PIRSES-GA-2011-295261 / MEALS
November 29, 2013
Page 1 of 10

SEVENTH FRAMEWORK
PROGRAMME

)]
2
0
=
0
q
E

Project no.:

PIRSES-GA-2011-295261

Project full title:
Project Acronym: MEALS
Deliverable no.: 22/1

Mobility between Europe and Argentina applying Logics to Systems

Title of Deliverable: = SyMT: finding symmetries in SMT formulas

Contractual Date of Delivery to the CEC:
Actual Date of Delivery to the CEC:

Organisation name of lead contractor for this deliverable:

30-Sep-2013
30-Sep-2013
UBA

Author(s): Carlos Areces, David Déharbe,
Pascal Fontaine, Ezequiel Orbe

Participants(s): UNC, UBA, INR, SAU

Work package contributing to the deliverable: WP2

Nature: R

Dissemination Level: Public

Total number of pages: 10

Start date of project: 1 Oct. 2011 Duration: 48 month

Abstract:

The QF_UF category of the SMT-LIB test set contains many formulas with symmetries, and breaking these symme-
tries results in an important speedup. We here propose SyMT, a simple tool based on graph automorphism detection
algorithms to find out symmetries in SMT formulas. SyMT helps SMT users by highlighting the symmetries in their
formulas, giving thus hints on how they can improve them to enforce the SMT solver to examine one path out of many
symmetric ones in the search tree. The classic propositional symmetry breaking technique can be lifted to SMT and
yield a generic technique to break the symmetries found by SyMT.

Experiments on a large part of the SMT-LIB show that symmetries are pervasive in most categories.

Note:

This deliverable is based on material that has been published in the Proceedings of the 11th International Workshop on
Satisfiability Modulo Theories, Helsinki, Finland, July 2013.

This project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013)

under Grant Agreement Nr. 295261.

PIRSES-GA-2011-295261 / MEALS

Page 2 of 10 Public

Contents

1

Introduction

Symmetries in SMT

SyMT Implementation
Symmetries in SMT-LIB
Conclusions and future work
Bibliography

MEALS Partner Abbreviations

PIRSES-GA-2011-295261 / MEALS Page 3 of 10 Public

1 Introduction

Consider a propositional formula ¢(p, g) with propositional variables p and ¢, and symmetric
by permutation of p and g. Propositional symmetry breaking [12] eliminates symmetry, e.g. by
adding clause p = ¢, since there is a Boolean model of ¢(p, g) if and only if there is a model
such that p = ¢. Itis not necessary to search for models such that p A =g, and so the search space
can be reduced. Now consider the first-order formula ¢(f(a) = f(b),a = b) with the standard
interpretation of equality. It is clear that there exists no model such that f(a) # f(b) Aa = b
holds, although f(a) = f(b) A a # b is satisfiable; if ¢(p, g) has only models such that exactly
one proposition in {p, g} is true, ¢(f(a) = f(b),a = b) A (f(a) = f(b) = a = b) is unsatisfiable.
This simple example shows it is not sound to break symmetry of an SMT! formula based on
the symmetry of its propositional structure alone. Essentially the problem is that the abstraction
does not take the theory into account. However, we show in the paper that it is sound to break
symmetries stemming from permutation of uninterpreted symbols, similarly to what is done for
propositional logic.

As previous results suggest [8], exploiting symmetries in SMT formulas can lead to an im-
pressive decrease in the size of the search space, and thus to a considerable increase in efficiency.
Techniques described in [8] are, however, highly heuristic and vulnerable to formula rewrit-
ing. Graph automorphism detection algorithms [11, 9, 10] have been used to find symmetries in
propositional formulas. We provide a tool, based on those techniques, to discover symmetries in
SMT formulas. The tool does not break the symmetries automatically though. There would in-
deed exist many heuristic choices for symmetry breaking and the SMT user is in the best position
to make the right choices, based on the application.

Outline. We first give a formal basis for symmetry breaking in SMT, then present the imple-
mentation of SyMT, our tool for detecting symmetries in SMT formulas. Some statistics on
symmetry detection on a large part of the SMT-LIB [5] are given. They clearly show that (1)
graph automorphism algorithms scale for SMT formulas, and (2) the SMT-LIB contain many
highly symmetric formulas.

2 Symmetries in SMT

We assume knowledge of basic notions of permutation group theory, such as generator and cyclic
form. We use the standard notions of multi-sorted logic, term, formula, and interpretation com-
monly used in the context of SMT. A theory is a set of interpretations. Consider a finite set S of
uninterpreted symbols (constants, functions or predicates), and a bijective function o on S, that
maps every symbol to a symbol of the same sort (i.e., arity and sorts of arguments and image
should match). Function o extends naturally to terms and formulas, and 7o denotes o applied
to term or formula ¢, just like a higher-order substitution would, considering symbols in S as

'SMT stands for Satisfiability Modulo Theories, see [4] for a thorough introduction.

PIRSES-GA-2011-295261 / MEALS Page 4 of 10 Public

variables. o can also be applied on an interpretation 7 to yield interpretation J o similar to 7
except that 7o [s'] = 7[s] whenever so = s’. The identity function is denoted o;.

We say that o is a symmetry for formula ¢ if ¢o is syntactically equal to ¢ up to satisfiability
preserving rewritings, e.g. using commutativity of some interpreted symbols. Notice that if o is
a symmetry for ¢, so is any of its powers ¢, and in particular o' is also a symmetry of ¢ since
there exists n such that o = ;. The case where o is its own inverse (o> = o) is a particular,
though extremely frequent, case. It occurs when there is a group that contains all permutations
of elements in a subset of S. In our experiments on the SMT-LIB test bed, we have observed
that most symmetry groups found have a set of generators that are their own inverse. Consider
a symmetry o such that 0> = o for a formula ¢. For every interpretation 7 of ¢ we have
Jole] = I[¢] (using straightforward structural induction). Consider now a set of atoms (not
necessarily simple propositional variables) py, ... p, and their image ¢, = pi0,...q, = p,o. If ¢
is satisfiable in a model M then there exists a model of ¢ that furthermore satisfies the following
formulas for i € {1..n}:

Wi =ger (/\ Pi=4q;) = (pi = q).
1<j<i
This model is indeed either M or Mo. Assume k is the smallest value for which M([p,] # M[gx],
and consider y. If M[p;] = L and M[g,] = T then M satisfies ¢, as well as all ; with i # k.
Now, if M[pi] = T and M[gi] = L then Mo is a model of ¢ such that Mo [p;] = Mog;] for
i < kand Mo[pi] = T and Mo[g;] = L. The model Mo of ¢ thus satisfies ¢; for i € {1..n}.

It is well known (see, e.g., [12]) that the formulas y; can serve to break symmetry for propo-
sitional formulas. The above shows that this extends to SMT. This leaves out, however, many
choices for the set of atoms p;: the insight of the SMT user is usually necessary to make the best
choice.

3 SyMT Implementation

SyMT is a command line tool implemented in C that detects symmetries in SMT formulas, taking
into account the commutativity of conjunction, disjunction, addition, multiplication and equal-
ity. Given an input SMT formula, SyMT proceeds by creating a colored graph from it and then
uses a graph automorphism component to detect the generators of the automorphism group of
the colored graph. In particular, SyMT uses Saucy 3.0 [10] as the graph automorphism com-
ponent. Integration with Saucy is done via Saucy’s C API. SyMT also provides simplification
capabilities on the input formulas, some of which involve using theory reasoning (and thus may
unfortunately fail on large instances). Simplification of the input formula is important because
it may uncover hidden symmetries and remove trivial symmetries, e.g., symmetries that do not
involve uninterpreted symbols.

Example 1. Hereunder is the command line and output of SyMT on a formula of the QF_UF
category of SMT-LIB:

PIRSES-GA-2011-295261 / MEALS Page 5 of 10 Public

./SyMT --enable-simp smt-1ib2/QF_UF/NEQ/NEQO04_size4.smt2

(p7 p9)(cl2 cl13)

(c3 c.1)

(c2 c.1)

(c® c1)
SyMT finds four generators for the symmetry group, and prints them in cyclic form. There is
the full group of permutations of c_0, c_1, c_2, c_3, generated by the last three generators, as
well as a further symmetry that permutes unary predicates p7 and p9, while in the same time
permutes c12 and c13. This last symmetry was not detected with the heuristic techniques of [8].

Reduction to the colored graph automorphism problem is the most successful technique for
detecting symmetries in propositional formulas in clausal form, primarily due to the availabil-
ity of efficient tools to detect graph automorphisms (e.g., [11, 9, 10]) that are fast and easy
to integrate. Several reductions from propositional formulas to colored graphs have been pro-
posed [6, 7, 1], all based on the same idea: to use the formula to construct a colored graph
whose automorphism group is isomorphic to the symmetry group of the formula. Also, exten-
sions to other logics, e.g., QBF [3] and modal logics [2], have been proposed, further showing
the applicability of this technique.

We now present the reduction algorithm to colored graphs for SMT formulas. The reduction
is as a two-stage process. First, SyMT constructs the syntax direct acyclic graph of the formula
with some additional nodes. Second, colors are introduced, to avoid spurious symmetries. Colors
are represented as natural numbers. Let ¢ be an SMT formula. The colored graph G(¢) is con-
structed recursively as follows (= and other predicates, and propositional symbols are considered
as functions and constants ranging over Booleans):

e Graph Construction:

1. For each symbol, add a unique symbol node.

2. For each (constant or propositional) term without argument, the root node is the sym-
bol node introduced above.

3. For each term f(ty,...,1t,) of arity n > 0,
(a) Add a root node for f(¢,...,t,). Add an edge from the root node to the (unique)
symbol node for f.
(b) If the function is commutative (e.g. A, V, =, =, +, %), add an edge from the root

node to the root node of #; (i € {1..n}). Quantifiers, as commutative operators, are
handled similarly (coloring discriminates the matrix).

(c) If the function is not commutative:

i. For each argument ¢;, add an argument node and an edge from this node to
the root node of ¢;.

ii. Add an edge from the argument node of ¢; to the argument node of #;,; (1 <
i < n). These edges represent the ordering of the arguments in f(#,...,1,).

iii. Add an edge from the root node to the argument node of #;.

PIRSES-GA-2011-295261 / MEALS Page 6 of 10 Public

e Graph Coloring:

1. Argument nodes are assigned a specific, unique color.

2. Uninterpreted symbol nodes and root nodes are assigned a color based on their sort
(Boolean being considered as any other sort).

3. Each interpreted symbol node is assigned a unique color.
Example 2. Consider formula ¢ = p(f(a, b)) vV p(f(b,a)) V p(g(a,b)) Vv p(g(b,a)), where p is a

unary predicate and f, g, a and b are uninterpreted symbols. The associated colored graph, G(¢),
is shown in Figure 1 (colors are represented by numeric labels and node shapes in the figure).

Generator 1: (a b)
Generator 2: (f g)

Figure 1: Graph representation of ¢.

4 Symmetries in SMT-LIB

We test SyMT against 19 categories? from SMT-LIB [5] to investigate the existence of symme-
tries and evaluate the efficiency of our tool. All tests are run on an Intel Xeon X3440 with 16GB,
using the four cores simultaneously and we report the cumulative core time (roughly 4 times the
CPU time). Three different configurations of SyMT were tested. Configuration 1 has no simpli-
fication: the formula is parsed and converted to a graph for automorphism detection. Configu-
ration 2 uses trivial syntactic simplifications. Configuration 3 enables stronger simplifications,
using an SMT engine, e.g., simplification of atoms implied by unit clauses. Configuration 2 may
fail (with no symmetry reported) because the simplification algorithm used is not linear with
respect to the input formula. However it often reveals symmetries hidden by irrelevant garbage
easily removed by the simplification procedure. Configuration 3 is likely to fail on very large for-
mulas, but again, it may reveal hidden symmetries. Simplification sometimes reduces a formula
to false, in which case no symmetry is reported.

2Bit vectors are not supported by our parser.

PIRSES-GA-2011-295261 / MEALS Page 7 of 10 Public

Category #Inst | #Sym[1] | #Sym[2] | #Sym[3] | #Sym[P] | Avg[GS] Time
AUFLIA 6480 6212 6231 5796 6251 134.00 | 347.14
AUFLIRA 19917 15779 16475 12046 16476 1.08 6.65
AUFNIRA 989 985 985 902 985 1.00 0.33
QF_AUFLIA | 1140 534 603 91 613 1.19 0.58
QF_AX 551 280 280 22 280 1.15 0.35
QF_IDL 1749 346 658 747 840 | 12750.60 | 60.18
QF_LIA 5938 715 1165 475 1185 11095 | 97.04
QF_LRA 634 99 176 212 247 40.46 2.52
QF_NIA 530 167 169 168 169 5.98 2.64
QF_NRA 166 9 43 43 43 1.00 0.19
QF_RDL 255 41 41 62 62 180.20 7.61
QF_UF 6647 250 544 543 544 83.47 | 26.87
QF_UFIDL 431 32 200 198 225 1.19 1.95
QF_UFLIA 564 0 198 198 198 0.00 0.36
UFNIA 1796 1062 1061 1048 1062 47.08 | 471.02

Table 1: Symmetries in SMT-LIB

Among the 19 analyzed categories, three (LRA, QF_UFLRA, QF_UFNRA) do not reveal
symmetries with SyMT. Of the only five formulas in UFLRA, one has symmetries. The others
14 categories presented numerous symmetries in at least one of the tested configurations. Table 1
summarizes the results obtained for these 14 categories. For each category we report the number
of instances (#Inst), the number of instances that have symmetries for the various simplification
configurations (#Sym[1], #Sym[2] and #Sym[3]), the number of instances that have symmetries
in at least one of the configurations (#Sym|[P]), the average logarithm in base 2 of the size of the
symmetry group (Avg[GS]) for Configuration 1, and the total time in seconds required to analyze
all the instances (Time) also for Configuration 1. It is clear from Table 1 that the SMT-LIB has
many highly symmetric formulas, in most categories. The cumulative time required to build the
graph and detect the symmetries is negligible in all categories. We do not output the times for
other configurations since there are timeouts and time is dominantly spent in the simplification
modules, so these numbers give little insight about symmetry detection itself.

Results on QF_UF require a comment. It seems that Saucy (the graph isomorphism tools
used in SyMT) is not complete and does not exhibit all symmetries that are guessed by the
simple heuristic in [8]. For QF_UF, we actually discovered more symmetries using Bliss [9]
as a back-end, but for licensing reasons SyMT cannot include this tool. We are investigating
solutions.

5 Conclusions and future work

We presented SyMT, a tool to detect symmetries in SMT formulas. SyMT is based on the
reduction of the symmetry detection problem to graph automorphism detection. We presented

7

PIRSES-GA-2011-295261 / MEALS Page 8 of 10 Public

the corresponding graph construction algorithm and showed that symmetry detection scales on
SMT formulas by providing experimental results on executions of the tool on many SMT-LIB
categories. We also showed that propositional symmetry breaking can be lifted to the SMT case,
which provides a simple symmetry breaking mechanism for SMT.

In future work we will address the issue of symmetry breaking. We want to study the struc-
tures of symmetry groups found by SyMT. A deeper understanding of these structures may pro-
vide useful information to develop generic symmetry breaking mechanisms. We also believe
that, to fully exploit the presence of symmetries in formulas, ad hoc, application-tailored, heuris-
tics are also necessary. We will use SyMT to mine the SMT-LIB to find symmetries, and we
will devise appropriate heuristics integrated into an SMT symmetry breaking pre-processor. We
expect this will result in a significant speed up for solving the formulas in the repository, since
our experiments show symmetries are pervasive in many SMT test sets. We plan to carry out a
similar analysis on the TPTP library [13].

We are aware that symmetry breaking is essentially heuristic, and a compilation of ad hoc
heuristics would not be a silver bullet: the expertise of the user is generally the best approach to
break symmetries. The current version of SyMT already provides the SMT users with a simple,
yet powerful, tool to detect symmetries.

The tool and its source are available for download under the BSD License at http://www.
veriT-solver.org/SyMT. It uses the Saucy 3.0 source code, distributed under its own specific
license.

Bibliography

[1] E Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving difficult instances of Boolean
satisfiability in the presence of symmetry. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 22(9):1117-1137, 2003.

[2] C. Areces, G. Hoffmann, and E. Orbe. Symmetries in modal logics: A coinductive ap-
proach. In Proc. of the 7th Workshop on Logical and Semantic Frameworks, with Applica-
tions (LSFA 2012), Rio de Janeiro, September 2012.

[3] G. Audemard, B. Mazure, and L. Sais. Dealing with symmetries in quantified Boolean
formulas. In Proc. of SAT’ 04, pages 257-262, 2004.

[4] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In
A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 26, pages 825—
885. I0S Press, Feb. 20009.

[5] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2010.

[6] J. Crawford. A theoretical analysis of reasoning by symmetry in first-order logic. In Proc.
of AAAI Workshop on Tractable Reasoning, pages 17-22, 1992.

8

PIRSES-GA-2011-295261 / MEALS Page 9 of 10 Public

[7]

[8]

[9]

[10]

[11]

[12]

[13]

J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search
problems. In L. Carlucci Aiello, J. Doyle, and S. Shapiro, editors, KR, pages 148—159.
Morgan Kaufmann, 1996.

D. Déharbe, P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Exploiting symmetry in
SMT problems. In N. Bjgrner and V. Sofronie-Stokkermans, editors, CADE, volume 6803
of LNCS, pages 222-236. Springer, 2011.

T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse
graphs. In D. Applegate, G. Brodat, D. Panario, and R. Sedgewick, editors, Proc. of the 9th
Workshop on Algorithm Engineering and Experiments and the 4th Workshop on Analytic
Algorithms and Combinatorics. SIAM, 2007.

H. Katebi, K. Sakallah, and I. Markov. Conflict anticipation in the search for graph auto-
morphisms. In N. Bjgrner and A. Voronkov, editors, LPAR, volume 7180 of LNCS, pages
243-257. Springer, 2012.

B. McKay. Nauty user’s guide. Technical report, Australian National University, Computer
Science Department, 1990.

K. Sakallah. Symmetry and satisfiability. In A. Biere, M. Heule, H. van Maaren, and
T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications, pages 289-338. 10S Press, 2009.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337-362, 2009.

MEALS Partner Abbreviations

SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universitidt Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Cérdoba, AR

UBA: Universidad de Buenos Aires, AR

PIRSES-GA-2011-295261 / MEALS Page 10 of 10 Public

UNR: Universidad Nacional de Rio Cuarto, AR

ITBA: Instituto Técnolégico Buenos Aires, AR

10

