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Abstract. Generalised Stochastic Petri Nets (GSPNs) are a popular modelling
formalism for performance and dependability analysis. Their semantics is tradi-
tionally associated to continuous-time Markov chains (CTMCs), enabling the use
of standard CTMC analysis algorithms and software tools. Due to ambiguities in
the semantic interpretation of confused GSPNs, this analysis strand is however
restricted to nets that do not exhibit non-determinism, the so-called well-defined
nets. This paper defines a simple semantics for every GSPN. No restrictions are
imposed on the presence of confusions. Immediate transitions may be weighted
but are not required to be. Cycles of immediate transitions are admitted too. The
semantics is defined using a non-deterministic variant of CTMCs, referred to as
Markov automata. We prove that for well-defined bounded nets, our semantics
is weak bisimulation equivalent to the existing CTMC semantics. Finally, we
briefly indicate how every bounded GSPN can be quantitatively assessed.

Keywords: timed and stochastic nets, semantics, confusion, (weak) bisimula-
tion, continuous-time Markov chains.

1 Introduction

Generalised Stochastic Petri Nets (GSPNs) [4,3,8] constitute a formalism to model con-
current computing systems involving stochastically governed timed behaviour. GSPNs
are based on Petri nets, and are in wide-spread use as a modelling formalism in different
engineering and scientific communities. From Petri nets they inherit the underlying bi-
partite graph structure, partitioned into places and transitions, but extend the formalism
by distinguishing between timed transitions and immediate transitions. The latter can
fire immediately and in zero time upon activation. The firing time of a timed transition is
governed by a rate, which serves as a parameter of a negative exponential distribution.
Timed transitions are usually depicted as non-solid bars, while immediate transitions
are depicted as solid bars.

The precise semantics of a GSPN may conceptionally be considered as consisting
of two stages. First, an abstract, high-level semantics describes when which transitions
may fire, and with what probability. Speaking figuratively in terms of a token game,
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this semantics determines how tokens can be moved from place to place by the firing
of transitions. Then second, a lower-level mathematical description of the underlying
stochastic process, typically a continuous time Markov chain (CTMC, for short), is
derived to represent the intended stochastic behaviour captured in the first stage. This
Markov chain is then subject to the analysis of steady-state or transient probabilities of
markings, or more advanced analysis such as stochastic model checking.

The modelling power of GSPNs is particularly owed to the presence of immedi-
ate transitions [12]. Unfortunately, this characteristic strength of the formalism may
lead to semantically intricate situations [9,12,13,14,15,25,32]. One of the most promi-
nent cases is confusion [3,8]. In confused nets, the firing order of two concurrently
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Fig. 1. Confused GSPN, see [3, Fig. 21]

enabled, non-conflicting immediate tran-
sitions determines whether two subse-
quent transitions are in conflict or not.
The net in Fig. 1 is confused, since tran-
sitions t1 and t2 are not in direct con-
flict, but firing transition t1 first leads to
a direct conflict between t2 and t3, which
does not occur if t2 fires first instead.
Confusion is not a problem of the high-
level (token game) semantics of a net,
as it is entirely clear which transition may fire, and how tokens are moved in ei-
ther case. It is rather a problem of the underlying stochastic process that ought to
be defined by this net. Recall that the transitions t1 through t3 are all immediate,
and thus happen without elapse of time. Thus, their firing is basically transparent
to a continuous time evolution. Places p4 and p5 enable two distinct timed transi-
tions with rate λ1 and λ2 respectively, cf. Fig. 1. Now, depending on how the con-
fusion between the transitions (and potentially the direct conflict between t2 and
t3) is resolved, the underlying stochastic behaviour either corresponds to an expo-
nential delay with rate λ1, or to a delay with rate λ2. Which of the two delays
happens is not determined by the net structure, and as such is non-deterministic.
Figure 2 shows a graphical representation of this phenomenon as a marking graph.
States correspond to markings of the net in Fig. 1, and there is an obvious graphical
correspondence with respect to the representation of the firing of timed or immediate
transitions by similarly shaped edges. In state {p2, p3} the direct conflict between t2
and t3 in the net yields a non-deterministic choice.
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Fig. 2. Non-deterministic behaviour of the con-
fused GSPN of Fig. 1

As the resulting process is not a
CTMC, workarounds have been de-
veloped. To resolve (or: avoid) non-
determinism, priorities and weights have
been introduced [1]. Intuitively, weights
are assigned to immediate transitions at
the net level so as to induce a probabilis-
tic choice instead of a non-deterministic
choice between (equally-prioritised) immediate transitions. Ignoring priorities, when-
ever more than one immediate transition is enabled, the probability of selecting a
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Fig. 3. (a) Probabilistic behaviour of weighted confused GSPN in Fig. 1; (b) the resulting CTMC

certain enabled immediate transition is determined by its weight relative to the sum
of the weights of all –including those that are independent– enabled transitions.

For example, for the marking depicted in Fig. 1, transition t1 is selected with proba-
bility W1

W1+W2
where Wi is the weight of transition ti. In this way, we obtain an unam-

biguous stochastic process for this GSPN, cf. Fig. 3(a). Now, the unlabelled edges have
multiple endpoints and denote probability distributions over markings. We can consider
this as a semi-Markov process, which has both zero-time delay and exponentially dis-
tributed time delay edges, as worked out, for instance by Balbo [8]. In order to derive a
CTMC from this process, sequences of zero-time delay edges are fused into probability
distributions over states. For our example net, we obtain the CTMC in Fig. 3(b) with
initial distribution μ0 with μ0(s1) = c1 and μ0(s2) = c2 where

c1 =
W1

W1+W2
· W3

W2+W3
and c2 =

W2

W1+W2
+

W1

W1+W2
· W2

W2+W3
.

These quantities correspond to the reachability probability of marking{p4} and {p3, p5},
respectively from the initial marking. Unfortunately, this approach has a drawback, re-
lated to the dependence and independence of transitions, an important concept in Petri
net theory. In our example net of Fig. 1, the transitions t1 and t2 are independent. Their
firings happen independent from each other, as the two transitions share no places. Tran-
sitions t2 and t3, in contrast, are dependent, as the firing of one of them influences the
firing of the other (by disabling it) via the shared input place p2. However, the expected
independence between t1 and t2 is not reflected in our GSPN above after introducing
weights. Instead, the probability to reach marking p4 (and marking p5) under the condi-
tion that transition t2 has fired will differ from the corresponding probability under the
condition that t1 has fired. A further conceptual drawback from a modelling perspective,
is that when a new immediate transition is inserted between t1 and t3, then this changes
these probabilities. This is irritating, since we only refine one immediate transition into a
sequence of two immediate transitions. Since immediate transitions do not take time, this
procedure should not result in a change of the underlying stochastic model. However, it
does. We can also consider this phenomenon as a problem of locality. A local change of
the net has unexpected global consequences with respect to the probabilities.
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To remedy this defect, several approaches to define the stochastic process at the net
level have been proposed. At the core of these approaches, immediate transitions are
usually partitioned according to their conflict behaviour, based on a structural analysis
of the net. The standard approach is to partition them into extended conflict sets (shortly,
ECSs) [1], which is a generalisation of structural conflicts in the presence of priorities
(which are not treated here). Intuitively, two transitions are in structural conflict in a
marking, if both are enabled in this marking, and firing any of them will disable the
other. Inside an ECS, weights are used to decide immediate transition firings, while no
choice is resolved probabilistically across ECSs. For confusion-free nets, the ECS does
provide a way of resolving conflicts probabilistically with a localised interpretation of
weights. Unfortunately, for confused nets, this solution approach suffers from the same
problem as our initial approach: The ECSs for the net in Fig. 1 are given by the partition
{{t1} , {t2, t3}}. As transitions t2 and t3 are in the same ECS, the decision which to
fire will be resolved probabilistically according to their weights. Transitions t1 and
t2, in contrast, are in different ECS. Thus, the decision will still need to be resolved
non-deterministically, given that they may be enabled at the same moment. Inserting
immediate transition t4 between t1 and t3 as mentioned above will lead to the ECSs
{{t1} , {t4} , {t2, t3}}. Thus, still only the decision between transitions t2 and t3 is
resolved probabilistically and not influenced by t4. So, since some decisions are forced
to be non-deterministic, this approach does in general not yield a mathematically well-
defined stochastic process. Moreover, it is easy to see that in our example, any partition
of immediate transitions will suffer from one of the semantic problems discussed.

In summary, certain nets lead to undesirable semantic problems. Due to this fact,
several researchers have identified certain classes of nets as not well-defined (aka. ill-
defined) [3,14,15]. Such nets are excluded both semantically and from an analysis
point of view. Several different definitions have occurred in the literature. However,
ill-defined nets, with confused nets being a prominent example, are not bad nets per se.
As Balbo states [7]: “this underspecification [in confused nets] could be due either to
a precise modelling choice [. . . ] or to a modelling error”. We firmly believe that the
modeller should have full freedom of modelling choices, and that such choices should
not be treated as errors by definition.

Contribution of this paper. This paper presents a semantics for GSPNs that is complete
in the sense that it gives a meaning to every GSPN. Our semantics is conservative with
respect to the well-established existing semantics of well-defined nets. More precisely,
we show that for well-defined bounded GSPNs, our semantics is weak bisimulation
equivalent to the classical CTMC semantics. This entails that measures of interest, such
as steady-state and transient probabilities are identical. Finally, we sketch the available
analysis trajectory for our semantics, including confused bounded nets.

Outline. We first recall the definition of GSPNs in Section 2. In Section 3 we present
the MA semantics for GSPNs based on the marking graph. The bisimulation semantics
will be discussed in Section 4. In Section 5 we describe quantitative analysis approaches
for arbitrary (bounded) GSPNs, and Section 6 concludes the paper.
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2 Generalised Stochastic Petri Nets

This section introduces GSPNs, where, for the sake of simplicity, we do not consider
transition priorities. For a set X , we use Σ(X) to denote the set of all partitions of X .
For a set of places P , a marking m is a multi-set over P of the form m : P → N. We
let M denote the set of all markings over P , and use m,m0 etc to denote its elements.

Definition 1 (Generalized stochastic Petri net). A generalised stochastic Petri net G
(GSPN) is a tuple (P, T, I, O,H,m0,W,D) where:

– P is a finite set of places,
– T = Ti ∪ Tt is a finite set of transitions (P ∩ T = ∅) partitioned into the sets Tt

and Ti of timed and immediate transitions,
– I, O,H : T → M defines the transitions’ input places, output places, inhibition

places1,
– m0 ∈ M is the initial marking,
– W : T → R>0 defines the transitions’ weights, and
– D : M → Σ(T ) is a marking-dependent partition satisfying the condition that
Tt ∈ D(m) for all markings m ∈ M .

The above definition agrees, except for the last component D, with the classical GSPN
definition in the literature [2,3,8]. We use the marking-dependent partition function D
as a generalisation of the extended conflict set mentioned before. It serves to express for
which immediate transitions choices are resolved probabilistically, and for which non-
deterministically. This information is usually not provided in the net definition. Instead
the (marking independent) ECS are derived based on a structural analysis of the net at
hand. The reason why we include this information in an explicit form in the definition is
mainly ought to formal reasons. However, it also enables (but does not enforce) a view
where the choices between immediate transitions are resolved as a consequence of a
conscious modelling decision, possibly decoupled from the net structure. The constraint
Tt ∈ D(m) is due to the fact that all enabled timed transitions are always weighted
against each other in a race. On the expense of slightly more complicated definitions in
the following, we could eliminate this technicality and let D : M → Σ(Ti).

The input, output and inhibition functions assign to each transition a mapping P →
N, specifying the corresponding cardinalities. A transition has concession if sufficiently
many tokens are available in all its input places, while the corresponding inhibition
places do not contain sufficiently many tokens for an inhibitor arc to become effective.
Firing a transition yields a (possibly) new marking, which is obtained by removing
one or more tokens from each input place and adding tokens to the transition’s output
places. Immediate transitions execute immediately upon becoming enabled, whereas
timed transitions are delayed by an exponentially distributed duration which is uniquely
specified by a transition rate (i.e., a positive real number defined by the weights).

For notational convenience, we write cascaded function application with indexed
notation of the first parameter. For example, we write It, Ot and Ht for I(t), O(t) and
H(t), respectively. The semantics of a GSPN is defined by its marking graph, which

1 If transition t has no inhibitor places, we let H(t) = ∞.
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is obtained by playing the “token game”. Immediate transitions are fired with priority
over timed transitions [2,12,3]. Accordingly, if both timed and immediate transitions
have concession in a marking, only the immediate transitions become enabled. Let G
be a GSPN with marking m ∈ M .

Definition 2 (Concession and enabled transitions).

1. The set of transitions with concession in marking m is defined by:

conc(m) =
{
t ∈ T | ∀p ∈ P. m(p) ≥ It(p) ∧m(p) < Ht(p)

}
.

2. The set of enabled transitions in marking m is defined by: enm = conc(m) ∩ Ti if
conc(m) ∩ Ti 
= ∅, and enm = conc(m) otherwise.

A marking m is vanishing whenever an immediate transition is enabled in m, otherwise
it is tangible. Given the priority of immediate transitions over timed ones, the sojourn
time in vanishing markings is zero. In a vanishing marking, none of the timed transitions
which have concession is enabled. In a tangible marking m, only timed transitions can
be enabled. The residence time in tangible marking m is determined by a negative
exponential distribution with rate

∑
t∈enm

W (t). The effect of executing a transition is
formalised in the classical way:

Definition 3 (Transition execution). Let the transition execution relation [·〉 ⊆ M ×
T ×M be such that for all markings m,m′ ∈ M and transitions t ∈ T it holds:

m [t〉m′ ⇐⇒ t ∈ enm ∧ ∀p ∈ P. m′(p) = m(p)− It(p) +Ot(p).

We now recall the notion of marking graph, obtained from reachable markings:

Definition 4 (Reachable marking graph). The marking graph of the GSPN G is the
labelled digraph MG(G) = (RS , E), where

– RS is the smallest set of reachable markings satisfying: m0 ∈ RS , and m ∈
RS ∧m [t〉m′ implies m′ ∈ RS .

– The edge between m and m′ is labelled by the transition t such that m [t〉m′.

This graph describes how a net may evolve in terms of its markings. However, it fails to
faithfully represent the stochastic aspects of the net. This is made more precise below.

Recall the idea that we consider certain immediate transitions probabilistically
dependent from some other transitions (mainly when they are in conflict), while we
consider them independent from others. Traditionally, these relations are captured by
extended conflict sets (ECSs [1]). Here, we consider a generalisation of this concept in
the form of an arbitrary immediate transitions partition Dm. For each marking m, the
partition Dm determines a way of resolving conflicts between immediate transitions.
Each set C ∈ Dm consists of transitions whose conflicts are resolved probabilistically
in m. On the other hand, transitions of different sets are considered to behave in an
independent manner, i.e., we make a non-deterministic selection if several of them are
enabled in m. Our semantics will be general enough that we may allow the latter even
if there is a structural conflict between these transitions. Let us make this precise.
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Assume that some transitions in the set C ∈ Dm are enabled and C is chosen to
be fired. Under this condition, the probability that a specific transition fires is given as
the normalised weight of the enabled transitions in C. Precisely, PC{t | m} = 0 if
t 
∈ C ∩ enm, and otherwise:

PC{t | m} =
W (t)

WC(m)
where WC(m) =

∑

t∈C∩enm

W (t). (1)

If m is a vanishing marking, WC(m) denotes the cumulative weight of all enabled
(i.e., immediate) transitions in C. In this case the probability PC{t | m} of taking
the immediate transition t in m is determined by the weight assignment W . Note that
PC{t | m} is 0 if t is neither enabled nor an element from C. The case that m is
tangible is similar. Then only timed transitions are enabled, and recall that the set of
timed transitions Tt is an element in Dm. Thus, C = Tt. Accordingly,

WC(m) =
∑

t∈enm

W (t)

is the exit rate from the tangible marking m. In this case, PC{t | m} is the probability
of taking the transition t if the tangible marking m is left.

In both cases, several distinct transition firings may lead from m to the same marking
m′. These need to be accumulated. With some overload of notation we define

PC(m,m′) =
∑

m[t〉m′

PC{t | m}.

3 Markov Automata Semantics for GSPNs

Our aim is to provide a semantics to every GSPN. In particular, this includes nets in
which multiple immediate transitions are enabled in a marking, nets with cycles of im-
mediate transitions, as well as confused nets. Obviously, stochastic processes such as
CTMCs do not suffice for this purpose, as they cannot express non-determinism. We
therefore resort to an extension of CTMCs with non-determinism, Markov automata
(MAs, for short) as introduced in [20]. This model permits to represent the concepts
above, including a formulation in terms of a semi-Markov process with zero-timed de-
lay and exponentially distributed time delays [8], while in addition supporting non-
determinism between transition firings in vanishing markings. Figure 2 and 3(a) are in
fact graphical representations of MA.

3.1 Markov Automata

We first introduce some preliminary notions that we shall use in the rest of the paper.
A subdistribution μ over a set S is a function μ : S �→ [0, 1] such that

∑
s∈S μ(s) ≤ 1.

Let Supp(μ) = {s ∈ S | μ(s) > 0} denote the support of μ and μ(S′) :=
∑

s∈S′ μ(s)
the probability of S′ ⊆ S with respect to μ. Let |μ| := μ(S) denote the size of the
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subdistribution μ. We say μ is a full distribution, or simply distribution, if |μ| = 1.
Let Dist(S) and Subdist(S) be the set of distributions and subdistributions over S,
respectively. For s ∈ S, let δs ∈ Dist(S) denote the Dirac distribution for s, i.e.,
δs(s) = 1. Let μ and μ′ be two subdistributions. We define the subdistribution μ′′ :=
μ⊕μ′ by μ′′(s) = μ(s)+μ′(s), if |μ′′| ≤ 1. Conversely, we say that μ′′ can be split into
μ and μ′, or that (μ, μ′) is a splitting of μ′′. Since ⊕ is associative and commutative, we
use the notation

⊕
i∈I for arbitrary sums over a finite index set I . Moreover, if c·|μ| ≤ 1

and c > 0, we let cμ denote the subdistribution defined by: (cμ)(s) = c·μ(s). For s ∈ S
and μ ∈ Subdist(S) let μ�s denote the subdistribution μ′ with μ′(t) = μ(t) if t 
= s
and μ′(s) = 0.

Definition 5 (Markov automaton). A Markov automaton A is a quadruple
(S, , , μ0), where

– S is a non-empty countable set of states,
– ⊂ S ×Dist(S) is a set of immediate edges,
– ⊂ S × R>0 ×Dist(S) is a set of timed edges, and
– μ0 ∈ Dist(S) is an initial distribution over the states S.

It is required that every state s ∈ S has at most one outgoing timed edge.2

We let s, u and their variants with indices range over S, and μ over Dist(S). An imme-
diate edge (s, μ) ∈ is denoted by s μ. The operational interpretation of edge
s μ is that from s a next state will be probabilistically determined according to
distribution μ and that in s no time elapses. Similarly, a timed edge (s, λ, μ) ∈ is

denoted by s
λ

μ. We use λ, r ∈ R>0 to denote the rate of a negative exponential
distribution. An edge (s, μ) ∈ is said to originate from state s.

A state s ∈ S is called tangible if no immediate edge originates from s. A probability
distribution over states is called tangible if all states in its support set are tangible. We
write s

α−−→ μ if either (i) α = ε (i.e. the edge is unlabelled) and s μ or (ii) α ∈ R>0,

s is tangible and s
α

μ, or (iii) α = 0, μ = δs, and s has no outgoing transition. This
notation combines immediate edges (i) with timed edges (ii), but timed edges are only
considered from tangible states. Clause (iii) generalizes the implicit tangibility check
of clause (ii) to states without outgoing edges. The inclusion of a tangibility check
inside the above clauses (ii) and (iii) of

α−−→ will have an interesting effect, discussed
in Section 4.2. We stipulate that non-determinism occurs in an MA whenever multiple
immediate edges originate from a state. In that case, it is deliberately left unspecified
with which probability a particular immediate edge is taken. This represents a non-
deterministic choice. Obviously, CTMCs can be considered as special cases of MAs:
A CTMC is a MA with = ∅.

3.2 Basic Semantics of GSPNs

We are now in the position to define the semantics of every GSPN—including the
non well-defined ones—by means of a MA. The intuition is rather simple. Basically

2 This is not a restriction since the effect of two timed edges s
r

μ and s
r′

μ′ can be

combined into a single timed edge s
r+r′

μ′′.
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the semantics of a GSPN corresponds to its reachable marking graph, cf. Def. 4. States
correspond to markings, taking an immediate edge in the MA is the counterpart to firing
an immediate transition in the net, and likewise for timed edges and timed transitions.
The marking graph can therefore directly be interpreted as a Markov automaton.

Definition 6 (Basic MA semantics for GSPNs). The MA semantics of the GSPN
G = (P, T, I, O,H,m0,W,D) is the MA AG = (S, , , μ0), where

– S = RS is the reachable set of markings in the marking graph,
– μ0 = δm0 ,
– for every m ∈ RS , and each equivalence C ∈ Dm,

1. there is an edge m
r

μ if and only if m is a tangible marking, r = WC(m)
and μ(m′) = PC(m,m′) for all m′ ∈ RS ,

2. there is an edge m μ if and only if m is a vanishing marking and μ(m′) =
PC(m,m′) for all m′ ∈ RS .

So, the basic MA semantics is the marking graph of a GSPN. Every marking of the
GSPN that is reachable by a sequence of (net) transitions from the initial marking cor-
responds to a state in the MA. As discussed before, in marking m of the net all enabled
timed transitions t induce an exponentially distributed stochastic delay with a rate r that
is the sum of all weights of enabled transitions. In this case, the probability to reach a
marking m′, say, by edge t is given as the edge’s relative weight. This is reflected in
clause 1 of the above MA semantics. If no timed transition is enabled in marking m,
then no timed edge originates from state m.

In contrast, the enabled immediate transitions in a marking need to be represented
by more than one immediate edge in the MA. Recall that each equivalence class C ∈
Dm corresponds to an ECS in GSPN terminology. For every such set C, the enabled
transitions in C fire with a probability that is equal to their weight in relation to the
sum of the weights of all enabled transitions in C. However, transitions that are in
different sets in Dm are entirely independent. More precisely, transitions from different
sets in Dm compete in a non-deterministic way. This is reflected in clause 2 of the above
definition. The non-deterministic choice between transitions across different sets of Dm

is represented by introducing an immediate edge for every set in the partition Dm. The
probabilistic decision among transitions within a single set, in turn, is reflected by the
distribution over markings the corresponding immediate edge leads to.

3.3 Well-Defined GSPNs

The aim of this section is to formalise and generalise well-defined GSPNs in terms of
our new semantics. A central notion for this purpose is the concept of weak edges.

Labelled trees. The notion of weak edge is defined using labelled trees. For σ, σ′ ∈
N

∗
>0, let σ ≤ σ′ if there exists a (possibly empty) φ ∈ N

∗
>0 such that σφ = σ′. We

write σ < σ′ whenever σ ≤ σ′ and σ 
= σ′. Let L be a set of labels. An (infinite)
L-labelled tree is a partial function T : N∗

>0 → L satisfying
– if σ ≤ σ′ and σ′ ∈ dom(T ), then σ ∈ dom(T ),
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– if σi ∈ dom(T ) for i ∈ N>1, then σ(i−1) ∈ dom(T ), and
– ε ∈ dom(T ).

The empty word ε is called the root of T and σ ∈ dom(T ) is a node of T . For node σ
of tree T , let Children(σ) = {σi | σi ∈ dom(T )}. Node σ is a leaf of tree T if there is
no σ′ ∈ dom(T ) with σ < σ′; then Children(σ) = ∅. We denote the set of all leaves of
T by LeafT and the set of all inner nodes of T by InnerT . If the tree only consists of
the root, then InnerT = LeafT = {ε}. In any other case the two sets are disjoint. We
consider L-labelled trees with finite branching, i.e., |Children(σ)| < ∞ for all nodes σ.

Weak edges. Weak edges for probabilistic systems have been defined in the literature
via probabilistic executions in [31], trees [17], or infinite sums [16]. We adopt the tree
notation here. The material presented below concerning weak edges provides no in-
novation over the classical treatment, it is included for the benefit of the reader. Let
L = S × R>0. A node in an L-labelled tree is labelled by a state and the (by definition
non-zero) probability of reaching this node from the root of the tree. For a node σ we
write StaT (σ) for the first component of T (σ) and ProbT (σ) for the second component
of T (σ). If T is clear from the context we omit the subscripts.

Definition 7 (Weak edge tree). Let (S, , , μ0) be an MA. A weak edge tree T is
a S × R>0-labelled tree satisfying the following conditions

1. Prob(ε) = 1,
2. ∀σ ∈ InnerT \LeafT : ∃μ : Sta(σ) −−→ μ and Prob(σ) ·μ = ξ where ξ(Sta(σ′)) =

Prob(σ′) for all σ′ ∈ Children(σ),
3.

∑
σ∈LeafT

Prob(σ) = 1.

A weak edge tree T corresponds to a probabilistic execution fragment: it starts from
the root’s state Sta(ε), and resolves non-deterministic choices at every inner node of the
tree, which represents the state in the MA it is labelled with. The second component
of σ, Prob(σ), is the probability of reaching the state Sta(σ) via immediate edges in
the MA, starting from the state Sta(ε). The distribution associated with edge tree T ,
denoted μT , is defined as μT

def
=

⊕
σ∈LeafT

ρσ , where ρσ ∈ Subdist(S) with ρσ(s) =
Prob(σ) if s = Sta(σ) and ρσ(s) = 0 otherwise. Subdistribution μT is said to be
induced by T . We are now in a position to define weak edges: For s ∈ S and μ ∈
Dist(S), let s ==⇒ μ if μ is induced by some internal edge tree T with Sta(ε) = s.

We now generalise edges to edges originating in subdistributions over states. Let
μ ∈ Dist(S). If for every state si ∈ Supp(μ), si ==⇒ μ′

i for some μ′
i, then we write

μ ==⇒
⊕

si∈Supp(μ) μ(si)μ
′
i. We apply a similar definition for

α−−→ instead of ==⇒.

Finally, for α ∈ R, we write s
α

==⇒ μ if there exist μ1 and μ2 such that s ==⇒ μ1,
μ1

α−−→ μ2 and μ2 ==⇒ μ.
Intuitively, the weak edges in Def. 7 (referred to as weak transitions in the automata

literature) are used to capture all possible evolutions along immediate edges starting
from s. Thus, any edge itself is a weak edge, and note that from state s, there is always
a weak edge s ==⇒ δs, even if s is tangible.

Well-defined GSPNs. We are now ready to define well-defined GSPNs.



100 C. Eisentraut et al.

Definition 8 (Well-defined GSPN). Let G = (P, T, I, O,H,m0,W,D) be a GSPN
with MA semantics AG. We say G is well-defined, if for every state m ∈ RS , and
every pair (μ, μ′) of distributions over tangible states it holds: m ==⇒ μ and m ==⇒ μ′

implies μ = μ′.

Different to [32], we are only interested in the probability to reach a marking, and
whether it is uniquely specified, but not in the sequences of edges leading to tangible
markings. Phrased differently, we are only interested in tangible state to tangible state
probabilities [14,8].

It is not surprising that a well-defined GSPN induces a unique CTMC: states will

correspond to those tangible markings, edge
r

is obtained by extending the weak
edge until tangible states are reached. The uniqueness is guaranteed by the definition of
well-defined GSPNs. This is summarised in the following definition:

Definition 9 (CTMC induced by a well-defined GSPN). The well-defined GSPN G
induces the CTMC CG = (S, , , μ0), where

– S is the set of reachable tangible markings of G,

– m
r

μ iff μ is the unique distribution over tangible markings such that a dis-

tribution μ′ exists with m
r

μ′ and μ′ ==⇒ μ in the basic MA semantics of
G,

– μ0 is the unique distribution over tangible markings such that m0 ==⇒ μ0.

Lemma 1. The induced CTMC of a well-defined GSPN is unique (up to isomorphism).

4 Bisimulation Semantics

The basic MA semantics we have introduced already has several advantages. It is com-
plete, i.e. it provides semantics for every net, and it is amenable to several analysis
techniques that are being established (see Sec. 5 for further details). Nevertheless, we
want to address more desirable properties the current proposal does not have: (i) the
semantics should be conservative with respect to the existing standard semantics for
well-defined nets, (ii) immediate edges should be disregarded as much as possible, and
exponential delays should be only distinguished up to lumpability. This ensures that
the actual formal semantics agrees with the intuitive behaviour of a net and semantic
redundancies are avoided as much as possible. For instance, the introduction of a new
immediate transition between t1 and t3 in Fig. 1, which should be independent of every
other concurrently enabled transition, should not affect the underlying semantics.

We now will implement the above requirements by defining the semantics of a
bounded GSPN as its basic MA semantics modulo a behavioural equivalence, weak
bisimilarity [20]. The basic MA semantics modulo weak bisimilarity will exactly rep-
resent the behavioural kernel of the GSPN. (The setting of unbounded GSPNs is left
for further study.)

We first need the notion of a convex combination of weak edges. Let μ
α

==⇒C γ
if there exists a finite index set I , and weak edges μ

α
==⇒ γi and a factor ci ∈ (0, 1]

for every i ∈ I , with
∑

i∈I ci = 1 and γ =
⊕

i∈I ciγi. This notion is standard for
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probabilistic automata, and inherited here for MA; see [31] for more details. Let the set
of all splittings of immediate successor subdistributions be defined as

split(μ) = {(μ1, μ2) | ∃μ′ : μ ==⇒C μ′ ∧ μ′ = μ1 ⊕ μ2} .

Definition 10 (Weak bisimulation [20]). A symmetric relation R on subdistribu-
tions over S is called a weak bisimulation if and only if whenever μ1Rμ2 then for
all α ∈ R ∪ {ε}: |μ1| = |μ2| and for all s ∈ Supp(μ1) there exist μ2

→, μ2
Δ:

(μ2
→, μ2

Δ) ∈ split(μ2) and

(i) μ1(s)δs R μ2
→ and (μ1�s) R μ2

Δ

(ii) whenever s
α−−→ μ′

1 for some μ′
1 then μ2

→ α
==⇒C μ′′ and (μ1(s) · μ′

1) R μ′′

Two subdistributions μ and γ are weak bisimilar, denoted by μ ≈ γ, if the pair (μ, γ)
is contained in some weak bisimulation.

Note that weak bisimilarity is a relation over distributions, which is a natural choice
for stochastic processes. Its basic idea is that two distributions μ and γ are bisimilar,
if the edge of every state in the support of μ can by matched by a weak edge of a
subdistribution of γ (Condition (ii)) in the usual sense of (probabilistic) bisimulation,
however, enhanced by the idea that before γ is to be split into suitable subdistributions,
it may perform an arbitrary sequence of weak immediate edges (Condition (i)). As
it has been shown in [19], Condition (i) is the essential difference that distinguishes
weak bisimulation for MAs from weak bisimulation for Probabilistic Automata [31].
Furthermore, although not obvious from the definition, it is exactly this condition that
allows to fuse sequences of immediate edges into their unique final goal distribution, if
existing.

Bisimulation can be lifted to a relation between MAs with disjoint state space. Two
MAs A,A′ are bisimilar, denoted A ≈ A′, if their initial distributions are bisimilar in
the direct sum, which is the MAobtained by considering the disjoint union of states and
edges respectively. This shall be used in the next section to compare the semantics of
models.

4.1 Revisiting Well-Definition

To illustrate why we consider weak MA bisimilarity a semantic equivalence especially
well-suited for GSPN semantics, let us recall the standard procedure applied to derive
a CTMC from the basic MA semantics underlying a well-defined GSPN. We illustrate
this process with the MA from Fig. 3(a) as an example. For convenience, we repeat it
in Fig. 4(a) below. This figure shows the basic MA semantics of the GSPN in Fig. 1 in
the case that every immediate edge is weighted, and choices among immediate edges
are always resolved probabilistically. For a shorter notation, we now denote edge prob-
abilities by x1, x2 and so on. When we want to transform this MA into a CTMC, we
successively remove every immediate edge by replacing a state with an outgoing im-
mediate edge by the distribution that this immediate edge leads to. The result of this
replacement is shown in Figs. 4(b) and 4(c). Finally, when no such states remain, we
obtain the CTMC in Fig. 4(d), where c1 = x1x3 and c2 = x2+x1x4. The effect of this
iterative process of fusing transitions can also be formulated via matrix operations [3].
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x1
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x3

x4

1

λ1

λ2

p1, p2

p2, p3
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p3, p5
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p3, p7

(a)

λ1

λ2

x1x3

x1x4x2

p1, p2

p4

p3, p5

p6

p3, p7p1, p5

(b)

λ1

λ2

x1x3

x2 + x1x4

p1, p2

p4

p3, p5

p6

p3, p7

(c)

s1

s2

s3

s4

λ1

λ2

c1

c2

(d)

Fig. 4. From the MA semantics (a) a CTMC is obtained (d) by step-wise fusing immediate edges
in (b) and (c)

In this example, this leads to a unique result, as every state has at most one outgoing
immediate edge. In general, this leads to unique results whenever the net is well-defined.
For nets with non-determinism, however, this approach does not lead to mathematically
well-defined results.

p1 p3

p4

p5p2

t1

t3

t2

p8 t4

p6

p7

λ1

λ2

Fig. 5. Confused GSPN with additional transi-
tion

For this purpose consider now the net
in Fig. 5. Assume now that we do not re-
solve every choice of immediate transi-
tions probabilistically, but only the con-
flict between t2 and t3. Hence let Dm =
{{t2, t3} , {t1} , {t4}}. Note that these
are exactly the ECSs of the net. We then
obtain the non-deterministic basic MA
semantics in Fig. 6(a). Applying the fus-
ing procedure as before is clearly not
possible, since already in the initial state
of the MA, the marking {p1, p2}, we have two outgoing immediate edges, which will
finally lead to two different distributions over tangible markings.

Although it is thus not possible to fully remove immediate edges here – as they
are a necessary semantic component to express non-deterministic choice – we want to
remove immediate edges whenever they can be fused. In our example, this would lead
to the MA in Fig. 6(b). Only in the first state two immediate edges remain. They fully
capture the non-deterministic behaviour of this GSPN.

Weak MA bisimilarity has been designed to exactly perform the task of removing
immediate edges by fusion when the result is uniquely defined. In fact, the MA in
Fig. 6(b) is the (state- and transition-wise) minimal MA that is weakly bisimilar to the
MAin Fig. 6(a).

Speaking more generally, weak bisimilarity gives us a powerful means to conserva-
tively generalise the notion of tangible and vanishing markings. Formally, a tangible



A Semantics for Every GSPN 103

x3

x4

λ1

λ2

p1, p2

p8, p2

p1, p5

p3, p2

p8, p5 p3, p5 p3, p7

p4 p6

(a)

x3

x4

λ1

λ2

s1 s3 s5

s4 s6

(b)

Fig. 6. A basic MA (a) with non-determinism and the smallest MA weakly bisimilar to it (b).
In (b), state s1 subsumes markings {p1, p2} and {p8, p2} from (a). All other markings with
immediate behaviour are removed as a result of fusing them.

marking has been defined as a marking that has no outgoing immediate transitions.
Markings that are not tangible are called vanishing. More intuitively speaking, as the
words tangible and vanishing suggest, vanishing markings are semantically insignifi-
cant, while tangible markings constitute the semantic essence of a net’s behaviour. Now,
in the context of non-deterministic behaviour, besides of those states without immedi-
ate transitions, also those states with a non-deterministic choice between immediate
transitions are semantically tangible in the literal sense (as long as the choice makes a
behaviour difference in the end).

To make this precise, we will define the notion of significant markings as a conserva-
tive extension of tangible markings, and show that for well-defined nets, they coincide
with tangible markings and vice versa.

Definition 11 (Significant marking). Given a GSPN G and its basic MA semantics
AG, we call a marking m insignificant if it is vanishing and – in AG – m is a state that
has at least one outgoing immediate edge m −−→ μ such that μ ≈ δm. Otherwise we
call marking m significant.

Whereas every tangible marking is also significant, not every vanishing marking is in-
significant. Only those vanishing markings are also insignificant, which have an im-
mediate successor distribution that is semantically equivalent to the marking itself, and
could thus fully replace the marking without affecting the behaviour of the net. Only in
well-defined GSPNs significant and tangible, and vanishing and insignificant coincide
respectively, as stated in the following proposition.

Proposition 1 (Preservation). If G is a well-defined GSPN, then a marking m of G is
tangible if and only if it is significant.

Furthermore, the CTMC associated with a well defined GSPN enjoys a strong relation
to the original net in terms of the MA semantics:

Proposition 2. The basic MA semantics AG of a well-defined GSPN G is weakly
bisimilar to the CTMC CG induced by G.
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Before we present the proof of this proposition, an auxiliary notation and a claim is
needed. Throughout, it is worthwhile to recall that the states of AG and CG are mark-
ings of G. If G is well-defined, for every state m ∈ RS , and every pair (μ, μ′) of dis-
tributions over tangible states it holds: m ==⇒ μ and m ==⇒ μ′ implies μ = μ′. Thus,
for an arbitrary distribution γ, we may write γ �=⇒μ to express that μ is the unique
distribution over tangible states such that γ ==⇒ μ.

Claim. Let G be a well-defined GSPN. Then for every distribution γ and γ′ over states
of the basic MA semantics of G, it holds that γ ==⇒ γ′ implies γ �=⇒μ if and only if
γ′

�=⇒μ.

This follows immediately from the uniqueness of μ.

Proof (Proposition 2). In order to prove AG ≈ CG, we will provide a bisimulation R
and show that the pair of initial distributions of AG and CG is contained in R. Let St

be the state space of CG, the set of all reachable tangible markings of AG. Recall that
the state space of AG is the set RS of all reachable markings. Let R be the symmetric
closure of the relation {(γ, μ) ∈ Dist(RS)×Dist(St) | γ �=⇒μ}. The pair of initial
distributions of AG and CG is contained in R, which follows immediately from the
definition of the initial distribution of CG.

Recall that in CG we have an edge m
r

μ if and only if μ is the unique distribution

over tangible markings such that a distribution μ′ exists with m
r

μ′ and μ′ ==⇒ μ
in the basic MA semantics of G. We will refer to this fact by (�) whenever used in the
sequel.

We will now check that every pair of R satisfies the bisimulation conditions. Con-
sider an arbitrary pair (γ, μ) ∈ R∩Dist(RS)×Dist(St). Clearly |γ| = |μ|, as γ ==⇒ μ.
Now consider an arbitrary state (i.e. marking) s ∈ Supp(γ). By the definition of hyper-
edges and of �=⇒ it is easy to see that there exists a splitting μ→ ⊕ μΔ = μ, such that
δs �=⇒μ→ and μΔ

�=⇒μΔ, which immediately implies γ(s)δs R μ→ and γ�s R μΔ.
This satisfies Clause (i) of Definition 10. Now assume s −−→ γ′. Then, by Claim 4.1,
we see that γ(s)γ′

�=⇒μ→ and thus immediately γ(s)γ′ R μ→. Now assume s
r−−→ γ′.

Note that this implies that s is tangible, and thus μ→ = γ(s)δs. But then by (�) the
result follows. This finishes Clause (ii).

Now, for the symmetric case, consider an arbitrary pair (μ, γ) ∈ R ∩ Dist(St) ×
Dist(RS ), and let t ∈ Supp(μ). From the definition of R it follows that γ �=⇒μ and
thus γ ==⇒ μ. Hence, (μ(t)δt, μ�t) ∈ split(γ). We then choose γ→ = μ(t)δt and
γΔ = μ�t. Then for Clause (i) it suffices to note that μ(t)δt Rμ(t)δt and μ�tRμ�t,
as for arbitrary distributions ξ over tangible states we have ξ �=⇒ξ. For Clause (ii),
consider t

r−−→ μ′ in the CTMC CG. Note that this is the only possible transition of
t (if any), as t is tangible. But then by (�), also t ==⇒ μ′ in AG, and as before μ′Rμ′

follows.

Proposition 2 provides us with a kind of correctness criterion for the setup we pre-
sented. The MA weak bisimulation semantics indeed conservatively extends the clas-
sical semantics. Furthermore, many traditionally ill-defined and confused nets can still
be related to a CTMC modulo weakly bisimilarity. This is linked to the fact that weak
bisimilarity embodies the notion of lumpability, apart from immediate transition fusing.
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4.2 Timeless Traps

Cycles of immediate transitions are an intricate problem in classical GSPN theory, their
circular firing is often called a timeless trap [9], see Fig 7(a) for an example. GSPNs
with timeless traps are traditionally excluded from the analysis, basically because the
firing precedence of immediate over timed transitions makes the system diverge on the
cycle without letting time progress. This is an awkward phenomenon, related to Zeno
computations. In our MA reformulation, timeless traps are represented as cycles in the
MA, and as such do not pose specific semantic problems. Furthermore, weak bisimi-
larity is sensitive to cycles of immediate transitions, but only to those that cannot be
escaped by firing an alternative immediate transition. This is due to a built-in fairness
notion in the weak bisimulation semantics, (rooted in the inclusion of a tangibility check
inside the definition of the abbreviation

α−−→). As a consequence, if a timeless trap can
be left by firing a (finite sequence of) immediate transitions leading to a tangible mark-
ing, this is equivalent to a single immediate transition firing. This implies that the net

p2

p1
t1

t2

t3

p3 p5

p4 p6

λ

λ

(a)

2λ λ
s1 s2 s3

(b)

Fig. 7. A timeless trap that can be escaped by an immediate transition firing (a), and the smallest
MA weakly bisimilar to its semantics (b). In (b), state s1 subsumes markings {p1}, {p2, p4}, and
{p3, p4}. State s2 subsumes markings {p3, p6}, and {p4, p5}, while state s3 represents marking
{p5, p6}.

in Fig. 7(a) is in fact weak bisimilar to the small chain-structured 3-state CTMC in
Fig 7(b). And thus the net is analysable via the classical CTMC machinery. This ex-
ample shows that the combination of lumping and fusing of immediate transitions as
supported by weak bisimulation can have powerful effects. Variations to the definition
of

α−−→ can induce more liberal notions of weak bisimiliarity, including the option to
escape timeless traps unconditionally [27]. That option is not supported by the setup
presented here, which has originally been designed to support strong compositionality
properties [20]. Since compositionality is not a first-class concern in the Petri net world,
this avenue seems worthwhile to be investigated further.

5 Quantitative Analysis of Markov Automata

So far, we have provided the details of a semantics of every definable GSPN. Thanks
to Proposition 2, the steady-state and transient analysis of a well-defined GSPN un-
der our semantics yields the same results as the evaluation of the induced CTMC. The
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remaining question is whether a quantitative analysis of a non well-defined GSPN is
possible, and if so, how such analysis could be performed. Due to the possible presence
of non-determinism, we can no longer consider the probability of a certain event. We
stipulate that such probabilities depend on the resolution of non-determinism. Rather
than considering, e.g., the probability to reach a state (i.e., a marking), it is common
to determine the minimal and maximal reachability probabilities. These values corre-
spond to the worst and best resolution of the non-determinism, respectively. Objectives
that do not address the timing of net transitions, such as reachability, can be addressed
using standard techniques for Markov decision processes (MDPs) such as linear pro-
gramming, value, or policy iteration [5, Ch. 10]. Properties that involve the elapsed
time are more interesting. In the following we briefly consider two such objectives: ex-
pected time and long run averages. For details we refer to [21] where Markov automata
without probabilistic branching are considered. The inclusion of probabilistic branch-
ing however is rather straightforward. Long run average probabilities are the pendant
to steady-state probabilities in CTMCs. Expected time objectives correspond to the ex-
pected time to reach a state in CTMCs. The counterpart to transient probabilities is a bit
more involved and can be tackled using discretisation techniques advocated in [34,23].

In the following we let A = (S, , , μ0) be an MA, s ∈ S a state in A, and
G ⊆ S a set of (goal) states.

Expected Time Objectives. Starting from state s we are interested in the maximal,
or dually, minimal, expected time to reach some state in G. Computing expected time
objectives for CTMCs boils down to solving a linear equation system. The computation
of minimal (or maximal) expected time objectives in MA can be reduced to a non-
negative stochastic shortest path problem in MDPs [21]. Such problems can be casted
as a linear programming problem [10] for which efficient algorithms and tools (such as
SOPLEX) exist.

Long-run average objectives. Intuitively speaking, the long-run average of being in a
state in G while starting from state s is the fraction of time (on the long run) that the
MA A will spent in states in G. We assume w.l.o.g. that G only contains tangible states,
as the long-run average time spent in any vanishing state is zero. The general idea of
computing the minimal long-run time spent in G is the following three-step procedure:

1. Determine the maximal end components3 {A1, . . . , Ak} of the MA at hand.
2. Determine the minimal long-run time spent in G within each end component Aj .
3. Solve a stochastic shortest path problem [10].

The first step is performed by a graph-based algorithm, whereas the last two steps
boil down to solving linear programming problems. Determining the minimal expected
long-run time in an end component can be reduced to a long-run ratio objective in an
MDP equipped with two cost functions. Basically, it is the long-run ratio of the expected
time of being in a state in G relative to the total expected time elapsed so far.

3 A maximal end component is the analogue of a maximal strong component in the graph-
theoretic sense, and is a standard notion for MDPs.
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A prototypical implementation of our semantics is provided as part of the
SCOOP tool, see: http://wwwhome.cs.utwente.nl/timmer/scoop/
webbased.html. This is based on translating GSPNs to an intermediate process-
algebraic formalism [33] whose operational semantics yields Markov automata. The tool
also supports expected time, timed reachability, and long-run analysis as described just
above.

6 Conclusion

This paper has presented a semantics of GSPNs in terms of a non-deterministic variant
of CTMCs, called Markov automata [20]. We have shown that for well-defined bounded
GSPNs, our semantics is weak bisimulation equivalent to the CTMC semantics existing
in the literature [8,13,4,3]. This “backward compatibility” result intuitively means that
our semantics is the same as the classical GSPN semantics up to an equivalence that
preserves all quantitative measures of interest such as transient, steady-state probabili-
ties and CSL (without next) formulae [6]. Thus, any tool based on our MA-semantics
yields for well-defined bounded nets the same results as popular GSPN tools such as
GreatSPN, SMART, and MARCIE.

The main contribution of this paper is that our semantics applies to every GSPN. That
is to say, our semantic framework is not restricted to well-specified or confusion-free
nets. The key to treating confused nets is (not surprisingly) the use of non-determinism.
We claim that our approach can also be applied to other stochastic net formalisms such
as SANs [28,30].

The semantics closes a gap in the formal treatment of GSPNs, which is now no
longer restricted to well-defined nets. This abandons the need for any check, either
syntactically or semantically, for well-definedness. This gap was particularly disturb-
ing because several published semantics for higher-level modelling formalisms—e.g.,
UML, AADL, WSDL—map onto GSPNs without ensuring the mapping to be free of
confusion, thereby inducing ill-defined models. Our Markov automata semantics pro-
vides the basis to also cover the confused and ill-specified semantic fragments of these
formalisms. Indeed, we were able to relax both notions by considering the Markov au-
tomata semantics modulo weak bisimulation. To proceed this way seemed like a natural
way forward for quite some time to us, but to arrive there was an astonishingly difficult
notational and technical endeavour.

Possible Extensions. This paper does not consider the preservation (by the notion of
weak bisimulation) of more detailed marking information such as the exact token occu-
pancy of a place. Our notion of weak bisimulation is rather coarse and abstracts from
this information. It is however straightforward to include this information by a simple
extension of weak bisimulation that respects a certain state labelling, and this is fairly
routine [17,6]. The same is true for other reward structures—except rewards attached
to immediate transitions, which are more involved to handle. The proof for “backward
compatibility” of our semantics for unbounded (but e.g., finitely branching) GSPNs is
left for further study.

http://wwwhome.cs.utwente.nl/~timmer/scoop/webbased.html
http://wwwhome.cs.utwente.nl/~timmer/scoop/webbased.html
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