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Abstract—Code artefacts that have non-trivial requirements
with respect to the ordering in which their methods or
procedures ought to be called are common and appear, for
instance, in the form of API implementations and objects.
Testing such code artefacts to gain confidence in that they
conform to their intended protocols is an important and
challenging problem. In this paper we propose and study
experimentally conformance testing adequacy criteria based on
covering an abstraction of the intended behavior’s semantics.
Thus, the criteria are independent of the specification language
and structure used to describe the intended protocol and the
language used to implement it. As a consequence the results
may be of use to black box conformance testing approaches in
general. Experimental results show that the criterion is a good
predictor for conformance failure detection and for classical
structural coverage criteria such as code and branch coverage.

Keywords-conformance testing; object protocols; coverage
criteria

I. INTRODUCTION

Despite progress made, the automatic generation of effi-

cient high quality test suites is still a major challenge for

many kinds of software [34], [15]. This is the case for state-

ful components such as APIs, GUI, web software, protocol

servers and clients that have non-trivial requirements with

respect to the ordering in which their methods or procedures

ought to be called to produce meaningful results or to

access certain functionality [3]. Components with non-trivial

protocols and options are particularly challenging for testing

approaches [13], [34].

A particularly important type of testing for stateful com-

ponents is done to gain confidence in that they conform to

their intended protocols (e.g., [12]). For instance, protocol

conformance is crucial to gain assurance that client code

abiding to intended usage will not fail due to making

calls on code that poorly implements the intended protocol

(as the dual problem of typestate verification [9]). Thus,

protocol conformance underlies settings like Model-based

development [28] and model based testing [31]. In this

context, testing focus is on verifying that the code under

test accepts or rejects sequences of method calls according

to the intended protocol.

Black box testing has addressed this problem to some

extent. The vast majority of work on black box testing

has studied structural strategies for defining adequacy of

conformance with respect to specifications [15]. Coverage

criteria are then defined either in terms of structural elements

of the specification or the executable code generated from

it. This yields criteria and empirical studies influenced by

(accidental) elements of the structure of the model or its

executable code such as predicates, control or data flow

elements. Authors have already warned that accidental as-

pects of specifications or model compilers may potentially

influence effectiveness of criteria (e.g., [14], [26], [27], [22],

[33], etc.). Moroever, being tightly coupled to a particular

language the relation between the criterion and protocol

state space actually covered and, consequently, the degree to

which the semantic failure domain is explored is not studied.

This in turn hinders the generalisation of the scarce empirical

results of this body of work [15] to the general problem of

black box testing of protocols.

Thus, although some sort of semantic coverage would

be expected as a natural measure of testing, there is a

hitherto unexplored difficulty when the behaviour of the

system under test is infinite. Consequently traditional black

box criteria for conformance testing of protocols are not

applicable as finite state spaces are assumed [24], [22], [17].

Various strategies for finitising protocol state spaces have

been studied [6], [19], [32]. However, there are no empirical

results on their effectiveness.

Our general hypothesis is that effective notions of behav-
ior coverage are actually feasible by defining them in terms
of finite abstractions defined over the semantic domain that
describes the intended protocol behaviour.

In this paper we propose coverage criteria over finite

abstractions of infinite state behaviour protocols and present

experiments in which results show that those criteria are

good predictors for conformance failure detection and for

structural coverage criteria (statement and branch coverage)

when applied over code under test.

The practical implications of these results may be that in

the context of development approaches which advocate test

development before coding, generating tests according to an

abstraction of the protocol semantics of an artefact with non-

trivial requirements on method call ordering would provide

a good criteria for detecting conformance failures and allow

a first (and early) shot at producing high code coverage test
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suites (which could then be extended if necessary when code

is available).

The coverage criteria are defined over enabledness pre-

serving abstractions (EPAs) [8]. These abstractions quotient

an infinite state space into finite classes of states which

allow the same method calls. They also abstract method pa-

rameters through existential elimination. We evaluate failure

detection ability on five industrially relevant classes with

rich protocols by analysing the mutant detection capability

of randomly generated test suites. Results show that the

criteria are good predictors of mutant detection in general.

As achieving high coverage requires large test suites, we also

study the relation between test suite size, EPA coverage and

mutant detection. Results show that for fixed-size, test suites

with the highest behavioral adequacy are statistically better.

To compare the proposed coverage criteria against a

structural black box criteria, and to avoid benefitting from

bias in the selection of the specification language and model

to be structurally covered, we select the (unmutated) code

itself as the specification. We believe that this choice does

not favour (on the contrary) the hypotheses we propose in

this paper as the code can be considered as the most detailed

specification and most likely consitutes an upper bound

on what structural criteria on specifications can achieve

as test suite quality predictors. Results show that the EPA

coverage criteria, which is behavioral and hence independent

of specification language bias, performs comparably in terms

of predictability of test suite failure detection.

We believe this paper is a step to understanding how

behavioral coverage of protocol behaviour correlates with

protocol conformance failure detection. This approach could

help to improve random testing, test driven development, test

case selection and, in general, techniques for tests generation

from formal specifications. The results seem to indicate that

such approaches would benefit from introducing heuristics

that aim to maximise EPA coverage.

The rest of this paper is organised as follows. We begin

with a lay out the problem we aim to address, formalising a

conformance relation (Section II-A), the coverage criteria

(Section II-B) and research questions (Section II-C). In

Sections III and IV we present the experimental design and

results, related work (Section VI) and conclusions and future

work (Section VII).

II. PROBLEM STATEMENT

We are interested in studying behavioral coverage criteria

for testing protocol conformance. In this section we for-

malise the problem by defining what is meant by the in-

tended protocol to be provided by a code artefact, the actual

protocol implemented by a code artefact, and a conformance

relation that is expected to hold between the intended and

actual protocols. We also define the test adequacy criteria

and then formulate four research questions that we address

in the following sections.

A. Conformance relation

Full formal treatment of programming language semantics

is beyond the scope of this paper. We provide an intuitive

definition, sufficient for defining rigorously protocol confor-

mance.

The semantics of a class or API implementation can

be defined as a protocol labelled transition system (LTS).

The states of the LTS are all configurations of the internal

state of the code. If the code is a class, then configurations

correspond to all structurally distinct instances of the class.

If the code is an API implementation, configurations are

all possible valuations on internal variables of the API.

Transitions are the effect of successful invocations of specific

methods with concrete parameters. A transition will be

present between states s and s′ if and only if the execution of

the associated method -with the annotated actual parameters-

on the configuration corresponding to s eventually halts,

does not yield any exceptions and changes the internal state

of the code to a configuration that corresponds to s′.
Similarly, a specification language designed to describe

the intended protocol behaviour of a class or API to be

developed can be given semantics in a similar fashion. The

intended protocol LTS defines which are the (potentially

infinite) set of valid (potentially infinite) method invocation

sequences on a code artefact (each invocation including

actual parameters). An implementation is conformant if it

accepts the sequences of method invocations that are legal

according to the intended protocol.

Hence, in this paper we adopt (intended and actual) Pro-

tocol LTS as the semantic domain for implementations and

specifications. The actual protocol LTS represents the real

behaviour of the implementation while the intended protocol

LTS represents the intended behaviour according to some

specification. Both LTS are semantic representations and

independent of the programming and specification languages

used. Note that we require protocol LTS to be deterministic.

Definition 1 (Protocol LTS): Let m1, . . . ,mn be method

names, and Di the domain of mi. A LTS protocol for

m1, . . . ,mn is tuple L = 〈Σ, S, S0,Δ〉 where,

• S is the (possibly infinite) set of states.

• S0 is the initial state.

• Σ =
⋃

i≤n({mi} × Di) is the set of possible method

invocations.

• Δ : (S×Σ×S) is the transition relation that maps pairs

of a state and method invocation to the corresponding

resulting state. The relation must be partial function on

the first two elements of the tuple.

The expresion s →mi(p) s′ denotes that (s,mi(p), s
′) ∈

Δ, s →mi(p) denotes ∃s′.(s,mi(p), s
′) ∈ Δ, and s �→mi(p)

denotes �s′.(s,mi(p), s
′) ∈ Δ. These definitions are triv-

ially extended to sequences of method invocations.

Conformance between protocol LTS is defined as an in-

clusion with respect to the sequences of method invocations
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they accept.

Definition 2 (Protocol LTS Conformance): Given two

Protocol LTS, I and A, over the same set of methods with

initial states SI0 and SA0, we say that I is in conformance
to A if for all sequence w of method invocations -with

concrete parameters-, SA0 →w
A then SI0 →w

I .

A failure is then a sequence of method invocations with

concrete parameters which is part of the intended protocol

but does not terminate or raises an exception when executed

on the implementation.

Definition 3 (Failure): Given two Protocol LTS, I and A,

over the same set of methods with initial states SI0 and

SA0 we say that a sequence w of method invocations -with

concrete parameters- is a failure if SA0 →w
A and SI0 �→w

I .

In practice, a client following the intended protocol may fail

if the implementation is non-conformant.

B. Test adequacy criteria

We aim to define adequacy criteria over protocol be-

haviour independently of the specification language used to

express the intended protocol and the programming language

used to implement it. We define adequacy criteria over a

conservative abstraction of their infinite behavior.

The abstraction we propose is based on [8]. Basically, a

EPA is a LTS where labels are method names. EPAs abstract

the state space of the protocol LTS by quotienting it accord-

ing to the methods that are enabled. In other words, two

states of a protocol LTS are represented by the same abstract

state if for every method and concrete parameter enabled in

one state, that method for some parameter is enabled in the

other. EPAs abstract parameters by introducing a transition

between abstract states only if there exist parameter values

such that a concrete state of the source abstract state can lead

to a concrete state of the target abstract state (i.e. existential

elimination).

Definition 4 (Enabledness Equivalence): Given a proto-

col LTS L =
〈
Σ =

⋃
i≤n({mi} × Di), S, S0, Δ

〉
over

method names m1, . . . ,mn and Di as the domain of mi,

and two states s1, s2 ∈ S, we say that s1 and s2 are

enabledness equivalent states (noted s1 ≡ s2) if for every

mi ∃p ∈ Di.s1 →mi(p) ⇐⇒ ∃p′ ∈ Di.s2 →mi(p
′).

Definition 5 (Enabledness-preserving Abstraction):
Given a protocol LTS L =〈
Σ =

⋃
i≤n({mi} × Di), S, S0, Δ

〉
for a protocol

over method names m1, . . . ,mn and Di as the domain

of mi, we say that the LTS M = 〈⋃i≤n({mi}), S, S0, δ〉
is an enabledness-preserving abstraction (EPA) of L if

there exists a total function α : S → S s.t. α(S0) = S0

and for every s ∈ S, method name mi and parameter

p ∈ Di s.t. s →mi(p) s′ holds, then (α(s),mi, α(s
′)) ∈ δ.

Furthermore, given a pair of states s1, s2 on S, it holds that

s1 ≡ s2 ⇐⇒ α(s1) = α(s2). Figure 1 shows the EPA of

JDK 1.4 Socket class.

S0 S1Socket

S 3

ge t Inpu tS t r eam
ge tOu tpu tS t r e am

S6close

S 5

shu tdownOu tpu t

S 4shu tdownInpu t close

S 2

connec t

close
connec t

connec t

close
connec t

bind
close

shu tdownInpu tge t Inpu tS t r eam

close
shu tdownOu tpu t

ge tOu tpu tS t r e am

Figure 1. (Enabledness Preserving) Abstraction of the semantics of the
JDK 1.4 Socket implementation.

We now define two adequacy criteria over EPAs of

protocol LTS. Note that the effect of the execution of a unit

test over an instance can be univocally interpreted as a path

along a protocol LTS. That path mimics the execution over

the instance by transitioning over the LTS until either a state

is reached where the next method invocation is not enabled

in the protocol, or the execution was completely simulated

by the LTS. In turn, (and because EPAs can simulate all

paths of the LTS they abstract) a path on the protocol LTS

can be univocally simulated by a path in the EPA by applying

the abstraction function α. We call the later an α-abstracted
execution of a unit test.

Definition 6 (EPA Transition K-adequacy Criterion):
Let L be a protocol LTS, A its EPA, and TS a test suite. We

say that TS is EPA-T-k adequate for L if the α-abstracted

executions of all unit tests in TS cover at least k% of the

transitions in A.

As an example, let us consider the EPA shown in figure 1.

A EPA-T-100 adequate test suite would necessarily con-

tain a unit test in which shutdownOutput is executed

before shutdownInput and also a unit test in which

shutdownOutput is executed after shutdownInput.

Probing the identity of state is typically part of most

algorithms for finite state machine testing [18]. There-

fore, transition pairs can also be regarded as an interesting

criterion since it measures to which extent target states

of transitions have been probed by executing the expected

enabled transitions.

Definition 7 (EPA Transition Pairs K-adequacy Criterion):
Let L be a protocol LTS, A its EPA, and TS a test suite. We

say that TS is EPA-P-k adequate for L if the α-abstracted

executions of all unit tests in TS cover at least k% of the

transition pairs in A.

Note that neither the conformance relation nor the ade-

quacy criteria make assumptions on the way the intended
protocol LTS of a code artefact is described: we simply

assume that the semantics of such language can be defined

in terms of a protocol LTS as defined above. In fact, there

are several ways an intended protocol LTS can be defined

in practice: it could be formally given as a model in a MBT

setting, it could be described in a technical documentation,

it could be defined by a reference implementation, it could
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be given as a set of known valid traces, it could be mined

from client applications of the code, etc.

C. Research Questions

We now pose the research questions that are the focus of

the experimentation reported in the next sections.

The first question analyses the correlation between the

coverage of EPA transitions and the ability of a test suite

to detect faults that manifest themselves as violations of the

intended protocol, i.e. protocol conformance failures.

RQ1. To what extent does the value of K in the EPA

transition (transition pairs) K-adequacy of the intended pro-

tocol LTS predict the ability of test suites to detect protocol

conformance failures?

In order to understand if the correlation obtained is

reasonably high, we also look at how well branch and

statement coverage performed over the code of the subjects

(i.e., as white box criteria) would predict test suite quality.

The importance of this analysis is twofold. First it provides

a baseline reference for correlations yielded by the proposed

criteria. Second it enables a comparision against what would

be measuring structural adequacy using an ideal specification

in terms of closely mimicking the structure of code under

test. The choice of code as the specification language against

which to compare EPA coverage is discussed in Section V.

Since requiring coverage leads naturally to requiring

longer test suites, it is standard to analyse if stronger

correlations are just a consequence of length [23].

RQ2. Given a fixed test suite length, do test suites with

higher EPA transition (transition pairs) K-adequacy on the

intended protocol LTS perform better in terms of failure

detection than those with lower EPA transition (transition

pairs) K-adequacy?

More specifically, we aim to study if picking a test suite

with higher adequacy is more likely to detect more failures

than picking a test suite of the same size but with lower

adequacy.

The third and fourth questions explore how well EPA

transition (transition pairs) K-adequacy can predict statement

and branch coverage of the code under test.

RQ3. To what extent does the value of K in the EPA tran-

sition (transition pairs) K-adequacy of the intended protocol

LTS of an implementation predict the achieved level of code

coverage on a conformant implementation?

That is, is it true than the more abstract behavior is

covered then the more code is structurally covered? As

before, we also study the relation between EPA transition

(transition pairs) K-adequacy and code coverage for fixed

test suite lengths:

RQ4. Given a fixed test suite length, do test suites with

higher EPA transition (transition pairs) K-adequacy on the

intended protocol LTS perform better in terms of code

coverage than those with lower EPA transition (transition

pairs) K-adequacy?

III. EXPERIMENT DESIGN

A. Experiment Overview

To answer the four research questions proposed in sec-

tion II-C two values associated to test suites must be studied:

number of failures detected and achieved code coverage.

Failure detection involves (a) fixing both an intended

protocol LTS and a conformant implementation and (b) ob-

taining implementations that fail to conform to the intended

protocol in diverse ways. Our strategy involves selecting an

implementation as a reference implementation to be used

both as the specification of intended behaviour and as the

basis for generating faulty implementations.

For obtaining faulty implementations we applied mutation

operators to the reference implementation. Identification of

failures is done by executing unit tests on both the referece

implementation and on a mutated implementation. When

mutation is unable to execute a valid sequence of calls

in the subject implementation then the mutant is killed.

Note that semantically-different mutations do not necessarily

alter the actual protocol. For instance, altering the way an

index is updated may (or may not) eventually lead to a

state where some operation yields an exception. Between

40% and 70% of mutations (depending on the case study)

produce conformance failures. To have a representative set

of flawed implementations, we decided not to filter a priori

the applied mutation operators. Simply, mutants that were

not killed by any unit test (i.e., no test sequence led to

an unexpected exception of that mutant) were considered

mutations that have the same actual protocol as the reference

implementation of the class.

The strategy for test suite generation is random generation

of unit tests and random grouping them into test suites. The

selected code coverage criteria are statement and branch

coverage, both measured on the reference implementation

as unit tests are run.

B. Subjects

We restricted the universe of potential subjects to one

programming language to allow for a uniform experimen-

tal platform regarding mutation, test genaration and code

coverage tools, and infrastructure for detecting failures. In

particular, we fixed the language to Java to take advantage

of existing tools and the availability of Java classes that

satisfied our general criteria for subject selection: i) code

that features a rich set of restrictions on the order in which

methods should be called (i.e., rich protocols); ii) code that

is of industrial relevance; and iii) code for which its EPA

can be obtained (see Section III-C).

We performed studies on 5 subject Java classes:

Signature, ListItr and Socket from the

Java Development Kit (JDK) 1.4 implementation; the

SMTPProcessor class of JES mail server, a Java SMTP

and POP3 e-mail server; and JDBCResultSet class,
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which is the implementation of the ResultSet interface

of the JDBC specification of HyperSQL 2.0.0 database.

The Signature class is used to provide applications the

functionality of a digital signature algorithm; ListItr
provides functionality to go through the elements stored

in a list; Socket provides the client-side functionality

to establish a TCP connection between two hosts;

SMTPProcessor is a core class of the Java Email Server

responsible for processing all incoming SMTP requests;

and JDBCResultSet represents a set of data which is

generated by executing a query to a database. The class

allows iterating over the result and making updates on the

underlying database.

C. Construction of EPAs of Intended Protocol LTSs

A key resource for all subjects was the tool CONTRAC-

TOR [7]. It constructs EPA either from contract-based spec-

ifications [7] or directly from source code [8].

Since we require intended protocol to be the actual pro-

tocol of reference implementation, the EPAs of the intended

protocol for subjects Signature, ListItr, Socket and

SMTPProcessor were obtained by using CONTRACTOR

on code of the reference implementation as in [8].

On the other hand, the EPA of the actual protocol LTS for

JDBCResultSet was obtained by using CONTRACTOR

on the contract-based specification defined in [4] for the

ResultSet JDBC interface. We validated the contract

specification by comparing the preconditions of each method

against the conditions that guard exception throwing state-

ments in the reference implementation. Indeed, our analysis

concludes that resulting EPA is that of actual protocol LTS

for the JDBCResultSet reference implementation.

D. Experiment Implementation details

In this study, for each subject we generated 10000 unit

tests by using RANDOOP [25], an automatic unit test gener-

ator for Java classes. These unit tests are grouped randomly

into test suites. In order to get statistically significant results,

test suites with different levels of coverage of EPA models

are required. To address this requirement we randomly vary

the number of unit tests that make up test suites. For each

subject appropriate ranges of unit tests per test suite were

defined to achieve varied EPA coverage.

For obtaining mutated versions of each subject class we

used μ-JAVA [20], a mutation system for Java programs. In

order to obtain as many implementations as possible, we let

μ-JAVA apply every mutation operator whenever possible1.

Some of these mutants may not be semantically equivalent

but there is no evidence that their actual protocol is different

to the one of the conformant implementation.

1Due to time limitations, in the case of SMTPProcessor we randomly
selected only the 20% of generated mutants, since the execution of all tests
on all mutants would have taken more than one year.

We measured statement and branch coverage using

COBERTURA, a Java tool that calculates the percentage of

code accessed by tests.

Table I summarises relevant information for each subject.

Column 2 exhibit lines of code; column 3 the number

of mutants detected; columns 4 and 5 expose information

regarding EPAs (number of states and transitions); and

column 6 shows the number of EPA transitions that were

reached by at least one test suite.

Class LOC Mutants States Tx Tx Covered
Signature 121 96 4 29 27

ListItr 59 145 8 68 63

Socket 144 59 7 20 18

SmtpProcessor 404 89 12 85 70

JDBCResultSet 785 259 9 247 199

Table I
SUBJECT CLASSES SUMMARY

IV. RESULTS

A. Research Question 1

In order to determine to what extent the value of K in

EPA transition (transition pairs) K-adequacy of the intended

protocol LTS predicts the ability of test suites to detect proto-

col conformance failures we use Spearman’s rank correlation

coefficient ρ. This coefficient does not make any assumption

about the distribution of data. This is important as we were

unable to establish that data fitted known distributions using

goodness of fit tests such as Kolmogorov-Smirnov.

We compute the coefficient not only to correlate EPA

adequacy against detected failures, but also for correlating

statement and branch coverage against detected failures. The

coefficients provide us a measure of statistical dependence

between the degree of coverage of each criterion and the

number of detected failures by a test suite.

Class Stmt Brch Tx Tx Pairs
Signature 0.65 0.71 0.73 0.78
ListItr 0.48 0.61 0.84 0.85
Socket 0.81 0.86 0.72 0.73

SmtpProcessor 0.66 0.78 0.69 0.70

JDBCResultSet 0.89 0.92 0.68 0.66

Table II
CORRELATION BETWEEN COVERAGE AND FAILURE DETECTION. BOLD

INDICATES THE HIGHEST VALUE FOR A ROW.

Table II shows the ρ values obtained for each criterion.

Transition pairs coverage has high correlation (ρ > 0.7) for

four subjects and moderate for JDBCResultSet (but very

close to high). Transitions coverage has high correlation in

three cases and moderate (but again very close to high) in

the remaining two. As can be seen, even compared with

structural criteria over code, the defined black box behavioral

criterion does not perform poorly. Two case studies illustrate

the best and worst cases for behavior coverage and structural

coverage criteria. On the one hand, poor performance of
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behavior criteria on JDBCResultSet seems to be justified

because API implementation is unbalanced in terms of

amount of mutable code (one method out of forty-two

collects the 35% of all mutations of the class). On the other

hand, for ListItr EPA coverage criteria have high correla-

tion while both statement and branch coverage correlate only

moderately. This might be explained as follows: this subject

presents a simple code structure (no loops, few branches)

that can be easily covered by test suites, while the structure

of the intended protocol LTS, and hence its EPA, is quite

rich. Achieving coverage of the EPA requires executing more

complex sequences of method calls that explore interesting

states of the iterator (such as getting to the end of the list).

High code coverage does not guarantee reaching such states.

Finally, transition pairs seems to have similar predict power

than transitions coverage.

B. Research Question 2

The impact of length (as the number of calls to the

software under test) on the effectiveness of test suites has

been addressed by several works [23], [1]. Although it is

known that not only the size determines the quality of a test

suite, in general it is expected that the greater the length,

the greater the likelihood of revealing failures [23].

The tests that achieve higher EPA coverage are generally

also longer. Thus, we analyse test suites on a “by length”

basis: given a length we aim to study if the test suites with

higher EPA transition (transition pairs) K-adequacy of the

intended protocol LTS are likely to detect more failures than

those with lower adequacy.

Samples for each length are not large enough for obtaining

statistically significant results. Therefore, we divide them

into bins grouping those of similar length in the same bin.

For each subject, we ensure that the difference of length

between test suites of the same bin do not exceed 10% of

the difference of length between the longest and the shortest

overall test suites.

We define the set of test suites in a bin with higher

adequacy as those that achieve at least 80% of the coverage

that is achieved with the test suite with highest coverage of

that bin. This is because the degree of coverage varies from

bin to bin due to the change in test suite lengths. In this way

we can obtain the “best” test suites for a particular bin.

As explained in Section IV-A, detected failure data does

not necessarily fit standard distributions. Therefore, as be-

fore, we choose a nonparametric test for our analysis. In

order to compare higher coverage test suites of a bin against

the rest of that bin, we use the Mann-Whitney U test, a non-

parametric statistical hypothesis test for assessing whether

the probability of an observation from one population ex-

ceeding an observation from a second population is not equal

to 0.5. This hypothesis test assumes that all the observations

from both groups are independent of each other, which is

true because the test suites that do fit our criteria and those

that do not form disjoint sets. It also requires the responses

are ordinal or continuous measurements, which is also true

because the variables considered here are EPA transition

(transition pairs) coverage and detected failures. Under the

null hypothesis the probability of a random observation

from one population P1 exceeding a random observation

from the second population P2 equals the probability of

an observation from P2 exceeding an observation from P1.

Under the alternative hypothesis the probability is not equal

to 0.5. That is, values from one population tend to exceed

those of the other. We reject the null hypothesis when the

p-value resulting from the hypothesis test is less than 0.05.

To also assess the magnitude of the improvement we use

the Vargha and Delaney’s A12 effect size (ES). This non-

parametric measure has recently been advocated in [2] for

randomized algorithms. In our case, in a given bin, A12

estimates the probability that choosing a tests suite of high

transition coverage detects more mutants than a test suite

chosen randomly from the population of low coverage. We

also report the confidence interval (CI) for the effect size

stated at the 95% confidence level.

Table III shows the test results for all subjects. Each row

of the table corresponds to one bin. The second column

specifies the test suite length interval of each bin. The

third indicates the minimum and maximum number of

EPA transitions covered by them, and the fourth shows

the minimum number of transitions that a test suite must

cover to be considered adequate (i.e. coverage of at least

80% of the best coverage in the bin). The fifth and sixth

column show the number of tests that achive high and low

EPA transitions coverage respectively. The seventh column

exhibits the p-value of the Mann-Whitney test, the eighth

the A12 effect size and the ninth its confidence interval.

Remaining columns corresponds to results of RQ4. The

same analysis was performed to evaluate transition pairs

coverage and results do not significatly differ from those

obtained for transition coverage. 2

Results suggest that EPA coverage makes a difference in

terms of failure detection for tests suites of the same length.

C. Research Question 3

As with detected failures, code coverage achieved by test

suites does not fit standard distributions either. Therefore,

to find out how well the coverage of EPA predicts code

coverage we again calculate Spearman’s rank correlation

coefficient ρ. The results are shown in table IV.

Results lead to believe that EPA coverage criteria are

reasonably good predictors of statement and branch coverage

adequacy. Correlation against branch coverage is moderate

to high depending on the case and values are consistently

close to 0.7. Interestingly, except for transition coverage

2Due to space limitations they are not reported in this paper. They are
available at http://lafhis.dc.uba.ar/epa_testing. The same applies to RQ4.
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Subject
EPA Coverage Detected Faults Statement Coverage Percentage Branch Coverage Percentage

Length Interval Covered Tx Threshold H-population L-population p-value ES CI p-value ES CI p-value ES CI

Signature

[50,99] 9 - 22 18 98 189 ∼ 0 0.80 [0.71,0.90] ∼ 0 0.76 [0.66,0.85] ∼ 0 0.78 [0.68,0.88]

[100,149] 11 - 25 20 114 110 ∼ 0 0.75 [0.64,0.86] ∼ 0 0.76 [0.65,0.87] ∼ 0 0.74 [0.63,0.85]

[150,199] 12 - 26 21 110 130 ∼ 0 0.77 [0.66,0.87] 0.01 0.70 [0.60,0.80] ∼ 0 0.80 [0.70,0.89]

[200,249] 14 - 26 21 165 79 ∼ 0 0.77 [0.66,0.88] ∼ 0 0.73 [0.61,0.85] ∼ 0 0.80 [0.70,0.90]

[250,299] 14 - 27 22 181 63 ∼ 0 0.83 [0.71,0.95] ∼ 0 0.73 [0.62,0.84] ∼ 0 0.81 [0.70,0.92]

[300,349] 14 - 27 22 201 43 ∼ 0 0.85 [0.73,0.97] ∼ 0 0.80 [0.67,0.92] ∼ 0 0.83 [0.72,0.95]

[350,399] 16 - 27 22 232 83 ∼ 0 0.75 [0.64,0.86] 0.02 0.67 [0.56,0.77] ∼ 0 0.75 [0.65,0.85]

[400,449] 18 - 27 22 205 35 ∼ 0 0.90 [0.80,1.00] 0.01 0.73 [0.61,0.85] 0.01 0.77 [0.63,0.90]

[450,499] 17 - 27 22 220 31 ∼ 0 0.82 [0.70,0.94] 0.16† 0.65 [0.50,0.80] ∼ 0 0.84 [0.69,0.98]

[500,549] 17 - 27 22 197 14 0.01 0.86 [0.79,0.93] 0.01 0.83 [0.76,0.90] 0.01 0.77 [0.67,0.86]

ListItr

[50,99] 16 - 37 30 90 222 ∼ 0 0.73 [0.67,0.79] 0.23† 0.54 [0.51,0.58] ∼ 0 0.74 [0.69,0.79]

[100,149] 22 - 44 36 68 219 ∼ 0 0.81 [0.75,0.86] 0.66† 0.52 [0.50,0.53] ∼ 0 0.79 [0.75,0.82]

[150,199] 24 - 48 39 66 215 ∼ 0 0.72 [0.66,0.79] 0.90† 0.50 [0.50,0.51] ∼ 0 0.70 [0.67,0.74]

[200,249] 29 - 48 39 163 135 ∼ 0 0.72 [0.66,0.77] 1.00† 0.50 [0.50,0.50] ∼ 0 0.62 [0.58,0.66]

[250,299] 32 - 50 40 189 113 ∼ 0 0.72 [0.66,0.78] 0.93† 0.49 [0.49,0.50] ∼ 0 0.66 [0.61,0.70]

[300,349] 34 - 51 41 203 89 ∼ 0 0.68 [0.62,0.74] 1.00† 0.50 [0.50,0.50] 0.02 0.58 [0.54,0.63]

[350,399] 33 - 51 41 197 44 ∼ 0 0.75 [0.67,0.83] 1.00† 0.50 [0.50,0.50] 0.13† 0.58 [0.52,0.63]

[400,449] 35 - 52 42 161 26 0.08† 0.61 [0.51,0.72] 1.00† 0.48 [0.48,0.48] 0.08† 0.62 [0.54,0.70]

[450,499] 36 - 53 43 145 28 ∼ 0 0.73 [0.63,0.82] 1.00† 0.48 [0.48,0.48] 0.03 0.62 [0.54,0.70]

[500,549] 36 - 52 42 113 14 0.08† 0.63 [0.49,0.77] 1.00† 0.50 [0.50,0.50] 0.02 0.72 [0.60,0.85]

Socket

[0,12] 2 - 9 8 29 141 ∼ 0 0.77 [0.70,0.84] ∼ 0 0.86 [0.77,0.94] ∼ 0 0.82 [0.74,0.91]

[13,25] 5 - 13 11 36 261 ∼ 0 0.72 [0.64,0.79] ∼ 0 0.89 [0.84,0.94] ∼ 0 0.83 [0.77,0.89]

[26,38] 5 - 14 12 64 227 ∼ 0 0.69 [0.63,0.76] ∼ 0 0.78 [0.72,0.83] ∼ 0 0.74 [0.68,0.80]

[39,51] 7 - 16 13 73 227 0.01 0.60 [0.55,0.66] ∼ 0 0.71 [0.66,0.76] ∼ 0 0.70 [0.64,0.76]

[52,64] 8 - 16 13 151 167 ∼ 0 0.59 [0.56,0.63] ∼ 0 0.67 [0.62,0.71] ∼ 0 0.66 [0.61,0.70]

[65,77] 9 - 16 13 206 91 0.03 0.58 [0.54,0.62] ∼ 0 0.67 [0.62,0.72] ∼ 0 0.68 [0.63,0.73]

[78,90] 10 - 17 14 170 143 1.00† 0.50 [0.48,0.52] 0.01 0.59 [0.55,0.62] ∼ 0 0.59 [0.55,0.63]

[91,103] 10 - 17 14 178 106 0.37† 0.53 [0.51,0.55] 0.01 0.59 [0.55,0.63] 0.01 0.59 [0.55,0.63]

[104,116] 10 - 16 13 159 18 0.03 0.63 [0.54,0.72] ∼ 0 0.72 [0.61,0.82] ∼ 0 0.71 [0.61,0.81]

[117,129] 11 - 16 13 45 8 1.00† 0.40 [0.40,0.40] 0.63† 0.33 [0.29,0.38] 0.30† 0.26 [0.12,0.39]

SMTPProcessor

[0,149] 4 - 28 23 12 184 ∼ 0 0.80 [0.68,0.93] ∼ 0 0.86 [0.78,0.94] ∼ 0 0.88 [0.80,0.96]

[150,299] 11 - 37 30 21 242 0.03 0.65 [0.56,0.75] 0.02 0.66 [0.57,0.75] 0.01 0.68 [0.59,0.77]

[300,449] 20 - 38 31 86 161 ∼ 0 0.63 [0.57,0.70] ∼ 0 0.65 [0.59,0.72] ∼ 0 0.65 [0.58,0.72]

[450,599] 21 - 40 32 122 137 ∼ 0 0.61 [0.55,0.67] 0.03 0.59 [0.52,0.65] 0.04 0.57 [0.51,0.64]

[600,749] 24 - 45 36 104 150 ∼ 0 0.62 [0.56,0.68] ∼ 0 0.61 [0.55,0.68] ∼ 0 0.62 [0.55,0.68]

[750,899] 26 - 46 37 114 136 0.01 0.61 [0.55,0.67] 0.01 0.60 [0.54,0.66] ∼ 0 0.62 [0.56,0.69]

[900,1049] 28 - 50 40 96 186 ∼ 0 0.64 [0.58,0.70] 0.02 0.59 [0.53,0.65] ∼ 0 0.62 [0.56,0.68]

[1050,1199] 31 - 48 39 171 97 0.02 0.59 [0.53,0.65] 0.20† 0.55 [0.49,0.61] 0.03 0.58 [0.52,0.65]

[1200,1349] 31 - 49 40 153 105 0.13† 0.55 [0.49,0.62] 0.01 0.61 [0.54,0.67] ∼ 0 0.62 [0.56,0.68]

[1350,1499] 30 - 50 40 168 55 0.45† 0.54 [0.46,0.61] 0.50† 0.53 [0.45,0.61] 0.07† 0.58 [0.50,0.66]

JDBCResultSet

[200,399] 69 - 107 86 75 81 ∼ 0 0.70 [0.62,0.79] ∼ 0 0.66 [0.57,0.74] ∼ 0 0.66 [0.57,0.75]

[400,599] 80 - 114 92 213 56 ∼ 0 0.74 [0.66,0.81] ∼ 0 0.72 [0.64,0.80] ∼ 0 0.68 [0.60,0.76]

[600,799] 90 - 123 99 258 25 ∼ 0 0.78 [0.67,0.88] 0.01 0.68 [0.58,0.79] ∼ 0 0.72 [0.60,0.83]

[800,999] 94 - 134 108 231 32 0.10 0.59 [0.48,0.70] 0.04 0.55 [0.44,0.66] 0.04 0.53 [0.43,0.64]

[1000,1199] 102 - 143 115 172 63 0.02 0.62 [0.53,0.70] 0.02 0.61 [0.52,0.70] 0.04 0.57 [0.48,0.65]

[1200,1399] 108 - 140 112 246 8 0.73† 0.41 [0.21,0.61] 0.03 0.33 [0.19,0.46] 0.04 0.39 [0.17,0.61]

[1400,1599] 106 - 140 112 246 11 0.09† 0.73 [0.69,0.76] 0.09† 0.76 [0.72,0.79] 0.10† 0.68 [0.65,0.72]

[1600,1799] 107 - 151 121 252 19 0.01 0.69 [0.58,0.80] ∼ 0 0.76 [0.67,0.85] ∼ 0 0.72 [0.64,0.81]

[1800,1999] 119 - 153 123 230 17 0.86† 0.47 [0.21,0.74] 0.49† 0.53 [0.40,0.67] 0.94† 0.45 [0.27,0.62]

[2000,2199] 120 - 153 123 248 17 0.06† 0.70 [0.57,0.82] 0.01 0.79 [0.68,0.89] 0.08† 0.65 [0.57,0.73]

Table III
MAN-WHITNEY TEST RESULTS FOR FAILURE DETECTION AND CODE COVERAGE. VALUES NOT STATISTICALLY SIGNIFICANT ARE MARKED WITH †.

Class Tx/St Tx/Br Pairs/St Pairs/Br
Signature 0.63 0.70 0.61 0.66

ListItr 0.66 0.70 0.47 0.64

Socket 0.77 0.77 0.77 0.78

SmtpProcessor 0.70 0.73 0.69 0.69

JDBCResultSet 0.67 0.66 0.63 0.63

Table IV
CORRELATION BETWEEN EPA MODEL AND CODE COVERAGE.

in JDBCResultSet, in all cases the correlation with

branch coverage is greater or equal than that of statement

coverage. In the type of software under analysis the selection

of branches of conditional expressions is often based on

the internal state of the object. Thus, the high correlation

values may be an indication that indeed EPA states capture

important properties of the object states, and therefore may

be useful to use them for abstracting concrete object states.

It is worth noting that in almost all cases behavior cover-

age criteria work typically better as predictors of mutant

detection than as code coverage predictor -which seems

consistent to the rationale underlying criteria.

D. Research Question 4

We address this research question in a similar way as

RQ2, using the same set of bins. Again, we do not assume

code coverage achieved by test suites fits a common distribu-

tions. Thus, in order to determine if adequate tests achieve

higher code coverage than non-adequate ones we perform

Mann-Whitney tests. As for RQ2, the assumptions made by

the test are also met in this case.

Table III shows the results for all subjects. Columns 10 to

12 and 13 to 15 exhibit the results for the relation between

EPA transitions coverage and statement/branch coverage. In

our case, in a given bin, A12 estimates the probability that
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choosing a test suite of high transition coverage has higher

statement/branch coverage than a test suite chosen randomly

from the population of low transition coverage.

Again, results show that statistical significatively evidence

exists for saying that test suites achieving higher EPA

coverage criteria are more likely to achieve higher code

coverage than the general population of a given size. The

exception might be ListItr, but as explained before the

simplicity of its code makes it easy to achieve high code

coverage, and therefore covering many transitions does not

make a significant difference.

V. THREATS TO VALIDITY

The results presented in this paper are subject to threats to

validity. We distinguish between threats to internal, external

and construct validity.

Threats to external validity concern our ability to gen-

eralise the results. The expectation is that our results can

be generalised to classes featuring rich intended protocols

and faults that are expressed as unexpected occurrence

of exceptions or non-terminating methods. However, the

study presented only covers five subjects which may not

be sufficiently representative of rich protocol code artefacts.

Threats to internal validity appear as a consequence of

how we conducted the experiments. One major threat is

the validity of the EPAs of the actual protocol LTS for

the subjects studied. The use of LTS that do not abstract

appropriately the behaviour of the subject implementations

could lead to skewed results regarding coverage (although

not for detecting failures, as for this the reference imple-

mentation itself and not its abstraction is used). We believe

that the risk of having used models that are not proper

abstractions of the subjects (i.e. not EPAs) is mitigated by

our systematic construction process, validation against third

party constructed models and manual inspections performed.

As with other experiments using mutants and test suites,

the threat of using weak tests that fail to identify failure-

inducing mutants exists. This could lead to different correla-

tions if these harder to kill mutants were included. However

we have analysed correlations over subsets of mutants found,

in particular those least killed showed no significant changes

in correlation.

We believe that threats regarding unintended effects of

general experimental infrastructure needed for i) mutant

generation, ii) coverage measurement and iii) failure de-

tection are minor since we have used standard tools such

as COBERTURA, μ-JAVA and RANDOOP whenever possible

and simple code instrumentation techniques using AspectJ.

Finally, we mitigate internal validity threats by making

data required for third party evaluation of our experiments

at http://lafhis.dc.uba.ar/epa_testing.

Threats to construct validity mainly appear from our

choice to compare our criterion with code coverage criteria.

We recognise that code coverage as a measure of effec-

tiveness of a test suite is still being studied by the testing

community. However, in order to asses if the correlations

with failure detection for EPA coverage are reasonable, some

well accepted baseline is needed. We chose structural code

coverage criteria. However, we also complement compari-

sons with code coverage in our experiments with the study

of EPA coverage against failure detection.

On the other hand, the proposed criteria are black box

while we compare with what in principle could be consid-

ered white box criteria in RQ1 (i.e. structural code cover-

age). It could be argued that a more suitable baseline would

be some other black box criteria such as structural coverage

over a specification. Unfortunately, there is no de facto

standard black box baseline for rich modeling languages

and any choice of language, tool and specification style will

introduce bias as it is known that specification structure can

have significant impact on coverage criteria adequacy (e.g.,

[14], [26], [27], [22], [33], etc.). We believe that taking the

most detailed specification (the code itself) constitutes an

upperbound on what structural criteria on specifications can

achieve as test-suite quality predictor. In fact, it is highly

likely that in Model Based Development there will be more

structural discrepancy between specification and code under

test. Hence, it could be argued that choosing the code as

the specification hinders validation of the hypothesis being

proposed in this paper.

VI. RELATED WORK

A. Models for Testing

Much research effort on the testing has focused mainly

on test case generation by exploiting to various degrees

the code-under-test: from purely systematic white-box ap-

proaches (e.g., [30]) to search-based approaches [29]) in

which fitness functions are based on achieved coverage.

None of these approaches can tackle conformance checking

to its full extent: they are not driven by any form of actual

or intended behaviour. However, some works explicitly or

implicitly define or mine models to improve the quality

of tests. For instance, in [19] the state space of a class

is quotiented based on its parameterless boolean observers

(similar approach for a different purpose is in [35]). In [32],

abstract states are computed using shape abstraction, i.e.,

ignoring the concrete values in containers and taking into

account only the shape in which the container nodes are

connected. Note that this work requires access to internal

state of the SUT. In [6], a type-state model -similar to our

EPA- is inferred and used to guide the generation of new

test cases that try to cover uncovered transition of the type

state. The goal is to dynamically discover typestate models.

The quality of such models is then measured in the context

of detecting misuse of the class protocol by client programs.

Our work differs substantially in various ways: The men-

tioned approaches do not i) look at the problem of black-
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box conformance testing; ii) articulate equivalence criteria

declaratively as an adequacy criterion (rather, they are tightly

coupled to the particular technique), iii) provide statistical

evidence on the effectiveness of covering such abstractions

in terms of failure rate detection or structural coverage of

the class under analysis.

A notable recent related work is that of [10], where

adequacy criteria are based on the behaviour of the software

under test. In that work, a test suite is considered adequate if

a reasonable model can be inferred from it. Nevertheless, the

authors do not address the problem of conformance testing:

they model programs as functions (i.e, programs that receive

inputs and produce outputs) and it is the relation between

these values what constitutes the behavioural model.

B. Conformance Testing

There is plenty of work focused on defining coverage

criteria for formal specifications ranging over a plethora of

languages and computation models (see [15] as a survey).

Here we focus on approaches that are straightforwardly

applicable to conformance testing.

Existing approaches can be classified in two categories:

structural (or specification-based) and behaviour (or seman-

tic) coverage criteria. Structural coverage criteria are either

defined in terms of the specification or of the executable

code generated from the specification or simulation model.

Representative examples are [24], [17], [22] where crite-

ria are defined over syntactic elements as transitions and

predicates featured in expressive state-based specification

languages like EFSMs or UML state machines.

Although empirical studies looking for statistical evidence

on the suitability of coverage criteria are rather common for

code coverage criteria yet are scarce for state-based spec-

ification languages [15] which are particularly appropriate

for conformance testing. Some notable exceptions we found

are [27], [26], [22]. Interestingly enough, in these, experi-

ments were conducted on criteria based on covering code

generated from models [26] or simulation code [27]. In [22]

hand-made test suites based on UML state machines are

compared against test suites based on structural testing. Like

authors of [26], we speculate that difficulties on automation

criteria over specification could be a symptom of a lack of

comprehensive definitions and tools for specification-based

coverage criteria for rich state-based languages. We believe

the work presented herein is a step forward in this direction.

On the other hand, in behaviour approaches, coverage is

defined in terms formalisms which straightforwardly denote

the intended protocol behaviour. This line of work is that

of seminal work on black box testing in the context of

Finite State Machine and protocol testing [18]. In foun-

dational work, the conformance problem is stated in terms

of Mealy machines. However, in contrast to our approach,

coverage and failure models assume finiteness of both the

specification and the actual implementation. Early work that

addresses drops the finiteness assumption is that of LTS

based testing [16] where IOCO is a well established notion

of conformance, however no notion of behaviour coverage

has been defined in this setting of infinite state space.

Infinite behaviour models can be dealt with introducing

abstraction. Several finitisation techniques exists: unfold-

ing [5], domain bounding and slicing and state prunning

[12]. However, no statistical studies on coverage for these

finitisations is available. Other relevant work in this line is

that of automatic under approximation of infinite behaviour

from concrete [21] or symbolic [11] executions that can be

later used for regression testing. Here, again, no statistical

study is available.

VII. CONCLUSIONS AND FUTURE WORK

This paper is a first step towards defining and under-

standing how semantic coverage of infinite state behaviour

specifications relates to effective testing techniques for pro-

tocol conformance. We address this by studying coverage

achieved on an abstraction of such behaviour, more specifi-

cally on enabling preserving abstractions (much in the vein

of typestates [4]). We believe a good understanding of

the relation between failure detection, white box coverage

criteria, and coverage of abstractions of the semantic space

of specifications could help to improve random testing,

test case selection techniques and, in general, heuristics to

generate tests from formal specifications.

The results we obtained in the experiments reported in

this paper are promissing and suggest that EPA coverage

performs well in term of predictability of test-suite failure

detection. This is particularly important in a black box

testing setting and it constitutes an opportunity for defining

criteria that are independent of modeling notation and ac-

cidental characteristics of models themsleves. Results also

suggest that EPA coverage criteria can make a difference in

terms of failure detection for tests suites of the same length.

In addition, results lead to believe that EPA coverage is

a good predictor of statement and code coverage, and that,

for same sized test suites high EPA coverage is more likely

to achieve high code coverage. This may have practical

implications in the context of development approaches which

advocate test development before coding (e.g. test driven

development, interoperability, etc.) or automated generation

of test suites (model driven development). In these contexts,

developing tests according to the EPA of the intended

protocol would allow a first (and early) shot at producing

high code coverage test suites. These test suites could later

be extended, if necessary, when code is available. It is

important to note that the construction of EPA abstractions

of intended protocol behaviour is feasible, practical and tool

supported from contract-based specifications [7] or code [8].

Furthermore, EPA abstractions could be provided directly by

testers as advocated by typestate approaches [3].
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Future work should aim at looking at other protocol

abstractions and comparing them with EPAs in terms of their

effectiveness for testing protocol conformance. We plan to

further our experimentation by addressing questions about

the relationship with dataflow coverage criteria, the effect

of test suite minimisation on failure detection, and the sort

of bugs semantic behavior coverage is good for detecting.

We also plan to study cost/benefit analysis when these ideas

are instantiated to a guide the generation of test suites. In

fact, we speculate, random generation could benefit from

EPAs not only due to the results shown in this paper but

also the availability of an abstract protocol would help in

implementing heuristics aimed at the early execution of

particular actions or functionalities.
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