X] and,
abusing notation, denote its split σ(a[X]) simply by σ. Normalized split size is

NSplitSize(σ) =
SplitSize(σ)

SplitSize(AtomSplit(a[X]))

and normalized interface size is

NIntSize(σ) =
IntSize(σ)

IntSize(TrivialSplit(a[X]))

Our optimization problem then is to find a valid split σ minimizing

TradeOff (σ) = γNSplitSize(σ) + (1 − γ)NIntSize(σ)

where the parameter γ ∈ [0, 1] controls the trade-off.
We approximate that optimization problem through either of hill-climbing or beam search in

the split hierarchy as per Theorem 1, starting at the finest split and moving to coarser ones. In
detail, we instantiate hill-climbing as follows:

• Start node: σ0 = AtomSplit(a[X]).

• Successor function: SuccFn(σ) = {σ′ | σ′ is a merged split of σ as per Definition 8}.

• Evaluation function: f (σ) = TradeOff (σ).

• Termination condition: σ is a local minimum, i. e., ∀σ′ ∈ SuccFn(σ) . f (σ′) > f (σ).

Hill-climbing thus iteratively generates all splits obtained by merging a mergeable pair of sub-
schemas, selecting one with the best trade-off. Note that this is guaranteed to eventually end up
in a local minimum, at the latest when we reach TrivialSplit(a[X]) which has no successors and
thus is a local minimum by our definition.

Beam search is parameterized by beam width B. It is like breadth-first search except that, at
each breadth-first level t, which we denote by Levelt, only B nodes with best f -value are kept.
We instantiate beam search exactly like hill-climbing, except for the termination condition:

13
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• Beam search termination condition: minσ′∈Levelt+1 f (σ′) > minσ∈Levelt f (σ), where t is the
index of the level that is currently being expanded.

Intuitively, this termination condition can be understood as saying that “viewed as a whole, the
current level is a local minimum”. Note that, in this setup, hill-climbing is exactly beam search
with B = 1.

In each of hill-climbing and beam search, ties are broken using the expression Overlap(ai[Xi], a j[X j]) =
|Xi∩X j |

|Xi∪X j |
. That is, successor nodesσ′ are ordered lexicographically by f -value first, and by Overlap(ai[Xi], a j[X j])

second, where ai[Xi] and a j[X j] are the sub-schemas merging which lead from the current node
σ to σ′. Intuitively, Overlap(ai[Xi], a j[X j]) gives a preference to merging sub-schemas that share
a lot of variables, so that combining them appears favorable regarding interface size in future
search steps. If ties remain within this enhanced ordering, these are broken arbitrarily.

A few words are in order regarding the extreme cases γ = 1 (all weight on split size) and
γ = 0 (all weight on interface size). With γ = 1, f (σ′) < f (σ) for all successor nodes σ′

in every search step, so both searches will end up returning TrivialSplit(a[X]) (implying that it
makes no sense to run them with γ = 1). With γ = 0, in contrast, the searches become very
conservative, exploring only nodes with optimal interface size equalling that of AtomSplit(a[X]).
These searches thus attempt to find smaller splits with optimal interface size. As all successors
in each search step will have the same f -value (uniquely identified by their size), that search is
guided only by Overlap(ai[Xi], a j[X j]).

We use HC, respectively BS, to denote hill-climbing, respectively beam search. Although the
former is a special case of the latter, we find this notation easier to look at.

Once HC or BS returned a valid split σ, we select a sound sequentialization of σ. Among
sub-schemas not ordered with respect to each other, we prefer ones with more preconditions.
This way, during a forward search, inapplicable instantiations of the split will be detected earlier
on.

5 Evaluation
Our techniques are implemented as a stand-alone tool (not starting from existing PDDL parser
or planner implementations) in Java. The source code is available at http://liis.famaf.
unc.edu.ar/resources, together with the original and split domains used in the following
evaluation.

A major question in the evaluation is which domains to run. We, of course, did run the
IPC domains. However, it is a well known fact that these domains are engineered to challenge
search, not pre-processes. This is particularly true of the aforementioned IPC Pipesworld and
Cybersecurity domains [9, 1] where action schemas were split manually to make the domains
amenable to standard pre-processes. More generally, most benchmarks were created having in
mind to test search capabilities; we are aware of only a single benchmark (“Pigeonhole” in [16])
that was created specifically to test pre-processing capabilities. A final detail is that domains
with complex encodings (like Cybersecurity, DiningPhilosophers, and OpticalTelegraph) often
come in ADL and are translated to STRIPS using a grounding compilation, to the effect that
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the versions we can handle (STRIPS) have no (lifted) schemas. As a result, almost all action
schemas in IPC STRIPS domains have small interfaces, and there is not much to gain by schema
splitting.

Our focus domains thus are (non-IPC) ones whose action schemas have large interfaces. We
run the two versions of Pipesworld with the original un-split domain prior to the manual splitting
operation, on the IPC test instances. The interesting question then is whether our automatic
methods result in equal (or better) performance as the manually split domains used in the IPC.
Similarly, we run Haslum’s STRIPS genome edit distance problems [6] with the un-split original
domain (“ged3-itt.pddl”) as well as the manually split domain (“ged2-itt.pddl”), on the two test
suites (“ds1” and “ds2nd”) provided.4

We ran BS with B ∈ {2, 4, 8, . . . , 128}, and we ran both HC and BS with γ ∈ {0, 0.1, 0.2, . . . , 0.9}.
Table 1 shows statistics about the splitting process. We do not report runtimes as they were al-
ways negligible, seeing as the splitting has to be done only once per domain (typically HC takes
up to 1 second, and BS takes a few seconds, up to 1 minute). We report data only for HC as,
mostly, BS did not find splits that were not also found by HC. With one exception, we report
only γ ∈ {0, 0.7, 0.8} as, mostly, other values of γ did not result in different splits.

TrivialSplit ManualSplit HC 0.8 HC 0.7 HC 0.0 AtomSplit
A avg mx A avg mx A avg mx A avg mx A avg mx A avg mx

Genome (1 and 2) 14 2.4 3 21 1.8 2 24 2.0 3 26 1.9 2 26 1.9 2 163 1.1 2
PipesworldNoT 4 8.0 9 6 6.3 7 8 5.0 7 10 4.6 5 24 2.7 3 59 2.0 3
PipesworldT 4 10.5 12 6 6.3 7 14 5.1 6 22 3.6 6 32 3.0 3 93 1.8 3
Freecell 10 4.9 7 19 2.7 7 24 2.2 5 35 1.9 2 117 1.3 2
Transport 3 4.3 5 TrivialSplit TrivialSplit 15 2.0 2 20 2.0 2

Table 1: Split Statistics. “Trivial Split”: un-split domain for our focus benchmarks, original IPC
domain for the two IPC examples. “A”: number of action schemas; “avg”: average interface size;
“mx”: maximal interface size.

Genome1 and Genome2 use the same domain (they differ in the instance set only) and they
are shown in a single row in Table 1. We include Freecell and Transport to exemplify the behavior
in standard IPC benchmarks. Clearly, as HC gets more tailored towards small interface size for
small values of γ, interface size goes down while the number of action schemas goes up. This
is true of our focus domains just like most IPC benchmarks, to varying extents. AtomSplit
forms an extreme case with extremely low average interface size, but at the cost of extremely
many action schemas and (as dictated by theory) no gain in maximal interface size over HC with
γ = 0. Compared to the manually split domains, our automatic splits always get down to the
same maximal interface size or much less, but at the cost of a larger number of action schemas.

Regarding performance, as a canonical planner to consider, we ran Fast Downward (FD) [8]
using hFF in lazy greedy best-first search without preferred operators. As a representation of the
state of the art in runtime, we ran (the FD implementation of) the first search iteration of LAMA
[15].

There are 27 IPC STRIPS benchmarks that our parser can handle. On these, (a) maximal
interface size and the number of ground actions tends to go down, but (b) overall performance

4The original cyber security domain, as well as natural language generation [11], challenge pre-processes as
well, but are formulated in ADL so our current tool cannot handle them. Extending our techniques to ADL is an
ongoing topic. Pigeonhole from [16] has a single un-splittable action schema with interface size 2, and the challenge
constructed arises only from an enormously large set of objects.
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Figure 1: Expanded states with hFF in IPC domains (all HC versions, no AtomSplit).
hFF (no preferred operators)

TrivialSplit ManualSplit HC 0.8 HC 0.7 (Transport: 0.6) HC 0.0 AtomSplit
Cov Cov Time Grd A Cov Time Grd A Cov Time Grd A Cov Time Grd A Cov Time Grd A

Genome1 15 52 8380 22.7m 21 5361 18.8m 66 8508 21.9m 66 8508 21.9m 6 -438 18.6m
Genome2 154 156 14566 4.3m 156 15358 3.5m 156 17717 4.1m 156 17717 4.1m 24 -1662 2.7m
PipesworldNoT 24 28 1230 6.7m 28 1220 6.7m 17 625 6.7m 10 -464 6.7m 13 -1096 6.7m
PipesworldT 12 22 365 2.9m 8 -925 2.6m 11 -2585 2.7m 13 -1855 2.9m 11 -492 2.9m
Freecell 59 19 -167 0.7m 24 -394 0.8m 30 -2210 0.8m 39 -3467 -13167
Transport 30 TrivialSplit 30 714 85410 25 -151 86188 26 -396 79463

LAMA (first iteration)
Genome1 73 110 64176 22.7m 34 -4716 18.8m 76 -1188 21.9m 76 -1188 21.9m 6 -22 18.6m
Genome2 156 156 5392 4.3m 156 -7277 3.5m 156 -4410 4.1m 156 -4410 4.1m 69 -16985 2.7m
PipesworldNoT 38 44 8618 6.7m 44 8625 6.7m 23 794 6.7m 23 -183 6.7m 17 -1014 6.7m
PipesworldT 16 40 3226 2.9m 13 -2900 2.6m 13 -600 2.7m 19 727 2.9m 15 215 2.9m
Freecell 59 36 -3728 0.7m 38 -2432 0.8m 35 -2392 0.8m 31 -7167 -13167
Transport 30 TrivialSplit 30 -471 85410 30 -1761 86188 28 -1100 79463

Table 2: Performance overview. “Cov”: coverage; “Time”: sum of the total-runtime advantage
over TrivialSplit, across those instances commonly solved using both domain versions involved;
“Grd A”: sum of the number-of-ground-actions advantage over TrivialSplit (“m”: million), across
those instances where that set was successfully computed using both domain versions involved
(which are all instances except for PipesworldNoTankage where TrivialSplit completed only 38
cases and PipesworldTankage where TrivialSplit completed only 20 cases). Best-performing
domain version(s) shown in boldface, split domains better than the original domain shown in
italic (“better” here means higher coverage, or equal coverage and better runtime).

suffers because grounding is not the bottleneck and the split domains tend to result in larger
search spaces. To illustrate (a), while the summed-up number of ground actions is about 4
million with the original domains, it is about 2.5 million with the domains split by HC with
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γ = 0. To illustrate (b), see Figure 1.
Table 2 summarizes performance data for our focus domains (plus the two exemplary IPC

benchmarks from Table 1). A quick glance at the table immediately conveys two major messages:
schema splitting dramatically reduces the number of ground actions in domains with large inter-
faces, often yielding substantial performance improvements; our automatically split domains are
often better than the original ones, and are sometimes as good as, or even strictly better than,
the manually split ones. The second observation is especially true for the canonical hFF planner,
where we substantially beat the manually split domain in both genome edit distance test suites,
are equally good in PipesworldNoTankage, and produce some automatic split better than the
original domain in all focus domains (Transport is one of the very few cases where performance
gets better in the IPC benchmarks). The picture is not as positive for LAMA, but still there are
good results in Genome1 and PipesworldNoTankage. We remark that, in PipesworldNoTankage,
the number of ground actions for HC with γ = 0.8 is exactly the same as that with the manually
split domain. In that sense, our automatic splitting methods re-construct the manual split here
(although our domain has more action schemas, cf. Table 1).
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Figure 2: Expanded states with hFF in our focus domains (all HC versions, no AtomSplit).
Figure 2 shows expanded states for our focus domains. The split domains still tend to result

in larger search spaces, though to a lesser extent than on the IPC domains (compare Figure 1).
Hence the performance improvements in Table 2 are mainly due to the savings in pre-processing
time.
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6 Conclusion
We have systematized and automated prior works on action schema splitting, as a pre-process
to standard planners that ground out the actions. The method shows promise on domains with
large interfaces that were previously split by hand, indicating that it could be a useful tool for,
especially, applicationers without planning expertise who wish to apply planning technology but
are not intimately familiar with it.

The most pressing line of work, already ongoing, is to extend our techniques to ADL so
that we can handle more complex domain descriptions, in particular those of the original cyber
security domain as well as natural language generation. An interesting open question regards
better domain optimization methods, that measure more directly the impact on the planner, rather
than syntactical properties of the split domain. A promising radical variant could be to implement
the splitting process as a kind of domain-specific learning, where one would fix a set of small
training instances and optimize relative to the actuall performance of a planner solving these
instances with different domain versions.
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