
Scalable Verification of Markov Decision
Processes

Axel Legay, Sean Sedwards and Louis-Marie Traonouez

Inria Rennes – Bretagne Atlantique

Abstract Markov decision processes (MDP) are useful to model concur-
rent process optimisation problems, but verifying them with numerical
methods is often intractable. Existing approximative approaches do not
scale well and are limited to memoryless schedulers. Here we present
the basis of scalable verification for MDPSs, using an O(1) memory rep-
resentation of history-dependent schedulers. We thus facilitate scalable
learning techniques and the use of massively parallel verification.

1 Introduction

Markov decision processes (MDP) describe systems that interleave nondetermin-
istic actions and probabilistic transitions, possibly with rewards or costs assigned
to the actions [3,19]. This model has proved useful in many real optimisation
problems and may also be used to represent concurrent probabilistic programs
(see, e.g., [4,2]). Such models comprise probabilistic subsystems whose trans-
itions depend on the states of the other subsystems, while the order in which
concurrently enabled transitions execute is nondeterministic. This order may
radically affect the expected reward or the probability that a system will satisfy
a given property. It is therefore useful to calculate the upper and lower bounds
of these quantities.

Fig. 1 shows a typical fragment of an MDP. Referring in parentheses to the
labels in the figure, the execution semantics are as follows. In a given state (s0),
an action (a1, a2, . . .) is chosen nondeterministically to select a distribution of
probabilistic transitions (p1, p2, . . . or p3, p4, etc.). A probabilistic choice is then
made to select the next state (s1, s2, s3, s4, . . .). To each of the actions may be
associated a reward (r1, r2, . . .), allowing values to be assigned to sequences of
actions.

To calculate the expected total reward or the expected probability of a se-
quence of states, it is necessary to define how the nondeterminism in the MDP
will be resolved. In the literature this is often called a strategy, a policy or an
adversary. Here we use the term scheduler and focus on MDPs in the context of
model checking concurrent probabilistic systems. Model checking is an automatic
technique to verify that a system satisfies a property specified in temporal logic
[7]. Probabilistic model checking quantifies the probability that a probabilistic
system will satisfy a property [9]. Classic analysis of MDPs is concerned with
finding schedulers that maximise or minimise rewards [3,19]. The classic verific-
ation algorithms for MDPs are concerned with finding schedulers that maximise

..s0...

s1

.

s2

.

s3

.

s4

.

r1

.

a1

.

a2

.

r2

.

p1

.

p2

.

p3

.

p4

Figure 1. Fragment of a typical
Markov decision process.

..s0.

s1

.

|= ¬ψ
.

|= ψ

....
a1

.

1− p1

.

1− p2

.
a2

.

p1

.

p2

.

a0

.

1

Figure 2. MDP with different optima for gen-
eral and memoryless schedulers when p1 ̸= p2.

or minimise the probability of a property, or deciding the existence of a sched-
uler that ensures the probability of a property is within some bound [4]. Our
techniques can be easily extended to include rewards, but in this work we focus
on probabilities and leave rewards for future consideration.

1.1 Schedulers and State Explosion

The classic algorithms to solve MDPs are policy iteration and value iteration
[19]. Model checking algorithms for MDPs may use value iteration applied to
probabilities [2, Ch. 10] or solve the same problem using linear programming [4].
All consider history-dependent schedulers. Given an MDP with set of actions A,
having a set of states S that induces a set of sequences of states Ω = S+, a
history-dependent (general) scheduler is a function S : Ω → A. A memoryless
scheduler is a function M : S → A. Intuitively, at each state in the course of
an execution, a history-dependent scheduler (S) chooses an action based on the
sequence of previous states, while a memoryless scheduler (M) chooses an action
based only on the current state. History-dependent schedulers therefore include
memoryless schedulers.

Fig. 2 illustrates a simple MDP for which memoryless and history-dependent
schedulers give different optima for logical propertyX(ψ∧XGt¬ψ) when p1 ̸= p2
and t > 0. The property makes use of the temporal operators next (X) and glob-
ally (G). Intuitively, the property states that on the next step ψ will be true and,
on the step after that, ¬ψ will be remain true for t+1 time steps. The property is
satisfied by the sequence of states s0s1s0s0 · · ·. If p1 > p2, the maximum probab-
ility for s0s1 is achieved with action a2, while the maximum probability for s0s0
is achieved with action a1. Given that both transitions start in the same state, a
memoryless scheduler will not achieve the maximum probability achievable with
a history-dependent scheduler.

The principal challenge of finding optimal schedulers is what has been de-
scribed as the ‘curse of dimensionality’ [3] and the ‘state explosion problem’ [7]:
the number of states of a system increases exponentially with respect to the
number of interacting components and state variables. This phenomenon has

led to the design of sampling algorithms that find ‘near optimal’ schedulers to
maximise rewards in discounted MDPs. Probably the best known is the Kearns
algorithm [13], which we briefly review in Section 2.

The state explosion problem of model checking applied to purely probabilistic
systems has been well addressed by statistical model checking (SMC) [21]. SMC
uses an executable model to approximate the probability that a system satis-
fies a specified property by the proportion of simulation traces that individually
satisfy it. SMC algorithms work by constructing an automaton to accept only
traces that satisfy the property. This automaton may then be used to estimate
the probability of the property or to decide an hypothesis about the probabil-
ity. Typically, the probability of property φ is estimated by 1

N

∑N
i=1 1(ωi |= φ),

where ω1, . . . , ωN are N independently generated simulation traces and 1(·) is
an indicator function that corresponds to the output of the automaton: it re-
turns 1 if the trace is accepted and 0 if it is not. N is chosen a priori to give
the required statistical confidence (e.g., using a Chernoff bound [18], see Sec-
tion 4.2). Sequential hypothesis tests (e.g., Wald’s sequential probability ratio
test [20], see Section 4.1) do not define N a priori, but generate simulation
traces until an hypothesis can be accepted or rejected with specified confidence.
The state space of the system is not constructed explicitly–states are generated
on the fly during simulation–hence SMC is efficient for large, possibly infinite
state, systems. Moreover, since the simulations are required to be statistically
independent, SMC may be easily and efficiently divided on parallel computing
architectures.

SMC cannot be applied to MDPs without first resolving the nondetermin-
ism. Since nondeterministic and probabilistic choices are interleaved in an MDP,
schedulers are typically of the same order of complexity as the system as a whole
and may be infinite. As a result, existing SMC algorithms for MDPs consider
only memoryless schedulers and have other limitations (see Section 2).

1.2 Our Approach

We have created memory-efficient techniques to facilitate Monte Carlo verific-
ation of nondeterministic systems, without storing schedulers explicitly. In es-
sence, the possibly infinite behaviour of schedulers is fully specified implicitly
by the seed of a pseudo-random number generator. Our techniques therefore
require almost no additional memory over standard SMC. In doing this, we are
the first to provide the basis for a complete lightweight statistical alternative to
the standard numerical verification algorithms for MDPs. A further contribution
is our derivation of the statistical confidence bounds necessary to test multiple
schedulers. These results suggest obvious solutions to problems encountered with
existing algorithms that rely on multiple statistical tests (e.g., [11]).

In this work we demonstrate the core ideas of our approach with simple
SMC algorithms that repeatedly sample from scheduler space. Practical imple-
mentations require more sophisticated algorithms that adopt “smart sampling”
(optimal use of simulation budget) and lightweight learning techniques. Some of
our results make use of these ideas, but a full exposition is not possible here.

2 Related Work

The Kearns algorithm [13] is the classic ‘sparse sampling algorithm’ for large,
infinite horizon, discounted MDPs. It constructs a ‘near optimal’ scheduler piece-
wise, by approximating the best action from a current state using a stochastic
depth-first search. Importantly, optimality is with respect to rewards, not prob-
ability (as required by standard model checking tasks). The algorithm can work
with large, potentially infinite state MDPs because it explores a probabilistically
bounded search space. This, however, is exponential in the discount. To find the
action with the greatest expected reward in the current state, the algorithm re-
cursively estimates the rewards of successive states, up to some maximum depth
defined by the discount and desired error. Actions are enumerated while prob-
abilistic choices are explored by sampling, with the number of samples set as a
parameter. The error is specified as a maximum difference between consecutive
estimates, allowing the discount to guarantee that the algorithm will eventually
terminate.

There have been several recent attempts to apply SMC to nondeterministc
models [5,16,11,10]. In [5,10] the authors present on-the-fly algorithms to remove
‘spurious’ nondeterminism, so that standard SMC may be used. This approach
is limited to the class of models whose nondeterminism does not affect the res-
ulting probability of a property–scheduling makes no difference. The algorithms
therefore do not attempt to address the standard MDP model checking problems
related to finding optimal schedulers.

In [16] the authors first find a memoryless scheduler that is near optimal with
respect to a reward scheme and discount, using an adaptation of the Kearns
algorithm. This induces a Markov chain whose properties may be verified with
standard SMC. By storing and re-using information about visited states, the
algorithm improves on the performance of the Kearns algorithm, but is thus
limited to memoryless schedulers that fit into memory. The near optimality of
the induced Markov chain is with respect to rewards, not probability, hence [16]
does not address the standard model checking problems of MDPs.

In [11] the authors present an SMC algorithm to decide whether there exists
a memoryless scheduler for a given MDP, such that the probability of a property
is above a given threshold. The algorithm has an inner loop that generates
candidate schedulers by iteratively improving a probabilistic scheduler according
to sample traces that satisfy the property. The algorithm is limited to memoryless
schedulers because the improvement process counts state-action pairs. The outer
loop tests the candidate scheduler against the hypothesis using SMC and is
iterated until an example is found or sufficient attempts have been made. The
inner loop does not in general converge to the true optimum, but the outer loop
randomly explores local maxima. This makes the number of samples used by the
inner loop critical: too many may significantly reduce the scope of the random
exploration and thus reduce the probability of finding the global optimum. A
further problem is that the repeated hypothesis tests of the outer loop will
eventually produce erroneous results. We address this phenomenon in Section 4.

We conclude that (i) no previous approach is able to provide a complete
set of SMC algorithms for MDPs, (ii) no previous SMC approach considers
history-dependent schedulers and (iii) no previous approach facilitates light-
weight sampling from scheduler space.

3 Schedulers as Seeds of Random Number Generators

Storing schedulers as explicit mappings does not scale, so we have devised a
way to represent schedulers using uniform pseudo-random number generators
(PRNG) that are initialised by a seed and iterated to generate the next pseudo-
random value. In general, such PRNGs aim to ensure that arbitrary subsets of
sequences of iterates are uniformly distributed and that consecutive iterates are
statistically independent. PRNGs are commonly used to implement the uniform
probabilistic scheduler, which chooses actions uniformly at random and thus
explores all possible combinations of nondeterministic choices. Executing such an
implementation twice with the same seed will produce identical traces. Executing
the implementation with a different seed will produce an unrelated set of choices.
Individual deterministic schedulers cannot be identified, so it is not possible to
estimate the probability of a property under a specific scheduler.

An apparently plausible solution is to use independent PRNGs to resolve
nondeterministic and probabilistic choices. It is then possible to generate mul-
tiple probabilistic simulation traces per scheduler by keeping the seed of the
PRNG for nondetermistic choices fixed while choosing random seeds for a separ-
ate PRNG for probabilistic choices. Unfortunately, the schedulers generated by
this approach do not span the full range of general or even memoryless sched-
ulers. Since the sequence of iterates from the PRNG used for nondeterministic
choices will be the same for all instantiations of the PRNG used for probabilistic
choices, the ith iterate of the PRNG for nondeterministic choices will always be
the same, regardless of the state arrived at by the previous probabilistic choices.
The ith chosen action can be neither state nor trace dependent.

3.1 General Schedulers Using Hash Functions

Our solution is to construct a per-step PRNG seed that is a hash of the an
integer identifying a specific scheduler concatenated with an integer representing
the sequence of states up to the present.

We assume that a state of an MDP is an assignment of values to a vector
of system variables vi, i ∈ {1, . . . , n}. Each vi is represented by a number of
bits bi, typically corresponding to a primitive data type (int, float, double, etc.).
The state can thus be represented by the concatenation of the bits of the system
variables, such that a sequence of states may be represented by the concatenation
of the bits of all the states. Without loss of generality, we interpret such a
sequence of states as an integer of

∑n
i=1 bi bits, denoted s, and refer to this in

general as the trace vector. A scheduler is denoted by an integer σ, which is
concatenated to s (denoted σ : s) to uniquely identify a trace and a scheduler.

Our approach is to generate a hash code h = H(σ : s) and to use h as the seed
of a PRNG that resolves the next nondeterministic choice.

The hash function H thus maps σ : s to a seed that is deterministically
dependent on the trace and the scheduler. The PRNG maps the seed to a value
that is uniformly distributed but nevertheless deterministically dependent on
the trace and the scheduler. In this way we approximate the scheduler functions
S and M described in Section 1.1. Importantly, our technique only relies on
the standard properties of hash functions and PRNGs. Algorithm 1 is the basic
simulation function of our algorithms.

Algorithm 1: Simulate

Input:
M: an MDP with initial state s0
φ: a property
σ: an integer identifying a scheduler

Output:
ω: a simulation trace

Let Uprob,Unondet be uniform PRNGs with respective samples rpr, rnd
Let H be a hash function
Let s denote a state, initialised s← s0
Let ω denote a trace, initialised ω ← s
Let s be the trace vector, initially empty
Set seed of Uprob randomly
while ω |= φ is not decided do

s← s : s
Set seed of Unondet to H(σ : s)
Iterate Unondet to generate rnd and use to resolve nondeterministic choice
Iterate Uprob to generate rpr and use to resolve probabilistic choice
Set s to the next state
ω ← ω : s

3.2 An Efficient Iterative Hash Function

To implement our approach, we have devised an efficient hash function that
constructs seeds incrementally. The function is based on modular division [14,
Ch. 6], such that h = (σ : s) mod m, where m is a suitably large prime.

Since s is a concatenation of states, it is usually very much larger than the
maximum size of integers supported as primitive data types. Hence, to generate
h we use Horner’s method [12][14, Ch. 4]: we set h0 = σ and find h ≡ hn (n as
given in Section 3.1) by iterating the recurrence relation

hi = (hi−12
bi + vi) mod m. (1)

The size of m defines the maximum number of different hash codes. The pre-
cise value of m controls how the hash codes are distributed. To avoid collisions,

a simple heuristic is that m should be a large prime not close to a power of 2 [8,
Ch. 11]. Practically, it is an advantage to perform calculations using primitive
data types that are native to the computational platform, so the sum in (1)
should be less than or equal to the maximum permissible value. To achieve this,
given x, y,m ∈ N, we note the following congruences:

(x+ y) mod m ≡ (x mod m+ y mod m) mod m (2)

(xy) mod m ≡ ((x mod m)(y mod m)) mod m (3)

The addition in (1) can thus be re-written in the form of (2), such that each
term has a maximum value of m− 1:

hi = ((hi−12
bi) mod m+ (vi) mod m) mod m (4)

To prevent overflow, m must be no greater than half the maximum possible
integer. Re-writing the first term of (4) in the form of (3), we see that before
taking the modulus it will have a maximum value of (m− 1)2, which will exceed
the maximum possible integer. To avoid this, we take advantage of the fact that
hi−1 is multiplied by a power of 2 and thatm has been chosen to prevent overflow
with addition. We thus apply the following recurrence relation:

(hi−12
j) mod m = (hi−12

j−1) mod m+ (hi−12
j−1) mod m (5)

Equation (5) allows our hash function to be implemented using efficient native
arithmetic. Moreover, we infer from (1) that to find the hash code corresponding
to the current state in a trace, we need only know the current state and the hash
code from the previous step. When considering memoryless schedulers we need
only know the current state.

4 Confidence with Multiple Estimates

The Chernoff bound [18,6] and Wald sequential probability ratio test [20] are
commonly used to bound errors of SMC algorithms. Their guarantees are prob-
abilistic, such that with specified non-zero probability they produce an incorrect
result. If such bounds are used onM schedulers, some of whose true probabilities
lie in the interval (0, 1), then asM →∞ the probability of encountering an error
is a.s. 1. In particular, the maximum and minimum estimates will tend to 1 and
0, respectively, regardless of the true values.

To overcome this phenomenon, in Sects. 4.1 and 4.2 we derive new confidence
bounds to allow SMC algorithms to test multiple schedulers. We illustrate their
use with simple algorithms that sample M schedulers at random, where M
is a parameter. These algorithms are the basis of a technique we call “smart
sampling”, which can exponentially improve convergence. The basic idea is to
assign part of the simulation budget to obtain a coarse estimate of the extremal
probabilities and to use this information to generate a set of schedulers that
contains a “good” scheduler with high probability. The remaining budget is

used to refine the set to find the best scheduler. Smart sampling has provided
improvements of several orders of magnitude with the illustrated examples and
is the subject of ongoing development. Lack of space prevents further discussion.

4.1 Sequential Probability Ratio Test for Multiple Schedulers

The sequential probability ratio test (SPRT) of Wald [20] evaluates hypotheses
of the form P(ω |= φ) ◃▹ p, where ◃▹∈ {≤,≥}. The SPRT distinguishes between
two hypotheses, H0 : P(ω |= φ) ≥ p0 and H1 : P(ω |= φ) ≤ p1, where p0 > p1.
Hence, to evaluate P(ω |= φ) ◃▹ p, the SPRT requires a region of indecision
(an ‘indifference region’ [21]) which may be specified by parameter ϑ, such that
p0 = p+ ϑ and p1 = p− ϑ. The SPRT also requires parameters α and β, which
specify the maximum acceptable probabilities of errors of the first and second
kind, respectively. An error of the first kind is incorrectly rejecting a true H0; an
error of the second kind is incorrectly accepting a false H0. To choose between
H0 and H1, the SPRT defines the probability ratio

ratio =
n∏

i=1

(p1)1(ωi|=φ)(1− p1)1(ωi ̸|=φ)

(p0)1(ωi|=φ)(1− p0)1(ωi ̸|=φ)
,

where n is the number of simulation traces ωi, i ∈ {1, . . ., n}, generated so far.
The test proceeds by performing a simulation and calculating ratio until one of
two conditions is satisfied: H1 is accepted if ratio ≥ (1−β)/α and H0 is accepted
if ratio ≤ β/(1− α).

To decide whether there exists a scheduler such that P(ω |= φ) ◃▹ p, we
would like to apply the SPRT to multiple (randomly chosen) schedulers. The
idea is to test different schedulers, up to some specified number M , until an ex-
ample is found. Since the probability of error with the SPRT applied to multiple
hypotheses is cumulative, we consider the probability of no errors in any of M
tests. Hence, in order to ensure overall error probabilities α and β, we adopt
αM = 1 − M

√
1− α and βM = 1 − M

√
1− β in our stopping conditions. H1 is

accepted if ratio ≥ (1−βM)/αM and H0 is accepted if ratio ≤ βM/(1−αM). Al-
gorithm 2 demonstrates the sequential hypothesis test for multiple schedulers. If
the algorithm finds an example, the hypothesis is true with at least the specified
confidence.

4.2 Chernoff Bound for Multiple Schedulers

Given that a system has true probability p of satisfying a property, the Chernoff
bound ensures P(| p̂ − p |≥ ε) ≤ δ, i.e., that the estimate p̂ will be outside the
interval [p − ε, p + ε] with probability less than or equal to δ. Parameter δ is

related to the number of simulations N by δ = 2e−2Nε2 [18], giving

N =
⌈
(ln 2− ln δ)/(2ε2)

⌉
. (6)

Algorithm 2: Hypothesis testing with multiple schedulers

Input:
M, φ: the MDP and property of interest
H ∈ {H0, H1}: the hypothesis of interest with threshold p± ϑ
α, β: the desired error probabilities of H
M : the maximum number of schedulers to test

Output: The result of the hypothesis test

Let p0 = p+ ϑ and p1 = p− ϑ be the bounds of H
Let αM = 1− M

√
1− α and βM = 1− M

√
1− β

Let A = (1− βM)/αM and B = βM/(1− αM)
Let Useed be a uniform PRNG and σ be its sample
for i ∈ {1, . . . ,M} while H is not accepted do

Iterate Useed to generate σi

Let ratio = 1
while ratio < A ∧ ratio > B do

ω ← Simulate(M, φ, σi)

ratio ← (p1)1(ω|=φ)(1−p1)1(ω ̸|=φ)

(p0)1(ω|=φ)(1−p0)1(ω ̸|=φ) ratio

if ratio ≥ A ∧H = H0 ∨ ratio ≤ B ∧H = H1 then
accept H

The user specifies ε and δ and the SMC algorithm calculates N to guarantee the
estimate accordingly. Equation (6) is derived from equations

P(p̂− p ≥ ε) ≤ e−2Nε2 and P(p− p̂ ≥ ε) ≤ e−2Nε2 , (7)

giving N =
⌈
(ln δ)/(2ε2)

⌉
to satisfy either inequality.

We consider the strategy of sampling M schedulers to estimate the optimum
probability. We thus generate M estimates {p̂1, . . . , p̂M} and take either the
maximum (p̂max) or minimum (p̂min), as required. To overcome the cumulative
probability of error with the standard Chernoff bound, we specify that all es-
timates p̂i must be within ε of their respective true values pi, ensuring that any
p̂min, p̂max ∈ {p̂1, . . . , p̂M} are within ε of their true value. Given (7) and the
fact that all estimates p̂i are statistically independent, the probability that all
estimates are less than their upper bound is expressed by P(

∧M
i=1 p̂i− pi ≤ ε) ≥

(1− e−2Nε2)M . Hence, P(
∨M

i=1 p̂i − pi ≥ ε) ≤ 1− (1− e−2Nε2)M . This leads to
the following expression for N , given parameters M , ε and δ:

N =
⌈
− ln

(
1− M

√
1− δ

)
/2ε2

⌉
(8)

Since the case for pmin is symmetrical, (8) also ensures P(pmin − p̂min ≥ ε) ≤ δ.
Hence, to ensure the more usual conditions that P(| pmax − p̂max |≥ ε) ≤ δ and
P(| pmin − p̂min |≥ ε) ≤ δ,

N =
⌈(

ln 2− ln
(
1− M

√
1− δ

))
/(2ε2)

⌉
. (9)

N scales logarithmically with M (e.g., for ε = δ = 0.01, N ≈ log1.0002(M) +
26472), making it tractable to consider many schedulers. Algorithm 3 is the
resulting extremal probability estimation algorithm for multiple schedulers.

Algorithm 3: Extremal probability estimation with multiple schedulers

Input:
M, φ: the MDP and property of interest
ε, δ: the required confidence bound
M : the number of schedulers to test

Output: Extremal estimates p̂min and p̂max

Let N =
⌈
ln(2/(1− M

√
1− δ))/(2ε2)

⌉
be the no. of simulations per

scheduler
Let Useed be a uniform PRNG and σ its sample
Initialise p̂min ← 1 and p̂max ← 0
Set seed of Useed randomly
for i ∈ {1, . . . ,M} do

Iterate Useed to generate σi

Let truecount = 0 be the initial number of traces that satisfy φ
for j ∈ {1, . . . , N} do

ωj ← Simulate(M, φ, σi)
truecount ← truecount + 1(ωj |= φ)

Let p̂i = truecount/N
if p̂max < p̂i then

p̂max = p̂i

if p̂i > 0 ∧ p̂min > p̂i then
p̂min = p̂i

if p̂max = 0 then
No schedulers were found to satisfy φ

4.3 Experiments

We implemented Algorithms 2 and 3 in our statistical model checking platform
Plasma [1] and performed a number of experiments.

Figure 3 shows the empirical cumulative distribution of schedulers generated
by Algorithm 3 applied to the MDP of Fig. 2, using p1 = 0.9, p2 = 0.5, φ = X(ψ∧
XG4¬ψ), ε = 0.01, δ = 0.01 and M = 300. The vertical red and blue lines mark
the true probabilities of φ under each of the history-dependent and memoryless
schedulers, respectively. The grey rectangles show the ±ε error bounds, relative
to the true probabilities. There are multiple estimates per scheduler, but all
estimates are within their respective confidence bounds. Note that the confidence
is specified with respect to estimates, not with respect to optimality. Defining
confidence with respect to optimality remains an open problem.

In Fig. 4 we consider a reachability property of the Wireless LAN (WLAN)
protocol model of [15]. The protocol aims to minimise “collisions” between
devices sharing a communication channel. We estimated the probability of the

second collision at time steps {0, 10, . . . , 100}, using Algorithm 3 withM = 4000
schedulers per point. Maximum and minimum estimated probabilities are de-
noted by blue and red circles, respectively. Maximum probabilities calculated
by numerical model checking are denoted by black crosses. The shaded areas
indicate the ±ε error of the estimates (Chernoff bound ε = δ = 0.01) and reveal
that our estimates are very close to the true values.

0.0 0.1 0.2 0.3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability

C
u
m

u
la

ti
v
e

 p
ro

b
a

b
ili

ty

↑ ↑
memoryless

Figure 3. Empirical cumulative distribu-
tion of estimates from Algorithm 3.

0 20 40 60 80 100

Time (steps)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
ra
c
ti
o
n
o
f
n
u
ll
s
c
h
e
d
u
le
rs

P
ro
b
a
b
ili
ty
o
f
c
o
lli
s
io
n

0
.0

0
.1

0
.2

exact

max

min > 0

Figure 4. Max. and min. probabilities of
second collision in WLAN protocol.

To demonstrate the scalability of our approach, we consider the choice co-
ordination model of [17] and estimate the minimum probability that a group
of six tourists will meet within T steps. The model has a parameter (BOUND)
that limits the state space. We set BOUND = 100, making the state space of
≈ 5× 1016 intractable to numerical model checking. For T = 20 and T = 25 the
true minimum probabilities are respectively 0.5 and 0.75. Using smart sampling
and a Chernoff bound of ε = δ = 0.01, we correctly estimate the probabilities to
be 0.496 and 0.745 in a few tens of minutes on a standard laptop computer.

5 Prospects and Challenges

Our techniques are immediately extensible to continuous time MDPs and other
models that use nondeterminism. It is also seems simple to consider MDPs with
rewards. Although the presented algorithms are not optimised with respect to
simulation budget, in a forthcoming work we introduce the notion of “smart
sampling” to maximise the chance of finding good schedulers with a finite budget.

A limitation of our approach is that the algorithms sample from only a subset
of possible schedulers. It is easy to construct examples where good schedulers
are vanishingly rare and will not be found. Our ongoing focus is therefore to
develop memory-efficient learning techniques that construct schedulers piece-
wise, to improve convergence and consider a much larger set of schedulers.

Acknowledgement This work was partially supported by the European Union
Seventh Framework Programme under grant agreement no. 295261 (MEALS).

References

1. PLASMA project web page. https://project.inria.fr/plasma-lab/.
2. C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
3. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
4. A. Bianco and L. De Alfaro. Model checking of probabilistic and nondeterministic

systems. In Foundations of Software Technology and Theoretical Computer Science,
pages 499–513. Springer, 1995.

5. J. Bogdoll, L. M. F. Fioriti, A. Hartmanns, and H. Hermanns. Partial order meth-
ods for statistical model checking and simulation. In Formal Techniques for Dis-
tributed Systems, pages 59–74. Springer, 2011.

6. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist., 23(4):493–507, 1952.

7. E. Clarke, E. A. Emerson, and J. Sifakis. Model checking: algorithmic verification
and debugging. Commun. ACM, 52(11):74–84, Nov. 2009.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Al-
gorithms. MIT Press, 3rd edition, 2009.

9. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
aspects of computing, 6(5):512–535, 1994.

10. A. Hartmanns and M. Timmer. On-the-fly confluence detection for statistical
model checking. In NASA Formal Methods, pages 337–351. Springer, 2013.

11. D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke. Statist-
ical model checking for Markov decision processes. In Quantitative Evaluation of
Systems, 2012 Ninth International Conference on, pages 84–93. IEEE, 2012.

12. W. G. Horner. A new method of solving numerical equations of all orders, by con-
tinuous approximation. Philosophical Transactions of the Royal Society of London,
109:308–335, 1819.

13. M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. Machine Learning, 49(2-
3):193–208, 2002.

14. D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 3rd edition,
1998.

15. M. Z. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic Model Checking
of the IEEE 802.11 Wireless Local Area Network Protocol. In Proc. 2nd Joint In-
ternational Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification, pages 169–187. Springer-Verlag, 2002.

16. R. Lassaigne and S. Peyronnet. Approximate planning and verification for large
Markov decision processes. In Proc. 27th Annual ACM Symposium on Applied
Computing, pages 1314–1319. ACM, 2012.

17. U. Ndukwu and A. McIver. An expectation transformer approach to predicate ab-
straction and data independence for probabilistic programs. In Proc. 8th Workshop
on Quantitative Aspects of Programming Languages (QAPL’10), 2010.

18. M. Okamoto. Some inequalities relating to the partial sum of binomial probabilit-
ies. Annals of the Institute of Statistical Mathematics, 10(1):29–35, 1958.

19. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, 1994.

20. A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16(2):117–186, 1945.

21. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Computer Aided Verification, pages 223–
235. Springer, 2002.

