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1 Introduction
The interplay of probabilistic and non-deterministic choices in systems that live in a continuous
state space is becoming more common. For example, they arise naturally on software appli-
cations for mobile devices. This type of system has discrete state (memory hierarchy) as well
as continuous state (position, orientation, acceleration, battery voltage, etc.). These continuous
quantities are disrupted by the environment, and such disruption may be stochastically quantifi-
able. Besides, many algorithms make internal decisions sampling according to discrete probabil-
ities. Moreover, they operate in meshes of devices where the relative speeds of execution among
them are not known in advance, therefore there is no information on how these devices interleave
their operations in the time-line. Observations of discrete values like enabled or disabled buttons,
and observations of continuous values like displayed roll angle in a cell phone, are part of these
systems.

Examples of this kind which need to interact with physical or biological components abound
and they exceed the modeling capabilities of Markov processes with continuous-state spaces or
continuous time evolution (or both): they also need the consideration of non-determinism. Many
formal frameworks have been defined to study them from a process theory or process algebra
perspective [5, 6, 8, 9, 14–16, 20, 21, 44, 45, etc.]. A prominent and extensive work on this area
is the one that builds on top of the so-called labeled Markov processes (LMP) [14, 20, 21, 39].
This is due to its solid and well understood mathematical foundations. An LMP allows for
many transition probability functions (or Markov kernels) leaving each state (instead of only
one as in usual Markov processes). Each transition probability function is a measure ranging
on a (possibly continuous) measurable space, and the different transition probability functions
can be singled out through labels. Thus this model does not consider internal non-determinism.
From the modeling point of view, this is a significant drawback for this theory since internal non-
determinism immediately arises in the analysis of systems, e.g., because of abstracting internal
activity (such as weak bisimulation [37]) or because of state abstraction techniques (such as in
model checking [2, 12]).

Many variants of continuous Markov processes that include internal non-determinism have
been defined [5, 6, 8, 9, 15, 16, 45], including a continuous probabilistic variant of the (strong)
bisimulation. Contrarily to LMPs, these models lack the sufficient structure to ensure that bisim-
ilar models share the same observable behavior. Although [8,9] deal with the same unstructured
type of model, they lift the burden of checking measurability to the semantic tools (such as bisim-
ulation or schedulers). In particular, this results in the definition of a bisimulation as a relation
between measures rather than states.

Contrarily to [8,9] we preferred to follow the approach of Desharnais, Panangaden, et al. and
extend LMPs with internal non-determinism using the power of the mathematics provided by
measure theory. This led us to develop a theory of non-deterministic labeled Markov processes
(NLMP) [7, 10, 17, 18, 48]. An NLMP has a non-deterministic transition function Ta for each
label a that, given a state, it returns a measurable set of probability measures, rather than only
one probability measure as in LMPs.

In this paper, we provide a survey to the theory of labeled Markov processes (LMP) and its
extension with internal non-determinism (NLMP). Moreover, we introduce a structured version
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of NLMPs (SNLMP) where action labels are also endowed with a measurable structure.
The natural notion of identity on measurable spaces is given by the σ-algebra: two points

can be considered indistinguishable if they cannot be separated by the σ-algebra (i.e. there is no
measurable set that contains one point but not the other). As a consequence, it is expected that
bisimulation respects this principle in a setting where states are endowed with a σ-algebra. How-
ever, Danos et al. [14] showed that this is not the case in the LMP model and that there are bisim-
ulation relations that may distinguish more than what the underlying σ-algebra can distinguish.
That is, states that cannot be separated by any measurable set (and hence always equated in the
σ-algebra) may not be related by some bisimulation relation. This is awkward since measurable
sets are the smallest distinguishable objects in a σ-algebra. Therefore, this raises the question of
whether this problem extends to the bisimulation equivalence. To overcome this, [14] defines the
so-called event bisimulation (in opposition to the previously existing state bisimulation—name
which we will use from now on). The same situation arises on NLMPs. Moreover two candi-
dates for state bisimulation appear if internal non-determinism is considered [17, 18, 48]. We
recall here the definitions of the bisimulations on the different settings. In addition, we report the
relations between the different bisimulations and try to understand their expressiveness through
examples.

Behavioral equivalences like bisimulation have been characterized using logics with modal-
ities, notably the Hennessy-Milner logic [33] (see also [29]). Similarly, there are Hennessy-
Milner-like logics to completely characterize the different event bisimulation equivalences in
LMPs [14], NLMPs [17,18,48], and SNLMPs [7] which we also present in this survey and show
how they relate among themselves and the other bisimulations.

The next section summarizes some preliminaries on measure theory required to understand
the paper. The rest of the text is structured according to each of the models. Section 3 reviews
the theory of LMPs which deals with label-deterministic models. Section 4 reviews the theory
of NLMPs which deals with internal non-determinism. Section 5 introduces SNLMPs which
are a restriction of NLMPs where non-determinism in general is requested to be structured in
a measurable space by endowing the set of labels with a σ-algebra. The paper concludes in
Section 6 by reviewing some additional results that strongly relates to these models. We remark
that the proofs of all results presented in Section 3 can be found in [14], the proofs of Section 4
can be found in [17] or, with more detail, in [48], and the proofs of Section 5 can be found in [7].
The results reported in Section 5 have only appeared as part of the theses [7, 48].

2 Preliminaries on Measure Theory
In this section, we recall some fundamental notions of measure theory that will be useful through-
out the paper.

Given a set S and a collection Σ of subsets of S , we call Σ a σ-algebra iff S ∈ Σ and Σ is
closed under complement and denumerable union. By σ(G) we denote the σ-algebra generated
by the family G ⊆ 2S , i.e., the minimal σ-algebra containing G. Each element of G is called
a generator and G is called the generator set. We call the pair (S ,Σ) a measurable space. A
measurable set is a set Q ∈ Σ. Let (L,Λ) and (S ,Σ) be measurable spaces. A measurable
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rectangle is a set A × B with A ∈ Λ and B ∈ Σ. The product σ-algebra on L × S is the smallest
σ-algebra containing all measurable rectangles, and is denoted by Λ ⊗ Σ.

A function µ : Σ → [0, 1] is a probability measure if (i) it is σ-additive, i.e. µ(
⋃

i∈N Qi) =∑
i∈N µ(Qi) for all countable family of pairwise disjoint measurable sets {Qi | i ∈ N} ⊆ Σ, and

(ii) µ(S ) = 1. By δa we denote the Dirac probability measure concentrated in {a}. Let ∆(S ) denote
the set of all probability measures over the measurable space (S ,Σ). We let µ, µ′, µ1,. . . range
over ∆(S ). Let (S 1,Σ1) and (S 2,Σ2) be two measurable spaces. A function f : S 1 → S 2 is
said to be measurable if for all Q2 ∈ Σ2, f −1(Q2) ∈ Σ1, i.e., its inverse image maps measurable
sets to measurable sets. In this case we denote f : (S 1,Σ1) → (S 2,Σ2) and say that f is Σ1-Σ2

measurable.
Along the article we will often set our examples on Borel σ-algebras. A σ-algebra is Borel

if it is generated by the set of all open sets in a topology. Particularly, the Borel σ-algebra on the
real line is B(R) = σ({(a, b) | a, b ∈ R and a < b}). Similarly, B([0, 1]) is the Borel σ-algebra on
the interval [0, 1] generated by the open sets in the interval [0, 1].

There is a standard construction by Giry [28] to endow ∆(S ) with a σ-algebra1 as follows:
∆(Σ) is defined as the σ-algebra generated by the sets of probability measures ∆B(Q) � {µ |
µ(Q) ∈ B}, with Q ∈ Σ and B ∈ B([0, 1]). If p ∈ [0, 1], we will write ∆≥p(Q), ∆>p(Q), ∆<p(Q),
etc. for ∆B(Q) with B = [p, 1], (p, 1], [0, p), respectively. It is known that the set {∆≥p(Q) | p ∈
(Q ∩ [0, 1]),Q ∈ Σ} generates ∆(Σ). We let ξ, ζ, ξ′, ζ′, ξ1, ζ1, . . . range over ∆(Σ).

3 Labeled Markov processes
Labeled Markov processes (LMP) were developed in [20, 21] by Desharnais et al. An LMP has
a labeled set of actions where an action represents the interaction with the environment. Thus,
an LMP is a reactive model in which there are different transition probabilities for each action.
In this model, uncertainty is (only) considered to be probabilistic; therefore, the LMP model can
be regarded as a generalization of deterministic processes. The thesis of Josée Desharnais [20]
and the book of Prakash Panangaden [39] contain a thorough study on LMPs.

Definition 1. A labeled Markov process is a triple (S ,Σ, {τa | a ∈ L}) where Σ is a σ-algebra
on the set of states S , and for each label a ∈ L, the transition probability function τa : S →
∆(S ) ∪ {0} is a measurable function. Here, we let 0 : Σ → [0, 1] be the null measure such that
0(Q) = 0 for all Q ∈ Σ.

The value τa(s)(Q) represents the probability of making a transition to a state in Q provided
that the system is in state s and action a has been accepted. Therefore, the transition probability is
actually a conditional probability: the probability of Q is conditioned to the fact that the system
is in state s and that it reacts to action a. Originally, [20, 39] allow τa(s) to be a subprobability
measure (i.e., τa(s)(S ) ≤ 1) where the value 1 − τa(s)(S ) represents the probability of refusing

1The application S 7→ ∆(S ) gives rise to an endofunctor ∆ of the category of measurable spaces and measurable
maps. The base space of ∆(S ,Σ) is ∆(S ). By an innocuous abuse of notation, we call ∆(Σ) the σ-algebra of this
measurable space; hence ∆(S ,Σ) = (∆(S ),∆(Σ)).
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a. As we are going to review other models we prefer to deal only with full probability measures
and let τa(s) = 0 indicate that action a is refused at the state s with probability 1.

Example 1. Consider a computer system that measures a movement of a particle in the real line
R. The particle moves according to the dynamics of a Brownian motion, but the system can only
measure the position of the particle at discrete time. We also want to distinguish whether the
particle has passed a particular threshold h ∈ R.

The movement of the particle is described by a Wiener process which states that if the particle
is observed at position r, the new position after a delay of t time units is a random variable with
distribution N(r, t), i.e., a normal distribution with mean r and variance t. More precisely, this
distribution is defined by

µt
r([l, u]) =

1
√

2πt

∫ u

l
e

(x−r)2
2t dx.

To construct the LMP modeling the system, we let R be the set of states with the usual Borel
σ-algebra B(R), where each state indicates the current position of the particle. The LMP has two
types of probability transitions: one that represents the measure of the position of the particle
after n ∈ N time units, and the other that indicates if the system is below or above the threshold
through the labels low and high respectively. Thus, for each n ∈ N and state r ∈ R, τn(r) = µn

r
represents the probability at position r to read that the particle has jumped to a new position in a
given interval after n (discrete) time units have elapsed. Besides, τlow(r) = if r < h then δr else 0
is used to indicate whether the system is below or above the threshold; if r is below the threshold
τlow(r) is a self-loop with probability 1, otherwise it refuses action low. Similarly, τhigh(r) =

if r < h then 0 else δr indicates whether the system is above the threshold.
The system is then modeled by the LMP (R,B(R), {τa | a ∈ N ∪ {low, high}).

Probabilistic bisimulation was introduced by Larsen and Skou [35] in a discrete setting very
much like the LMP, only that distributions run on discrete sets. This notion has been adapted by
Desharnais et al. in [20, 21] to the continuous case of LMPs. The idea behind the bisimulation
equivalence is that from two equivalent states, an a-transition should lead with equal probability
to any measurable aggregate of equivalence classes (properly speaking, to any measurable set
that results of an arbitrary union of equivalence classes).

Given a relation R ⊆ S × S , a set Q ⊆ S is R-closed if R(Q) ⊆ Q. Notice that if R is
symmetric, Q is R-closed if and only if for all s, t ∈ S such that s R t, s ∈ Q ⇔ t ∈ Q. Using
this definition, a symmetric relation R can be lifted to an equivalence relation in ∆(S ) as follows:
µ R µ′ iff for every R-closed Q ∈ Σ, µ(Q) = µ′(Q).

Using this idea Desharnais et al. defined the notion of bisimulation that was called state
bisimulation in [14] to stress the fact that the relation is defined directly on states.

Definition 2. R ⊆ S × S is a state bisimulation on the LMP (S ,Σ, {τa | a ∈ L}) if it is symmetric
and for all s, t ∈ S , a ∈ L, s R t implies that τa(s) R τa(t).

We say that two states s and t are state bisimilar (or state bisimulation equivalent), denoted
by s ∼s t, if there is a state bisimulation R such that s R t.

Relation ∼s can be proved to be a state bisimulation and also an equivalence relation [20,21].
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The definition of state bisimulation is point-wise and not event-wise as one should expect in
a measure-theoretic realm, since R has no measurability restrictions. Indeed, as shown in [14], a
state bisimulation can distinguish more states than what the underlyingσ-algebra can distinguish.
Suppose the set of states {1, 2, 3, 4} with the σ-algebra {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}. No matter
what the transition function is, the identity relation is a state bisimulation. However, the identity
relation distinguishes states that cannot be distinguish through measurable sets (i.e., events) on
the σ-algebra. Take for instance states 1 and 2: they are not related by the identity relation
but they cannot be distinguished through transition probability functions because the transition
probability function has to be measurable with respect to the σ-algebra.

The question is whether this problem extends to the state bisimulation equivalence ∼s. To un-
derstand the problem, [14] introduced a measure-theory aware notion of behavioral equivalence.

Definition 3. An event bisimulation on an LMP (S ,Σ, {τa | a ∈ L}) is a sub-σ-algebra Ξ of Σ s.t.
(S ,Ξ, {τa | a ∈ L}) is an LMP.

We extend the notion of event bisimulation to relations. We say that a relation R is an event
bisimulation if there is an event bisimulation Ξ such that R = R(Ξ), where R(Ξ) � {(s, t) ∈
S × S | ∀Q ∈ Ξ : s ∈ Q ⇔ t ∈ Q}. More generally, we say that two states s, t ∈ S are event
bisimilar, denoted by s ∼e t, if there is an event bisimulation Ξ such that s R(Ξ) t. The fact that
∼e is an equivalence relation is an immediate corollary of Theorem 1.

The article [14] shows that R is a state bisimulation iff Σ(R), defined by Σ(R) = {Q ∈ Σ |

Q is R-closed}, is an event bisimulation. This is an important result that leads to prove that the
largest state bisimulation ∼s is also an event bisimulation. That is ∼s ⊆ ∼e.

Another way to understand the semantics of a process is through a modal logic. The seman-
tics of a process is defined by the set of properties that it satisfies. Particularly, a formula in a
Hennessy-Milner-like logic defines a possible observation of the execution of the system [29,33].

Besides, it would be useful if the semantics from the point of view of the logic agrees with
that defined by the bisimulation. Thus, if two states are not bisimilar there must be an observation
(a formula) that distinguishes them.

In [20,21] a variant of the Hennessy-Milner logic for LMPs is introduced. The logic, that we
call L0, is given by the following productions:

ϕ ≡ > | ϕ1 ∧ ϕ2 | 〈a〉qϕ

where a ∈ L and q ∈ Q ∩ [0, 1].
Formulas in L0 are interpreted as sets of states. Thus, a formula ϕ is satisfied by a state s if

and only if s ∈ ~ϕ�.

~>� := S ~ϕ1 ∧ ϕ2� := ~ϕ1� ∩ ~ϕ2� ~〈a〉qϕ� := {s ∈ S : τa(s, ~ϕ�) ≥ q}

Notice, in particular, that 〈a〉qϕ is satisfied by a state s if there is an a-labeled transition from s
reaching a set of states that satisfy ϕ with probability at least q. Therefore, for the semantics to
be well defined, ~ϕ� should be measurable for any formula ϕ. To show this, first notice that all
operations involved on the definition of the semantics preserve measurability (in particular τa is
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a measurable function). Then, by structural induction on the formula ϕ, it is straightforward to
conclude that ~ϕ� is measurable. Let ~L0� := {~ϕ� : ϕ ∈ L0}. By the previous observation,
~L0� ⊆ Σ.

It has been proved in [20,21] that if the set of states is an analytic space2 and the set of labels
L is countable, then L0 characterizes state bisimulation; that is, for any two given states s, t ∈ S ,
s ∼s t if and only if s R(L0) t (i.e., for all ϕ ∈ L0, s ∈ ~ϕ� ⇔ t ∈ ~ϕ�). Besides, [14] showed
that L0 completely characterizes the event bisimulation in general. More precisely, they proved
that σ(~L0�), the σ-algebra generated by ~L0�, is the smallest σ-algebra that is also an event
bisimulation.

Summarizing the results, we have:

Theorem 1. For every LMP (S ,Σ, {τa | a ∈ L}), ∼s ⊆ ∼e = R(L0). Moreover, if (S ,Σ) is an
analytic Borel space and L is countable then ∼s = ∼e = R(L0).

It was shown in [42] that this result does not generalize to arbitrary measurable spaces.
As we mentioned, an LMP is an inherently deterministic model in the sense that the label

determines a unique transition probability function. Thus, this model does not consider internal
non-determinism. From the process algebra point of view, this is a significant drawback of
this theory since internal non-determinism immediately arises in the modeling and analysis of
systems. For example, internal non-determinism arises by abstracting internal activity (to later
use weak bisimulation [37]) or by using state abstraction techniques (such as in model checking
[12]). This can be seen more clearly in the next example.

Example 2. This time we consider two computer systems, each measuring a different particle
moving in the real line. One of them moves half as fast as the other, and for this reason, the
system that monitors this new particle, also samples half as fast. These two systems can be
modeled in a single LMP where the state space is defined by R × {1, 2} and each state (r, k)
indicates that the particle k is in position r. As in Ex. 1, we also consider a threshold h.

The complete LMP is defined by: (R × {1, 2},B(R × {1, 2}), {τa | a ∈ N ∪ {low, high}), where
τlow(r, k) = if r < h then δ(r,k) else 0, τhigh(r, k) = if r < h then 0 else δ(r,k), and for all n ∈ N,
τn(r, 1) = µn

r ◦ f −1
1 , τ2n(r, 2) = µn

r ◦ f −1
2 , and τ2n−1(r, 2) = 0, with fk(x) = (x, k) for all x ∈ R.

Notice that the probability of the first particle going beyond the threshold is the same as the
probability of the second particle going beyond the threshold if both are at the same position (i.e.,
in states (r, 1) and (r, 2) respectively) and the time to reach the threshold is not important. This is
easy to see since each τn transition of the fast particle (k = 1) can be matched with a τ2n transition
of the slow particle (k = 2) and vice versa. Nevertheless, it is also clear that (r, 1) and (r, 2) are
not (event nor state) bisimilar. In particular, if q = µn

h−d([h,∞)), (h − d, 1) ∈ ~〈n〉q〈high〉1>� but
(h − d, 2) < ~〈n〉q〈high〉1>�.

The distinction occurs only because the label n ∈ N (the elapsed time) is observable. Ab-
stracting from time would require hiding this class of label, and any reasonable hiding operation
will immediately end up with an object not expressible in terms of an LMP.

2A topological space is Polish if it is separable and completely metrizable. Examples of Polish spaces are the
Euclidean spaces Rn and all countable discrete spaces. Polish spaces are closed under countable product, and hence
AN (with A a countable discrete space) is Polish. Finally, an analytic space is the continuous image of a Polish space.
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4 Non-deterministic Labeled Markov Processes
Non-deterministic Labeled Markov Processes (NLMP) were introduced in [17, 18] as a general-
ization of LMPs that enable the modeling of internal non-determinism. That is, in an NLMP, two
different but equally labeled transition probabilities are allowed to leave the same state.

There have been several attempts to define non-deterministic continuous probabilistic transi-
tion systems and all of them are straightforward extensions of (simpler) discrete versions. There
are two fundamental differences in the NLMP model. The first one is that the non-deterministic
transition function Ta now maps states to measurable sets of probability measures rather than
arbitrary sets as previous approaches do. This is motivated by the fact that the non-determinism
has to be resolved using schedulers. If we allowed the target set of states to be an arbitrary subset
(as in [6,9,15]), the system as a whole could suffer from non-measurability issues, which would
mean that it could not be quantified. (Rigorously speaking, labels should also be provided with a
σ-algebra in order to define schedulers, but we omit it in this first approach.) The second differ-
ence is inspired by the definition of LMP: we ask that, for each label a ∈ L, Ta is a measurable
function. One of the reasons for this restriction is to have well defined modal operators of a
probabilistic Hennessy-Milner logic, like in the LMP case.

Definition 4. A non-deterministic labeled Markov process (NLMP for short) is a structure (S ,Σ, {Ta |

a ∈ L}) where Σ is a σ-algebra on the set of states S , and for each label a ∈ L, Ta : S → ∆(Σ) is
measurable.

For the requirement that Ta is measurable, we need to endow ∆(Σ) with a σ-algebra. This is
a key construction for the development of the theory of NLMPs.

Definition 5. H(∆(Σ)) is the minimal σ-algebra containing all sets Hξ � {ζ ∈ ∆(Σ) | ζ ∩ ξ , ∅}
with ξ ∈ ∆(Σ).

This construction is similar to that of the Effros-Borel spaces [34] and resembles the so-
called hit-and-miss topologies [38]. Note that the generator set Hξ contains all measurable sets
that “hit” the measurable set ξ. Also observe that T−1

a (Hξ) is the set of all states that “hit”
the set of measures ξ through label a (i.e., T−1

a (Hξ) = {s | Ta(s) ∩ ξ , ∅}). This forms the
basis to existentially quantify over the non-determinism, and it is fundamental for the behavioral
equivalences and the logic.

The next two examples (inspired by an example in [8]) show why Ta is required to map into
measurable sets and to be measurable. For these examples we let the state space and σ-algebra
be the real unit interval with the standard Borel σ-algebra.

Example 3. LetV = {δq | q ∈ V}, where V is a non-measurable set in [0, 1] (that is, V ⊆ [0, 1] and
V < Σ). It can be shown thatV is not measurable in ∆(Σ). Let Ta(s) = V for all s ∈ [0, 1]. The
resolution of the internal non-determinism by means of so-called schedulers (also adversaries
or policies) [41, 46], would require to assign probabilities to all possible choices. This amounts
to measure the non-measurable set Ta(s). This is why we require that Ta maps into measurable
sets.

9
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Example 4. Let Ta(s) = {µ} for a fixed measure µ, and let Tb(s) = if (s ∈ V) then {δ1} else ∅,
for every s ∈ [0, 1], with V being a non-measurable set. Notice that both Ta(s) and Tb(s) are
measurable sets for every s ∈ [0, 1]. Assume that there is a scheduler that chooses to first do
a and then b starting at some state s. The probability under such scheduler of reaching state
1 after preforming both transitions cannot be measured since it requires to apply µ to the set
T−1

b (H∆(S )) = V which is not measurable. Besides, we will later need that sets T−1
a (Hξ) are

measurable so that the semantics of the logic L1 maps into measurable sets.
Notice that an LMP can be regarded as an NLMP without internal non-determinism, that is,

an NLMP in which Ta(s) is either a singleton or the empty set for all a ∈ L and s ∈ S . In fact,
an LMP can be encoded as an NLMP by taking Ta(s) = {τa(s)} \ {0}. For this, it is necessary that
singletons {µ} are measurable in ∆(Σ) for the NLMP to be well defined. (In general, it suffices
that Σ is countably generated to ensure that singleton sets are measurable [17].) Moreover, it is
also necessary that function Ta is measurable, which is actually the case. Indeed, it is not difficult
to verify that Ta is measurable iff τa is measurable [48].
Example 5. Taking the previous definition, the LMP of the two particles moving on the real line
of Ex. 2, can be translated into the NLMP (R × {1, 2},B(R × {1, 2}), {Ta | a ∈ N ∪ {low, high}),
where Tlow(r, k) = if (r < h) then {δ(r,k)} else ∅, Thigh(r, k) = if (r < h) then ∅ else {δ(r,k)}, and
for all n ∈ N, Tn(r, 1) = {µn

r ◦ f −1
1 }, T2n(r, 2) = {µn

r ◦ f −1
2 }, and T2n−1(r, 2) = ∅, with fk(x) = (x, k)

for all x ∈ R.
Notice that if we abstract the time just like in process algebra, then we obtain the NLMP

(R × {1, 2},B(R × {1, 2}), {Ta | a ∈ {ε, low, high}), with Tlow and Thigh as before and Tε(r, k) =

{µn
r ◦ f −1

k | n ∈ N}. Clearly this last set is measurable in ∆(B(R × {1, 2})) since it is countable
(singleton sets are measurable in ∆(B(R × {1, 2})), see [17]). Besides, it can be proved that Tε is
measurable which shows that this abstraction defines a proper NLMP.

The original definition of bisimulation given by Larsen and Skou [35] has been generalized
to a continuous setting in, e.g., [5,6,15,16,45]. These definitions closely resemble the definition
of Larsen and Skou, the only difference being that two measures are considered equivalent if they
agree in every measurable union of equivalence classes induced by the relation. In our setting,
this definition can be instantiated as follows

Definition 6. A relation R is a state bisimulation on an NLMP (S ,Σ, {Ta | a ∈ L}) if it is sym-
metric and for all a ∈ L, s R t implies that for all µ ∈ Ta(s), there is µ′ ∈ Ta(t) s.t. µ R µ′. We
say that s, t ∈ S are state bisimilar, denoted by s ∼s t, if there is a state bisimulation R such that
s R t.

The relation ∼s is the largest state bisimulation and it is also an equivalence relation [17, 48].
The proof of this follows the standard strategy of the classic bisimulation (see [37]). Apart from
the probabilistic treatment, it only differs in that the composition R ◦ R′ is granted to be state
bisimulation if R and R′ are reflexive state bisimulations. (If one of R or R′ is not reflexive, R ◦R′

may not be a state bisimulation.) Besides, it is easy to show that a state bisimulation on an LMP
is also a state bisimulation on the encoding NLMP and vice versa.

The next example revisits Example 2. Using the timed abstracted version of Example 5, it
shows that it is possible to prove that the two particles behave the same (modulo state bisimula-
tion).

10
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Example 6. Take the time-abstracted NLMP of Ex. 5, and let R = {((r, 1), (r, 2)) | r ∈ R}. Notice
that any measurable R-closed set has the form QB = B × {1, 2} for some B ∈ B(R). Hence
µn

r ◦ f −1
1 (QB) = µn

r (B) = µn
r ◦ f −1

2 (QB) and therefore (µn
r ◦ f −1

1 ) R (µn
r ◦ f −1

2 ). Since µ ∈ Tε(r, 1)
implies that µ = µn

r ◦ f −1
1 for some n, then there is some µ′ ∈ Tε(r, 2) such that µ R µ′ (in fact,

µ′ = µn
r ◦ f −1

2 ). From here (and the cases of Tlow and Thigh, which we omit) it follows that R is a
state bisimulation.

In the case of an LMP (S ,Σ, {τa | a ∈ L}), an event bisimulation is a sub-σ-algebra Ξ ⊆ Σ

such that all transition probability functions are Ξ-∆(Ξ) measurable. We state our generalization
following the same idea.

Definition 7. An event bisimulation on an NLMP (S ,Σ, {Ta | a ∈ L}) is a sub-σ-algebra Ξ of Σ

s.t. Ta : (S ,Ξ)→ (∆(Σ),H(∆(Ξ))) is measurable for each a ∈ L.

Note that Ta is the same function from S to ∆(Σ) only that, for Ξ to be an event bisimulation,
it should be measurable from Ξ to H(∆(Ξ)). Here, H(∆(Ξ)) is the sub-σ-algebra of H(∆(Σ))
generated by {Hξ | ξ ∈ ∆(Ξ)}.

Just like for LMPs, the notion of event bisimulation can be extended to relations: R is an
event bisimulation if there is an event bisimulation Ξ s.t. R = R(Ξ). More generally, we say that
two states s, t ∈ S are event bisimilar, denoted by s ∼e t, if there is an event bisimulation Ξ such
that s R(Ξ) t. The fact that ∼e is an equivalence relation is an immediate corollary of Theorem 2
given below. We remark that an event bisimulation on an LMP is also an event bisimulation on
the encoding NLMP and vice versa.

For NLMPs, we introduce a third kind of bisimulation that we call hit bisimulation3. Rather
than looking point-wise at probability measures as state bisimulations do, the definition of the
hit bisimulation follows the idea of Def. 5 and verifies that both Ta(s) and Ta(t) hit the same
measurable sets of probability measures which measure only R-closed sets.

Definition 8. A relation R ⊆ S × S is a hit bisimulation on the NLMP (S ,Σ, {Ta | a ∈ L}) if it is
symmetric and for all a ∈ L, s R t implies that, for all ξ ∈ ∆(Σ(R)), Ta(s)∩ξ , ∅⇔ Ta(t)∩ξ , ∅.
We say that s, t ∈ S are hit bisimilar, denoted by s ∼h t, if there is a hit bisimulation R such that
s R t.

The relation ∼h is the largest hit bisimulation and an equivalence relation. Hit bisimulations
relate to the event bisimulations in NLMPs very much like the the state bisimulations relate to
the event bisimulations in LMPs. In particular, R is a hit bisimulation if and only if Σ(R) is an
event bisimulation. This is indeed an important result that is central to eventually prove that ∼h

is also an event bisimulation and hence ∼h ⊆ ∼e. The fact that ∼h is an equivalence relation is
actually a consequence of the fact that it is also an event bisimulation (every event bisimulation
is an equivalence relation directly from its definition). The details of all these results appeared
in [17, 48].

A state bisimulation R is also a hit bisimulation. The proof of this relies on the fact that if
ξ ∈ ∆(Σ(R)), µ ∈ ξ and µ R µ′, then µ′ ∈ ξ. The rest of the proof is straightforward from the

3In our original works [17,18,48], we called the state and hit bisimulations, “traditional” and “state” respectively.
We are changing the names here as we find them more appropriate.

11



PIRSES-GA-2011-295261 / MEALS Page 12 of 23 Public

definitions. An immediate consequence is that ∼s ⊆ ∼h. As we will see later, the inclusion is
proper.

Nevertheless both notions of bisimulation agree on NLMPs that are image denumerable.
That is, a hit bisimulation R is also a state bisimulation on any NLMP satisfying that for all a ∈
L, s ∈ S , Ta(s) is denumerable. As a consequence of this, a state bisimulation on an LMP is a hit
bisimulation on the translated NLMP and vice versa, since the translated NLMP is deterministic
and hence image denumerable (|Ta(s)| ≤ 1 for all a ∈ L and s ∈ S ).

Like for LMPs, we can also provide a Hennessy-Milner-like logic for NLMPs that charac-
terizes event bisimulation in general and all the bisimulations under some conditions. As we
will see in Ex. 7, L0 is not sufficiently expressive to characterize event bisimulation in NLMPs.
Therefore, we need a richer logic. The logic we present below was introduced in [17, 18] and is
related to the logic of Parma and Segala [40]. The main difference is that we consider two kinds
of formulas: one that is interpreted on states, and another that is interpreted on measures. The
syntax is as follows,

ϕ ≡ > | ϕ1 ∧ ϕ2 | 〈a〉ψ
ψ ≡

∨
i∈I ψi | ¬ψ | [ϕ]≥q

where a ∈ L, I is a denumerable index set, and q ∈ Q ∩ [0, 1]. We denote by L1 the set of all
formulas generated by the first production and by L1

∆
the set of all formulas generated by the

second production.
The semantics is defined with respect to an NLMP (S ,Σ,T ). Formulas in L1 are interpreted

as sets of states, and formulas in L1
∆

are interpreted as sets of measures on the state space as
follows,

~>� = S ~
∨

i∈I ψi� =
⋃

i~ψi�

~ϕ1 ∧ ϕ2� = ~ϕ1� ∩ ~ϕ2� ~¬ψ� = ~ψ�c

~〈a〉ψ� = T−1
a (H~ψ�) ~[ϕ]≥q� = ∆≥q(~ϕ�)

In particular, notice that 〈a〉ψ is satisfied at a state s whenever there is some measure µ ∈ Ta(s)
that satisfies ψ, and that [ϕ]≥q is satisfied by a measure µ whenever µ(~ϕ�) ≥ q. As in the case
of LMPs, the sets ~ϕ� and ~ψ� are measurable in Σ and ∆(Σ), respectively. For the rest of the
section, fix ~L1� = {~ϕ� | ϕ ∈ L1}.

Note that some other operators can be encoded as syntactic sugar. For instance, we can define
[ϕ]>r ≡

∨
q∈Q∩[0,1]∧q>r[ϕ]≥q for any real r ∈ [0, 1], and [ϕ]≤r ≡ ¬[ϕ]>r.

It can be shown that L1 characterizes event bisimulation for NLMPs. Following the lines of
the proof for the logical characterization of event bisimilarity for LMPs, it can be proved that
σ(~L1�) is the smallest σ-algebra that is also an event bisimulation. A mild generalization of the
concept of event bisimulation, namely families of sets being stable4 plays a role in the proof; it
is immediate from the definition that stable σ-algebras are exactly the event bisimulations. It is

4The family C ⊆ Σ is stable for an NLMP (S ,Σ,T ) if for all a ∈ L and ξ ∈ ∆(C), T−1
a (Hξ) ∈ C. This notion of

stability was further generalized by Doberkat [25] to the concept of congruence for stochastic systems.
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Figure 1: s and t are not bisimilar

shown in [17, Sect. 5] that ~L1� is the smallest stable family of subsets that is closed under finite
intersections. A key lemma that appears in [47] ensures that σ(C) is stable whenever C is, and
the result follows:

Theorem 2. The logic L1 completely characterizes event bisimulation. In other words, R(L1) =

∼e.

A consequence of this theorem together with the previously discussed relations between the
different bisimulations, is that both state and hit bisimulation are sound for L1, i.e., they preserve
the validity of formulas.

Theorem 3. ∼s ⊆ ∼h ⊆ ∼e = R(L1).

As we will review in Examples 8 and 9, these inclusions are proper in general. Nevertheless,
for image-finite NLMPs over analytic spaces it can be proved that the same logic is complete for
state bisimilarity, and hence all notions are the same. (An NLMP is image finite if Ta(s) is finite
for all a ∈ L and s ∈ S .) In fact, the sub-logic of L1 defined by

ϕ ≡ > | ϕ1 ∧ ϕ2 | 〈a〉
∧n

i=1[ϕi]./iqi (1)

where ./i ∈ {>, <} and qi ∈ Q ∩ [0, 1], is complete for ∼s under those restriction. Let L1− be the
set of all formulas generated by (1).

It should be noted that the expression 〈a〉
∧n

i=1[ϕi]./iqi may not be expressed as a conjunc-
tion of formulas 〈a〉[ϕi]./iqi because the probabilistic bounds must be satisfied by the same non-
deterministic transition. The next example from [10] illustrates this fact.

Example 7. Take the discrete NLMPs depicted in Fig. 1. States s and t are not bisimilar since
given a measure µ ∈ Ta(s), there is no µ′ ∈ Ta(t) such that µ(Q) = µ′(Q) for all Q ∈ {{x}, {y}, {z}}
(which are the only relevant possible R-closed sets). A logic having a modality that can only
describe one behavior after a label will not be able to distinguish between s and t. For example,
~〈a〉[ϕ]>q� = {w | Ta(w) ∩ ∆>q(~ϕ�) , ∅} will always have s and t together, or none of them.
Observe that negation, denumerable conjunction or disjunction, do not add any distinguishing
power (on an image finite setting).

Notice, however, that the L1− formula 〈a〉([〈b〉>]< 2
3
∧ [〈c〉>]> 1

3
) is satisfied by s but not by

t.

13
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The essential need for this new modal operator also shows that our σ-algebra H(∆(Σ)) in
Def. 5 cannot be simplified to σ({H∆B(Q) : B ∈ B([0, 1]),Q ∈ Σ}). States s and t in the example
above should be observationally distinguished from each other. Formally, this amounts to saying
that there must be some label a and some measurable Θ ∈ H(∆(Σ)) such that T−1

a (Θ) separates
s from t. Therefore, the same must be true for some generator Θ, but this does not hold for the
family {H∆B(Q) : B ∈ B([0, 1]),Q ∈ Σ}.

The proof that our logic is complete for state bisimilarity follows from [17, Lemma 5.8] that
states that given an NLMP (S ,Σ,T ) with (S ,Σ) analytic, if we have a countable logic L with
~L� ⊆ Σ satisfying some local criteria, then that logic must characterize ∼s completely. (Logic
L is countable if the number of formulas in L is countable.) In our case, L1 is not countable
but the sub-logic L1− given by (1) satisfies all the requirements and hence ∼s = R(L1−). Since
R(L1) ⊆ R(L1−), by Theorem 3 we have the following result.

Theorem 4. Let (S ,Σ,T ) be an image finite NLMP with (S ,Σ) being analytic. For all s, t ∈ S ,

s ∼s t ⇔ s ∼h t ⇔ s ∼e t ⇔ s R(L1) t

There are two delimiting results on possible generalizations of this theorem. First, the hypoth-
esis of an analytic state space cannot be dropped completely (even for deterministic processes).
This was seen in [42], where it is shown that state bisimilarity for LMPs is not characterized by
L0 in general. Secondly, a generalization of the same arguments to image-countable processes
is not feasible since there is no countable logic having formulas with measurable extensions that
characterize state bisimilarity on such processes [43].

In fact, as we have already anticipated, the inclusions in Theorem 3 are proper in the general
case. In the following, we construct counterexamples over standard Borel spaces witnessing that
all our notions of bisimilarity are different in the case of uncountable non-determinism.

Moreover, it suffices to consider a non-probabilistic variant of NLMP, in which transitions
only map into a set of Dirac measures. These structures look very much like LTSs, with the
additional requirement that the set of states is endowed with a σ-algebra that the transition should
respect. More formally, let (S ,Σ) be a standard Borel space and δ(Q) = {δs | s ∈ Q} for each
Q ∈ Σ. An NLMP S = (S ,Σ, {Ta | a ∈ L}) is called non-probabilistic if for all a ∈ L and s ∈ S ,
Ta(s) ⊆ δ(S ).

Example 8. We will first construct a non-probabilistic NLMP witnessing the fact that state bisim-
ilarity is strictly finer than the other notions. Consider the standard Borel space (S 1,Σ1) =

([0, 1] ∪ [2, 3] ∪ {s, t, x},B([0, 1] ∪ [2, 3] ∪ {s, t, x})) where s, t, x ∈ R \ [0, 3] are different. Let V
be a non-Borel subset of [2.5, 3]. Clearly, [0, 1] is equinumerous with [2, 3] \ V; pick a bijection
f between them. Now, let L1 = {a} ∪ [0, 1] be the set of labels and let S1 = (S 1,Σ1, {Ta : a ∈ L1})
be non-probabilistic such that

Ta(s) = {δd | d ∈ [2, 3]} Tr(r) = Tr( f (r)) = {δx} if r ∈ [0, 1]
Ta(t) = {δd | d ∈ [0, 1]} Tc(y) = ∅ otherwise.

Now, take F to be
{
{s, t}, {r, f (r)}r∈[0,1]

}
and R = R(σ(F )). It is not hard to prove that S1 is a

non-probabilistic NLMP, σ(F ) is an event bisimulation and R is a hit bisimulation that relate s
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and t. Also, it can be seen that s and t are not state bisimilar. But this shows that ∼s differs from
∼e and ∼h.
Example 9. By modifying slightly S1 we can show that the largest event bisimulation ∼e is not
contained in ∼h. Take V to be the interval (2.5, 3] and let (S 2,Σ2) = (S 1,Σ1). We complete
the construction of a non-probabilistic NLMP S2 by picking any bijection f between [0, 1] and
[2, 2.5]. The transition is defined just like for S1 only that using the the new f . We also use
family F but defined with the new f . The same arguments for S1 go through here, showing that
s ∼e t but s 6∼h t.

Some observations on the counterexamples are in order. First, counterexample S1 relies on
the fact that hit bisimulation cannot distinguish a non-measurable set V while state bisimulation
can. From our point of view, such distinction should not be possible since V has no measure.
Second, counterexample S2 makes a difference on the measurable set V that the event bisimula-
tion cannot distinguish. In our opinion, such distinction should be possible since some scheduler
may lead to such set of states with certain probability. Note that in this example, states in V do
not allow the system to reach state x from s, while x can always be reached from t. In particular,
if the scheduler chooses uniformly the branching on the a-transition in both cases, the system
starting from s will deadlock with probability 0.5 immediately while no deadlock is possible
after a when starting from t. In this sense, we argue that hit bisimulation is the most appropriate
definition.

Somehow, this is disappointing since logic L1 has a natural definition but, as it completely
characterizes event bisimulation, it will not be able to test the presence of states like those in V
in S2. This is due to the fact that the modality 〈a〉 can only test one transition at a time and,
together with the other operators, any L1 formula can only test countably many transitions at a
time. Notice that a state in the set V can only be distinguished through a formula testing that no
action (in the uncountable set [0, 1]) can be performed.

Therefore, both examples call for adding structure to the set of labels on the NLMP. In the
first case, endowing the set of labels with a σ-algebra exclude the “bad behaved” NLMPs like
S1 from the set of definable objects. In the second case, this will allow to define a richer logic
that can test measurable sets of labels in a single formula. Regardless of these situations, a σ-
algebra on the labels is also necessary for the definition of schedulers and probabilistic trace
semantics [48].

5 Structured Non-deterministic Labeled Markov Processes
In view of the previous observations we developed a variant of NLMPs that requires that the
set of labels has a measurable space associated. Since one of the aims of introducing structure
on labels is to be able to define schedulers that resolve the (continuous) non-determinism of the
model, we need to adapt the transition probability function to the new setting so that the different
measurability aspects interact properly.

First, notice that a transition label is intended to represent the occurrence of a single ac-
tion. Therefore, we will assume that, if L is the set of labels and Λ its associated σ-algebra, all
singleton subsets of L are measurable in Λ.
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Recall that a scheduler is a function that, given a particular execution history of the system,
randomly selects a transition from those enabled at the last state of the execution. That is, given
the fact that the execution finishes at state s in a given NLMP, the scheduler has to randomly chose
first a label a and then a measure in Ta(s). More precisely, a scheduler will have to randomly
choose an element in θ = {(a, µ) | µ ∈ Ta(s)}. So, we actually need θ to be measurable in Λ⊗∆(Σ).

Therefore, a structured NLMP has a single transition function T : S → Λ ⊗ ∆(Σ) that assigns
to each state a measurable set of pairs of label-probability measure on states. As in the case of
LMP and NLMP, we will also need that the transition function is a measurable mapping. Hence,
we need to endow Λ ⊗ ∆(Σ) with a σ-algebra. We proceed in a similar way to Def. 5.

Definition 9. H(Λ ⊗ ∆(Σ)) is the smallest σ-algebra containing all sets Hλ×ξ = {θ ∈ Λ ⊗ ∆(Σ) |
θ ∩ (λ × ξ) , ∅}, with λ ∈ Λ and ξ ∈ ∆(Σ).

Here we follow a slightly different approach to that of Def. 5 by taking only hit sets induced
by rectangles rather than arbitrary measurable sets in the product σ-algebra.

Now, we can formally define the structured version of NLMPs:

Definition 10. A structured non-deterministic labeled Markov process (SNLMP for short) is a
structure (S ,Σ, L,Λ,T ) where Σ is a σ-algebra on the set of states S , Λ is a σ-algebra on the set
of labels L so that {a} ∈ Λ for all a ∈ L, and T : S → Λ ⊗ ∆(Σ) is measurable.

An SNLMP can be straightforwardly encoded as an NLMP by taking Ta(·) = T (·)|a, where
θ|a � {µ ∈ ∆(S ) | (a, µ) ∈ θ} is the a-section of θ, known to be measurable if θ is measurable.
Also, it is not difficult to see that, in our setting, the section seen as a function (·)|a is a measurable
function. This ensures the required properties of Ta. As it can be expected, NLMPs can not be
encoded as SNLMPs in general. This is confirmed in the following example.
Example 10. Consider the NLMP S1 of Ex. 8. To translate it into an SNLMP, take T (d) = {(a, µ) |
µ ∈ Ta(d)} for all d ∈ S 1. Notice that

T (s) = {a} × {δd | d ∈ [2, 3]} T (r) = T ( f (r)) = {(r, δx)} if r ∈ [0, 1]
T (t) = {a} × {δd | d ∈ [0, 1]} T (y) = ∅ otherwise.

Though clearly T (d) is a measurable set for any d ∈ S 1, T is not a measurable function. In effect,
T−1(H[0,1]×∆(S )) = {d | T (d) ∩ ([0, 1] × ∆(S )) , ∅} = [0, 1] ∪ ([2, 3] \ V) which is not measurable,
since V was chosen to be a non-Borel subset of [2.5, 3].
Example 11. Notice, however, that S2 in Ex. 9 can be encoded as an SNLMP provided function
f −1 is measurable. This is immediate after observing that

T−1(Hλ×ξ) = {s | a ∈ λ ∧ {δd | d ∈ [2, 3]} ∩ ξ , ∅}
∪ { t | a ∈ λ ∧ {δd | d ∈ [0, 1]} ∩ ξ , ∅}
∪ {d | d ∈ λ ∪ f (λ) ∧ δx ∈ ξ}

All bisimulations introduced for NLMPs have their counterpart in SNLMPs. In fact, state
bisimulation and hit bisimulation are defined exactly in the same way as for NLMPs by taking
Ta(·) = T (·)|a. For the event bisimulation, we also have to consider the fact that, in addition to
states, labels are also observed through events.
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Definition 11. An event bisimulation on an SNLMP (S ,Σ, L,Λ,T ) is a sub-σ-algebra Ξ of Σ s.t.
T : (S ,Ξ)→ (Λ ⊗ ∆(Σ) , H(Λ ⊗ ∆(Ξ))) is measurable.

Just like for LMPs and NLMPs, the notion of event bisimulation can be extended to relations
and the largest event bisimulation relation ∼e can be analogously defined.

This way of defining event bisimulation raises the question on why not redefining also the
hit bisimulation so that it considers the new hit sets containing pairs of labels and probability
measures as in Def. 9. It turns out that this variant does not alter the definition of hit bisimulation
as we state in the following.

Theorem 5. Consider the SNLMP (S ,Σ, L,Λ,T ) and let R ⊆ S × S be a symmetric relation over
states. The following characterizations for R are equivalent:

(1) if s R t then T (s)|a ∩ ξ , ∅⇔ T (t)|a ∩ ξ , ∅, for all a ∈ L and ξ ∈ ∆(Σ(R));

(2) if s R t then T (s) ∩ (λ×ξ) , ∅⇔ T (t) ∩ (λ×ξ) , ∅, for all λ ∈ Λ and ξ ∈ ∆(Σ(R));

(3) if s R t then T (s) ∩ θ , ∅⇔ T (t) ∩ θ , ∅, for all θ ∈ Λ ⊗ ∆(Σ(R)).

Clearly (3) implies (2) which implies (1). The proof that (1) implies (3) relies on the fact that
(({a}×∆(S )) ∩ θ)|a ∈ ∆(Σ(R)). Notice that (1) is in fact the same definition of hit bisimulation as
given in Def. 8 interpreting Ta as T (·)|a.

All results presented for the different bisimulations on NLMPs repeat on SNLMPs. In par-
ticular, it also holds that R is a hit bisimulation if and only if Σ(R) is an event bisimulation (with
the new definition of event bisimulation). Details can be found in [7].

Schedulers aside, the other reason to define SNLMPs was motivated by Ex. 9 in which the
logic L1 failed to distinguish states s and t in S2. As we saw in Ex. 11, S2 is also an SNLMP.
Therefore we would like to define a new logic that can distinguish s and t. To understand the
difference, notice that t can perform and a-transition and reach a state where no transition labeled
with r ∈ [0, 1] can be performed with probability 1. This behavior could be described by a
formula like 〈a〉¬[〈[0, 1]〉[>]≥1]≥1.

Indeed, the logicL2 is the same logic asL1 where the modal construct 〈a〉ψ has been replaced
by 〈λ〉ψ with λ ∈ Λ. The semantics of this new operator is given by

~〈λ〉ψ� � T−1
(
Hλ×~ψ�

)
.

The semantics for the rest of the operations of L2 are defined just like for L1. Again, ~ψ� is
measurable for all ϕ ∈ L2.

Because singletons are measurable in Λ, 〈{a}〉ψ ∈ L2 provided a ∈ L and ψ ∈ L2 (we will
use 〈a〉ψ as a shorthand). Therefore L2 is at least as expressive as L1. Moreover, it is strictly
more expressive since t ∈ ~〈a〉¬[〈[0, 1]〉[>]≥1]≥1� but s < ~〈a〉¬[〈[0, 1]〉[>]≥1]≥1� and hence L2

can distinguish states s and t in S2.
It can be shown that L2 characterizes the event bisimulation for SNLMPs. The proof follows

the same strategy as that of Theorem 2.
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Theorem 6. The logicL2 completely characterizes event bisimulation on SNLMPs. I.e. R(L2) =

∼e.

For the next result, we need to interpret logics L0 and L1 on SNLMP, but this is easy since
〈a〉ψ of L1 corresponds to 〈{a}〉ψ in L2 and 〈a〉qϕ of L0 corresponds to 〈{a}〉[ϕ]≥q in L2. The
following theorem summarizes the results for bisimulations and logics in SNLMPs.

Theorem 7. ∼s ⊆ ∼h $ ∼e = R(L2) $ R(L1) $ R(L0).

The last inclusion is shown to be proper in Ex. 7. Besides we also showed that the inclusion
R(L2) ⊆ R(L1) is proper using SNLMP S2. The next example shows that inclusion ∼h ⊆ ∼e is
also proper.

Example 12. Consider the SNLMP S3 which is a variant of S2 where V = (2.5, 3], f is measur-
able, and T is redefined as follows.

T (s) = {a} × {δd | d ∈ [2, 3]}
T (t) = {a} × {δd | d ∈ [0, 1]}
T (r) = T ( f (r)) = {(r, δx) | r ∈ [0, 1]\{r} } if r ∈ [0, 1]
T (d) = {(r, δx) | r ∈ [0, 1]} if d ∈ V
T (y) = ∅ otherwise.

Note that the states r and f (r) can perform any [0, 1]-labeled transition except for the r-labeled
transition whenever r ∈ [0, 1]. Instead, every d ∈ V can perform all [0, 1]-labeled transitions.
Therefore, every pair of states in V are hit bisimilar, and every state d ∈ V can be distinguished
from states in [0, 1]∪ [2, 3]\V since T (d)|r∩∆(S ) = {δx} , ∅ = T (r)|r∩∆(S ) = T ( f (r))|r∩∆(S ).
Thus, V ∈ Σ is ∼h-closed and consequently δV = {δd | d ∈ V} ∈ ∆(Σ(∼h)). From here we have
that T (s)|a ∩ δV = δV , ∅ = T (t)|a ∩ δV , and therefore s and t are not hit bisimilar.

Now, take F =
{
{s, t}, {x}, {r, f (r)}r∈[0,1]

}
. It is not hard to prove that σ(F ) is an event bisimu-

lation. Hence s ∼e t.

Contrarily to what happens in NLMPs with example S2, the example above questions the hit
bisimulation (rather than the event bisimulation) as it seems to distinguish sets of null measure.
In fact any definable scheduler starting from state t has an “almost surely equivalent” scheduler
starting from s (modulo state renaming).

Also, the question of whether state bisimilarity is strictly finer than hit bisimilarity on SNLMPs
remains open. Notice that Ex. 8 is not a valid counterexample in the realm of SNLMPs because
S1 is not an SNLMP.

6 Concluding Remarks
In this paper, we have presented the basic theory of LMPs and its extensions with internal non-
determinism, namely NLMPs and SNLMPs. Much more research on this subject has been done.
For instance, pseudometrics that behave like bisimulation in the limit have been defined and
different kind of approximations for LMPs have been studied [4, 11, 13, 23, 24, 39, etc.].
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When it comes to give semantics to languages or symbolic models that includes stochas-
tic continuous behavior, NLMPs showed to be useful. Stochastic automata [15, 16] provide a
symbolic framework to model soft real-timed systems. They can be seen as a non-deterministic
extension of generalized semi-Markov processes that are amenable to composition. The seman-
tics of a stochastic automaton naturally arises as a (structured) NLMP [48]. In a similar manner
NLMPs have been used to give semantics to more complex models, particularly stochastic hybrid
automata [27, 31]. As a consequence, NLMPs are also the concrete underlying semantics of a
process algebra like Spades [15, 16] and modeling languages like Modest and HModest [3, 31].
These languages have been used to analyze real case studies (e.g. [30, 32]). [48] presents also
mappings from pGCL [36] and abstract probabilistic automata [19] into NLMPs.

We have made use of the concept of schedulers to introduce SNLMPs. In fact, we have
formally defined schedulers on SNLMPs and used them to define trace distribution semantics.
See [48] for these results. We remark that a still overdue result in the setting of LMPs and
NLMPs is a correspondence execution theorem which states that if two states are bisimilar (in
any of the senses defined here), they share the same probabilistic execution structure and hence
they are also trace distribution equivalent.

Desharnais et al. [22] followed a different approach to extend LMPs with some kind of in-
ternal non-determinism. Rather than explicitly introducing the branching set of probability mea-
sures as in NLMPs, they relax the requirements on the LMP by only asking that τa(s) is a super-
additive function on Σ (instead of a sub-probability measure). They call this new model infLMP.
An infLMP can be understood as a partially specified system where a possible implementation is
an LMP in which its transition probability function is greater than or equal to the transition super-
additive function of the infLMP. It would be interesting to draw conclusions whether NLMPs can
capture infLMPs or not. A first (but inconclusive) approach to this relation is reported in [48].

Finally, the results in [42, 43] show that the generality of the models immediately leads to
unwanted results. It seems reasonable to restrict only to standard Borel spaces. Confining to
standard Borel spaces is not as restricting as it seems since most natural problems arise in this
setting. For example, we have that the underlying semantics of stochastic (hybrid) automata is
given in terms of an NLMP on standard Borel spaces, and in the case of stochastic automata, such
NLMP is also image finite. Recall that stochastic automata and similar models are used to give
semantics to stochastic process algebras and specification languages, see e.g. [3, 5, 6, 15, 16, 31].
Moreover, LMP-like models restricted to standard Borel spaces have been studied in [26].
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22



PIRSES-GA-2011-295261 / MEALS Page 23 of 23 Public

MEALS Partner Abbreviations
SAU: Saarland University, D

RWT: RWTH Aachen University, D

TUD: Technische Universität Dresden, D

INR: Institut National de Recherche en Informatique et en Automatique, FR

IMP: Imperial College of Science, Technology and Medicine, UK

ULEIC: University of Leicester, UK

TUE: Technische Universiteit Eindhoven, NL

UNC: Universidad Nacional de Córdoba, AR
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ITBA: Instituto Técnológico Buenos Aires, AR

23


